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Abstract—RFID-enabled security solutions are becoming
ubiquitous; for example in access control and tracking ap-
plications. Well known solutions typically use one tag per
physical object architecture to track or control, and a central
database of these objects. This architecture often requires a
communication infrastructure between RFID readers and the
database information system. Aggregated objects is a different
approach presented in this paper, where a group of physical
objects use a set of RFID tags to implement a self-contained
security solution. This distributed approach offers original
advantages, in particular autonomous operation without an
infrastructure support, and enhanced security.
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I. INTRODUCTION

Checking for integrity of a set of objects is often needed
in various activities, both in the real world and in the
information society. The basic principle is to verify that a
set of objects, parts, components, people remains the same
along some activity or process, or remains consistent against
a given property (such as a part count).

While there are very few automatic solutions to improve
the situation in the real world, integrity checking in the
computing world is a basic and widely used mechanism:
magnetic and optical storage devices, network communica-
tions are all using checksums or other error checking codes
to detect information corruption, to name a few.

The emergence of Ubiquitous computing and the rapid
penetration of RFID (Radio Frequency IDentification) led to
development of security solutions bringing those techniques
to the physical world. They can provide services such as
theft detection, alarm triggering, access control...

However, these solutions typically use a single RFID tag
on the physical object or person that is to be controlled
or protected. Unfortunately, RFID tags could face various
security issues. However, RFID tags are highly exposed to
various attacks which could compromise the service. In this
paper, we discuss an approach using a collection of tags
distributed over a set physical of objects forming a logical
group. As we will see, this approach can provide enhanced
security in specific context, as well as other interesting
properties.

The rest of the paper is organized as follows: in the next
sections, we introduce the notion of aggregated objects. The
third section discusses the advantages and potential vulnera-

bilities. The fourth section addresses some solutions. Finally,
the fifth section discusses related works and concludes.

II. AGGREGATED OBJECTS AND BASIC CONCEPTS

A. Basic aggregated objects

Basic aggregated objects are sets of mobile and/or phys-
ically independent objects, called fragments.

First, fragments can be aggregated by an aggregating
system using an aggregating algorithm.

Then, integrity of the resulting aggregated object can be
tested at any time thanks to a verifying system using a
verifying algorithm, inside a verifying area.

Basically, a verifying system computes the integrity in-
formation of a set of fragments brought in its verifying area
and then uses it as an action trigger. For example, it could
open a door when a complete set of fragments forming an
aggregate is found, or trigger an alarm otherwise.

B. Example of applications

Two examples are to be depicted: Ubi-Check and Ubi-
Park. Both projects are direct application of the described
basic aggregating mechanisms and improve security.

1) Ubi-Check: Ubi-Check [1] helps travellers not forget-
ting one of their items, or mistakenly exchanging a similar
one with someone else. During the check-in, each passenger
is aggregated with all his items (cell phone, passport and
suitcase for instance) using RFID stickers. After leaving the
plane, passengers get their luggage integrity checked when
passing through a portal. If an item is missing, an alarm can
be triggered or a message displayed.

2) Ubi-Park: Ubi-Park is a standalone system aiming at
providing access control and monitoring to a bike shed (see
Figure 1). It grants access to any user coupled with his bike.
Users are equipped with a unique tag and their bike has to
carry one aggregated object (at least one tag). The minimum
equipment is an RFID portal next to the door that is able to
communicate with a user’s and his bike’s tags.

The key enabling to access the shed is the coupled object.
People can only enter the shed with their bike, or alone if
their bike is already inside it. The same way, they cannot
exit with somebody else’s bike as it would not be coupled
with them.
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Figure 2. Ubi-Park, entrance and exit of a bike shed.

Figure 1. Ubi-Park

III. DEPENDABILITY PROPERTIES

This section discusses the properties of coupled objects
systems with respect to dependability threats. Any obstacle
to availability, reliability, safety, confidentiality, integrity or
maintainability will be considered as a threat to the system
dependability. Threats are faults, errors and failures. Faults
may lead to errors, and errors to failures. More details can
be found in [2].

As any RFID system, coupled objects are exposed to
various vulnerabilities. However, as we will see, the dis-
tributed nature of coupled objects help to mitigate these
issues. We will focus on intentional attacks against RFID
implementations, starting the analysis from the failures to
the faults. Dependability impairments may vary according
to application designs, but most of the failures, faults and
errors are common to almost all aggregate-based systems.
Given examples will be based on UbiCheck and UbiPark.
Next section will deal with possible solutions.

A. Failures

Failures are deviation of the system from specified results.
Some of the objectives are common to all applications, some
are specific. Here is a description of the main failures.

1) Unauthorized use of a service: This failure occurs
when the verifying system provides a service to an unau-
thorized person. In UbiPark, it would occur if the system
allows a user who did not subscribed to use it and secure
his bike for free. Moreover, this failure may lead to more
critical failures as an attacker could get its job eased inside
the shed. The main dependability attribute affected by this
failure is safety.

2) Denial of service to authorized persons: This failure
occurs when the verifying system denies its service to an
authorized person. In UbiPark, this would happen if a user
in order could not enter or exit the shed. Most of the time, it
has no catastrophic consequences. The main dependability
attribute affected it affects is availability.

3) Privacy leaks: Privacy leaks occur when an attacker
is able to retrieve personal information about users from the
system. Obviously, the main dependability attribute affected
by this failure would be confidentiality.

A verifying algorithm does not need nominative user
information nor database to perform aggregates checking,
so aggregate-based systems limit the exposure of private
information and the possibility of deriving users profile.
Still, it is possible to identify the tags IDs corresponding
to a specific user and start tracking his tags if the IDs are
not regenerated regularly. More information about privacy
threats can be found in [3]. Moreover, if aggregating data
are not encrypted, it may be possible for an attacker to
find all the fragments of an aggregate. Aggregating data
are produced by aggregating algorithms and carried by the
tags. They store the structure which is given to the physical
objects tags are attached to. In Ubipark, this would enable
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to find somebody’s bike thanks to the user badge.
4) Specific application failure (substitution, theft, van-

dalism...): As applications use action triggers of verifying
systems to control specific processes, a wrong behaviour of
this system could cause an application specific failure. As
an example, UbiCheck was designed to bring a protection
against theft and accidental substitution. Thus, main failures
would be theft and substitution. The main dependability
attribute affected by this failure is reliability.

B. Errors

An error corresponds to an unexpected state of the system
due to the activation of a fault. In aggregate-based appli-
cations, most of the errors can be considered as inconsis-
tencies between reality (real aggregated objects created by
authorized systems) and the state (set of aggregated objects)
detected by a verifying algorithm. Most of them lead to
failures. Some of them can be detected by the system,
enabling exception throwing, while some cannot.

1) Illegal appearance or disappearance of a tag: In some
contexts, there is no good reason for tags to appear or
disappear from a defined area or read point.

If aggregated objects appear where they should not, they
would compromise the integrity of the whole system and
could lead to application specific failures. In UbiPark, a
complete aggregate is a key to the exit. A key that would
suddenly pop up inside the shed while the door is closed (as
an example, it could be thrown through a grating) would be
suspicious and could enable theft.

The same way, the disappearance of a tag would produce
an inconsistency as one of the item sets would no longer be
seen as integral even if no physical object is missing. This
could lead to a denial of service (DoS).

Both situations can be detected using a reader that would
monitor the whole area of the shed.

2) Tag swapping: Swapping tags from two different
objects would introduce an inconsistency between objects
and aggregate structure. An attacker could cause this error
in UbiPark to steal a bike, leading to a substitution failure,
without any RFID knowledge. There is no easy way to detect
this error. However, aggregated objects can use a multiplicity
of tags, potentially hidden in various parts of the group
of objects to protect. An attacker would need to know the
location of all the tags to avoid an inconsistency detection.

3) Forged fragment tags: Genuine tags, are tags that are
meant to be used with the service and produced by an
authorised aggregating authority. If genuine tag are cloned,
modified or illegally built from scratch, the service could be
used without authorisation, deny its service, or be compro-
mised (specific application failure).

This error can be detected if there is a way to authenticate
fragments (see Section IV-B and IV-D).

4) Presence of parasite tags: In some applications, the
presence of an additional incomplete aggregated object in
the control area may cause trouble. As an example, UbiPark
allows one and only one bike/user couple to cross the door
so the user cannot exit with his bike and another. This could
lead to a denial of service: if an UbiPark tag is stuck near
the door, the system would not allow anybody to enter or
exit the shed.

A parasite tag can be genuine or not. Non genuine tags
may be detected (see previous error). If the parasite tag is
genuine, they are some situations where it can be detected.
In Ubipark, a tag staying for too long at the read point of
the door could be declared as parasite.

5) Unavailable communication: Unavailable communi-
cation between readers and tags would not enable to check
aggregates and so would directly lead to denials of service.

This error could be detected by sticking an RFID tag
near the read point in a way it should be in the same radio
conditions than a user tag. A communication loss with the
tag would indicate bad radio conditions.

6) Partial user localisation: Localisation of users could
be a threat to their privacy. People could be directly observed
or threatened. This would lead to a privacy leak failure.
There is no way to detect this error. This issue can be
mitigated by regularly regenerating the IDs used to identify
the fragments.

7) Personal user data leak: If the system uses unpro-
tected personal data, an attacker could retrieve theses data
putting the user privacy in jeopardy. This would lead to
a privacy failure. There is no way to detect this error.
Hopefully, developed applications are not exposed to this
issue as they do not involve any personal data.

C. Faults

Faults are inherent weaknesses of an application design
that could make it behave in an unintended or unanticipated
manner and might result in errors and failures. The cause
could be an incorrect step, process, or data definition in
a computer program. This section focuses on intentional
human-made faults, another name for attacks, that could lead
to the errors that were previously described.

1) RF media faults:
• An attacker can prevent a tag from receiving waves

from a reader by putting it inside a Faraday cage
(reversible) thus making communication impossible.

• He could also destroy the tag (irreversible) or send high
power HF noise.

Those faults may cause illegal appearance and disappearance
errors. RF noise could also lead to communication errors
with tags.

2) Physical weaknesses:
• If tags can be unstuck without breaking, an attacker can

physically move a tag from a fragment to another. As it
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is not possible to detect a tag move (no tag localisation
available), it could lead a to tag swapping error.

• If it is possible to buy aggregated tags not attached to
an object (for example, if it is possible to buy UbiPark
tags on the Internet that can be put on a bike), there
are more possible attacks. For instance, in UbiPark, an
attacker can destroy tags of the bike he wants to steal
and put on it the bought tags.

• As applications of pervasive computing, aggregate-
based services gives free access to read points. Thus,
any attacker could place parasite tags that could lead
to a parasite tag error. Moreover, as tags are based on
public IDs broadcasting, an attacker could get a basic
localisation of a tag by detecting its presence in a read
point mesh. This could help to a track a user and cause
a ”user located” error.

• Obviously other physical faults can be committed
against specific applications. For instance, in UbiPark,
an attacker could simply break the door to steal a
bike. This example shows that it is often useful to
add alternative protection (like video monitoring) to an
aggregate-based system.

However, it should be noted that aggregate-based systems
can use a multiplicity of tags, reducing the risk of a
successful attack, because all the tags would have to be
compromized in order to avoid an inconsistency to be
detected. For example, in the case of UbiPark with multiple
tags embedded inside the tires, under the seatpost or other
parts of the bike, an attacker would have to find the location
and access all the tags physically.

3) Data attacks: The following attacks require some
specific hardware and knowledge in RFID. But, since RFID
will be more and more used, anyone may have a tag
interrogator installed on their mobile phones (for example)
in a few years.

Using this tag interrogator, an attacker could:

• Prevent access to tag data (password change, kill oper-
ation)

• Alter data in a genuine aggregated tag. It would lead
to a non genuine data error.

• Write data in a new tag “from scratch” (without
cloning). It could have the same consequences.

• Clone a tag. It would lead to a non genuine tag error.
• Link a user with tag identifiers by reading tag IDs and

visually observing. This could help to track a user and
cause a ”user located” error.

• Eavesdrop RF traffic or physically attack a chip (for
instance proceeding a silicon die analysis or a power
monitoring attack) in order to collect data. This can
lead to two possible errors: the retrieval of private
information and the use of non-genuine tag or data.

IV. SOLUTIONS

Most of the previous faults and errors can be avoided
using conventional countermeasures.

• Parasite tag errors could be detected, temporarily fil-
tered and a technician could be asked to remove parasite
tags or fragments.

• Tag swapping can be solved using destructible tags that
would break and stop working if unstuck. However, this
would not solve availability issues.

• Destructible tags faults are harder to solve: Tags should
be hard to destroy but should still break if they are
removed from their carrying object.

The structure of aggregated objects, using a multiplicity
of tags, make them less vulnerable to Fragment creation,
cloning, alteration and data retrieving faults (Section III-C3)
than single tag systems : to be successful, an attacker would
have to find and compromize all the tags scattered and
potentially hidden inside the various objects of the group.
Although more difficult in practice, these attacks are still
possible and requires more complex solutions involving
cryptographic means.

A. Keys and cryptosystems

1) Symmetric and Asymmetric cryptosystems: There are
two main kind of cryptography: symmetric cryptography and
asymmetric cryptography.

With a symmetric cryptosystem, a key is shared by all
users. For encryption cryptosystem, this key is used for
both encryption and decryption. For dynamic authentication
cryptosystem (which enables a user to prove to another user
that he knows a particular secret), the same key would be
used by the user who wants to prove its identity and by the
user who wants to verify this identity.

For message authentication code (MAC) mechanism, a
piece of information added to a data to authenticate it as a
digital signature would . The main difference however is that
anyone who can verify a MAC can also issue one because he
also has knowledge of the secret key. The same key would be
used to create and verify MACs when exchanging messages.
This would lead the following issues:

• Verifying a MAC (or play the role of the verifier in
a dynamic authentication scheme) requires the shared
key. Thus, all verifiers become able to create genuine
entities.

• It is impossible to distinguish users of a symmetric
authentication system (for example, given the same
message, any user using the same key would issue the
same MAC).

• If the key gets stolen or if one person gets corrupted
(for example by distributing the key or issues pirate
messages MACs), the key has to be updated for all the
users and all previous encrypted or authenticated data
become untrustworthy.
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Therefore it is very important to ensure high protection
of chips and computers which carry the shared key in their
memory. Indeed if an attacker succeeds in extracting the key
from one of the users (device theft, side channel attackss,
etc.), the security of the whole system collapses.

To reduce risks, keys can be changed often. However,
even if it is possible to change keys of aggregates verifying
systems, rewriting all tags can be sometimes really painful.
A compromise would be to regularly update the encryption
key and to maintain a list of trustworthy keys for decryption
or authentication. This way, users using a revoked key could
be ignored without disturbing other communications. The
intrinsic drawback would be tags limited lifetime.

Asymmetric cryptography solves most of these problems
as mentionned in [4]. On the other hand, it is more com-
plex, needs more computing resources and requires higher
data storage. With an asymmetric cryptosystem, each user
generates a private key and a public key. The private key
is kept secret whereas the public key is published. The
private key enable its owner to decrypt or sign messages and
dynamically prove to another user that he is the one related
to a given public key. With the public key, any user can
encrypt messages, verify signature or play the role of verifier
in dynamic authentications. The private key is needed to
decrypt or sign data and to play the role of prover in dynamic
authentication.

With an asymmetric cryptosystem, if a user gets corrupted
or gets his private key stolen, only his public key has to be
revoked. If a private key shall be shared by a group of users
(for example by all aggregating and verifying systems), there
are fewer advantages of using an asymmetric cryptosystem.
Thus, symmetric cryptosystems may be preferred for better
performance and smaller memory footprint.

2) Digital certificates: A digital certificate enables to
bind together a public key with the identity of a user. In
particular, it contains :

• The user’s description (for example an email address),
• the public key of the user’s key pair (it can be used for

exemple to send cipher text to the owner),
• The expiration date of the certificate,
• A signature of the previous data issued by a CA (or by

another user).
Standard X.509 certificates are signed by a Certification

Authority (CA) which ensures the validity of the certificate
(the fact the owner of the certificate corresponds to the given
description). Certificates can also be self-signed. It is the
case for CA’s certificates.

The CA can revoke any certificate it delivered if it
becomes corrupted (owner’s description does not match
with real users) by publishing its corrupted public key in
a revocation list.

Certificates may be hierarchical: a CA signs several cer-
tificates for users which can sign other certificates, etc. So
the system is very flexible. If the behaviour of a user, his CA

or the user who signed his certificate is becoming suspect,
his certificate will not be trusted anymore. A big advantage
of this solution is that it will not be necessary to rewrite all
certificates if one user turns out to be corrupted.

Obviously, the CA shall never be compromised, otherwise
all certificates would become unusable.

3) Key storage and shared key: Tag memory is often
very limited. Storing a certificate (corresponding to a tag’s
signature for example) can be problematic. In most cases,
the following solution can be used: all used public keys
are stored in each aggregating/verifying system and a short
identifier is assigned to each public key. Tags memory would
store only their identifier and their private key (which access
should be denied).

But this solution is less flexible than certificate: in par-
ticular it forces each verifying system to have a database
of all public keys and their associated short identifier.
If each tag shall have a different public key (or private
key for symmetric cryptosystem), the memory a verifying
system would need may be huge. In this case, certificates
(necessarily with asymmetric cryptosystem) may be stored
in the tag.

This idea is also useful when symmetric encryption is
used for example: the identifier of the key used by encryption
algorithm is saved (as a plain text). It makes easier changing
shared key.

B. Uncloneable tags and authentication

Cloning a tag (and so a fragment) is one of the most
critical issue of an aggregate-based system as it enables
the attacker to substitute objects or to use an unauthorized
service.

If tags contain only memory, cloning a tag is really
easy: the attacker just needs to have a writeable tag and
to copy data from the original tag to the new one. Even if
manufacturers do not allow to write some memory banks
(as it is the case with most of the commercial tags), it is
possible to emulate a tag using appropriate hardware.

C1G2 tags enable password authentication of readers: it
should prevent an attacker from directly accessing a tag’s
memory. However, the password can be easily eavesdropped
in communications as the standard do not require tags to use
a secure protocol.

Actually even tag authentication with a more complex
mechanism (for example zero-knowledge proof) is insuffi-
cient as soon as the secret (used by authentication) is shared
by all tags. Using a real genuine tag and a tag emulator, an
attacker can make any tag (including illegal clones) look like
genuine:

• If authentication is requested, the tag emulator uses the
genuine tag to correctly answer

• If normal data read is performed, the tag emulator sends
data of the tags to be cloned

This kind of attacks is called a man-in-the-middle attack
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Hence we propose several solutions:

• Randomized data encryption between tags and readers
using random data provided by the reader (see Sec-
tion IV-B1).

• The tag contains a secret key directly link to its ID and
prove it knows it to the reader without revealing it (see
Section IV-B2).

• The tag contains a secret key directly link to its data
thanks to an identity-based cryptography scheme and
prove it knows it to the reader without revealing it (with
a zero-knowledge proof for example).

• The tag uses a Physical Uncloneable Function (PUF)
(see Sections IV-B3 and IV-B4).

With the second method, tag is not really uncloneable,
just a part of the tag is uncloneable: the ID, but this is
often sufficient (see remark IV-D.1). We will say tag has an
uncloneable ID or unique ID.

Note IV-B.1. Shared secret methods can be used if the
required security level is not very high: password authenti-
cation (Section IV-F) for example.

The following section only contains advanced solutions
for a very high security level.

1) Randomized encryption: If the communications be-
tween a reader and a specific tag are always the same,
the latter can be easily cloned, even if all the data is
encrypted and incomprehensible. The attacker would just
need to eavesdrop the communications and make a device
that replays the original tag’s answers.

To face this, data to be sent from tags to readers can
be ciphered with added random data chosen by the reader.
Hence, if readers choose a nonce, each time a reader requests
tag data, transmitted answers will be necessarily different.
The random number must not be chosen by the tags because
a tag emulator could always choose the same (the number
the original tag used during the eavesdrop).

TLS ([5]) and SSH protocol version 2 ([6]) are two widely
used protocols which use this idea: the server corresponds
to the tag and the client corresponds to the tag interrogator.
Notice these two protocols also provide tag authentication.

2) Unique ID with zero-knowledge proof: Previously
presented solutions require either the sharing of a certificate
or private key between tags, either the registration of all
tag’s public keys into all interrogators. This may not be
convenient. In [7], [8], [9], there is a solution which does not
need all tags to share the same secret. Each tag has its own
private / public key-pair enabling zero-knowledge proof1of
identity (or just a signing algorithm like DSA). The public
key is the ID of the tag whereas the private key is stored in
the tag such that only its microprocessor can read the key
(more details can be found in Section IV-B4).

The tag can prove its ID is authentic by proving it knows
the corresponding private key without revealing it.

There are two kinds of zero-knowledge proofs: honest
verifier zero-knowledge proof (like Schnorr one [10]) and
general zero-knowledge proof (like Okamoto one [11]). With
the first kind, an attacker who eavesdrops communication
between a genuine tag and a genuine tag interrogator cannot
learn any information about the private key (except informa-
tion he can directly computes from the public key). With the
second kind, an attacker who can make requests to the tag,
cannot get any information about the private key. So general
zero-knowledge proof shall be preferred when a high level
of security is required.

This solution has many advantages over the previous one:
• There is no shared key common to all tags,
• The protocol between tag and interrogator can be a

standard protocol with an additional command which
enables to prove the authenticity of tags,

• Authenticity verification can be performed only when
high level of security is needed.

However there are also some disadvantages:
• ID cannot be chosen (otherwise there is not protection

!),
• There is no authentication of the fragment’s provider:

any provider can create such tags contrary to previous
method,

• only ID (public key) is protected.
The two last issues can be solved by adding a signature (or

a Message Authentication Code) to the data (ID included)
of the tag (see Section IV-D.1).

3) Physical Uncloneable Function (PUF): According
to [12], a Physical Uncloneable Function (PUF) is a func-
tion:

• That is based on a physical system (common PUFs are
embodied in electronic chips),

• That is easy to evaluate (using the physical system),
• Which plot looks like a random function,
• That is unpredictable even for an attacker with physical

access to the component.
PUFs can be tiny electrical circuit exploiting unavoidable

IC fabrication process variations (for example path delays)
to generate secrets.

First part of [13] is an example of use of PUF f for
authenticating each tag. A more general idea could be to save
a lot of (c, f(c)) pairs for all tags (where c is a random entry
of the PUF) in each tag interrogator. Then a tag interrogator
ask a tag to give the output of its PUF corresponding to some
randomly chosen inputs c. Output of a PUF may depend a
bit on external condition (like temperature), but this issue
can be solved by accepting some error bits in the answer of
the tag.

Unfortunately, (c, f(c)) pairs should be used only once,
else an attacker could use recorded answers. Thus, tag
readers should know all recorded challenges of each tag.
This may represent a huge amount of data and would need a
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connection to a challenge database, meaning static or online
applications. Moreover, the database could be attacked,
enabling the pirate to know all used PUF challenges and
emulate genuine tags without needing to physically clone a
PUF.

Nowadays, the only known implementation of this PUF
secured tag technology is the Vera X512H developped by
Verayo ([14]).

4) Storing cryptographic secrets, physical attacks and
PUF: Some of the previously presented cryptographic so-
lutions require tags to store shared or private secrets. Each
secret should be readable only by the tag’s microprocessor
for cryptographic purposes. If a very high level of security is
required, it is not recommended to use memory for storing
the secrets because a physical analysis of the tag’s chip can
enable an attacker to retrieve it.

Fortunately, PUFs can provide a solution. Indeed opening
a chip with a PUF will almost always change the PUF
behavior. It is difficult to use directly a PUF because output
of a PUF can depend a bit on external conditions, but there
are ways to solve this problem. For example, in [9], the
authors present a tag authentication scheme using a signed
private key issued from a PUF. It uses a helper data and a
special function which takes the helper data and the response
of the PUF to compute the private key. The helper data
normally leak very few bits and can be stored in a normal
memory. This way, the private key can be dynamically
rebuilt, which avoids its storage.

C. Memory write protection

As seen in Section III, if write or kill operations are
not locked or disabled, an attacker can easily make the
system unavailable. The kill feature is provided by many
tags to permanently disable the them. To avoid this problem
while enabling authorized users to modify aggregates, a
possible solution is to have reader authentication (not tag
authentication as in the previous section). In Section IV-F,
some advices on ways to use simple password authentication
are given. A better method (if high level of security is
required) is to use a symmetric or asymmetric authentication
scheme as those described in Section IV-B1.

However two points shall not be forgotten:

• Man-in-the-middle attacks has to be (almost) impos-
sible (see Section IV-B). A genuine tag interrogator
must not be helpfull for an attacker device to pass the
authentication in order to write data into tags.

• Most of the time, tags cannot embed a public key
database of all authorized tag interrogators nor verify
any certificate expiration’s date (passive tags cannot
embed a clock as they have no stable power supply).
Hence reader’s authentication is quite complex. More
information can be found in the article [15].

D. Aggregating company authentication
If a high level of security is required, one of the presented

solutions should be implemented to avoid cloning. However,
instead of cloning tags, an attacker could try to build pirate
tags from scratch or to modify genuine tags. This section
will focus on methods aiming at proving the authenticity
of the aggregating data carried by the tags. This way, only
aggregated objects issued from an authorized provider will
be taken into consideration.

1) Fragment authentication: Fragment authentication en-
ables an aggregating company (i.e. an entity allowed to
deliver aggregates) to prevent unauthorized aggregating sys-
tems from creating compatible aggregated fragments or ag-
gregated objects (related to no aggregated object but looking
like a part of an aggregated object). Notice that a corrupted
fragment can be used as a parasite tag.

The authentication can be dynamic or static.
Static authentication only uses public tag memory: a small

amount of data is added at the end of the aggregating data
which proves aggregation was done by an authorized aggre-
gating system. If the used cryptosystem is symmetric, these
extra-data are called a MAC (Message Authenticatio On the
one hand, a signature mechanism enables to know which
aggregating system created an aggregated object. If the
latter behaves dishonestly, its public key (see Section IV-A)
can be revoked. On the other hand, MAC algorithms are
generally significantly faster and produce a lot shorter mes-
sage authentication data (regarding memory space used in
the tag) than signature cryptosystems. In addition, MAC
algorithms often use either cryptographic hash functions or
symmetric block cipher which could be used by other parts
of aggregating and verifying systems (hash functions are
often used in aggregating and verifying algorithms). This
could significantly speed up the system and would free up
tag memory. Section IV-D3 deals with theses perspectives.

Dynamic authentication could also be possible, but it
would only attest that the tag to be authenticated knows
a secret (so it should be issued from the right company).
However, it would not guarantee that the aggregating data
have never been modified and is very costly.

Note IV-D.1. The MAC/signature of cloned data remains the
same as the MAC/signature of original data. So, authenticat-
ing only aggregating data does not prevent from fragment
cloning. The only way to avoid it is to add uncloneable
data in the input of the MAC/signing function. If tags have
an unique ID (see Section IV-B2), signature or MAC makes
tag indirectly totally uncloneable.

Authentication and aggregating digest size: Tag aggrega-
tion is based on data hashing. Collision resistance of the
hashing function should be high enough so they will be few
chances to find an object that can be swapped with an other
without digitally affecting the integrity of an aggregate it is
part of. Moreover, without additional security mechanisms,
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it is necessary to ensure that hashing functions are preimage
and second preimage resistant to avoid preimage attacks.

One benefit of authentication mechanisms is that it indi-
rectly enforces security of the aggregating system without
requiring theses properties. Indeed, an attacker cannot swap
a tag with a one with an other ID nor change an aggregating
digest by another without corrupting the MAC/signature. So
using a tag or aggregated object authentication enables to
reduce the size of digest (without reducing the security level)
and enable using the system without locking write operations
(if an attacker changes the content of a tag, the signature will
no longer be valid). With authentication, the digest size is
only determined by the required probability of collisions.

Note IV-D.2.

2) Aggregated object authentication: Instead of authen-
ticating each fragment, it is also possible to authenticate
only complete aggregated objects. On the one hand, it may
use less tag memory to store its signature because it can be
spread over multiple tags, on the other hand, an attacker can
create fake tags and disturb the system (it is not possible to
reject unauthentic fragments are they are not signed) causing
the inauthenticity of the complete aggregated object.

3) Using MAC algorithm instead of hash function: There
are another complementary way to use MAC: the hash
function (used by aggregating or verifying algorithms) can
be replaced by a MAC algorithm. In this case, the private
key must be shared by all the aggregating/verifying systems
of a same service.

There are two main advantages. First, only a genuine
aggregating system can create aggregated objects. This prop-
erty is obtained by almost all solutions of the Section IV.
However using a MAC algorithm instead of a hash func-
tion would be significantly less resource consuming. Then,
adding or replacing a tag in a read-only aggregated object
becomes a lot more difficult. Indeed, with a perfectly safe
hash function (it may not exist but let suppose currently
used hash functions have this intuitive property) with n
bits output, finding a second preimage needs to try about
2n different inputs. If n is big enough, this computation is
very costly but can be performed on any computer without
any access to a verifying system. But, if a perfectly secure
MAC algorithm with n bits output is used instead of an
hash function and if the key cannot be recovered, trying 2n

different inputs require to do 2n (or 2n−1 in mean) requests
to a genuine verifying system.

So if a verifying system does not accept more than 1
request per second (for instance), a brute force attack against
an aggregated object which uses a MAC algorithm needs at
least about 2n seconds whereas such an attack against an
aggregated object which uses an hash function requires only
2n computations of the hash function (and each computation
may take only a few milliseconds — furthermore these
computations may be distributed on a huge number of

computers).
Using a MAC enables to reduce the size of the aggregation

data (without reducing the security level).

E. Encryption

Encryption of the tag data avoids unauthorized readers to
parse data of tags and brings so the following advantages:

• Only authorized readers can create aggregated objects.
• An unauthorized reader cannot say if objects are ag-

gregated or not (privacy feature).
• A company can prevent other companies to sell com-

patible aggregating or verifying system. It is not only a
matter of technological monopoly, it is really important
regarding the security. For instance, another company
could interfere with one of the proposed services, or
would not fully implement all security mechanisms.

The first point can be performed by a company authen-
tication (see IV-D), but symmetric encryption is often a lot
faster than signature (but not than MAC).

Warning IV-E.1. Generally encryption does not provide
authentication. An attacker can make a fake tag with random
data (instead of encrypted data) and he can so disturb the
system (the tag is seen as a part of a aggregated object by
the verifying system although it is just a fake tag).

Asymmetric or symmetric encryption algorithms can be
used. However it does not seem very useful to use asymmet-
ric algorithm because the private key (used for decryption)
shall be shared by all RFID readers anyway and asymmetric
encryption algorithms are often slower than symmetric ones
(i.e. they need more computing resources) and cipher text
are often longer than plain text (for example, for El Gamal
encryption algorithm, cipher text size is twice plain text
size).

If signature (see Section IV-D) is also required, sign-
cryption can be a good alternative to symmetric encryption
and asymmetric encryption. Signcryption is a cryptographic
primitive which simultaneously sign and encrypt (in an
asymmetric way) a plain text.

But separated symmetric encryption and signature have
the following advantage: a cheap verifying system can only
decrypt the tag without verifying signature whereas a state
of the art one can decrypt tag data and verify signature.

If MAC (see Section IV-D) is also required, authenticated
encryption can be used. Authenticated encryption is a cryp-
tographic primitive which simultaneously performs a MAC
and encrypts a plain text. There is often only one private
key for these two operations. Authenticated encryption is
something like a symmetric signcryption.

When neither signcryption nor authenticated encryption
is chosen, there is another choice to do: whether the tag is
first signed (or authenticated by a MAC) then encrypted or
if the tag is first encrypted and then signed (or authenti-
cated by a MAC signature or MAC is not encrypted). The
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second solution brings two advantages: it needs to encrypt a
smaller amount of data and signature can be verified without
decrypting data. The first solution hides the signature which
may be useful. In particular, it prevents an attacker who
knows the signature public keys (used by each aggregating
system) but not the encryption private one from knowing
which system created the aggregated object.

F. Use of password

Passwords are the simplest way to do an authentication.
But, as explained in Section IV-B, plaintext passwords can
be eavesdropped. If an attacker manages to get a password,
he can do the same things as a genuine reader.

So, here are some basic rules that should be applied:
• Reduce the number of times a password is sent over

the air,
• When encryption is supported, send the ciphertext of

the password and a nonce ciphered together,
• Password memory (write or read) lock should be used

only when permanent lock cannot be used (when a tag
shall be used multiple times),

• Passwords should not be the same for all tags.
In order not to use the same password for each tag, there

are (at least) two possibilities:
• Store the password in a secured tag (with real authenti-

cation and encryption). Most aggregate-based applica-
tions enable using secure personal badges (sometimes
from another service).

• The password of each tag is a MAC of its ID. The
key of this MAC shall be different from the keys
of the potential other MACs of the aggregate-based
application.

The second possibility enables to do a really simple
authentication to the tag and, if eavesdropping is impossible,
it prevents from cloning tags. Indeed an attacker does not
have access to the password and so cannot copy the tag.

In addition, password authentications should only be
proceeded in restricted areas where there must be no eaves-
dropper.

G. Implementation

We implemented and evaluated aggregated objects with
Higgs-3 RFID tags using a security strength of 80 bits (i.e.
280 operations are needed to break cryptographic primitives)
and NIST approved primitives (HMAC, DSA and AES-
CFB). Discussion of this implementation is beyond the scope
of this paper, but details can be found in [16].

V. RELATED WORKS

Aggregated objects principle differs from many RFID
systems where the concept of identification is central and
related to database supported information systems. In some
works, the tag memories are used to store semantic informa-
tion, such as annotation, keywords, properties [17], [18]. Our

approach is in the line of this idea: RFID are used to store
in a distributed way group information over a set of physical
artifacts. The concept using distributed RFID infrastructure
as pervasive memory storage is due to Bohn and Mattern
[19].

Maintaining group membership information in order to
cooperate with “friend devices” is a basic mechanism
(known as pairing or association) in personal area networks
(PAN) such as Bluetooth or Zigbee. Some personal security
systems based on PAN for luggages were proposed [20],
which enable the owner to monitor some of his belongings,
such as his briefcase, and trigger an alarm when the object is
out of range. A major drawback of active monitoring is the
energy power which is required, as well as potential conflicts
with radio regulations that can exist in some places, namely
in airplanes.

Still in the context of Bluetooth, RFID has also been
used to store PAN addresses in order to improve discovery
and connexions establishment time [21]. It can be seen as
storing “links” between physical objects, such as in coupled
objects, but without the idea of a fragmented group. Yet
another variant is FamilyNet [22], where RFID tags are used
to provide intuitive network integration of appliances. Here,
there is a notion of group membership, but it resides on
information servers instead of being self-contained in the
set of tags as in aggregated objects. Probably the closest
concept to Ubi-Check is SmartBox [23], where abstractions
are proposed to determine common high level properties
(such as completeness) of groups of physical artifacts using
RFID infrastructures.

VI. CONCLUSION

Aggregated objects are a pervasive computing architecture
for integrity checking of group of physical objects with
many possible applications. In this paper, we discussed the
dependability properties of aggregated objects. The essential
properties of this architecture, distributed and autonomous,
reduce the vulnerabilities associated with traditional RFID
systems. However, some threats still exist and requires
appropriate defense depending on the application and its
required security level. As we have shown, some solutions
exists but the computing power and memory size limitations
of current RFID implementations are still challenges for
the most secure approaches, and are active research topics.
However, there are applications scenarios, such as UbiPark,
where current implementations provide a sufficient security
level and strong practicle benefits.
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