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ABSTRACT

The emergence of hardware Trojans has largely reshaped the traditional view that the hardware

layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously in-

serted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware

counterfeiting and IP piracy are another two serious issues costing the US economy more than

$200 billion annually. A large amount of research and experimentation has been carried out on the

design of these primitives based on the currently prevailing CMOS technology.

However, the security provided by these primitives comes at the cost of large overheads

mostly in terms of area and power consumption. The development of emerging technologies pro-

vides hardware security researchers with opportunities to utilize some of the otherwise unusable

properties of emerging technologies in security applications. In this dissertation, we will include

the security consideration in the overall performance measurements to fully compare the emerging

devices with CMOS technology.

The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene

SymFET) for hardware security applications. Experimental results indicate that emerging de-

vice based solutions can provide high level circuit protection with relatively lower performance

overhead compared to conventional CMOS counterpart. The second topic is to construct an

energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic

is adopted as a circuit-level solution to countermeasure differential power analysis attack, which

is mostly used in the cryptographic system. The third investigation targets on potential security

vulnerability of foundry insider’s attack. Split manufacturing is adopted for the protection on

radio-frequency (RF) circuit design.
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CHAPTER 1: INTRODUCTION

With the emergence of information technology and its critical role in our daily lives, the risk of

cyber attacks is larger today than ever before. Many security systems or devices have critical

assurance requirement. Their failure may endanger human life and environment (as with military

and transportation system), do serious damage to major financial infrastructure, endanger personal

privacy, and undermine the viability of whole business sectors (cable service). Even the perception

that a system is more vulnerable than it really is (paying with a credit card over the Internet) can

significantly impede economic development. Information security engineering focuses more on

the defense against intrusion and unauthorized use of resources with software in the past, such as

antivirus, firewall, security information management, virtualization, cryptographic software, and

security protocol. While the battle between software developers and hackers has raged since the

1980s, the underlying hardware was generally considered safe, though not perfectly reliable.

However, in the last decade or so, this assumption is increasingly questionable. The bat-

tle field extends to hardware domain because more attacks on hardware are discovered and they

are shown to be more effective and efficient than traditional software attacks. Additionally, the

complexity of the design, fabrication, and distribution of electronics has caused a shift throughout

the industry towards a global business model. In such a model, untrusted entities participate ei-

ther directly or indirectly in all phases in the life of an electronic device or integrated circuit (IC),

which provides more poten- tial opportunities for adversaries to perform their attacks. The use

of untrusted (and potentially malicious) third parties into the development flow also increases the

security concerns as designs and devices pass through deeper supply chains. Therefore, the IC de-

velopment supply chain is now considered susceptible to various attacks, such as hardware Trojan

attacks, reverse-engineering, side-channel attacks, counterfeiting, and so forth. This disseration

will discuss the partial solutions on those potential security concerns.

1



1.1 Hardware Security

1.1.1 Hardware Trojan

Trusted Integrated Circuit design is a newly proposed topic due to the progress of globalization

and the fast improving IC manufacturing technology. Because of global economic pressures, the

development and fabrication of advanced ICs are migrating offshore in order to lower the cost. As

a result, the whole IC supply chain once located in one country can be spread globally now. To

control all these manufacturing facilities is almost impossible while on the other hand, to compro-

mise the IC supply chain for sensitive commercial and defense applications becomes easier. Also,

under the pressure of market requirements, auto-placement and auto-routing tools are widely used

in modern IC design to deal million-gate level circuits in order to reduce product developing cycle

time. These tools, however, are not optimal and leave plenty of chip space unused. Based on the

advanced IC manufacturing technology, it is much easier for attackers to embed some malicious

circuits, so-called Trojan circuits, in the unused space, or other parameters without changing the

area of the whole chip.

Traditional function testing is less effective in detecting Trojan circuit for the following

reasons, 1) the trigger condition of a Trojan rarely appears, 2) Trojan inputs could be any patterns

in the gap between the vast amount of exhaustive input patterns and the relatively small amount

of testing patterns actually used, 3) the harm of Trojan circuits may emerge after a long time after

chips are implemented. For example, the Trojan can be a series of XOR gates to compare some

inner signals with a preset value, a value that will not appear under normal testing patterns. Only

if the attacker loads a special test pattern could the Trojan be triggered to do harm to the circuit.

A lot of research has been done concerning the security of cryptographic IP cores and em-

bedded systems with various design methods and hardware-based approaches. For example, in [9]

2



a root-of-trust model together with a security policy was proposed. The authors paid attention on

the security of ubiquitous embedded devices at the design methodology level to prevent the sys-

tem from side-channel attacks. Also, another common approach to implement tamper-resistance

is to use a separate secure co-processor module [10]. Other methods to counter probing attacks,

side-channel attacks are proposed in [11, 12].

1.1.2 Physically Unclonable Functions (PUF)

Classic cryptographic mechanisms and protocols are among the most surprising and elegant al-

gorithms within the wide spectrum of computer science tasks. Although their mathematical cor-

rectness is still not proved, it is widely considered that they are secure. However, it has also

been demonstrated that classic cryptographic systems are easily compromised using side-channel

techniques and physical attacks. More recently, a new type of security primitive, the physical

unclonable functions (PUFs), has attracted a great deal of attention.

A PUF is a multiple-input–multipleoutput function that has hard-to-predict dependency be-

tween the outputs and the inputs. While the initial proposal used an optical mesoscopic system

for demonstration, the tremendous growth in interest in PUFs is due to its standard semiconductor

integrated circuit (IC) implementation. The uniqueness of identical PUF design is provided by

currently ubiquitous process variation. Several PUF architectures (e.g., arbiter based, ring oscil-

lator, and SRAM) have been proposed, implemented, and analyzed. The initial security protocol

was secret key in which one party collects a set of challenge–response pairs before releasing the

PUF to another party. The authentication of the second party can now be done by the first party by

issuing a challenge. Only the entity with the PUF can respond to an unknown challenge fast.

In the past few years, several PUF primitives in silicon CMOS technologies have been pro-

posed and demontrated [13]. These include delay-based PUFs such as Arbiter or Ring Oscillator
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PUF and memory-based PUFs such as SRAM or Flip-Flop PUF. However, it has been proved that

none of these PUF primitives are completely immune to different types of attacks. For example,

the Arbiter PUF and its variants all suffer from the modeling attacks (e.g. the machine learning

alogrithm) [14], and the SRAM PUF can be characterized by photon emission analysis and cloned

by Focused Ion Beam Circuit Edit [15].

1.1.3 Reverse Engineering

Reuse-based system-on-chip design using hardware intellectual-property cores has become a per-

vasive practice in the industry. The IP cores usually come in the form of synthesizable register-

transfer-level descriptions (Soft IP), gate-level designs directly implementable in hardware (Firm

IP), or GDS-II design database (Hard IP).

RE of an IC involves 1) identifying the device technology used in it [16]; 2) extracting its

gate-level netlist [17]; and/ or 3) inferring its functionality [18]. Several techniques and tools have

been developed to reverse engineer1 ICs [19]. RE can be misused to steal and/or pirate a design,

identify the device technology, or illegally fabricate the target IC. The objective of the attacker

is to successfully reverse engineer a design to a desired abstraction level. He can use the known

input–output pairs to verify the functional correctness of the reverse-engineered design and/or to

guide RE to extract the gate-level netlist of a competitor’s IP and use it in one’s own IC or illegally

sell it as an IP.

The objective of the attacker is to successfully reverse engineer a design to its target ab-

straction level. The target level can vary depending on the objective of the attacker. If the objective

is to pirate the design, the target abstraction level can be either the physical design level, the gate

level, or the RT level. If the goal is to insert Trojans, the target abstraction level can be either the

gate level or the RT level.
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1.1.4 Side-Channel Attacks

Side-channel attacks exploit the leakage of secret informatio through a physical modality when an

application is being executed on a system. Side-channel attacks are powerful and have been able

to break most existing important cryptographic algorithms [20]. Consider the RSA encryption

algorithm which uses modular exponentiation with large exponents. An essential step in RSA

encryption and decryption is computing me, where m is the message and e is either the pubic or

private key. For an acceptable security level, m and e are required to be at least 1024-b numbers

[21]. A naive approach to calculate me involves multiplying m by itself e−1 times. This approach

requires e− 1 multiplications, which is prohibitive.

Power consumption [12], electromagnetic (EM) emanations [22], photonic emissions [23],

and acoustic noise of the system [24] are all correlated with the exponent, and can be used to extract

the secret. Another side-channel attack against RSA exploits the Chinese reminder theorem (CRT)

that is typically used to speed up its computation. If an adversary induces a fault during the CRT

computation, the secret information can be obtained. Fault attacks can be launched using lasers,

glitches in power supplies and clocks, and X-rays [25].

1.2 Contribution of the Dissertation

With the above motivation, this dissertation is devoted to the development of a series of low-cost

and effective techniques for secure and trustworthy integrated circuits. All the security issues dis-

cussed above will be dealt with from three subjects: enhanced security primitives using emerging

devices, robust and energy-efficient block cipher, and emerging split manufacturing methodology.
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1.2.1 Enhanced Security Primitives using Emerging Devices

While most work with emerging technologies for security purposes to date has been with imple-

mentations like Physical Unclonable Functions (PUFs) [26], PUFs essentially leverage device-to-

device process variation. In some sense this suggests that noisier devices are more useful. Orthog-

onal to these efforts, in this chapter, we present a collection of design concepts that leverage the

unique properties of emerging technologies, other than relying on noisy devices, for IP protection

and hardware attack prevention. Specifically, this chapter considers two emerging technologies:

silicon nanowire (SiNW) FETs [4] and Graphene SymFETs [27], and makes the following contri-

butions.

• To assist IP protection, we introduce SiNW FET based camouflaging layout and polymorphic

gates to help obfuscate layouts and netlists. Hamming distance (50%) can be accomplished

by a smart placement alogrithm, thereby improving the security of IP protection.

• We further propose Graphene SymFET circuit protectors to counter fault injection attacks.

Two circuit protectors, voltage and current-based schemes, are presented in details.

• Last, we present a lightweight SymFET based XOR for implementing cryptographic func-

tions, which consumes less transistor counts and energy consumption against CMOS coun-

terparts.

1.2.2 DPA-resilient Block Cipher Design

In this work, we further extend research in this direction to use emerging devices to preserve low

power consumption but achieve the goal of DPA-resilience. More specifically, we will demonstrate

that by implementing CML with emerging tunnel transistors (TFETs) for lightweight encryption
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algorithms, one can significantly improve the circuit security at a fraction of the power when

compared to CMOS equivalents. Our contributions are as follows:

• We introduce a library of TFET-based current mode logic components that cover all basic

logic gates. This is the first work to introduce a full set of designs and measurements of

TFET-based CML gates.

• We then use the TFET based CML gates to design a 32-bit, lightweight KATAN cipher. To

the best of our knowledge, this is also the first attempt to use CML gates based on emerging

technologies for lightweight cryptography implementations.

• Finally, we present correlation power analysis on the TFET CML KATAN cipher, which

shows that TFET CML is better than MOS CML in terms of the power consumption and

area usage when achieving similar security levels.

1.2.3 Split Manufacturing on RF Power Amplifier

The fundamental difference between digital design flow and RF design process has already raised

the concern whether it is still applicable to apply split manufacturing in RF design. A deep look

into both design flows proves us that it would be more suitable to apply split manufacturing in RF

circuits than in digital circuits because of the unique functionality metal layers play in RF designs:

• Approach I: Remove only the top metal layer from the layers to generate FEOL. Since the

inductors are often located in the top layer, the FEOL foundry does not have the information

of interconnections through top metal layer as well as the inductor locations and sizes.

• Approach II: Remove the top and the second to the top metal layers. In this approach, two

upper metal layers are removed so that both inductors and capacitors are missing from the
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FEOL layout because the capacitors are often built through the top two metal layers.

• Design obfuscation. For RF designs, inductors are always located in metal rings and lower

metal layers will be removed inside the rings for performance optimization. Therefore, the

rings themselves, which contain multiple metal layers, would indicate positions and approx-

imate sizes of inductors. Similarly, the lower metal layers will not be used where capacitors

are located. Therefore, attackers in both approaches I and II may learn the precise positions

of the removed inductors/capacitors and may even further estimate their sizes. To further in-

crease the security level but still to avoid performance overhead, we propose an obfuscation

technique during the design phase to insert non-functional rings and to create empty zones

in the original design. Using this method, it becomes more difficult for attackers to pin down

the location, the count, and the sizes of passive components.

1.3 Dissertation Organization

The outline of this dissertation is summarized as follows: Chapter 1 summarizes the overall pic-

ture of this dissertation, including the introduction, research contribution and the dissertation

outline; The device backgrounds used in this dissertation is discussed in Chapter 2; Chapter 3

presents a group of hardware security primitives using emerging device technologies, such as Sil-

icon NanoWire FET and Graphene SymFET; Chapter 4 proposes a DPA-resilient block cipher

design with tunnel FET; Chapter 5 demonstrates the benefits of proposed IP protection scheme

leveraging the split manufacturing technique; Finally, Chapter 6 concludes the research work and

future research directions.
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CHAPTER 2: BACKGROUND

In this chapter, we review several emerging device technologies, including Tunnel FET, Silicon

NanoWire FET and Graphene SymFET. The associated underlying physical phenomena in these

different emerging devices are also explained. In the latter chapters, the fundamental phenomena

presented in this chapter will be employed as the building blocks in enhanced hardware security

primitives.

2.1 Tunnel FET

Different types of tunneling FETs (TFETs) have been developed and fabricated [28, 29]. Among

them, III-V TFETs appear more promising due to their higher conduction current. More specif-

ically, InAs homo-junction TFETs [8] and GaSb-InAs hetero-junction TFETs [30] have been the

subject of much study. Considering that the InAs homo-junction is the more mature of these two

devices, we will employ it as our TFET transistor model in this work. FinFET 20 nm technology

is also adopted for comparison. The physical structures (used in Synopsys TCAD simulation) of

both the homo-junction TFET and FinFET are depicted in Figure 2.1 [1, 2].
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Figure 2.1: 3-D Physical Structure of (a) A Tunnel FET [1] vs. (b) A FinFET [2].

It is apparent that TFETs have asymmetrical doping where source and drain are p-type and

n-type doping, respectively. A gate voltage can induce band-to-band tunneling at the channel to

control the tunneling current. In contrast, in a conventional CMOS transistor, current conduction
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occurs via electron carriers with enough energy to surmount the channel thermal barrier. The

Fermi-Dirac distribution limits the sub-threshold slope (SS) to 60 mV/decade. However, the high

energy carriers in TFETs can be filtered by the gate-voltage-controlled tunnel such that a sub-60

mV/decade subthreshold swing is achievable at the room temperature [28]. With improved steep

slope and high on-current at a low supply voltage, TFETs could enable supply voltage scaling to

further address challenges such as undesirable leakage currents, threshold voltage reduction, etc.

The device parameters assumed for the InAs homo-junction TFET (that we will employ in

our circuit simulations) are listed in Table 2.1. A Si FinFET is also included as the baseline.

Table 2.1: InAs Homo-junction TFET Device Parameters [8].

Gate Length (LG) 20 nm
Body Thickness (Tch) 5 nm

Dielectric Thickness (HfO2) 5 nm
Source Doping (p+) 4× 1019 cm−3

Drain Doping (n+) 6× 1017 cm−3

Si FinFET S/D Doping 1× 1020 cm−3

While a compact SPICE model has been recently developed for TFETs [31, 32], in this

work, we employ a look-up table based Verilog-A model derived from TCAD Sentaurus for our

simulations as this model has been widely used and validated [33]. Figure 2.2a depicts the structure

of the TFET Verilog-A model [3]. It is composed of three parts: gate-drain capacitance CGD, gate-

source capacitance CGS and the transfer characterisitics IDS(VGS, VDS). The current models of

different paths are also listed in Equation (2.1). The calculation of three current models refers to
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the look-up table that includes a range of fine-step voltage bias and capacitance.

Look Up Table =


IGD =

d

dt
(CGD ∗ VGD)

IGS =
d

dt
(CGS ∗ VGS)

IDS → (VGD, VGS)

(2.1)

Gate

Drain Source
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Figure 2.2: TFET Device Modeling: (a) TFET Verilog-A Model (b) IDS vs. VGS [3].
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By employing the TFET Verilog-A model, we evaluate the DC performance of an N-type

TFET as shown in Figure 2.2b, where the on-current IDS varies with gate-source voltage VGS .

CMOS data is also included for comparison. Both CMOS and TFET devices assume 20 nm

technology with VDS = 0.6 V . A TFET’s sub-threshold slope is improved when compared to

CMOS. Notably, when the gate-source voltage is less than 0.4 V , the conducting current of TFETs

outperforms the CMOS counterpart. (However, when VGS > 0.4 V , the CMOS device exhibits a

better on-current.) As a result, TFETs represent promising ultra low-power features that provide

further VDD scaling in integrated circuit designs.

2.2 Silicon NanoWire FET

In several nanoscale FET devices (45nm and below), the superposition of n-type and p-type carriers

is observable under normal bias conditions. The phenomenon, called ambipolarity, exists in vari-

ous materials such as silicon [34], carbon nanotubes [35] and graphene [36]. Through the control

of this ambipolarity, we can adjust the device polarity during the post-deployment stage. Transis-

tors with a controllable polarity have already been experimentally fabricated in several novel tech-

nologies, such as carbon nanotubes [37], graphene [38] and Silicon NanoWires (SiNWs) [39, 40].

Given an additional gate, the operation of these FETs is enabled by the regulation of Schottky

barriers at the source/drain junctions. The example emerging device considered in this chapter is

a vertically-stacked silicon nanowire (SiNW) FET, featuring two Gate-All-Around (GAA) elec-

trodes [4]. Figure 2.3 shows the 3D structure of the SiNW FET. Vertically-stacked GAA SiNWs

represent a natural evolution of FinFET structures, providing better electrostatic control over the

channel and, consequently, superior scalability properties [4].
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Figure 2.3: 3D Sketch of The SiNW FETs Featuring Two Independent Gates and Its Associated Symbol [4]

In this device, one gate electrode, the Control Gate (CG), acts conventionally by turning

on and off the device depending on the gate voltage. The other electrode, the Polarity Gate (PG),

acts on the side regions of the device, in proximity to the Source/Drain (S/D) Schottky junctions,

switching the device polarity dynamically between n- and p-type (2.4). The input and output

voltage levels are compatible, enabling directly-cascadable logic gates [4, 7]. It should be noted

that owing to the device geometries, the two gates are not identical from a size standpoint. Indeed,

the PG is roughly two times bigger than the CG, leading to differences in their timing responses.

Such a behaviour can be easily compensated at the design level by assigning the signal with the

lowest frequency/switching activity to the slowest gate terminal.

Thanks to their one-dimensional structure, DG-SiNWFETs demonstrate remarkable elec-

trostatic performances. Figure 2.4 depicts the subthreshold slopes of 64 mV/dec and 70 mV/dec

for the p-type and n-type parts of the characteristic, respectively, hence competing with the most

advanced FinFET technologies [41]. In addition, the one-dimensional electrostatic control over the

channel coupled to the use of a Schottky barrier-based injection mechanism enables very low off-

current densities of a few ρA per µm when compared with few tens of ρA per µm for low-power
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FinFETs [41]. These combined facts qualify the presented device technology as high-performance

low-standby-power technology.

Figure 2.4: Both N and P-type Device Branches Show Subthreshold Slopes S ≤ 70mV/dec. Ion/Ioff Ratios of
≈ 107 (≈ 106) Are Obtained Respectively for the N-type (P-type) Conduction Branches. [5]

While many emerging devices demonstrates the polarity control property (SiNWFETs,

Graphene transistors, CNTFETs, NEM relays, etc.), we focus on SiNW FET due to their full

process compatibility with the current silicon technology and their high probability of industrial

transfer in the near term. In addition, both single transistors and basic logic gates for SiNWFETs

have been experimentally demonstrated. Furthermore, a simple compact model is available. How-

ever, note that the techniques presented in this chapter are not limited only to this device, but rather

can be applied to any other polarity controllable transistor devices.
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2.3 Graphene SymFET

As MOSFET alternatives, tunneling based transistor technologies (e.g., [29,42]) are being actively

investigated by device scientists. Among these devices is a double-layer graphene transistor – often

referred to as SymFET [43]. In the SymFET device, tunneling occurs between the two graphene

sheets – which are separated by insulating and oxide layers. Possible IDS − VDS characteristics

of a SymFET – which are a function of a top gate voltage (VTG) and back gate voltage (VBG) (see

the device symbol in the Figure 2.6 inset) – are illustrated in Figure 2.6. Similar characteristics

have also been observed experimentally [44]. More specifically, VTG and VBG change the carrier

type/density of the drain and source graphene layers by electostatic field, which can modulate IDS .

Per Figure 2.6, the value and position of the peak current depends on the values of VTG and VBG.

Note that the I-V curves illustrated in Figure 2.6 assume a SymFET device with a 100 nm× 100 nm

footprint with a coherence length of 0.75X of the edge side, and an insulating layer of boron nitride

(h-BN) that is 1.34 nm (or 4 h-BN layers) thick. While further study is required, tuning the insulator

thickness could represent another design lever at the device-level. For example, theoretically, by

reducing barrier thickness to 2 layers of h-BN, tunneling current could be increased substantially

– albeit at the expense of higher leakage current [27].
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Figure 2.6: I-V Characteristics of SymFET Device for Different Top and Back Gate Voltage Combinations

The unique I-V characteristics of SymFET offer some interesting circuit-level alternatives

for realizing both analog and digital circuits [27, 45]. For example, simply cascading SymFET

devices leads to an extremely small majority gate design. Furthermore, different combinations of

VTG and VBG can change the shape of the I-V curve dramatically. Devices such as the interlayer

tunnel FET (ITFET) have similar behaviors as the SymFET. We use SymFETs as a proxy for all

these types of devices.
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2.4 Other Non-Charge-based Emerging Devices

2.4.1 Spin-Transfer Torque RAM (STT-RAM)

The magnetic tunneling junction (MTJ) is the essential element of spintronics. In essence, an MTJ

is an insulator sandwiched between two ferromagnetic layers that form a two terminal device.

While one ferromagnetic layer is magnetically pinned to a fixed direction, the other layer’s magne-

tization can be altered. Interestingly, passing current through the MTJ itself, in different directions

can alter the magnetization polarity through a spin-charge interaction process called Spin-Transfer

Torque (STT) [46]. This is the basis for write operation in STT-MRAMs. MTJ device technology

has consistently advanced over the past decade [47]. Recent efforts have advanced from devices

with in-plane magnetization states (Fig. 2.7a) to devices with perpendicular magnetic anisotropy

(PMA) (Fig. 2.7b) [48] – e.g., based on CoFeB/MgO/CoFeB material stacks. PMAMTJs demon-

strate superior switching and retention properties as compared to earlier in-plane anisotropy MTJs.

Insulator

Pinned Layer

Free Layer

PMAMTJIMAMTJ

Figure 2.7: IMAMTJ and PMAMTJ

2.4.2 Resistive RAM (RRAM)

Resistive switching in metal-insulator-metal (MIM) nano-pillars is the operational principle for

RRAMs [49]. While the exact switching physical process is still under debate, it is agreed that

the formation and dissolution of conductive filaments (CF) under electric potential results in the

switching of resistive states [50–52]. As shown in Fig. 2.8 in a bi-polar RRAM element a pos-

19



itive voltage (Vform) across a fresh device results in the formation of a CF, taking the device to

a low-resistance-state (LRS). A negative voltage can dissolve the CF, restoring the device to the

high-resistance-state (HRS). Among the vast variety of materials reported in literature, transitional

metals (HfOx and/or TiOx-based) show the best performance [51]. In this paper, we focus on

bi-polar RRAM devices that are accessed with a transistor [53].

Metal Oxide

Top Metal

Bottom Metal

Top Metal

Bottom Metal

Top Metal

Bottom Metal

Top Metal

Bottom Metal

Oxgen

metal

CF

Fresh
Z 0 0 +V

Z Vform +V 0
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Figure 2.8: Bi-polar RRAM operation.
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CHAPTER 3: ENHANCED HARDWARE SECURITY PRIMITIVES

BEYOND PUF

The development of emerging technologies provides hardware security researchers with opportu-

nities to utilize some of the otherwise unusable properties of emerging technologies in security

applications. Originally developed as alternatives to CMOS technology to overcome the scaling

limit, emerging technologies also demonstrated their unique features which, besides improving

circuit performance, can simplify circuit structure for security purposes such as IP protection and

Trojan detection [54,55]. While traditional metrics, such as power, delay etc., are the major criteria

to evaluate the merits of emerging devices, in this chapter, we will include the security considera-

tion in the overall performance measurements to fully compare the emerging devices with CMOS

technology.

3.1 SiNW FET based Camouflaging

Counterfeiting and IP piracy are among the most serious security threats to the IC industry. In

order to prevent attackers from learning the circuit schematic through reverse engineering, various

protection methods have been developed among which camouflaging is a popular solution [56–58].

This method relies on layout-level obfuscation with similar layouts for different gates. As a result,

attackers cannot easily recover the circuit structure through reverse engineering [6]. However, the

overhead in applying CMOS camouflaging gates can be rather high such that both power consump-

tion and area would increase significantly for high level protection.
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Figure 3.1: CMOS Camouflaged Layout for Achieving XOR, NAND or NOR [6]

In [6], a CMOS camouflaging standard cell utilizes 12 transistors and a group of contacts

to achieve three logic functions, as shown in Figure 3.1. There are more contacts than normal

standard cell, since some of the contacts work as dummies to camouflage the functionality of this

logic cell. More specifically, in Table 3.1, different combinations of true and dummy contacts

deliver three different logic functions. For example, when contacts 2,4,6,8,11,12,16,17 are true

and contacts 1,3,5,7,9,10,13,14,15,18,19 are fake, the camouflaging layout performs the NAND

functionality. With more functionalities being achieved by a camouflaging gate, it becomes more

difficult for attackers to recover the gate functionality through reverse engineering. Compared to

the 4-T NAND, 4-T NOR and 8-T XOR gates, the area overhead of CMOS camouflaging layout

ranges from 50% to 200%.

22



Table 3.1: List of True and Dummy Contacts to Realize Three Functions for the Camouflaged Layout Presented in
Figure 3.1

Function Contacts

True Dummy

NAND 2,4,6,8,11,12,16,17 1,3,5,7,9,10,13,14,15,18,19

NOR 2,5,6,11,12,18,19 1,3,4,7,8,9,10,13,14,15,16,17

XOR 1,3,4,7,9,10,12,13,14,15,18,19 2,5,6,8,11,16,17

It is not surprising that CMOS camouflaging gates consume significantly larger area than

normal gates. Because of the fixed polarities of both PMOS and NMOS, designers must prepare

spare transistors in order to build a camouflaging gate. However, the polarity controllable SiNW

FETs, with their unique property, can help build camouflaging gates without using extra FETs. As

demonstrated in [7], only four SiNW FETs are required to build an XOR or a NAND gate (See

Figure 3.2). This one tile layout includes four SiNW FETs where circles stand for drain/source pins

and bars represent the polarity gate (or control gate). A further analysis reveals that by connecting

pins with different signals, the four SiNW FETs in Figure 3.2 can perform five other meaningful

functions besides the NAND and XOR. A list of all these connections as well as the corresponding

output functions are presented in Table 3.2.
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Figure 3.2: One Tile Layout for Either An NAND or An XOR Gate Under Different Pin Connections [7]

Table 3.2: List of Possible Functions from One Tile Layout

PG1 PG2 CG1 CG2 N1 N2 N3 N4 N5 N6 Function
(Y)

GND VDD A B Y VDD Y GND N/A Y NAND
GND VDD A B VDD N/A Y Y GND Y NOR
Bbar B A Abar VDD Y GND GND Y VDD XOR
Bbar B A Abar GND Y VDD VDD Y GND XNOR
Bbar B A Abar Cbar Y C C Y Cbar XOR3
Bbar B A Abar C Y Cbar Cbar Y C XNOR3
GND VDD A X X VDD Y X GND Y Buffer

Note that the functionality of the gate is fixed post-fabrication with gate signals being con-

nected to physical terminals. After these connections, the polarity gates perform as normal input

gates and no extra control circuitry is required to maintain the functionality. This structure, or more

precisely the polarity controllable feature, provides an ideal candidate for camouflaging gates since

all these gates share the same structure with only four SiNW FETs used. In fact, the additional

polarity gate is leveraged in the camouflaging gate layout to reduce the transistor count. The over-

head of this SiNW based camouflaging layout is negligible, which is mainly caused by additional
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insignificant dummy contacts.

Figure 3.3: Camouflaging Layout Performing NAND or NOR

Table 3.3: List of True and Dummy Contacts To Realize Basic Functions for The Layout in Figure 3.3

Function Contacts
True Dummy

NAND 1,2,4,5,10 3,6,7,8,9
NOR 3,6,7,8,9 1,2,4,5,10

Following this concept, two SiNW FETs based camouflaging gates are built of different

complexities. The first camouflaging gate performs either NAND or NOR functionality if different

sets of dummy contacts are selected. Figure 3.3 shows the layout of the gate where 10 dummy/real

contacts are used. As presented in Table 3.3, if we leave No. 3,6,7,8,9 as dummy contacts, the

gate is a NAND gate. If we make No. 1,2,4,5,10 contacts as dummy contacts, the gate will then

perform NOR logic.

Furthermore, Figure 3.4 shows a more complex camouflaging gate which can act as NAND,

NOR, XOR or XNOR given different sets of dummy contacts. As described in Table 3.4, different
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connections can result in four different operations for the same input signals. Again, only four

SiNW FETs are used in this camouflaging gate. Compared to the CMOS-based camouflaging gate

which needs 12 transistors for a NAND-NOR-XOR gate, the proposed circuit structure can reduce

two-thirds of the transistor count. However, five more contacts are used in the SiNW FET based

camouflaging gate although the area overhead incurred by the extra contacts are negligible con-

sidering the transistor count reduction. To further evaluate the security improvement, the security

metric has been used to check how easily an attacker can guess the full functionality of a given

designs containing camouflaging gates. That is, if one camouflaging layout can achieve four func-

tions, the chance that the attacker can retrieve the correct result is 25%. Therefore, assuming that

there are N SiNW FET camouflaging layouts incorporated in the design, the attacker may have

to try up to 4N times to get the correct design layout. As a consequence, it is promising that the

SiNW FET based camouflaging layout which has more functionality and less area consumption

compared to CMOS counterparts can achieve higher level of protection to circuit designs.

Figure 3.4: Camouflaging Layout with Four Possible Functions: NAND, NOR, XOR or XNOR
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Table 3.4: List of True and Dummy Contacts To Realize Complex Functions for Layout in Figure 3.4

Function Contacts
True Dummy

NAND 1, 4, 8, 9, 11, 2, 3, 5, 6, 7, 10,
13, 15, 16, 18, 20, 24 12, 14, 17, 19, 21, 22, 23

NOR 2, 4, 7, 9, 13, 1, 3, 5, 6, 8, 10,
14, 15, 17, 18, 20, 23 11, 12, 16, 19, 21, 22, 24

XOR 1, 3, 6, 8, 10, 11, 12, 2, 4, 5, 7, 9, 13, 14,
16, 17, 18, 21, 22 15, 19, 20, 23, 24

XNOR 1, 5, 6, 8, 10, 11, 12, 2, 3, 4, 7, 9, 13, 14,
16, 17, 18, 19, 22 15, 20, 21, 23, 24

3.2 SiNW FET based Polymorphic Gates

Polymorphic electronics, which were firstly introduced in [59], are based on the idea of having

multiple functionalities built in the same cell and deciding the input-output relation by means

of a controllable factor in the circuit. For instance, a polymorphic gate presented in [59] would

be an AND gate when the VDD is 3.3 V and function as an OR gate when VDD is lowered

to 1.5 V. Such multi-functional gates would prove useful in a number of applications. Circuits

that change functionality with temperature variation can find use in aerospace applications, or

those that respond to VDD variation could be used to change functionality when the battery is

low. Also, polymorphic electronics could prove useful in evolvable, intelligent or self-checking

hardware [60]. For security purposes, adding polymorphic gates to a digital circuit can hide the real

functionality of the circuit. Since the circuit functions correctly only in a certain configuration of

the control signals known to the designer, even if the adversary knows the whole netlist (including

the dummy and true contacts), he or she will not be able to utilize the circuit in his or her own
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design. Carefully encrypting a logic in this way, can ensure that it will take too long for the

adversary to find the key (a vector constructed from all the morphing signals of the polymorphic

gates) [61]. Therefore, the polymorphic gate becomes a good candidate for integrated circuits

protection against IP piracy.

Table 3.5: A Summary of Developed Polymorphic Gates

Function Morph Method Number of Transistors Published in

AND/OR 27/125 C Temperature 6 [62]
AND/OR/XOR 3.3/0.0/1.5V External Signal 10 [62]

AND/OR 3.3/0.0V External Signal 6 [62]
NAND/NOR/XOR/AND 0.0/0.9/1.1/1.8V External Signal 11 [62]

AND/OR 1.2/3.3V Vdd 8 [62]
NAND/NOR 3.3/1.8V Vdd 6 (Fabricated) [59]
NAND/XOR 0/3.3V External Signal 9 [60]
NAND/NOR VDD and GND Interchange 4 This Work

Here we present a novel approach to designing polymorphic gates using polarity control-

lable FETs. The ability to control the polarity of a transistor enables us to build polymorphic cells

with a much less number of transistors. As shown in Figures 3.5 and 3.6, the basic NAND and

NOR gate structure is similar for both the CMOS and the SiNW FET. The polarity control gate

does not reduce the number of transistors required to implement NAND and NOR using SiNW

FET technology. However, this unique property allows us to change the functionality of the gate

simply by interchanging the VDD and GND. Note that interchanging the VDD and GND con-

nections in any CMOS based logic will produce the complement of the original function at the

output but full voltage swing at the output will not be achieved due to the presence of PMOS in the

pull-down network or NMOS in the pull-up network. Therefore, using this method one can gather

the VDD and GND terminals of the NAND and NOR gates in a combinational logic into a vector

and construct a “logic encryption key”. As opposed to the work presented in [61], which adds

additional XOR or XNOR gates into a logic gate to realize the logic encryption scheme and thus

incurs performance overhead, this approach has zero overhead in terms of gate count and trivial
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wiring cost due to the switching of VDD/GND. The comparison of transistor counts for different

polymorphic gates is listed in Table 3.5.

(a) (b)

Figure 3.5: (a) SiNW FETs NAND (b) CMOS NAND

(a) (b)

Figure 3.6: (a) SiNW FETs NOR (b) CMOS NOR

The simulation results for the NAND and NOR generic cells using the EPFL SiNW FET

model [7] and the FinFET 22nm Low Standby Power (LSTP) and High Performance (HP) con-

figurations of the PTM model [63], can be viewed in Table 3.6. It is not surprising to see that

SiNW FET based NAND (or NOR) gate consumes more dynamic power and has longer delay than

the CMOS NAND (or NOR) gate, mainly because of the immaturity of the SiNW FET technol-
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ogy. Note that the leakage power of the SiNW FET is drastically reduced compared to FinFET

technology.

Table 3.6: Simulation Results for NAND/NOR Gates

Gate Static Power(pW)
Dynamic Power
at 1GHz(uW)

Delay Averaged
Delay(ps)

FinFET 22nm LSTP NOR 52.19 0.19 28
FinFET 22nm HP NOR 30360 0.67 23.5
FinFET 22nm LSTP NAND 27.19 0.15 23
FinFET 22nm HP NAND 1650 0.652 15.5
SiNW FET 20nm NAND/NOR 8.037 1.77 42
SiNW FET 20nm NAND/NOR 4.127 1.13 56

The performance comparison in Table 3.6 does not take the SiNW FET unique property into

consideration. In fact, the benefits of using SiNW FETs can be revealed if the polarity controllable

property is leveraged, e.g., sophisticated polymorphic gates. To validate our claim, a sample poly-

morphic gate is designed (see Figure 3.7). The two separate functions shown in Figures 3.7(b) and

3.8(b) can be implemented by the SiNW FET circuit in its different VDD and GND configurations

depicted in Figures 3.7(a) and 3.8(a).

(a) (b)

Figure 3.7: Original Functionality of A SiNW FET Complex Gate (a) Transistor Schematic (b) Gate Schematic
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(a) (b)

Figure 3.8: Reconfigured Functionality of A SiNW FET Complex Gate (a) Transistor Schematic (b) Gate Schematic

Table 3.7 lists the simulation results of the designed SiNW FET polymorphic logic and

a MUX-based CMOS polymorphic gate which achieves the same functionality. As the results

suggest, the SiNW FET approach reduces the total dynamic power due to the less number of

cells while suffering from a longer delay because of the same number of cells available in the

critical path. Besides the extremely low leakage power, the overall performance of the SiNW

FET polymorphic logic is better than its CMOS counterpart. Consequently, SiNW FET circuits

outperform CMOS circuits in terms of power and delay while achieving similar level of circuit

protection. The security metric that we applied measures the difficulty level if attackers want to

learn the circuit structure using the brute force method. That is, if there are N gates each with 2

possible functions in the schematic, it would take 2N trials for an attacker to determine the exact

functionality of the circuit. The benefits can be more significant in more complex polymorphic

logic for large-scale circuits protections.

We would like to point that machine learning attacks may be used to speed up the hacking

of encryption [64]. Thus, judicious placement of these SiNW FET polymorphic gates in a circuit

should also be considered to impede such attacks.
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Table 3.7: Simulation Results of the SiNW FET and CMOS 5-input Polymorphic Function

Technology Static Power(nW) Switching Average Power(uW) Average Delay(ps)

FinFET 22nm LSTP 0.755 4.04 80
FinFET 22nm HP 491 5.4 60

SiNW 20nm 0.01 2.5 100

3.3 Graphene SymFET based Circuit Protectors

Besides the above-mentioned IP protection, emerging devices may also help improve circuit re-

silience to counter various hardware attacks such as fault injection, side-channel signal analysis,

etc. with extremely low performance overhead and little circuit redesign. For example, crypto-

graphic circuits are often vulnerable to power supply-based fault injections [65]. The manipulation

of the power supply causes faults due to the raise of the setup time needed for registers to switch

into the correct state: this phenomenon particularly affects high capacitance paths, which are often

the slowest paths of the circuit. In this section, we introduce two SymFET based circuit protectors

which leverages the unique I-V characteristics of SymFETs to protect circuits from power supply

fault injections.

3.3.1 Current based Circuit Protector

As shown in Figure 2.5, the I-V curve of a SymFET indicates that the IDS only exists for a narrow

band of VDS . Supported by this property, we propose a current based circuit protector, which can

effectively prevent supply voltage based fault injection. Figure 3.9 shows the proposed structure

relying on the unique properties of SymFETs. As shown in the schematic, SymFET M1 is the

only transistor directly connected to the power supply VDD, which is also the source to launch a
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voltage based fault injection attack.

We use a specific parameter setting to explain how the circuit protector works. In our

experiment, VTG is set to 0.6 V and VBG is set to 0 V for all three SymFETs. These gate voltages

can be adjusted so that the peak current will appear in different power supply ranges than the one

showed in Figure 3.10. Since M2 and M3 are connected in parallel, source-to-drain voltage VDS2

for M2 is equal to VDS3 for M3, which makes the output current IOUT the same as the input current

IIN . The output current IOUT is basically a current source for the circuit under protection. For

this SymFET based circuit protector, the output current can only exist for a specific drain-source

voltage of SymFET M3. If VDS3 is out of this range, either higher or lower than the pre-defined

range, the SymFET M3 will be cut off. As a consequence, the circuit under protection will be

totally shut down.

Figure 3.9: Schematic of Current based Circuit Protector
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Figure 3.10: Simulation of Output Current Changing with VDD

Table 3.8: Power Provided by Current based Circuit Protector

VDD (V) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Iout (uA) 0.022 0.067 0.176 1.205 1.904 0.114 0.145 0.184 0.227 0.272

Power (uW) 0.009 0.054 0.211 1.928 3.808 0.273 0.406 0.588 0.817 1.087

The simulation results of the current based circuit protector in Figure 3.10 show that only

if the VDD is in the range from 0.8 V to 1 V, the output current will be at its peak values, e.g.,

1.928 uA when VDD is 1 V. The power consumption is also derived and listed in Table 3.8. When

the supply voltage deviates from its normal value, e.g., 0.6 V, the output current will drop down

to 0.176 uA. This feature can be directly exploited in circuit protection, countering side-channel

attacks and fault injections. However, due to the limited maximum current, the current protector

can mainly be applied for relatively lightweight cryptographic circuits to prevent fault injections.

To handle relatively larger loads, either larger SymFET devices or multiple protectors are needed.

If the attackers intend to lower the supply voltage to trigger a single-bit error of an encryption
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design, the entire circuit can be automatically shut down by the proposed circuit protector before a

single-bit error could occur.

Traditionally, power regulators are often used in CMOS technology to protect the main

circuit, but they suffer from large area and power consumption. For example, the authors in [66–68]

proposed an area-efficient regulator based on the 90nm CMOS technology. The regulator includes

more than 20 transistors, 3 capacitors, and 1 resistor with a total area of 0.019 mm2 and power

consumption of 6 µW . However, in our proposed structure, only three SymFET transistors are

utilized, leading to an area reduction even though one SymFET consumes larger area than one

MOSFET in similar process. The main drawback of the designed circuit protector is the positive

voltage at the virtual ground of the main circuit, i.e., the drain voltage of M3 may be larger than

0 V. However, the proposed circuit protector can be used as an alternative to the current source,

which acts as both a current source and a circuit protector [69].

3.3.2 Voltage based Circuit Protector

Besides the current based circuit protector which protects the circuit through current manipulation,

SymFETs can also be used to control the supply voltage for fault injection prevention. Figure

3.11(a) shows the schematic of the proposed voltage based circuit protector, which is similar to

an inverter design [27]. However, in this circuit protector, the top gates of the two SymFETs are

connected to the voltage source, while VB can be manipulated for different cut-off voltage levels

for output Vout. For instance, in Figure 3.11(b), in the case of VB equal to 0.8 V, the output voltage

quickly drops to nearly zero when VDD is lowered down to 0.65 V, therefore cutting off the voltage

supply for the circuit under protection.

To further demonstrate the functionality of the proposed circuit protector, a full adder in

the 20nm FinFET technology combined with the protector is implemented and simulated as shown
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in Figure 3.12. Note that since the current SymFET technology is not CMOS compatible, 3D

stacking is needed to protect a CMOS circuit with the developed protector. That said, we have

shown the feasibility of building digital circuits (Inverter, NAND, NOR, etc.) using SymFETs

in [27]. Thus, one can ultimately envision a chip comprised entirely of SymFETs. One input of

the full adder is set to logic ‘1’, and the other input is given as a periodic pulse signal. As we can

see in Figure 3.12(b), the universal VDD is manipulated to decrease gradually. When it reaches

0.65 V, the output voltage of the circuit protector quickly drops to zero. Consequently, both the

sum and carry-out in the full adder output zero. We also measured the power consumption by the

circuit protector and summarized the results in Table 3.9. Because the dynamic power is frequency

dependent, input switching is set at 1 GHz in the simulation. The leakage current shown here is

the current flowing through the two SymFETs instead of the circuit under protection. As shown in

Table 3.9, when the power supply is large enough to make the full adder operate normally, power

consumption by the full adder dominates the overall power consumption. However, if the full adder

is completely shut off when the supply voltage becomes lower than 0.65 V, majority of the total

power is attributed to the static power of the circuit protector. Though high leakage may not be

desired in low-power applications, for circuit protection purpose, the power overhead is bearable

as long as it can prevent the intentional injection from the supply voltage. More research is needed

along this direction to lower the leakage power.
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Figure 3.11: Voltage based Circuit Protector using SymFET (a) Schematic (b) Simulation Results

Authors in [70] evaluated the impacts of power supply attacks, where the voltage sensitivity

margin is 0.4V. That is, a bit flip error would only happen if the power supply glitch is larger than

0.4V. As what we have presented, the voltage sensitivity of our designs are less than 0.2V. Before

the power glitch attack can be triggered, the SymFET circuit protector already shuts down the

circuit to prevent such attacks. Note that the sensitivity of the SymFET projector can be adjusted

by altering the top/back gate voltages. Another factor to consider is noise in power supply. It may

be possible that due to environmental variations, e.g., temperature variation and power noise, the

supply voltage may fluctuate. If the voltage variation is larger than the design margin, a false alarm

will be triggered and the circuit will be shutdown even though no attacks are launched. For circuits

working under the extreme conditions, we may need to tune the circuit protector to increase the

allowed supply voltage noise margin.

37



Figure 3.12: Voltage based Circuit Protector on 1-Bit Full Adder (a) Schematic (b) Simulation Results

Table 3.9: Power Measurement of SymFET Voltage based Circuit Protector

Voltage Supply (V) 0.8 0.72 0.64 0.56 0.48 0.40 0.32 0.24
Leakage Current (nA) 527 220 219 208 179 80.3 20.9 4.33

Power of the Protector (nW) 250.5 135.7 142.9 110.3 76.1 30.3 5.9 0.4
Power of the Full Adder (nW) 310.9 117.0 1.0 <0.03 <0.02 <0.02 <0.02 <0.02

3.4 Graphene SymFET based XOR Logic

In the cryptographic systems, XOR logic serves as a basic computation unit for many of the en-

cryption algorithms. Since CMOS XOR gates often take at least 8 transistors, area and power

consumption of XOR network becomes the bottleneck to further improve the performance of cryp-

tographic designs. However, in terms of the unique I-V characteristic and low-power feature, the

SymFET brings in a new opportunity for hardware security implementation. In [27], a group of

SymFET-based generic logic gates have been investigated, such as inverter, NAND and majority

gates.
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Following a similar design method, a light-weight current-based XOR gate is then devel-

oped which uses only two SymFETs. As we can find in Figure 3.13, the V tg of the upper SymFET

is connected to input signal A, while the Vbg is connected to input signal B. The drain and source

of upper SymFET are connected to the voltage supply and the output port, respectively. In the

lower SymFET, the Vtg and Vbg are tied up to complement A and complement B, respectively. The

drain and source connections of lower SymFET are the same as the upper one. The simulation

results are shown in Figure 3.14. It illustrates that when input signal A and B are different, there

will be a steady output current through the output port. When A and B are of equal values, the

output current drops to nearly zero. In this demonstration, input signals are set as square pulses

with the peak voltage of 2 V, while the supply voltage keeps at 500 mV. Since the peak current

happens due to the different configurations of drain-source voltage and gate voltage (see Figure

2.5), the design also works with the settings of lower VDD and top/back-gate voltage through the

same configuration on all terminals.

To fully compare the performance between CMOS XOR and SymFET XOR, delay and

power consumption of both gates are also measured. We implemented an 8-transistor XOR gate in

CMOS 130nm technology with the nominal voltage of 1.5V [27]. (The 130nm CMOS technology

is chosen since this feature size is close to the feature size used by the SymFET device, 100nm

× 100nm.) The CMOS XOR gate consumes 0.632µW . While the SymFET based XOR gate

consumes 0.68µW , both gates are comparable in power consumption. However, the average delay

of the SymFET XOR gate is 48ps. Compared to the 135ps delay of CMOS XOR gate, the speed

of SiNW FET XOR gate is much faster. With slightly larger power consumption, the SymFET

XOR gate outperforms CMOS XOR gate significantly in delay and area. Moreover, the power

consumption of SymFET XOR gate can be further reduced by lowering the nominal voltage to less

than 2.0V.

Although XOR gate is the basic gate for many cryptographic circuits, other gates such as
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inverter and NAND gate may also be required. Authors in [27] and [71] have already developed

logic gates using SymFET and SiNW FET, respectively. Therefore, the developed XOR gate

along with other logic gates can make the cryptographic circuits perform better than their CMOS

counterparts.

Figure 3.13: Schematic of the SymFET XOR Logic.
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Figure 3.14: Simulation Results of the SymFET XOR Logic.
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3.5 Discussion

Emerging technologies, acting as alternatives to CMOS logic, have already shown promising fea-

tures for high performance circuit design. However, the metrics to evaluate different technolo-

gies often follow the traditional criteria, focusing only on power, delay, area, etc. for general-

purpose computation modules. Special applications, such as hardware security, are rarely consid-

ered mainly because MOSFETs do not support security and circuit protection naturally.

In this chapter, we presented security primitives on how the unique features of emerging

technologies can help protect circuits and prevent IP piracy. Unlike CMOS logic, the proposed

protection schemes are of much lower overhead because security is not an add-on feature, but a

built-in feature. Through the simulation results, the two example devices are proved to be efficient

in hardware security applications. These preliminary results lead us towards a new metric for the

comparison between CMOS logic and emerging technologies, While traditional metrics, such as

power, delay etc., are the major criteria to evaluate the merits of emerging devices, in this chapter,

we include the security metric in the overall performance evaluation to fully compare the emerging

devices with CMOS technology. A summary of the two emerging devices in hardware security

applications is shown in Table 3.10. This table lists the benefits and challenges of the emerging-

device based designs compared to CMOS designs and can help guide future designs in the hardware

security area.

3.6 Summary

Emerging technologies were investigated in this chapter for their applications in the hardware se-

curity domain. Instead of simply replacing CMOS transistors with emerging devices, our work, for

the first time, evaluated the unique properties of new devices in helping protect circuit designs and
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countering IP piracy. Two emerging technologies were used including SiNW FETs and graphene

SymFETs. Five different security applications were designed and verified, ranging from IP pro-

tection to efficient cryptographic computation. Through these examples we demonstrated that the

unique properties of emerging technologies, if used properly, can provide high level circuit pro-

tection with extremely low performance overhead. Along this direction, new evaluation metrics

will be developed in our future work to better evaluate the merits of emerging devices. Besides the

simulation results, as emerging technologies become more mature, measurements from fabricated

devices will also be collected to verify the claim that circuit protection methods can benefit from

emerging technologies.

Table 3.10: Summary of SiNW FET and SymFET in Security Applications

SiNW FETs Graphene SymFETs

Benefits Over CMOS
Polarity Configurable, Low Static Power Low Power, Built-in

Less Transistors for Applications Negative Differential Resistance

Challenges
Larger Area Per-transistor Current based Designs,

Large Dynamic Power Non-boolean Computation

Opportunities
IP Protection, Logic Encryption, Side-channel Attack Prevention,

Other Security Applications Cryptographic Circuits
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CHAPTER 4: DPA-RESILIENT BLOCK CIPHER DESIGN

Orthogonal to current approaches of circuit level optimization, in this chapter we consider how

emerging transistor technologies could help mitigate risks of side channel attacks while main-

taining low power consumption. Emerging devices have been proven to have unique applica-

tions in the hardware security domain [54, 55]. In this work, we further extend research in this

direction to use emerging devices to preserve low power consumption but achieve the goal of

DPA-resilience [72, 73]. More specifically, we will demonstrate that by implementing CML with

emerging tunnel transistors (TFETs) for lightweight encryption algorithms, one can significantly

improve the circuit security at a fraction of the power when compared to CMOS equivalents.

4.1 Tunnel FET Circuit Evaluation

Here, we discuss our TFET CML standard cell designs. We begin by discussing a ”generic” TFET-

based CML circuit. We then present design specific criteria for TFET-based CML (i.e., required

supply voltage values, etc.). After reviewing the power/performance of other TFET CML standard

cells, we conclude this section with an initial evaluation of how resilient a TFET CML design

might be to DPA.

4.1.1 TFET-based Current Mode Logic

One major difference between CML circuits and single-ended circuits is that the voltage swing of

CML is smaller than that of static logic. Thus, differential logic styles were originally designed

for high speed communication. Due to invariant power consumption, researchers adopted this

circuit-level method as a countermeasure against differential power analysis [74–76]. A “generic”
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TFET-based CML circuit is shown in Figure 4.1a. The schematic is divided into two parts: a

pull-up network and pull-down network.

For TFET CML, the pull-up network is constructed by either two resistors or two P-type

TFETs (PTFETs). Since the consumption of power and area of the resistor is dramatically larger

than a FET using modern technology, the FET-based pull-up network dominates. In CML the

pull-up network mainly works as the load device to manage the DC voltage drop on the output. By

simply tuning the gate bias of a P-type FET, the on-resistance of PTFETs can be adjusted, thereby

altering output voltage accordingly. At the bottom of Figure 4.1a, one N-type FET (NTFET) is

included to serve as a current source, which can determine the value of output voltage swing.

On the other hand, the pull-down network that is composed of NTFETs mainly serves as the

major functional unit in the CML circuit. The different logic functions can be achieved by distinct

combinations of a group of NTFETs. Note that the inputs of the pull-down network are required

to be differential pairs.

Figure 4.1b shows a schematic of a TFET-based current mode inverter/buffer. One pair of

transistors is controlled by the differential inputs, IN and IN b, respectively. The constant driving

current is provided by the transistor M5, which is also tunable by the gate bias voltage Vbias.

Together with M5, transistors M3 and M4 are employed to charge and discharge the output pair,

OUT1 and OUT2. When IN is logic 1, M1 is turned on, and the constant current IC flows through

the left-handed path. Thus, OUT1 discharges to a certain value between VDD and GND, and

OUT2 alternatively charges to quasi VDD. Note that in the CML design, logic 0 is commonly

defined as half VDD, and logic 1 is close to VDD. In this case, OUT1 voltage is less than logic

1, which is treated as logic 0. If OUT1 is extracted as the output pin and the inverted OUT2

is extracted as complementary output pin, the schematic achieves the inverter function. On the

contrary, if OUT1 is treated as the complementary output pin and OUT2 is treated as the output

pin, the circuit performs the buffer function.
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Figure 4.1: (a) The Universal Diagram of CML Circuits (b) Schematic of the TFET-based CML Inverter.

4.1.2 Design Optimization

In traditional CML design, the biggest challenge is the larger amount of power consumption than

static logic, even though researchers have proposed different techniques to minimize the power

consumption of CML [76, 77]. One common method is to decrease the supply voltage. However,

because of scaling issues with CMOS technology, the voltage source must surpass the threshold

value to turn on the transistor at a certain point (Vth is approximately 0.27 V for 20 nm technology).

Also, the decreased supply voltage can dramatically increase the switching time of CMOS gates,

and consequently increase the power-delay product (PDP).

As discussed in Chapter 2, TFETs are promising for low-power applications due to sub-60
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mV/decade sub-threshold slopes. In [33], the authors considered the threshold of TFET as 0.15 V ,

thus the lowest possible supply voltage for TFET is 0.3 V . On the other hand (and again following

an approach in [33]), to fairly compare TFETs with CMOS, as the corresponding current for a

TFET at VGS = 0.15 V is similar to CMOS at VGS = 0.3 V , the minimum supply for CMOS is

set to be 0.6 V . As a result, given the minimum requirement, the input/output voltage swing sits

between 0.15 V and 0.3 V for TFET, while the voltage swing is between 0.3 V and 0.6 V for

CMOS.

Figure 4.2 illustrates the delay and the power-delay product of the CML inverter with dif-

ferent supply voltages for TFETs when compared to a 20 nm FinFET equivalent assuming a VDD

of 0.6 V . The voltage swing for all five cases is set as one half of the value of VDD. At the same

supply voltage (VDD = 0.6 V ), the power consumption of a TFET CML inverter is comparable to

a CMOS CML inverter (426.9 nW for TFET vs. 434.3 nW for CMOS) – although the TFET CML

inverter is slightly slower than the CMOS CML inverter (69 ps for TFET vs. 60 ps for CMOS).

The driving current of the TFET CML inverter is 711.6 nA compared to CMOS CML inverter of

723.8 nA at V DD = 0.6V . When VDD is lowered to 0.3 V , although the switching time of the

TFET CML inverter increases accordingly, the power consumption and power-delay product are

dramatically reduced when compared to a CMOS CML inverter. This suggests that TFET-based

CML gates could offer significant improvements over CMOS CML gates in ultra low power ap-

plications. Moreover, because other more complex logic gates (e.g., multiplexers) can be naturally

implemented in differential mode style, TFET based CML gates should offer additional benefits

compared to CMOS CML gates. For instance, a CML based multiplexer composed of nine tran-

sistors is more area efficient than a static multiplexer with fourteen transistors (three NANDs and

one inverter). It is worth noting that the symmetry property can be better accomplished in CML

based multiplexer compared to other CML based logic gates, such as AND/OR gates.
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Figure 4.2: Different Configurations of TFET CML Inverter vs. CMOS CML Inverter.

4.1.3 TFET-based CML Standard Cells

The above analysis suggests that CML can perform various functions based on different config-

urations. In fact, three levels of CML implementations are introduced in [78]. By observing the

stacked levels and different pairs, the delay of a gate with more than three-levels exceeds the delay

of an equivalent three-level, static multiplexer. That is, the level of differential pairs is limited to

three for the optimization in the CML implementation. Figure 4.3 depicts four two-input TFET-

based CML functions with a two-level structure. Each of the gates has three differential pairs as

inputs. A set of four functions (including AND, NAND, OR and NOR) can be derived from Fig-

ure 4.3a with different input/output configurations. The MUX, XOR/XNOR and D latch are also

distinguished by wiring and the input/output selection shown in Figures 4.3b-d, respectively.
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Figure 4.3: The Universal Schematics Structure of Four Different CML Circuits: (a) AND (b) Multiplexer (MUX) (c)
Exclusive-OR (XOR) (d) D Latch.

As discussed in the previous section, we attempt to maintain the voltage swing of input and

output between 0.15 V and 0.3 V for TFET CML gates. The configuration of the supply voltage

and voltage swing sets the baseline for the other parameters, such as transistor size and biasing

voltages. Here, we configure the TFET width to be the same size as the technology length to

minimize the area. The 20 nm technology nodes are used for our evaluations. Consequently, it is

48



important to tune Vbias and Vp to achieve the necessary voltage swing for the entire standard logic

cells. After voltage sweeping, the basic CML logic gates functions best when Vbias = 0.18 V and

Vp = 0.14 V . Figure 4.4 presents the transient simulations for the exclusive-OR and D latch, where

both the inputs and outputs are between 0.15 V and 0.3 V .
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Figure 4.4: (a) XOR Simulation Results (b) D Latch Simulation results.

The other standard cells are also characterized and simulated under the same biasing con-

dition. Table 4.1 shows the area, delay and power for the standard cells of TFET-based CML. Only

ten cells are described, but more CML logic functions can be derived from the standard cells pro-
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posed in Table 4.1. For instance, if we define OUT1 as the output pin, then a CML-based inversion

function is possible per Figure 4.1a. However, if we choose OUT2 as the output pin, the CML

schematic works as a buffer. Moreover, a standard cell library usually accounts for the different

driving strengths of each individual function. In CML gates, a simple solution is to increase the

constant current by the tail biasing transistor [75].

The area of CML and static TFET gates is also provided in Table 4.1. With the exception

of a CML buffer and a four-input AND gate, all other CML standard cells consume less area com-

pared to static counterparts. This feature may also be a major advantage for cryptographic systems,

especially light-weight ciphers such as KATAN, where majority of the hardware is composed of D

flip flops and multiplexers.

Table 4.1: Area, Delay and Power of the TFET-based CML Standard Cells

Cells Transistor Area Rising Falling Average Power PDP CML area/
Counts [µm2] [ps] [ps] [ps] [nW ] [nW × ps] Static area

Buffer 5 0.0022 90 124 107 30.588 3272.916 1.833
OR2 9 0.0036 99 124 111.5 24.032 2679.568 1

AND2 9 0.0036 75 165 120 22.97 2756.52 0.818
AND4 27 0.011 476 644 560 70.828 39663.68 1.8
MUX2 9 0.0036 71 115 93 24.183 2249.019 0.5
XOR2 9 0.0039 99 105 102 25.848 2636.496 0.817

D-Latch 9 0.0037 102 168 135 23.122 3121.47 0.341
DFF 18 0.0074 100 200 150 45.500 6825 0.341

1-bit FA 45 0.0186 416 591 503.5 233.928 1.178×106 0.847
4-bit FA 180 0.744 654 591 622.5 939.150 5.846×106 0.847

4.1.4 Security Evaluation of TFET-based CML Gates

Before we consider implementations of lightweight ciphers with TFET CML gates, we first con-

sider TFET CML in more detail from the hardware security perspective. It is well known that the

key idea of differential power analysis is based on the power consumption during circuit transition.
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In static CMOS logic, the major power consumption happens when the output of logic undergoes

a 0→1 (or 1→0) transition. Because of this symbolic characteristic of static logic, the genuine

cryptographic algorithm is vulnerable to the DPA attack. On the contrary, the CML structure is

naturally resistant to a DPA attack considering the relatively constant power consumption for al-

most any transitions.
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Figure 4.5: The Power Traces Between Static XOR and CML XOR.

Figure 4.5 depicts the power traces for the TFET static XOR gate and the TFET differential

style XOR gate. Obviously, the TFET CML XOR gate dissipates almost constant power in contrast

to the significant power overshoot of the static XOR gate. That is, the power profile of the TFET

static XOR gate leaks more information for the attacker to identify the internal activity of the

cryptographic system. However, the almost constant power consumption of a TFET CML XOR

gate provides essentially no information about data transitions. Moreover, as we have discussed

in previous section that the 0→1 transition is essentially mirrored to 1→0 transition in the CML

gates, even though attackers may retrieve some information through the power glitches, it is very

challenging for them to identify what the processing logic value is.
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4.2 Implementation of Cryptographic System

Due to large area and high power consumption, using CML to implement cryptographic hardware

is not common – especially in lightweight cryptographic systems. To protect cryptographic circuits

against DPA attacks, researchers often employ other techniques [79, 80]. These solutions incur

significant computation cost where the cryptography already involves massive computation and

consumes relatively large power and area. As such, lower power, TFET-based CML could be

especially valuable when considering devices for the IoT, WSN nodes, etc. Lacking an effective

defense mechanism, hardware in these spaces can be substantially more vulnerable/susceptible to

hardware attacks such as DPA.

To address these challenges, in the following sections, we consider the impact of TFET-

based CML on a 32-bit KATAN cipher. More specifically, (a) the KATAN cipher is a hardware-

oriented block cipher with a low GE – even among other lightweight ciphers, (b) applications that

employ lightweight ciphers are typically power constrained – and thus could benefit from TFET

technology, and (c) the limit for the application of CML on conventional block ciphers is the large

power overhead, but power consumption in a lightweight cipher is typically much less. In subse-

quent sections, we will briefly discuss the working mechanism of the KATAN cipher. Implemen-

tations of the 32-bit KATAN cipher are provided in different circuit-level structures, where a table

is presented to compare the TFET based implementation with the CMOS implementation. We will

then present the correlation power analysis on KATAN32 with experimental results through design

simulations.
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4.2.1 Overview of the KATAN Cipher

The KATAN ciphers are a family of light-weight block ciphers, consisting of three variants with 32-

bit, 48-bit and 64-bit blocks. All KATAN ciphers share the same key schedule with the key size of

80 bits as well as the 254-round iteration with the same non-linear function units [81]. Considering

that different variants use the same hardware – except for a small difference in register count – we

only focus on the smallest variant of KATAN with 32-bit blocks. As depicted in Figure 4.6, this

32-bit block is made of 32 registers divided into two parts – L1 and L2 – with corresponding sizes

of 13 bits and 19 bits respectively. Both L1 and L2 are coded as a linear feedback shift register

(LFSR), in which it shifts every clock cycle. The two registers are utilized by both plaintext and

cipher text for the inputs and outputs. Meanwhile, all the computation of non-linear functions,

namely fa and fb, can be identified as a combination of AND/XOR calculation in conjunction with

different keys (ka and kb), and a non-linear irregular factor (IR).
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The encryption procedure is described as follows: the plaintext is loaded into two registers

L1 and L2 such that the lower 19 bits of the plaintext are loaded into register L2, while the higher

13 bits of the plaintext are loaded into register L1. In Figure 4.6 the least significant bits (LSBs)

and the most significant bits (MSBs) are specifically noted. Both L1 and L2 perform left-shift

operations every clock cycle when the start signal is on. During each round, IR and two keys are

also generated by two additional blocks. The IR block is shown in Figure 4.7a, where 8 registers

compose an 8-bit LFSR. This block has two functions: first, it generates the irregular update value

for the non-linear operations, and second, it counts down the 254 rounds (i.e., when the signal

cycle 254 is logic 1, KATAN has completed the entire encryption).

The key schedule block is illustrated in Figure 4.7b. Similar to the IR, the key schedule
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block is an 80-bit LFSR. Before the encryption, the keys are stored in the registers. The LFSR

shifts one bit to generate one roundkey. The two most significant bits are exported as ka and kb for

KATAN every two clock cycles. The feedback polynomial with a minimal hamming weight of 5 is

selected for the 80-bit shift register as derived in Equation (4.1). As a result, the subkey of round i

can be defined in Equation (4.2), where the key is denoted as capital K.

f(x) = x80 + x61 + x50 + x13 + 1 (4.1)

ki =


Ki i = 0...79

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 i > 79

(4.2)

Two nonlinear functions fa and fb are defined in Equations (4.3) and (4.4), which represent

the two abstract blocks (XOR/AND computation) in Figure 4.6. Here, considering that the 32-bit

KATAN cipher is adopted, we have already located which bits of L1 and L2 are selected for the

computation. For the other variants, the positions of bits can be different because of a different

number of registers [81].

fa(L1) = L1[12] + L1[7] + (L1[8] · L1[5]) + (L1[3] · IR) + ka (4.3)

fb(L2) = L2[18] + L2[7] + (L2[12] · L2[10]) + (L2[8] · L2[3]) + kb (4.4)
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4.2.2 CML Implementation on KATAN

We now discuss how different transistor technologies could impact the power/performance of

KATAN32 by using the Synopsys Design Compiler using 20 nm InAs Homojunction TFET [82]

and the Predictive Technology Model (PTM) 20 nm FinFET technology [63]. In order to minimize

the area consumption of KATAN32, the driving-strength-one library is employed for the synthesis.

The synthesized transistor-level netlist is further converted into both the single-ended and differ-

ential modes. Synopsys Finesim is adopted for the gate-level simulation with less simulation time

compared to the HSPICE simulator. The operating frequency of KATAN32 is set to 100 MHz to

ensure its functional correctness.

Table 4.2: Power Consumption Comparison Among Different Implementations on KATAN32.

Voltage Gate Area Average Power Area Power
Supply[V] Equivalent [µm2] Current[µA] [µW ] Change[%] Change[%]

CMOS Static 0.6 1013 3.534 16.09 9.96 - -
CMOS CML 0.6 393 1.415 283.65 170.19 -59.96% +1608.7%
TFET Static 0.6 1013 3.536 3.14 1.89 +0.057% -81.02%
TFET CML 0.3 393 1.441 32.53 9.76 -59.22% -2.01%

Area and power data for four different implementations is summarized in Table 4.2. More

specifically, we consider TFET and CMOS static implementations as well as CMOS CML with a

0.6 V supply, as well as TFET CML with a 0.3 V supply. A 2-input NAND gate is assumed when

comparing equivalent gate numbers. It is worth noting that the number of the synthesized static

GEs is more than what is reported in [81], mainly because we simplify our library for both TFET

and CMOS by using our own driving-strength-one and two-input standard cells. Complex logic

gates such as D flip flops and multiplexers, are not fully optimized and consume a relatively larger

number of gates. (Future work will be performed to further optimize all TFET CML based logic

gates.)
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Figure 4.8: KATAN32 Power Measurements CML TFET vs. Static TFET.

Notably, it is not difficult to see that two CML implementations consume fewer gate equiv-

alents and area compared to the two static counterparts given that KATAN32 is largely comprised

of D flip flops, as we discussed in Section 4.1.3. The area of TFET CML KATAN32 is 1.441

µm2, which is about 59% less than the static TFET KATAN32. Note that the area of TFET based

static and CML KATAN32 is similar to their CMOS counterparts as comparable 20 nm tech-

nologies are used. The power consumption of TFET CML (9.76 µW ) even outperforms static

CMOS (9.96 µW ) with slightly lower power consumptions. Figure 4.8 shows the power trace of

the KATAN32 implementation for static and CML TFETs, respectively. The zoom-in subfigure

displays the large current overshoot of TFET static KATAN32 compared to the constant current of

TFET CML KATAN32.

4.2.3 Power Model and Attack Mechanism

When considering differential power analysis [12], we first need to identify the intermediate val-

ues that are a function of plaintext/ciphertext, and that are a portion of the keys. Given that when

57



launching a DPA attack, the round keys are part of complete keys, the complexity of DPA compu-

tation can be further reduced with the smaller size of round keys. Therefore, the portion of the keys

must be as small as possible compared with the complete keys, thereby reducing the complexity

of key analysis. The key-dependent intermediate values are further calculated by a group of hy-

pothetical key guesses and are utilized as the inputs of the selection function. Subsequently, the

selection function differentiates the power traces into two sets, where they are processed to show a

peak for the right key hypothesis.

Correlation power analysis, on the other hand, is an extension of DPA where a model of

the power consumption is created for use in the analysis phase of an attack. A power model

is needed to approximate the power consumption of the target cryptographic device during an

encryption operation. The resulting power predicted by the model will then be correlated to the

actual measured power consumption using a key hypothesis. It employs the Hamming weight

model (different from the Hamming distance model which is mostly adopted in DPA attack) to

hypothesize the intermediate output result and evaluate the relation between the hypothesis values

and power traces in a statistical way. Bard et al. proposed the security evaluation on the KATAN

family, including algebraic and cube attacks [83]. They also pointed out the side channel analysis

on KATAN but with only a high-level overview of possible vulnerabilities. To the best of our

knowledge, there are not any detailed discussions in existing work about power analysis on the

KATAN family. In this chapter, we will introduce the power analysis attack on KATAN, as well as

the countermeasures – i.e., a TFET CML implementation of KATAN32.

By observing the KATAN algorithm, it is apparent that the two nonlinear functions fa and fb

are able to connect the plaintext/ciphertext with partial keys (or more precisely, subkeys). We can

then select the two bits each round generated by the nonlinear functions as our intermediate values

or points of attack as highlighted in red in Figure 4.6. Besides those two arithmetic functions, the

majority of KATAN32 hardware is made up of D flip flops such that the overall power consumption
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mainly depends on the operation of shifting registers. As a result, it is important to come up with

an attack mechanism that maximizes the power profile of two nonlinear operations.
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Figure 4.9: The Correlation Power Analysis Flow on KATAN Cipher.

In single-ended logic gates, power consumption only occurs during state transitions, either

0 → 1 or 1 → 0. If we configure the plaintext in a way that for certain clock cycles the power

consumption of functions fa and fb contributes most, then the power information extracted from

the supply current can be maximally related to the key information. More specifically, we can

selectively configure the plaintext to be consecutive zeros or ones. Therefore, the power consump-

tion of KATAN32 highly depends on functions fa and fb, because the power cost of the left-shift

operation is negligible in each clock cycle.

4.2.4 Correlation Power Analysis on KATAN32

In this section, a case study of CPA on KATAN32 is described to disclose the two key values (K[79]

and K[78]). Initially, four selected plaintexts are loaded into the two registers as given in Equation
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(4.5) and the 80-bit keys are set to all zeros. Note that in real cases, the key is the attackers’ target

and is unknown to attackers.

P1 = x00000000⇒ p[18] = 0, p[31] = 0

P2 = x80000000⇒ p[18] = 0, p[31] = 1

P3 = x00040000⇒ p[18] = 1, p[31] = 0

P4 = x80040000⇒ p[18] = 1, p[31] = 1

(4.5)

However, the chosen input values are not constrained to Expression (4.5), as long as the

plaintext interacts mostly with the subkeys. When the start signal is received, KATAN32 begins

encryption. Figure 4.9 shows the proposed CPA attack flow on KATAN32. Each selected plaintext

and the hypothetical subkeys Ka and Kb are calculated to achieve the intermediate values “v”

matrix. Then, intermediate results are further calculated by the power model, which is defined

as the Hamming weight model. The results from the Hamming weight model are defined as the

hypothetical power consumption. Based on our chosen plaintexts, the matrix of hypothetical power

consumption is given in Equation (4.6):

hypothetical power consumption =



0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0


(4.6)

Corr. Coef. =

4∑
i=1

(ti − t) · (hi − h)√√√√ 4∑
i=1

(ti − t)2 ·
4∑

i=1

(hi − h)2

(4.7)
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The predicted power consumption is then compared with the measured real power con-

sumption by the correlation coefficient formula as given in Equation (4.7). The highest correlation

coefficient result stands for the correctly guessed keys. In this case, the keys ‘00’ reflect the largest

correlation coefficient value. The next round follows the same mechanism, but with slightly dif-

ferent ciphertext, which is generated by the last round. Figure 4.10 shows the detailed correlation

power analysis for the respective TFET static KATAN32 and TFET CML KATAN32 on one clock

cycle. The black line describes the correct key value for subkeys Ka and Kb (=‘00’), which are

the two most significant bits of the key. It is apparent that the correlation coefficient is largest for a

static, TFET-based KATAN32 implementation when the correct keys are applied as shown in Fig-

ure 4.10a. By comparison, the correlation coefficient of TFET CML KATAN32 is more significant,

and all four hypothetical keys are similarly distributed as shown in Figure 4.10b. Consequently,

the TFET CML KATAN32 implementation is capable of successfully counteracting the correlation

power analysis. Because the power consumption is mainly determined by AND/XOR logic gates

of two nonlinear functions – and the effect of CPA is maximized – the correlation coefficients for

KATAN32 are higher on average than other block ciphers, e.g., CPA on S-box [76].
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Figure 4.10: CPA Attack on One Clock Cycle (a) TFET Static KATAN32 vs. (b) TFET CML KATAN32.

As the key schedule of KATAN32 suggests, the key generator block exports two subkeys

and does a left-shift operation every clock cycle. Therefore, the 80-bit keys can be continuously

output as subkeys in 80 clock cycles, which can be easily attacked by CPA using the chosen plain-

texts. The pseudo code for Algorithm 1 describes the abstract CPA attack mechanism on the 80-bit

keys of KATAN32. The criteria of choosing the plaintext is to ensure that power consumption is
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highly dependent on the power cost of intermediate values in certain clock cycles. Moreover, the

selected plaintext may be capable of discovering more than one key in different periods.

To launch the complete CPA on KATAN32, the attacker should first select plaintext values

that are able to achieve a situation where PowerKATAN32 = Powerintermediate values. Then, after 80 clock

cycles, the attacker can calculate the correlation coefficients. If the correlation coefficients are

significant at certain periods, the key can be discovered and Algorithm 1 can then be rerun for the

next chosen plaintext. If there are not any significant correlation coefficients in the first 80 rounds,

the selected plaintexts are not desired for the CPA attack on KATAN32. Because our goal is to

leverage the TFET CML implementation on KATAN32 to counter the CPA attack, the completed

80-bit key evaluation will not be discussed in detail.

Data: plaintext and measured power
Result: correlation results (correct keys)
while uncovered keys ≤ 80 do

select the plaintext;
if Power(KATAN) ' Power(Intermediates) then

while # of rounds ≤ 80 do
run correlation coefficient;
correct keys ++;

end
else

unsuccessful plaintext ++ and go back to
select the plaintext;

end
end

Algorithm 1: CPA on recovering of 80-bit keys of KATAN.

4.3 Discussion

Here, we briefly discuss the next steps for this work. Potential circuit-level optimizations as well

as algorithmic considerations are highlighted.
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4.3.1 Circuit-Level Optimization

In this work, we use TFET based CML gates to realize lightweight ciphers with both high security

and low power consumption. As an initial effort we have constructed generic current mode gates

(without applying any circuit improvement techniques). However, this will be considered in our

future work, and additional improvements with respect to power are expected. For example, the

sleeping transistor in [76] can lead to additional energy improvements.

Considering the power advantage of TFET based CML gates, it is also promising that we

continue to optimize our circuit specifications and develop the CML standard library. As we have

mentioned, the good thing about building a current mode standard cell library is that the standard

logic gates can be used to derive additional logic gates by following the pattern of the CML design

template. Also, different driving strength designs of one logic gate can be accomplished through

the modification of the tail current source.

Binary decision diagrams (BDD) have also proven to be a practical way to capture the

behavior of CML [84]. The core of the differential cell is its pull down network, which manages

the functionality of the CML gate. The PDN can be represented using BDDs where each node of

the BDD is a differential pair. Each branch of the BDD is a connection between one drain and the

source of another differential pair or an output.

4.3.2 Encryption Algorithm Consideration

Besides the optimization of the CML circuit, another goal is to extend the TFET-based CML for

more complicated and popular block ciphers, such as AES. Given that a significant amount of work

has been done in protecting conventional block ciphers, a concrete analysis is necessary to evaluate

the amelioration using a TFET based CML implementation. Among the techniques, composite
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field S-boxes are widely applied [85]. Polynomial, normal, and mixed basis composite fields will

also be analyzed and one of three bases will be chosen for the TFET-based implementation to

counter DPA attack. Although a DPA-based attack is mostly employed in attacking block ciphers,

other emerging attacks are also worthy of being covered in the future work, such as fault analysis

attacks [86–90]. Employing the existing techniques, we will study whether TFET-based CML

designs are resistant to fault analysis based attacks.

Besides block ciphers, other encryption and authentication algorithms can also be protected

using TFET CML. For example, Galois Counter Mode (GCM) is an authenticated encryption mode

that simultaneously generates ciphertext and an authentication tag [91]. It can be implemented in

hardware to achieve high speeds with low cost and low latency [92]. To incorporate the GCM into

our TFET based block cipher implementation, two scenarios are taken into consideration: TFET

static and TFET CML implementation. To our knowledge, no work has been done to implement

GCM using CML style implementation. We will conduct a detailed theoretical analysis on how to

incorporate GCM operation into CML-based cipher design.

4.4 Summery

In this chapter, we have demonstrated that the usage of emerging transistors, i.e. TFETs, can help

improve circuit design resilience against CPA attacks while still preserving low power consumption

compared to their CMOS counterparts. Additionally, besides the traditional criteria for emerging

devices such as area, power, delay and non-volatility, security may serve as a new criterion to thor-

oughly judge the advantages and disadvantages of emerging devices. Using this new standard, we

plan to revisit existing emerging transistors to have a full comparison between emerging technolo-

gies and CMOS technology. Meanwhile, we believe that more research outcomes are expected in

this area where unique properties of emerging transistors can help enhance the security of circuit
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designs.
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CHAPTER 5: SPLIT MANUFACTRUING ON RF POWER AMPLIFIER

Both governmental agencies and industrial companies are looking for a balance between fabrica-

tion cost and design security to prevent foundries from learning the design details of submitted

design layouts. Among existing approaches [54, 93, 94], design obfuscation and camouflaging are

candidates, however both methods require the modification to the original circuits which may cause

a performance overhead. Intelligence Advanced Research Projects Activity (IARPA) proposed a

new methodology called split manufacturing which only adds trivial efforts to IC designers but is

able to effectively prevent IC piracy [95]. In this chapter, we would like to present the proposed

idea of applying split manufacturing on RF power amplifier design.

5.1 Motivation

The key idea of split manufacturing is to protect circuit/system designs by dividing the manu-

facturing chips into Front-End-of-Line (FEOL) consisting of transistor layers to be fabricated by

off-shore foundries and Back-End-of-Line (BEOL) consisting of metallizations to be fabricated by

trusted domestic facilities. Through this divided fabrication procedure, the design intention is not

fully disclosed to the FEOL foundry. Even though the concept is straightforward, a successful im-

plementation requires further research on various aspects, especially the balance between cost and

security when the designer splits the layout into FEOL and BEOL. Analytical and experimental re-

sults have already been presented in digital circuits [96–103]. However, the analog/RF designs are

rarely discussed when using split manufacturing even though analog/RF circuits are more likely to

be IP piracy victims than their digital counterparts.

In fact, the fundamental difference between digital design flow and RF design process has
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already raised concerns as to whether it is still applicable to apply split manufacturing in RF design.

A deeper look into both design flows proves that it would be more suitable to apply split manu-

facturing in RF circuits than in digital circuits because of the unique functionality metal layers

play in RF designs: 1) Metal layers are solely used as interconnections between gates and modules

in digital circuits while in RF circuits, metal layers are also used to build functional blocks (e.g.,

inductors are often located on the top metal layer; capacitors are built in upper level metal layers);

2) While metal layers are abstracted as wire connections in digital designs, wire length and wire

direction are both functional parameters in RF designs. Therefore, a foundry fabricating the FEOL

part of digital circuits may face a mathematical problem with finite solutions in order to recover

the whole functionality of the design1. On the other hand, the foundry of RF FEOL would need to

explore an infinite solution space to recover the RF design.

Based on the above discussion, it becomes obvious that split manufacturing should be more

effective to protect RF circuits from IP piracy. To assess our claim, analytical calculation and

experimental demonstrations are performed in this chapter to solidify our findings and to push the

territory of split manufacturing to cover all types of circuit designs.

5.2 RF Design Flow Basics

Thanks to the advanced EDA tools for RF circuit designs and the development of RF design kits,

RF engineers have become more productive than ever before. Nevertheless, a typical RF design

still involves heavy work of design fine-tuning and designers’ experience plays a critical role here

[104–106]. Figure 5.1 shows the steps of a modern RF design flow.

1Note that the possible solution space could be large given large amount of standard cells in digital circuits. In fact,
this is the key criterion to evaluate the security level of split manufacturing method in digital circuits.
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Figure 5.1: Standard RF Circuit Design Flow

5.2.1 RF Design Procedures

From Figure 5.1 we can see that steps I-III are the preparation of the RF circuit specification.

Taking a power amplifier as an example, the defined specification will include design information

such as the delivered output power, the amount of circuit stages, the operation class, etc. Different

from digital designs where the specification is strictly followed, the specification for RF circuits

only serves as a guideline as it often happens that the performance of the final design deviates from

the original settings (experienced RF engineers may be able to narrow the performance gap which

is why experienced RF designers are valued).

Guided by the specification, the circuit schematic will be designed, simulated and opti-

mized. The optimized schematic will then guide the work of layout design and post-layout simula-

tion. All physical-level parameters come into the map during the layout design and post-layout sim-

ulation such as parasitic capacitors, wire resistance, etc. For RF circuits, the parasitic components
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can significantly affect the design performance and significantly deviate the circuit performance

from the schematic level simulation. Therefore, the large portion of design time will be spent in

layout optimization and circuit fine-tuning, even for experienced designers. If the circuit passes

the post-layout simulation, it will be sent to the foundry for fabrication and for post-fabrication

testing. Even though current foundries embrace advanced technology and delicate equipment,

the parasitics introduced by the fabrication process remain a problem, i.e., unpredictable parasitic

resistance and capacitance during the fabrication will affect both circuit functionality and perfor-

mance. A fabricated RFIC circuit may not work properly which increases the demand for further

tuning and trimming. To lower the fabrication cost and to increase the yield rate, techniques of

post-fabrication calibration are used in modern RF designs, e.g., knob adjustments and Transverse

Electro-Magnetic (TEM) cells.

5.2.2 Power Amplifier Modeling and Analysis

Power amplifiers are among the most widely used RF devices and are installed in almost every

electronic device. For instance, power amplifiers serve as the very front end of transmitters in

broadcasting systems and are used in audio systems to increase and decrease the volume. The

basic functionality of a power amplifier can be described as an augmentation to the system power

level. Therefore, being one of the most important tasks in RF design, researchers are dedicated

to designing highly-efficient and robust power amplifiers. For example, the quality of a power

amplifier design decides whether or not a wireless transmission signal can be well detected by

wireless receivers or not. For this reason, we chose the power amplifier as the example in the rest

of this chapter when we demonstrate how the split manufacturing can help improve design security

and prevent IP piracy for RF circuits.

Besides the experimental design flow shown in Figure 5.1, analytical equations also play
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critical roles to help designers derive the approximate range of the component sizes from the speci-

fication. Since most power amplifiers use N-type MOSFET, the drain current for N-type MOSFET

in the saturation region is revisited in the following equations:

ID =
µnCox

2

W

L
(VGS − VT )2(1 + λVDS) (5.1)

VT = VT0 + γ(
√
φB + VSB −

√
φB) (5.2)

where µn is the electron mobility, VT is the threshold voltage, COX is the oxide capacitance per

unit area, W is the channel width, L is the channel length, VGS is the gate-source voltage of the

MOSFET, and λ is the channel length modulation factor. Equation 5.2 presents the expression of

threshold voltage, an important parameter in CMOS designs where γ is body effect constant, φB is

the substrate Fermi potential and VSB is source-to-body voltage. Since the inputs of power ampli-

fiers are often nonlinear signals with DC biasing, particularly sinusoidal waves, the drain current

in a power amplifier is showed in Equation 5.3 where Im is the amplitude of the ac component of

the drain current and ω is the resonant frequency.

iD = IDC + Im cosωt (5.3)

Equations 5.1-5.3 determine the operation mode of the power amplifier because different DC bias-

ing and operating frequency would cause different conduction angles. Note that the determination

of operation mode guides the entire design flow. For instance, class-A power amplifiers need to

constantly turn on the transistor all the time, which means drain current ID should always be larger

than zero. On the other hand, class-B power amplifiers require the operation on a 50% duty cycle,
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where transistors are turned off for a half cycle. The typical characteristics of power amplifiers

include the output power and the power-added efficiency whose calculations are listed below:

pi =
1

2
real(vin × i∗in) (5.4)

po =
1

2
real(vout × i∗out) (5.5)

ηadd =
po − pi
PDC

(5.6)

In the above equations, i∗in is the conjugate input current, i∗out is the conjugate output current and

PDC is the DC power dissipation. Even though there are other reference parameters needed in

power amplifiers, the output power and the power-added efficiency are the two key parameters

for power amplifier evaluation. The attacker, who is assumed to be an experienced RF designer,

should be aware of those equations as well and will apply them in RF circuit recovery from FEOL.

However, it is noteworthy that unlike digital design, those equations can merely determine a rea-

sonable range of design, the final results are derived after plenty of tuning and trimming work. In

this chapter, we will evaluate the PA performance within these two parameters to demonstrate the

application of split fabrication in RF circuits and evaluate the security level.

5.3 Split Manufacturing in RF Circuits

As we mentioned earlier, the removal of metal layers in RF circuits will not just hide the intercon-

nections between circuit components but also eliminate the passive components which are built in
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metal layers. Since a typical RF circuit only includes very few transistors and other passive com-

ponents, the recovery of interconnections between these components will not be a difficult task.

Rather, being able to derive the missing passive components and their sizes would be the main

advantage of applying split manufacturing in RF designs. For the same reason, the difficulty level

for attackers with the FEOL at hand to recover the passive components and to guess the sizes of

these passive components will be the key criteria to assess the effectiveness of split manufacturing

application in RF designs.

Compared to digital split fabrication [96] where the proximity attack dominates the security

analysis, routing and mapping are no longer an issue for RF circuits. Furthermore, the recognition

attack mechanism used in [100] cannot accurately explain the issue with RF split fabrication. To

better guide the implementation of split manufacturing in RF circuits and to balance between the

security level and design efforts, we propose three approaches/scenarios to perform the RF split

fabrication:

• Scenario I: Remove only the top metal layer from the layers to generate FEOL. Since the

inductors are often located in the top layer, the FEOL foundry does not have the information

of interconnections through top metal layer as well as the inductor locations and sizes.

• Scenario II: Remove both the top and the second from the top metal layers. In this scenario,

two upper metal layers are removed so that both inductors and capacitors are missing from

the FEOL layout because the capacitors are often built through the top two metal layers.

• Scenario III: Design obfuscation. For RF designs, inductors are always located in metal

rings and lower metal layers will be removed inside the rings for performance optimization

(See example in Figure 5.12). Therefore, the rings themselves, which contain multiple metal

layers, would indicate positions and approximate sizes of inductors. Similarly, the lower

metal layers will not be used where capacitors are located. Therefore, attackers in both
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scenarios I and II may learn the precise positions of the removed inductors/capacitors and

may even further estimate their sizes. To further increase the security level but still avoid

performance overhead, we propose an obfuscation technique during the design phase to

insert non-functional rings and to create empty zones in the original design. Using this

method, it becomes more difficult for attackers to pin down the location, the count, and the

sizes of passive components.

For the demonstration purpose, the TSMC 0.18 µm technology supporting six metal lay-

ers is used. In both analytical and experimental demonstrations, scenario I indicates the removal

of metal6 layers. Similarly, scenario II indicates the removal of the metal5 and metal6 layers.

Scenario III follows the same rules that new rings and empty zones are removed from the metal

layers metal1 to metal4. Note that the proposed three scenarios can be applied to any other process

technology with the adjustment of available metal layers.

5.3.1 The First Example

To demonstrate all three application scenarios as well as their security levels, a single-stage single-

transistor class-AB power amplifier is investigated as our first example where we assume that the

inductor is using metal6 layer and the capacitors are using metal5 and metal6 layers [107]. A more

sophisticated example with detailed layout information will be introduced in Section 5.4.

The class-AB power amplifier (see Figure 5.2 for detailed schematic) works at 5.8 GHz

with a low supply voltage of 1.9 V. It is designed to deliver 19.8 dBm output power and 28.1%

power-added efficiency.
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Figure 5.2: Schematic of A Class-AB Power Amplifier

Figure 5.3: A Class-AB Power Amplifier With Metal6 Removed (Missing Inductors)

Scenario I: Removal of Metal6 Layers (Inductors)

Since metal6 is removed from the FEOL, the schematic of the class-AB power amplifier, shown

in Figure 5.3, is missing all inductor information. Although the attackers can easily recover the

count and the locations of all inductors, they do not know the exact sizes and the values of the

inductors. More specifically, the attackers can learn that 3 inductors are used in the design through

the inductor rings. They can also extract the values for all other components. Therefore, the
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attackers with the FEOL of the power amplifier at hand can easily guess the general functionality

of the entire design. But a detailed specification including the the supply voltage and the operating

frequency remains unknown. As a result, the task for attackers to recover the entire circuit is not

as simple as sweeping all possible inductor values. As we emphasized earlier, we assume that the

attackers are also experienced RF designers so they would also apply the analytical calculation

based on Equations 5.1 - 5.6 and other parameters from the known components in order to derive

the inductor values. The procedure to recover the whole circuit from the known FEOL by attackers

is described in the following steps (Note that the IP piracy cost is directly related to the complexity

of the these steps):

Step 1: In the first step, the attackers will try to find out the operating conditions such

as bias voltage, supply voltage and operating frequency, which can significantly shift the power

amplifier performance. Since the untrusted foundry is also the provider of the fabrication process

(in our case, we are using the 0.18 µm technology), the attackers should be aware of the available

supply voltage for this technology (from 1 to 3.3 V). The attackers should try at least 23 different

supply voltages if a step size of 0.1 V is chosen2. In terms of gate biasing, the reasonable range

for a power amplifier varies from 0.4 to 1 V, however it is not necessary that all designs follow

this setting (e.g., an exception would be presented in the experimentation section). Hence, using

0.05 V as a voltage sweeping step, the gate biasing can have at least 13 different cases for attackers

to choose. Meanwhile, the operating frequency still remains a puzzle to attackers, which acts as

an imperative role in RF design. The attackers may narrow down the spectrum by assuming this

example design works in the commercial communication protocol range, which basically ranges

from 0.8 to 6 GHz. Again, the design may or may not take the communication frequency as

its operating frequency, because the attackers are not aware if this layout works for some specific

applications, either military or scientific confidentiality. Under this assumption, it comes to a group

2They may try more supply voltages with smaller voltage step size in order to get more accurate simulation results.
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of 53 possible values if a step of 0.1 GHz is selected.

(a) (b)

Figure 5.4: (a) Supply Voltage and Gate Biasing versus Output Power (b) Supply Voltage and Gate Biasing versus
Power-added Efficiency

(a) (b)

Figure 5.5: (a) Supply Voltage and Frequency versus Output Power (b) Supply Voltage and Frequency versus Power-
added Efficiency

With all of these possible cases available, the attackers will then run simulations to recover

the original design by choosing the result with the best output power and power-added efficiency.
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For example, Figures 5.4 (a) and (b) show the case that the actual supply voltage and gate bias,

namely 1.9 and 1 V, do not deliver the best output yields. Similarly, Figures 5.5 (a) and (b) show

that the maximum output power is not coincident with the maximum power-added efficiency. Since

this power amplifier is designed for low-power applications, the specification defines the operating

frequency to be 5.8 GHz; however, Figure 5.5 shows that the defined operating frequency is located

in the middle level of the overall performance. Clearly attackers cannot recover the original design

if the optimized parameter settings are chosen. Figures 5.6 (a) and (b) reflects the relationship of

circuit performance versus frequency and gate bias. As shown in the figure, the actual values for

frequency and gate bias, 5.8 GHz and 1 V, are located in the low performance area. Therefore,

if the attackers follow the recovery process through Figures 5.4, 5.5 and 5.6, they cannot find the

correct settings. Note that this sample testing process only represents a small fraction of the overall

testing space meaning that it will take significant amount of time for attackers to fully simulate the

design and collect the original design parameters, even for a simple RF circuit.

(a) (b)

Figure 5.6: (a) Gate Biasing and Frequency versus Output Power (b) Gate Biasing and Frequency versus Power-added
Efficiency

Step 2: In the second step, we assume that the attackers have chosen the correct operating
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conditions for the power amplifier, next they need to set the biasing conditions to precisely recover

the inductor values. Following a general RF design methodology, the experienced attackers will

sweep the RF choke Ld and the input inductor Lin by a reasonable range, which is from 0.5 to 3

nH in the 0.18 µm technology, to check the input reflection coefficient S11 and to further guess the

frequency range, rather than a random sweeping on different frequencies. Based on the simulation

results, the attackers will probably learn the circuit working frequency between 4 and 7 GHz. The

derived frequency range helps to narrow the possible range of the input inductor, however the

attackers need to select the inductor value for 4 to 7 GHz design operation. The attackers will then

sweep the RF choke Ld and the output inductor Lout to optimize the output performance and the

matching network. The simulation results will be meaningless if a wrong input inductor value is

chosen.

(a) (b)

Figure 5.7: (a) Output Inductor and RF Choke versus Output Power (b) Output Inductor and RF Choke versus Power-
added Efficiency

Figure 5.7 illustrates the output results that vary with respect to the RF choke and the

output inductor. The actual values for the RF choke and the output inductor are 963 and 670 pH,
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respectively. However, from Figure 5.7 we can see that both values produce good but not the best

performance. It is possible that the attackers only aim for the best performance so they may choose

inductor values from the wrong range.

Figure 5.8: Schematic of Class-AB Power Amplifier Without Top Two Metal Layers (Missing Inductors and Capaci-
tors)

Scenario II: Removal of Metal5 and Metal6 Layers (Capacitors and Inductors)

In this case, both inductors and capacitors are not available to the untrusted foundry because of

the removal of the metal5 and metal6 layers from the FEOL. The missing capacitors add addi-

tional uncertainty, which makes it difficult for attackers to recover the whole design. That is, the

unknown capacitors add more freedom in the simulation though parameter sweepings and will

produce large amounts of combinations of inductors and capacitors. In this case, it is much easier

for an experienced attacker to follow the typical power amplifier design procedure to retrieve the

missing components.

Step 1: The first step of circuit testing is exactly the same as that in Scenario I.
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(a) (b)

Figure 5.9: (a) RF Choke and Output Coupling versus Output Power (b) RF Choke and Output Coupling versus
Power-added Efficiency

Step 2: After selecting the operating point, the attacker needs to figure out the RF choke

inductor and output coupling capacitor. The 0.18 µm technology indicates that the reasonable

ranges for inductor and capacitor are 0.5 to 5 nH and 1 to 10 pF, respectively. Using a sweeping

step of 0.1 nH and 0.1 pF for inductors and capacitors, respectively, the attackers will come up with

a total of 45 possible values for inductors and 90 possible values for capacitors3. Figure 5.9 shows

the overall circuit performance when the values of the choke inductor and the output capacitor are

changing. The figure helps attackers to recover the correct values of both components.

Step 3: After selecting the RF choke and coupling capacitor from various combinations,

the attackers need to perform output matching to achieve a matched 50 Ω output. RF designers

often perform output matching through load pull simulation, which provides the designers a bunch

of matching combinations to choose from. Advanced EDA tools can help synthesize the maximum

output power and power-added efficiency as well as further reflect the impedance of the optimal

3Note that the range of inductor shifts from 0.5 to 5 nH rather than from 0.5 to 3 nH due to the fact that capacitor
values are unknown in Scenario II.
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points. After choosing the impedance, the designers can use the Smith chart to recover the out-

put matching network. Due to the simple structure of the single transistor power amplifier, the

output matching network only includes one inductor and one capacitor. Relying on the load pull

simulation, the attackers can retrieve four possible matching networks as showed in Figure 5.10.

(a) (b)

(c)
(d)

Figure 5.10: Four Possible Output Matching Network for the Class-AB Power Amplifier

The possible topologies cover L-type (Figures 5.10(a) and (b)), Π-type (Figure 5.10(c)) and

T-type (Figure 5.10(d)), which are all basic network topology in RF design. All component values

for each topology are located in reasonable design ranges; however, only the first two networks are

possible given the number of passive components.

Step 4: After the load pull simulation, the attackers need to use the source pull simulation to
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recover the input matching network, which follows a similar procedure to the load pull simulation.

Step 5: The final tuning is necessary for attackers to adjust the performance before all

circuit parameters are recovered.

Scenario III: Obfuscation Techniques

Although various obfuscation techniques can be applied that increase the difficulty for attackers to

recover the original circuit, in order to balance the performance impact and lower the design cost

only two obfuscation methods are demonstrated in this chapter. Those two methods add 1) extra

block space where the capacitors/inductors are located and 2) dummy cells to mislead the attackers

into incorrect simulations.

To avoid high frequency signals interfering with each other, the lower level metals are not

used where the inductors/capactors are located. The existence of these empty areas may reveal

the approximate sizes of the inductors/capacitors which can lead to the recovery of the original

design. To address this issue and to further increase the difficulty of RF IP piracy, we propose an

obfuscation technique to deliberately increase passive component area. This will have the effect of

lowering the correlation between the area of each inductor/capacitor and their value.

A second method will also be applied which includes unused empty blocks in the original

design so that the attackers are unable to find the correct circuit structure. Those extra blocks

can be located either in the input or the output side. For example, the attackers will only select

L-types output matching networks from Figures 5.10(a) and (b), but they will also consider other

topologies if two empty blocks are inserted.

Different from the IP protection scenarios I and II, the obfuscation technique in scenario III

requires modifying the original layout. The RF design performance will be affected due to the sen-
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sitivity of layout modifications. To address this issue, we suggest a new RF design methodology,

called security co-design, which considers security at the early stage of the RF designs by altering

some design rules to integrate the obfuscation technique in the design flow.

5.4 Experimentation

Through a simple class-AB power amplifier, we demonstrate that the split fabrication method is

applicable to RF circuit protection and provide a robust, low-cost, and highly secure approach

to prevent RF IC piracy. Encouraged by the results from the simple RF circuit, we applied the

split manufacturing method and the same security analysis procedure to a class-E power amplifier

which we recently designed, calibrated, and fabricated [108]. This class-E power amplifier works

at a frequency of 5.2 GHz under 0.18 µm technology and delivers 12.5 dBm output power and 25%

power-added efficiency. The circuit consists of five inductors and six capacitors and the detailed

schematic is shown in Figure 5.11. The layout and the fabricated chip are shown in Figure 5.12.

Figure 5.11: Schematic of A Cascode Class-E Power Amplifier

The gate bias of each transistor is not the same, nor is the supply voltage to each stage; this

significantly increases the effort for attackers with the FEOL to recover the whole circuit, as we
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will demonstrate shortly. The gate biases for the three transistors are 0.1, 0.7 and 1 V, while the

DC supplies are 1 and 2.4 V for the two stages.

(a) (b)

Figure 5.12: (a) Layout of Class-E Power Amplifier (b) Microchip View of the Fabricated Class-E Power Amplifier

5.4.1 Scenario I: Removal of Metal6 Layers (Inductors)

Figures 5.13 and 5.14 show the FEOL part of the power amplifier schematic and its layout after the

removal of metal6 layer. It is clear that the inductors occupy the majority of the RF circuit, which

leads the attackers to easily identify that the missing components are inductors. Furthermore, the

sample circuit caters to a boost technique of power-added efficiency (see the loop of M2, Ltr, and

Ctr [108]); therefore, even though only a few interconnections are missing, the attackers may still

be unable to recover the circuit topology.
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Figure 5.13: Schematic of the Class-E Power Amplifier Without Metal6

Figure 5.14: Layout of the Class-E Power Amplifier Without Metal6

In the first stage of the design, there are two inductors, Lin and Ld1. In the second stage,

there are also two inductors, Ld2 and Ls. We assume the attacker knows how the inductors are

connected. The first task for attackers is to set up the DC biasing and operating frequency. As we

can see from the schematic, the DC biasing (gate biasing and supply voltage) is more complicated

than that in the one transistor case. The class-E power amplifier has three different gate biases
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and two different supply voltages. The partial topology may suggest that it is a class-E power

amplifier and that the first stage works as a driver (so that a low gate biasing will be used). It

can also be interpreted as other types of power amplifiers as well, such as multi-stage class-A or

class-AB power amplifiers, where the much larger gate biasing values are used. So the attacker

needs to sweep the gate biasing by a large range, probably from 0.1 to 1 V, in order to decide the

gate biasing in the first stage. The original design sets the first gate biasing at 0.1 V to make it

work as a switch to the power amplifier. For supply voltage, a reasonable range can be from 1 to

3.3 V in terms of the 0.18 µm technology.

To demonstrate the impact of circuit performance with respect to gate biasing and supply

voltage, we add back the correct inductor values and sweep the gate biasing and the supply voltage

for both the first and the second stages. The simulation results are showed in Figures 5.15 and

5.16. From both figures, we can easily conclude that the overall performance is rather sensitive

to the change of the gate biasing and the supply voltage, which makes the selection of operation

conditions very important4.

4In real case that the attackers do not know the inductor values, the task will be further complicated for them to
derive the correct operation conditions.
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(a) (b)

Figure 5.15: First-stage and Second-stage Gate Biases versus (a) Output Power (b) Power-added Efficiency.

(a) (b)

Figure 5.16: First-stage and Second-stage Supply Voltages versus (a) Output Power (b) Power-added Efficiency.

Normally, a higher supply voltage leads to a better output power but, a high supply volt-

age will also increase power consumption and decrease power-added efficiency. For this reason

foundries often provide the reference for supply voltage to balance overall performance, i.e., 1.8
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to 3.3 V for the 0.18 µm technology. For example, from Figure 5.16(a), we learn that the output

does not change when VDC1 varies from 1.8 to 3.3 V; however, the maximum output power occurs

when VDC2 is equal to its highest allowable value. In terms of efficiency shown in Figure 5.16(b),

a high power-added efficiency can be achieved when VDC1 is below 3 V and VDC2 is around 2 V.

With a voltage step of 0.1 V the attackers have 37 options for VDC1 selection and 19 options for

VDC2 selection5.

The next step is to derive the inductor values (operating frequency). We assume the attacker

picks the correct DC bias, the gate biases and supply voltages for both stages. The attackers will

then sweep the input stage inductor values to test and guess the operating frequency. They may

conclude that the operating frequency ranges from 3 to 7 GHz, indicating that 41 choices are

available for a 0.1 GHz step (the actual operating frequency is 5.2 GHz for this design). Once

the attackers select the right frequency they will sweep the inductor values again to check the

performance. Although multi-parameter sweeping is applied for all five inductors, to graphically

show the simulation procedure, we group the testing cases into 3 cases. Within each case only

one or two inductors change their values but, the rest of the values are fixed. In the first case only

the input inductor Lin and first stage RF choke Ld1 vary (see Figure 5.17); in the second case, the

output inductor Ls and the second stage RF choke Ld2 vary (see Figure 5.18); in the third case,

only Ltr varies (see Figure 5.19).

5Note that the simulation results are derived from the situation that correct inductors are chosen for demonstrative
purpose.
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(a) (b)

Figure 5.17: (a) Output Power versus Lin and Ld1 (b) Power-added Efficiency versus Lin and Ld1

The correct sizes of the input inductor Lin and the first-stage RF choke Ld1 are 3.61 nH

and 1.47 nH, respectively. However, from Figure 5.17, more than one parameter combination is

available to achieve the best performance (note that other inductors values are correctly selected in

the simulation). The attackers will have to guess the values of Lin from 2 to 4 nH and Ld1 from

1 to 2 nH purely based on the performance comparison. We want to emphasize that the purpose

of applying split manufacturing is to prevent the attackers from learning the exact circuit design

which will later be used in critical infrastructures. Through the simulation, attackers may be able

to derive an even better performance class-E power amplifier. However, a better design does not

mean that it would be fitted into the overall system design or some application-specific design.

For example, the required power amplifier is supposed to have 15 dBm amplification at operating

frequency of 900 MHz. Meanwhile, the attackers retrieve a better amplification of 20 dBm at 2

GHz. In this case, our power amplifier is secured even though attackers come up with a better

design. In our class-E power amplifier, the chances that the attacker can derive exactly the same

power amplifier are relatively low (4.76% for Lin and 9.09% for Ld1 given the rest three inductors
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are correctly selected). To fully elaborate the results, the sweeping range for Lin is from 2 to 4

nH and for Ld1 is from 1 to 2 nH. The sweeping step for both Lin and Ld1 is 0.1 nH. Thus, the

probability to guess Lin right is one out of twenty-one (= 4.76%) and to guess Ld1 right is one out

of eleven (= 9.09%).

(a) (b)

Figure 5.18: (a) Output Power versus Ls and Ld2 (b) Power-added Efficiency versus Ls and Ld2

The correct size of the output inductor is Ls = 3.61 nH and the second-stage RF choke is

Ld2 = 4.56 nH. These sizes are within the best performance region as shown in Figure 5.18. If the

attackers are guided by the performance, they may choose Ls from 3.6 to 5 nH and Ld2 from 4 to

5 nH. Therefore, the probabilities of a correct recovery for the output inductor Ls is 6.25% and for

the second-stage RF choke Ld2 is 9.09%.
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Figure 5.19: Overall Performance versus Ltr

The correct size of the inductor Ltr is 0.27 nH. This inductor is located in parallel with

the transistor M2 and is used for improving the power-added efficiency; however, the inductor

is located in the middle of the entire layout which may be mis-interpreted as an intermedium

matching network between the first and the second stage. In that case, the attackers have no way to

recover the circuit structure; otherwise, as shown in Figure 5.19, the attackers may select its value

from 0.1 to 0.8 nH with respect to its physical size and the overall circuit performance.

5.5 Discussion

The main focus of our chapter is the split manufacturing on radio-frequency design. We have

presented a small portion of obfuscation technique. However, we believe that the concrete study

of obfuscation technique can further improve the security of split manufacturing. For instance,

the original design could deliberately include many sub-optimal components along with many

optimally designed components. Then the attacker is faced with a dilemma whether any given local
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component is intended to be realized with the optimal parameters or not. Deliberately creating this

dilemma for each component could perhaps make the overall design even harder to retrieve.

5.6 Summery

Split manufacturing has presented a new solution against reverse engineering and IP piracy as the

IC design flow becomes more globalized. Different from all previous work to apply the split man-

ufacturing in digital circuits, we introduced the first attempt to implement a similar method in RF

designs. Quantitative analysis was presented to assess the security protection level for RF designs

in the event that untrusted foundries would like to recover the circuit designs based on part of the

circuit layout. To further guide the application of split manufacturing in RF circuits, three different

FEOL and BEOL separation and obfuscation methods were introduced. All of these methods were

demonstrated on two RF circuits: a simple class-AB power amplifier and a more sophisticated

class-E power amplifier. The experimental results confirmed that the unknown passive compo-

nents, either inductors or capacitors, along with the missing DC biasing conditions, can raise a

significant amount of uncertainty for the attacker to recover the RF circuits. In conclusion, split

manufacturing is more effective in RF IC trust than in digital circuit security. We hope to pursue a

real silicon-level implementation in our future work.
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CHAPTER 6: CONCLUSION

Today’s integrated circuit (IC) development demands a large capital investment. Many third-parties

are involved in IC design and manufacturing process, in order to reduce costs. Therefore, the semi-

conductor supply chain becomes more vulnerable to a wide range of attacks than ever before. To

improve security and trustworthiness of ICs, we presented a series of design and test methodolo-

gies to deal with four challenging hardware security problems. The major contributions of the

thesis will be presented in this chapter.

6.1 Enhanced Hardware Security Primitives beyond PUFs

Considering the large amount of emerging device models including graphene transistors, atomic

switches, memristors, MOTT FET, spin FET, nanomagnetic and all-spin logic, spin wave devices,

OST-RAM, magnetoresistive random-access memory (MRAM), spintronic devices, etc. [109], two

fundamental questions have recently been raised related to their applications in the hardware se-

curity domain: 1) Can emerging technology provide a more efficient hardware infrastructure than

CMOS technology in countering hardware Trojans and IP piracy? 2) What properties should

the emerging technology-based hardware infrastructure provide so that software-level protection

schemes can be better supported?

Chapter 3 presents two emerging devices, SiNW FETs and graphene SymFETs, for demon-

stration. Five different security applications were designed and verified, ranging from IP protection

to efficient cryptographic computation. The first question has been answered by providing pre-

liminary experimental results and hardware infrastructure designs. Experimental schematics and

layouts as well as their testing results are also provided to uphold our claim that some emerging
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technologies outperform CMOS in many hardware security applications.

6.2 DPA-resilient Block Cipher Design

Conventional circuit level protection schemes such as current mode logic (CML) trade power effi-

ciency for security. To tackle this problem, chapter 4 presents a new methodology that leverages

new transistor technology for the cryptographic applications. The usage of emerging tunnel FET

is demonstrated to help improve cryptographic circuit design resilience against CPA attacks while

still preserving low power consumption compared to their CMOS counterparts. Compared to the

CMOS-based CML designs, the TFET CML circuit consumes 15 times less power while achieving

a similar level of DPA resistance.

6.3 Split Manufacturing on RF Power Amplifier

Chapter 5 presents a innovative security application, which applies the split fabrication method into

RF circuit protection. Three different scenarios of split fabrication are proposed and analyzed. A

single-stage class-AB power amplifier is adopted as first example for demontration of effectiveness

of proposed technique. A more accurate class-E power amplifier, which we recently designed,

calibrated and fabricated, is used for thorough security analysis. The experimental results confirm

that the unknown passive components, either inductors or capacitors, along with the missing DC

biasing conditions, can raise a significant amount of uncertainty for the attacker to recover the RF

circuits. Consequently, we demontrate that split manufacturing in RF IC can be more effective

compared to digital circuit counterparts.
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