259 research outputs found

    Dependability of Aggregated Objects, a pervasive integrity checking architecture

    Get PDF
    International audienceRFID-enabled security solutions are becoming ubiquitous; for example in access control and tracking applications. Well known solutions typically use one tag per physical object architecture to track or control, and a central database of these objects. This architecture often requires a communication infrastructure between RFID readers and the database information system. Aggregated objects is a different approach presented in this paper, where a group of physical objects use a set of RFID tags to implement a self-contained security solution. This distributed approach offers original advantages, in particular autonomous operation without an infrastructure support, and enhanced security

    HARDWARE ATTACK DETECTION AND PREVENTION FOR CHIP SECURITY

    Get PDF
    Hardware security is a serious emerging concern in chip designs and applications. Due to the globalization of the semiconductor design and fabrication process, integrated circuits (ICs, a.k.a. chips) are becoming increasingly vulnerable to passive and active hardware attacks. Passive attacks on chips result in secret information leaking while active attacks cause IC malfunction and catastrophic system failures. This thesis focuses on detection and prevention methods against active attacks, in particular, hardware Trojan (HT). Existing HT detection methods have limited capability to detect small-scale HTs and are further challenged by the increased process variation. We propose to use differential Cascade Voltage Switch Logic (DCVSL) method to detect small HTs and achieve a success rate of 66% to 98%. This work also presents different fault tolerant methods to handle the active attacks on symmetric-key cipher SIMON, which is a recent lightweight cipher. Simulation results show that our Even Parity Code SIMON consumes less area and power than double modular redundancy SIMON and Reversed-SIMON, but yields a higher fault -detection-failure rate as the number of concurrent faults increases. In addition, the emerging technology, memristor, is explored to protect SIMON from passive attacks. Simulation results indicate that the memristor-based SIMON has a unique power characteristic that adds new challenges on secrete key extraction

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Embedded Systems Security: On EM Fault Injection on RISC-V and BR/TBR PUF Design on FPGA

    Get PDF
    With the increased usage of embedded computers in modern life and the rapid growth of the Internet of Things (IoT), embedded systems security has become a real concern. Especially with safety-critical systems or devices that communicate sensitive data, security becomes a critical issue. Embedded computers more than others are vulnerable to hardware attacks that target the chips themselves to extract the cryptographic keys, compromise their security, or counterfeit them. In this thesis, embedded security is studied through two different areas. The first is the study of hardware attacks by investigating Electro Magnetic Fault Injection (EMFI) on a RISC-V processor. And the second is the study of the countermeasures against counterfeiting and key extraction by investigating the implementation of the Bistable Ring Physical Unclonable Function (BR-PUF) and its variant the TBR-PUF on FPGA. The experiments on a 320 MHz five-stage pipeline RISC-V core showed that with the increase of frequency and the decrease of supplied voltage, the processor becomes more susceptible to EMFI. Analysis of the effect of EMFI on different types of instructions including arithmetic and logic operations, memory operations, and flow control operations showed different types of faults including instruction skips, instructions corruption, faulted branches, and exception faults with variant probabilities. More interestingly and for the first time, multiple consecutive instructions (up to six instructions) were empirically shown to be faulted at once, which can be very devastating, compromising the effect of software countermeasures such as instruction duplication or triplication. This research also studies the hardware implementation of the BR and TBR PUFs on a Spartan-6 FPGA. A comparative study on both the automatic and manual placement implementation approaches on FPGA is presented. With the use of the settling time as a randomization source for the automatic placement, this approach showed a potential to generate PUFs with good characteristics through multiple trials. The automatic placement approach was successful in generating 4-input XOR BR and TBR PUFs with almost ideal characteristics. Moreover, optimizations on the architectural and layout levels were performed on the BR and TBR PUFs to reduce their footprint on FPGA. This research aims to advance the understanding of the EMFI effect on processors, so that countermeasures may be designed for future secure processors. Additionally, this research helps to advance the understanding of how best to design improved BR and TBR PUFs for key protection in future secure devices

    The low area probing detector as a countermeasure against invasive attacks

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicroprobing allows intercepting data from on-chip wires as well as injecting faults into data or control lines. This makes it a commonly used attack technique against security-related semiconductors, such as smart card controllers. We present the low area probing detector (LAPD) as an efficient approach to detect microprobing. It compares delay differences between symmetric lines such as bus lines to detect timing asymmetries introduced by the capacitive load of a probe. Compared with state-of-the-art microprobing countermeasures from industry, such as shields or bus encryption, the area overhead is minimal and no delays are introduced; in contrast to probing detection schemes from academia, such as the probe attempt detector, no analog circuitry is needed. We show the Monte Carlo simulation results of mismatch variations as well as process, voltage, and temperature corners on a 65-nm technology and present a simple reliability optimization. Eventually, we show that the detection of state-of-the-art commercial microprobes is possible even under extreme conditions and the margin with respect to false positives is sufficient.Peer ReviewedPostprint (author's final draft

    Enhanced Hardware Security Using Charge-Based Emerging Device Technology

    Get PDF
    The emergence of hardware Trojans has largely reshaped the traditional view that the hardware layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously inserted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware counterfeiting and IP piracy are another two serious issues costing the US economy more than $200 billion annually. A large amount of research and experimentation has been carried out on the design of these primitives based on the currently prevailing CMOS technology. However, the security provided by these primitives comes at the cost of large overheads mostly in terms of area and power consumption. The development of emerging technologies provides hardware security researchers with opportunities to utilize some of the otherwise unusable properties of emerging technologies in security applications. In this dissertation, we will include the security consideration in the overall performance measurements to fully compare the emerging devices with CMOS technology. The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene SymFET) for hardware security applications. Experimental results indicate that emerging device based solutions can provide high level circuit protection with relatively lower performance overhead compared to conventional CMOS counterpart. The second topic is to construct an energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic is adopted as a circuit-level solution to countermeasure differential power analysis attack, which is mostly used in the cryptographic system. The third investigation targets on potential security vulnerability of foundry insider\u27s attack. Split manufacturing is adopted for the protection on radio-frequency (RF) circuit design
    • …
    corecore