
616 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 4, AUGUST 2003

Fast Generation of 3-D Deformable Moving Surfaces
Lihua You and Jian J. Zhang

Abstract—Dynamic surface modeling is an important subject
of geometric modeling due to their extensive applications in en-
gineering design, entertainment and medical visualization. Many
deformable objects in the real world are dynamic objects as their
shapes change over time. Traditional geometric modeling methods
are mainly concerned with static problems, therefore unsuitable for
the representation of dynamic objects. Apart from the definition
of a dynamic modeling problem, another key issue is how to solve
the problem. Because of the complexity of the representations, cur-
rently the finite element method or finite difference method is usu-
ally used. Their major shortcoming is the excessive computational
cost, hence not ideal for applications requiring real-time perfor-
mance. In this paper, we propose a representation of dynamic sur-
face modeling with a set of fourth order dynamic partial differ-
ential equations (PDEs). To solve these dynamic PDEs accurately
and efficiently, we also develop an effective resolution method. This
method is further extended to achieve local deformation and pro-
duce -sided patches. It is demonstrated that this new method is
almost as fast and accurate as the analytical closed form resolution
method and much more efficient and accurate than the numerical
methods.

Index Terms—Dynamic partial differential equations, dynamic
surface modeling, 3-D deformable moving surfaces.

I. INTRODUCTION

T HREE-DIMENSIONAL (3–D) objects are usually repre-
sented with surfaces. The popular modeling methods for

parametric surfaces have Bézier, B-spline and nonuniform ra-
tional B-splines (NURBS) [1]. These methods are effective for
the modeling of static surfaces. In the real world, however, there
are many deformable moving objects such as human and animal
characters in motion, draping cloth and deforming metals. Cur-
rently, these objects are modeled mainly with the static methods
combined with computer animation techniques. Since the in-
herent nature describing the deformation and motion of objects
is not incorporated into the modeling methods, the realism of
the modeled objects depends primarily on the perception of the
designer. In contrast, dynamic modeling, taking into account
physics laws, has a great potential in generating more realistic
and visually appealing artifacts. Due to the difficulty of dy-
namic modeling, only a small number of references have dis-
cussed this issue. In [2], Terzopouloset al.discussed the shape
and motion of deformable curves, surfaces and solids using the
theory of elasticity. This model was further extended in their
later works [3] and [4] to include viscoelasticity, plasticity and
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fracture. In order to achieve local deformation, Terzopoulos and
Metaxas developed a 3-D dynamic model whose global defor-
mation captures the gross shape features and the local deforma-
tion parameters reconstruct the details of the complex shapes
that the global abstraction misses [5]. Qin and Terzopoulos rep-
resented a dynamic NURBS swung surface [6] by introducing
the time parameter into its original static formulation. By mini-
mizing an energy functional subject to user controlled geometric
constraints and loads, Celniker and Gossard proposed a curve
and surface finite element method for free-form surface genera-
tion [7]. Following the theory of pure elasticity, Güdükbay and
Özgüç implemented a primal formulation and a hybrid formu-
lation into a physically based modeling method for animating
deformable objects [8]. Physics-based modeling has also been
combined with geometric subdivision methodology to develop
an integrated technique by Mandalet al. [9]. However, these
physically based geometric modeling approaches rely on nu-
merical methods, mainly the finite element method and finite
difference method. Therefore, they are computationally expen-
sive and unsuitable for real-time applications.

Partial differential equation (PDE) based surface modeling is
another physics-based geometric modeling approach. The static
PDE modeling was firstly proposed by Bloor and Wilson [10].
In their work, they mainly used a biharmonic partial differential
equation with a shape parameter. Since the shape parameter has
a strong effect on surface shapes, we proposed a more general
fourth order PDE. It has three vector-valued shape parameters
and provides more user handles for surface shape manipulation
[11]. In addition, we have also discussed the capacity and ef-
ficiency of surface generation using the solution to PDEs with
different orders [12]. Recently, the PDE method was also used
in the parameterization for the reconstruction of 3-D free-form
objects [13] and the generation of complex 3-D free form sur-
faces such as human hearts [14] and three-armed starfish vesi-
cles [15]. The most important and challenging issue of the PDE
approach in static geometric modeling is the resolution of the
partial differential equations. Since the closed form resolution
method can only deal with a limited number of applications
with simple boundary conditions, numerical methods are again
the dominating means. The finite difference method was pro-
posed by Chenget al. [16], and Du and Qin [17]. The finite ele-
ment method was given by Brownet al. [18], and Li and Chang
[19]–[21]. The method of collocation points was discussed by
Bloor and Wilson [22]. These methods are effective. However,
they are computationally expensive, and not ideal for interactive
computer graphics applications. To achieve a higher computa-
tional efficiency, Bloor and Wilson developed a Fourier series
solution [23]. For the cases where the boundary conditions con-
sist of simple periodic functions, this solution is efficient. But
if the boundary conditions do not consist of trigonometric func-
tions, the boundary conditions cannot be satisfied exactly which
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creates a significant setback for certain computer graphics appli-
cations, such as surface blending, and consequently the solution
is inaccurate. In order to meet the boundary conditions exactly,
Bloor and Wilson introduced a remainder function to modify the
Fourier series solution [24]. This method was later employed to
develop the interactive surface design techniques [25] and [26].
After such a modification, the boundary conditions can be sat-
isfied. But the PDE is unfortunately violated, which inevitably
brings errors. Therefore, the fast and accurate resolution of PDE
still remains an unsolved problem. In addition, the existing PDE
based geometric modeling methods only suit for static modeling
problems. In the reported literature we have not yet seen any at-
tempts in the modeling of 3-D deformable moving surfaces with
dynamic partial differential equations.

In this paper, we will propose a set of fourth order dy-
namic partial differential equations. The effects of density
and damping on deformable moving surfaces are considered.
In order to solve the dynamic PDEs, we will develop a fast
and accurate resolution method. The solution consists of
trial functions and basic boundary functions. The unknown
constants in the solution are determined by exactly satisfying
the boundary conditions and minimizing the residual functions
of the proposed PDEs. Then a comparison is made between
the developed method, the closed form resolution method,
and other existing analytical methods. Finally, we will discuss
surface manipulation techniques, local deformations and the
generation of -sided patches, and demonstrate the applications
of the proposed method with a number of examples.

II. DYNAMIC PDEAND SOLUTION

A static 3-D surface can be regarded as the solution to a partial
differential equation subject to boundary conditions. This idea
is now extended to dynamic geometric modeling. For dynamic
modeling, 3-D deformable moving surfaces are time dependent.
In addition, density and damping of the surfaces have an influ-
ence on the surfaces [27] and [28]. Taking these factors into ac-
count, we propose the following dynamic fourth-order partial
differential equations

(1)

where are the
shape functions, and are the density and the damping
coefficient of the surface, respectively,
are the three positional functions representing the three position
components of the surface, are the parametric variables,
and is the time variable.

The boundary conditions for a dynamic geometric modeling
problem can be generalized in the following form which takes
into account the effect of the boundary tangent on the surface
shape

(2)

The boundary functions of (2) can always be written as a sum
of some nonpolynomial basic functions of parametric variable
and the time variable. With this treatment, the boundary con-
ditions are transformed into

(3)

In order to solve dynamic PDEs (1), we construct the solution
functions which consist of the basic functions in (3) and trial
functions of variable as follows.

(4)

Substituting (4) into (3), and zeroing the sum of the coef-
ficients of each basic function , we obtain four linear
algebraic equations for each basic function . Solving
these four linear algebraic equations for all basic functions, the
unknown constants

are determined. Then substituting the expressions of
these constants back to (4), the position functions are changed
into

(5)

In order to determine the rest unknown constants in the above
equation, we substitute (5) into dynamic PDE (1) where

, and . We now obtain
the following residual functions:

(6)

where

(7)
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and

(8)

At an instant of motion , within the resolution region
, by uniformly choosing colloca-

tion points and substituting the values of parametric variables
and at these collocation points into (6), (7), and (8), we obtain
the residual values from residual functions (6), which consist of

linear algebraic equations for every position functionas
follows [29]

(9)

If the size of the equations is equal to the number of the un-
known constants of each position function, i.e.,

, (9) can be solved directly to obtain all unknown constants of
(6). Alternatively, we can choose more collocation points than
the number of the unknown constants and find the square sum
of all the residual values. In doing this, we rewrite (9) in the fol-
lowing matrix form

(10)

where , and are column vectors of elements con-
sisting of residual values ,
unknown constants , and
known constants , respectively, and
is a matrix consisting of the coefficients of
unknown constants ).

Thus the square sum of all the residual values for each posi-
tion function is given by

(11)

By minimizing the square sum, we obtain the following
linear algebraic equations

(12)

The resolution of (12) will determine the rest of the unknown
constants. Thus various 3-D deformable moving surfaces can be
created with (5).

The developed method is easily understood and programmed.
The resolution of the linear algebraic equations (12), which
can be achieved with many standard linear equation solving

methods, will result in all the unknown constants to be obtained.
Since only a small number of unknown constants are involved
in the equations, the developed method is computationally very
efficient.

III. COMPARISONBETWEENDIFFERENTMODELING METHODS

Since the developed method exactly satisfies all the boundary
conditions and minimizes the errors of the surface functions,
the developed method is expected to generate 3-D deformable
moving surfaces quickly and accurately. In order to demonstrate
the advantages of the developed method over existing geometric
modeling methods, in this section, we compare the developed
method with the closed form resolution method and some ex-
isting analytical methods. Since no PDE based method is avail-
able for the problem of dynamic surface modeling, we will make
a comparison only over a static problem.

In order to obtain a closed form solution, we choose the fol-
lowing boundary conditions with which a free form surface can
be generated using the solution to PDE (1)

sin

sin

cos cos

sin sin

cos cos

(13)

According to the above boundary conditions, the closed form
solution of PDEs (1) can be expressed as the following:

sin

cos

(14)

Substituting the above equations into PDEs (1) and taking
, we obtain the unknown

functions , which are given by

for and (15)

cos sin

cos sin (16)

and

for (17)

The unknown constants in the above equations can be deter-
mined by substituting them into boundary conditions (13).

Taking and

,
the surface which is defined with the closed form solution (14)
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Fig. 1. Surface generated with different methods.

of PDEs (1) subject to (13), is depicted in Fig. 1(a). It is the
accurate surface of this problem.

Considering the basic functions in boundary conditions (13),
the solution of PDEs (1) subject to boundary conditions (13) can
be written as follows according to the solution function (4)

sin

cos

(18)

With the above-developed method, we can determine all the
unknown constants. Using the same shape parameters and geo-
metric parameters, taking the total collocation points to be

and the terms , the obtained surface for this problem
is given in Fig. 1(b). There is no visible difference between
Fig. 1(a) and (b). It indicates that the accuracy of the developed
method is very close to that of the closed form solution method.

For the Fourier series based method [23], the basic functions
and in boundary conditions (13) must be first expanded

into the following Fourier series, respectively

sin (19)

cos (20)

Then, the solution of PDEs (1) under boundary conditions
(13) can be approximated with the following Fourier series

cos sin

(21)

where the unknown functions , and can
be found in [23] and the unknown constants in these unknown
functions are determined by solving a series of linear algebraic
equations of order four which are obtained from boundary con-
ditions (13) with the consideration of (19) and (20).

With the same shape parameters and geometric parameters
and taking , we obtain the surface generated from
approximate solution (21) as shown in Fig. 1(c). Since the
Fourier series cannot accurately fit the function at the two ends
of the upper boundary curve [30], a small gap goes through
the bottom boundary curve. Clearly, big discrepancy exists
between the Fourier series solution and the above two solutions
because boundary conditions (13) are not satisfied exactly
by the Fourier series solution. We have taken many terms

of the Fourier series. However, the surface cannot
be further improved.

In order to remedy this weakness, Bloor and Wilson sug-
gested a remainder function , which has
the form of [24]

(22)

Adding the remainder function (22) to (21), they obtained a
modified approximation solution below, which was called the
pseudospectral solution

(23)

Unknown functions are
determined by making solution (23) satisfy boundary conditions
(13) exactly.

With the pseudospectral solution (23) and taking in
(21), the surface produced is shown in Fig. 1(d). Although the
surface is slightly improved by the pseudospectral method, it is
still different from the accurate surface. When the term number
of the Fourier series was increased to , the surface ob-
tained in Fig. 1(e) actually becomes poorer. It indicates that with
the pseudospectral method, the accuracy of the solution cannot
be improved by increasing the number of Fourier series terms.
This is because after the introduction of the remainder function,
although the boundary conditions are satisfied exactly, PDEs (1)
itself will not be satisfied any more.

This example shows that among all the methods, the method
proposed in this paper is closest to the closed form resolution
method. The other two are not accurate enough.

Since our developed method obtains the unknown constants
by solving a small set of linear equations, it is computationally
very efficient. We have timed the process to determine all un-
known constants of the above four solutions. Using both the
closed form resolution method and the method developed in this
paper, it took less than of a second on an 800 MHz PC.
For the Fourier series solution, when taking Fourier series terms
to be , the time determining all unknown constants is
also less than of a second. However, it is 20 times slower
than the developed method in the generation of the surface. For
the pseudospectral method, when the number of Fourier series
terms was taken to be , it took 0.047 seconds to deter-
mine all the unknown constants and the values of the unknown
functions at 100 points of the boundary curves which are
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used to generate the surface. If the unknown functions
are not determined numerically, tedious manual operations have
to be performed to obtain their analytical expressions. There-
fore, the method developed in this paper is more efficient than
the Fourier series based method and the pseudospectral method.
In fact, it can generate surfaces almost as fast as the closed form
resolution method in addition to its ability to deal with complex
dynamic surface modeling which cannot be solved by the closed
form solution method. Since the numerical methods are impos-
sible to generate surfaces as quickly and accurately as the closed
form resolution method, the developed method has much better
accuracy and higher computational efficiency than the reported
numerical methods.

IV. DYNAMIC GENERATION OF 3–D DEFORMABLE

MOVING SURFACES

The developed method provides us with a fast and accurate
generation method of 3-D deformable moving surfaces. In this
section, we will use two examples to demonstrate this point.

In the first example, we will indicate how a glass-like object is
generated by dynamically deforming its upper circular opening
into a pedal-like object. The boundary conditions for the upper
opening are given by

cos sin

cos sin

sin cos

sin cos

sin

sin (24a)

and those for the other boundaries have the forms of

(24b)

Since is a time variable, PDEs (1) subject to the basic
functions and have no closed form solutions.
The method developed in this paper will be used to solve this
problem.

According to the above boundary conditions (24a), (24b) and
(4), the solution functions for the upper surface are given as

cos sin

sin cos

sin (25)

Fig. 2. Dynamic generation of a glass-like 3-D surface.

and those for the middle and bottom surfaces have the following
unified forms

(26)

With the above-developed method, we can determine all the
unknown constants in (25) and (26). Specifying the values of
the shape parameters, density and damping coefficient in PDEs
(1), and the geometric parameters in boundary conditions (24a)
and (24b), fixing them and only changing the value of time,
we generate a series of surfaces dynamically. In Fig. 2, we give
the surfaces at 5 different instants. The upper circular opening
was consecutively deformed into a pedal-like shape.

For many objects, the boundary curves defining these objects
change with the motion of the objects. Human limbs in motion
are such an example. In the example below, we will demonstrate
the dynamic generation of a vase-like 3-D surface by moving its
one boundary curve and deforming its surface. The boundary
conditions for this example are defined by

cos cos

sin sin

cos cos

sin sin

(27)
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Fig. 3. Dynamic generation of a vase-like 3-D surface.

Same as above, PDEs (1) have no closed form solutions for
the basic functions and in the
boundary conditions (27).

According to (4) and the basic functions in (27), the solution
functions for this problem can be written as the following forms:

cos cos

cos

sin sin

sin

(28)

The shape parameters in PDEs (1) are taken to be
. The density and damping coefficient are

set to . And the geometric parameters in boundary
conditions (27) are specified as

, and .
Taking and , we obtain a sequence of the
images of the deformed surface, as seen in Fig. 3, where the
upper boundary curve is consecutively moved to new positions
and the surface is also deformed accordingly.

The boundary conditions given in the above two examples
are only for the purpose of illustration. Since the boundary con-
straints given in (2) and (3) are in a general form, more flex-
ible and general boundary constraints can also be considered
with the developed method. It is applicable to any complicated
boundary conditions.

V. DYNAMIC MANIPULATION TECHNIQUES

In the previous section, we have shown that when time vari-
able takes a series of values, the developed method can be used
to animate 3-D deformable moving surfaces. At a given instant

Fig. 4. Surface manipulation with the boundary tangent functions.

, the surface can be further manipulated by changing the other
factors of PDEs (1) and boundary conditions (3). Their combi-
nation with the time variable provides us with effective dynamic
manipulating tools. In this section, we will examine these shape
manipulation techniques.

A. Boundary Curve and Tangent Functions

Changing the coefficients of the boundary curve functions
can scale the size of the boundary curves and using different
boundary curve functions can create different boundary curves.
Both methods will result in a different surface shape.

The boundary tangent functions provide another powerful
shape manipulation means. Still using the same boundary con-
ditions (27) and the same shape parameters and geometric pa-
rameters defining Fig. 3(a), but setting , fixing , and
taking , the
surface in Fig. 4(a) is created. Then, setting

, the surface is changed to
that in Fig. 4(b).

B. Shape Functions

In our previous examples, the shape functions in PDEs (1)
were taken as constants. In general, the shape functions can
be functions of parametric variables and time variable .
When doing so, these shape functions become more powerful
in shape manipulation. Here we use the following shape func-
tions to demonstrate it.

(29)

The geometric parameters were taken to be those that define
Fig. 3(a), but is set to 0. Keeping

, and unchanged. When taking

, we obtain the surface shape in Fig. 5(a). When
are changed to , the surface shape in Fig. 5(b) is

produced. Clearly, shape functions exert a great influence on the
surface shape.

From PDE (1) there are three shape functions for each posi-
tion function, making a total of nine shape functions. Each of
them affects the shapes of the generated surfaces. These nine
shape functions can have many different combinations and their
effects on surface shapes are profound. However, if we set

and , the
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Fig. 5. Surface manipulation with shape functions.

smaller the absolute values ofand , or the larger that of ,
the more concave the generated surfaces become.

C. Density and Damping Coefficient

Any objects and surfaces moving or deforming with a high
speed are subject to the inertia and damping forces according to
the laws of physics. In order to describe their appearance more
realistically, these forces must be considered.

In the previous examples, we fixed the density and damping
coefficient to be . Now let us change their values
and see how the surface shape is affected. Keeping the shape
parameters, boundary conditions and the value of the time vari-
able defining the surface in Fig. 5(a) unchanged, when taking
the density to be and fixing the damping coefficient

, we change the surface in Fig. 5(a) into that in Fig. 6(a).
Then, changing the density and damping coefficient to
and , respectively, the surface in Fig. 6(a) is deformed to
Fig. 6(b).

Unlike the effect of the shape parameters, the influence of
the density and damping coefficient on surface shapes is simple.
From the above example, it is clear that the larger the density, the
more concave the surface; the bigger the damping coefficient,
the more convex the surface.

In fact, if we do not regard the density and damping coeffi-
cient as the physical properties of the surfaces, but as factors
which manipulate the surfaces, we can also take the density and
damping coefficient as functions of position variables and
time variable . They again are powerful surface manipulation
tools.

VI. L OCALIZED GEOMETRIC OPERATIONS AND

MULTIPLE-SURFACE MODELING

Most of the above examples are modeled with a single surface
patch. Although this is able to demonstrate the advantages of
the PDE based dynamic modeling method, one has to realize
that more powerful modeling measures have to be introduced
for complex shapes. In the following we first discuss how local
deformations are achieved so that a surface can be sculpted to
have more complex surface features. Then, we introduce the
construction of three and four-sided patches. And finally, we
give an example of the modeling of a more complex object.

A. Local Deformation Technique

To locally deform a region of a surface with the developed
method is to treat this region as a sub-patch within the orig-
inal surface. The first step is to specify the boundaries of the
deformed region. These local boundary curves are then repre-

Fig. 6. Surface manipulation with density and damping coefficient.

sented through reparametrization. If the tangential continuity is
also required between the local and the global surfaces, the local
tangent boundary conditions can be determined according to the
mathematical expressions of the local boundary curves.

To perform local deformation, one can use one of the three
techniques: adjusting tangential boundary conditions of the
local region; setting different forms of the shape functions
and other parameters in PDE (1); and adding an additional
deforming term to the solution (5). Among them, the first two
techniques require the resolution of PDE (1) in the local region
whereas the last does not. Therefore the last technique is the
simplest and here we introduce this technique.

If we intend to perform a localized geometric operation in a
local region of and of a given sur-
face, we first define two new parametersand in the range
of and . Next, the local position
boundary conditions and tangent boundary conditions are de-
termined from (5). If the boundaries of the local region are not
along the original and parametric directions, it is always pos-
sible to obtain the position and tangent values of some points
at the local boundaries from the global surface (5). Then, the
new local boundary conditions are formulated from these points.
Similar to (5), the mathematical equations of the local surface
can be written in the following form after the introduction of the
additional term

(30)

where , and is the
additional term. Depends on whether the tangential boundary
continuity is required, the additional term has two different
forms.

When only the positional continuity is required, can be
written as

(31)

When the tangential continuity is also required, the above ad-
ditional term takes the following form

(32)

where can be an arbitrary function whose
forms determine the local deformation.
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Fig. 7. Local deformation with different degrees of blending smoothness.

As an application of the above method, let us carry out a
local geometric operation on the surface given in Fig. 5(a). The
chosen local region is and

. The unknown functions of the additional term are taken
to be for the compo-
nent, for component and

for component. Using the additional term (32)
and setting , we have achieved the local deformation
depicted in Fig. 7(a). Changing the additional term to (31) and
setting , the surface shape of the local deformation is
changed to that in Fig. 7(b). In Fig. 7(a), both positional and tan-
gential continuities at the local boundaries are guaranteed. As
a result, a smooth transition surface appears between the orig-
inal and the local surfaces. However, in Fig. 7(b), the tangential
continuity at the local boundaries is not satisfied and only the
position continuity is maintained. A sharp edge separates both
surfaces, as the positional continuity only givessmoothness.
With this method, complex surfaces can be effectively created
with a controlled blending smoothness (or ).

B. Construction of -Sided Patches

With the above-developed local deformation technique, we
can create a complex surface containing various surface details
through a number of local deformations applied on the surface.
Alternatively, a surface of a complex shape may be viewed as
a collection of smaller and simpler patches connected together
smoothly. The modeling of such a complex surface is thus trans-
formed into the generation of simple surface patches with a
set of constraints to stitch them together. Since any-sided
patches can be constructed from both four-sided and three-sided
patches, in the following we will extend our method to generate
these surface patches.

For a four-sided patch, when both the position and tangent
constraints at its four sides are required, boundary conditions
(2) should be extended to comprise those at the boundaries of

and , i.e.,

(33)

Fig. 8. Surface consisting of three- and four-sided PDE surface patches.

Transforming these boundary conditions into polynomial
forms of the parametric variable, (33) can be written as

(34)

Setting and for (5) and its first partial derivatives
with respect to the parametric variable, we obtain the boundary
functions of the surface (5) at the boundaries and
. Equating these boundary functions to those of (34), we can

obtain a set of linear equations. Taking the positional boundary
conditions of as an example, the
following linear equations are generated

(35)

Similar equations can also be obtained for other boundary
conditions. By solving these linear equations, we can determine
unknown constants

. Following the treatment given in (6)–(12),
the rest unknown constants can be determined with (12). Then,
the obtained surface functions can be used to
generate the surface patch. Using this method, the four-sided
patches in Fig. 8 are created.

For a three-sided patch, we take its 3 boundaries to be
and . The boundary conditions at the boundary
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Fig. 9. Model of an aircraft.

are still given by (3). With them, position functions (5)
are modified to have the following form:

(36)

Still taking the positional boundary condition of
as an example, the resolution equations from

this position boundary condition become

(37)

Similarly, the resolution equations from other boundary
conditions can be obtained. Their resolution determines more
unknown constants in (36). Then the mathematical operations
given in (6)–(12) can be employed to determine the remaining
unknown constants. In Fig. 8, a three-sided patch is produced.

It is well known that any -sided patches can be decom-
posed into a number of four-sided patches or four-sided plus
three-sided patches. Therefore, the above method can be used
to construct any -sided patches. In Fig. 8, a five-sided patch is
generated.

C. Modeling of a More Complex Object

Applying the above-developed method, we here generate the
model of an aircraft. The aircraft is divided into four main parts:
a fuselage, two wings, three tail components and four engine
housings. These parts are further decomposed into a number
of surface patches. The above-developed PDE based modeling
method is employed to generate these surface patches. Then,
they are assembled to produce the model of the aircraft as given
in Fig. 9.

VII. CONCLUSIONS ANDFUTURE WORK

Dynamic modeling of 3-D deformable surfaces is an impor-
tant issue in many computer graphics applications such as com-
puter animation and virtual reality. However, due to the com-
plexity of dynamic modeling, this problem has not been solved

satisfactorily. Existing dynamic modeling approaches rely on
the use of numerical methods such as the finite element method
and finite difference method, which are too slow for dynamic
modeling, and therefore unsuitable for tasks requiring interac-
tive or real-time performance.

In order to dynamically model 3-D deformable moving sur-
faces quickly and accurately, in this paper, we extended the PDE
based static modeling approach to dynamic modeling. A set of
fourth order dynamic partial differential equations have been in-
troduced for this purpose. They consider the effects of inertia
and damping on the motion and deformation of a surface. By
constructing an effective solution function which consists of the
trial functions and the basic functions in the boundary condi-
tions, all the boundary conditions are satisfied exactly. In ad-
dition, the dynamic partial differential equations of the fourth
order are solved by minimizing its residual functions.

A comparison has been made between this method, the closed
form resolution method and the existing Fourier series method
and pseudospectral method. It has been found that the devel-
oped method can generate 3-D surfaces almost as fast and ac-
curately as the closed form resolution method, far more effi-
cient and accurate than the existing analytical and numerical
methods. Moreover, it can cope with the complicated problems
of dynamic modeling of 3-D deformable moving surfaces which
cannot be solved with the closed form resolution method.

With the developed method, we have demonstrated how to
generate 3-D deformable moving surfaces dynamically with two
examples. This method can also be employed as a dynamic ma-
nipulation means of 3-D surfaces. We have investigated the ef-
fects of the boundary curve and tangent functions, shape func-
tions, density and damping coefficient on the surface shape, and
demonstrated that they can be used as an effective tool for the
dynamic manipulation of 3-D deformable moving surfaces.

We have also introduced an effective local deformation tech-
nique with which not only the positional continuity at the local
boundaries, but also the tangential continuity can be satisfied.
The local deformable patch can be connected to the original
surface with a controllable degree of continuity. The developed
method has been further extended to the construction of three-
sided, four-sided and-sided patches. An arbitrarily complex
surface can be readily created as a collection of these basic sur-
face patches.

In this paper, we have discussed the basic theory, the resolving
method and some applications of PDE based dynamic modeling,
some of which have not been discussed in existing literature.
In order for this method to have a wider impact on the mod-
eling of deformable moving surfaces, and to make this approach
user-friendly for interactive applications, we will produce an in-
teractive user-interface, which transforms the user interaction
into mathematical expressions, and hide the implementation de-
tails from the user. This idea has been tested in another related
project [11] and will be included in our future development.
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