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ABSTRACT

DESIGN OF HARDWARE WITH QUANTIFIABLE
SECURITY AGAINST REVERSE ENGINEERING

FEBRUARY 2020

SHAHRZAD KESHAVARZ

B.Sc., SHAHID BEHESHTI UNIVERSITY

M.Sc., UNIVERSITY OF TEHRAN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel Holcomb

Semiconductors are a 412 billion dollar industry and integrated circuits take

on important roles in human life, from everyday use in smart-devices to critical

applications like healthcare and aviation. Saving today’s hardware systems from

attackers can be a huge concern considering the budget spent on designing these chips

and the sensitive information they may contain. In particular, after fabrication, the

chip can be subject to a malicious reverse engineer that tries to invasively figure out

the function of the chip or other sensitive data. Subsequent to an attack, a system

can be subject to cloning, counterfeiting, or IP theft. This dissertation addresses some

issues concerning the security of hardware systems in such scenarios.

First, the issue of privacy risks from approximate computing is investigated in

Chapter 2. Simulation experiments show that the erroneous outputs produced on

each chip instance can reveal the identity of the chip that performed the computation,

which jeopardizes user privacy.
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The next two chapters deal with camouflaging, which is a technique to prevent

reverse engineering from extracting circuit information from the layout. Chapter 3

provides a design automation method to protect camouflaged circuits against an

adversary with prior knowledge about the circuit’s viable functions. Chapter 4 provides

a method to reverse engineer camouflaged circuits. The proposed reverse engineering

formulation uses Boolean Satisfiability (SAT) solving in a way that incorporates laser

fault injection and laser voltage probing capabilities to figure out the function of an

aggressively camouflaged circuit with unknown gate functions and connections.

Chapter 5 addresses the challenge of secure key storage in hardware by proposing

a new key storage method that applies threshold-defined behavior of memory cells to

store secret information in a way that achieves a high degree of protection against

invasive reverse engineering. This approach requires foundry support to encode the

secrets as threshold voltage offsets in transistors. In Chapter 6, a secret key storage

approach is introduced that does not rely on a trusted foundry. This approach only

relies on the foundry to fabricate the hardware infrastructure for key generation but

not to encode the secret key. The key is programmed by the IP integrator or the user

after fabrication via directed accelerated aging of transistors. Additionally, this chapter

presents the design of a working hardware prototype on PCB that demonstrates this

scheme.

Finally, chapter 7 concludes the dissertation and summarizes possible future

research.
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CHAPTER 1

INTRODUCTION

Semiconductor production is a very large and growing industry, with a global sales

totaling $412.2 billion in 2017 as reported by Semiconductor Industry Association

(SIA) [1]. Creating an Integrated Circuit (IC) comprises multiple phases, including

creating the design specification, making optimizations and finally putting the digital

components into silicon. Computer-aided Design (CAD) tools try to assist the

designer by automating each step from the design process, such as simulation and

verification, synthesis and optimization, and placement and routing, such that the

designer intervention becomes minimal. The target hardware can be an Application

Specific Integrated Circuit (ASIC) that is made exclusively for certain functionality

or a Field Programmable Gate Array (FPGA), which is comprised of configurable

blocks that can be programmed to create the desired functionality; with each of them

requiring their own set of CAD tools.

Today’s hardware systems usually require a very complex fabrication process with

multiple layers of lithographic masks and can consist of billions of transistors. For

example in Intel’s 14nm technology, a set of masks can cost from $10 million to $18

million, and wafer production cost can be between $6,225 to $9,960 [38]. It is desirable

that all levels of fabrication are part of a trusted foundry; however, usually all or some

parts (in case of split-manufacturing) of fabrication is distributed offshore to untrusted

foundries because of budget concerns. In an untrusted foundry, a hardware design

can be exposed to IP theft, counterfeiting or malicious hardware insertion [34, 42] at

different levels of fabrications.
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Even in the presence of a trusted foundry, the design can still be subject to reverse

engineering after fabrication. An adversary may use invasive reverse engineering

methods such as decapsulating and delayering using corrosive chemicals and mechanical

etching, or non-invasive techniques such as laser fault injection from the chip’s backside

to figure out the chip functionality that can be used for cloning and counterfeiting the

proprietary hardware, or figuring out the secret key in case of a hardware cryptography

core.

1.1 Position of the Dissertation

This dissertation addresses a number of issues related to hardware security: What

are the possible threats to conventional hardware security methods and how to enhance

them for better resistance against reverse engineering. The position of this thesis is as

follows:

I first give a brief overview of the terminologies and concepts used in this thesis

in Chapter 1 as an introduction. In Chapter 2, I show that approximate computing,

which is used in error-tolerant applications for the goal of power/performance savings

can be revealing of device privacy. The obfuscation problem is then investigated in

Chapter 3 and a new method is proposed to do a more meaningful gate camouflaging

against a knowledgeable reverse engineer that knows about the set of functions that a

circuit can implement. Then in Chapter 4, I demonstrate that even the most robust

circuit obfuscation methods can be attacked with our proposed enhanced SAT-based

reverse engineering approach. By incorporating additional information from laser fault

injection and laser voltage probing, the proposed method facilitates reverse engineering

by decreasing the search-space of the SAT problem. A novel key generation mechanism

is proposed that provides a desired reliability and quantifiable security against reverse

engineering in Chapter 5. In Chapter 6, a secure hardware key storage is proposed

that addresses the issue of secure key storage with an untrusted foundry. A working
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hardware prototype of the key generation system is designed and implemented, and

the key correctness is verified over time.

Several important subjects that are discussed in this thesis are the concepts of

reverse engineering, process variation, design obfuscation and deobfuscation, and secret

key storage. The following subsections briefly introduce the significance of each one.

1.2 Overview of Reverse Engineering

A Reverse engineer tries to reveal what components the chip has, analyze the

operations and functions of the chip, or extract the gate-level components or netlist of

the circuit [106]. The IC reverse engineering can comprise of depackaging the IC using

corrosive chemicals, delayering multi-layered IC by chemical etching and mechanical

polishing to reveal the connectivity, traces, and vias in each of its internal layers, and

imaging each layer.

Once the images of the layers are prepared, they are annotated and stitched

together to be used by software algorithms that reconstruct the schematic [6]. These

algorithms use template-based matching to determine the function of each component

and trace the routing to understand the connectivity between the components. In

some cases, non-destructive reverse engineering may be possible, including methods

that use X-ray inspection or laser voltage probing [64].

With the increasing complexity of integrated circuits and small size of transistors,

reverse engineering has become more of a challenging task than it was ever before.

Today’s systems include complex Systems on Chips (SoCs) with hundreds of millions

of transistors and several layers of metal wiring. However, the increasing size and

complexity of designs have not stopped the reverse engineers, as some of the same

automated techniques that have helped the designers achieve a high level of complexity

have also been helping the attackers in reverse engineering the designs. These advances

in reverse engineering include advanced imaging techniques such as Scanning Electron
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Figure 1.1. Image from Torrance and James [106] shows both an optical image
(at top) and SEM image (at bottom) of a portion of an OMAP1510 chip in 130nm
technology. It can be seen in the image that SEM is necessary for resolving features
at this size of technology nodes.

Microscope (SEM - see Figure 1.1) [106], and automated tools such as Chipworks’

ICworks [5] that help with analyzing and reconstructing netlist from images that are

taken from a microscope.

1.2.1 Attacker models

Based on the attacker’s goals, constraints, and available equipment, he might use

different reverse engineering approaches that are translated into different attacker

models. For example, Chapter 3 assumes an attacker that tries to decapsulate and

delayer the chip to reverse engineer a circuit optically, which is the common case. Such

an attacker that has knowledge about everything in the layout, including the gates

and their connections, but not the function of camouflaged gates. The attacker in

Chapter 5 also tries to reverse engineer the chip from the front-side and decapsulates

and delayers the chip, but he has the ability to measure the concentration of dopant
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atoms in transistors and estimate their threshold voltage. However in Chaper 4, we

assume an adversary that tries to attack a chip from the backside and possesses

the equipment to inject faults or probe internal voltage values with a laser. In this

case, the attacker cannot know the metal or physical layers, which prevents him from

knowing the function of gates and the connections between them. Each attacker model

will be discussed in more detail in their relative chapters.

1.3 Process variation

During manufacturing, some amount of inaccuracies in design parameters such as

impurity densities and transistor geometries are induced. The effect of these variations

in the process has exacerbated over the years and was worsened in below 90nm

technologies where feature size became smaller than the wavelength of light, which

made the correct printing of the layout extremely difficult [43].

Process variation exhibits itself at different levels, such as changes in electrical

parameters like threshold voltage and sheet resistance, which in turn change the delay

or power consumption of the fabricated chip. Although process variation is usually

an undesirable phenomenon that worsens fabrication yield and design reliability, it

can be used as a means to create Physically Unclonable Functions (PUFs). PUFs are

device-tied secrets that are repeatable (it can be re-generated via device evaluation

under the same situation), yet unpredictable (one cannot tell what the secret would

be, without evaluating the PUF). A PUF’s value is dependent on the inherent process

variation of the device and can be used to verify the identity of IC/FPGA to protect

against counterfeiting.

The value of a PUF should solely rely on the inherent process variation of its

components. Therefore, most PUF designs rely on differential circuits in which two

paths are designed with identical logic and matched routing so that the difference

only comes from process variation. This level of matching can be easily done in ASICs
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because the designer has the freedom to control the layout of the PUF. However,

FPGA designers are limited in this freedom and must work within the constraints of

the unmovable look-up tables and routing tracks in the FPGA fabric.

The performance of PUFs is usually measured in the following terms:

• Uniformity: Indicates the balance of zeros and ones in the response of the PUF

(ideally a PUF is expected to output zero and one in the same probability).

• Reliability: Indicates how stably a PUF outputs the same response in the same

conditions.

• Bit-aliasing: If it happens, different chips may produce nearly identical PUF

responses, which is undesirable.

• Uniqueness: How different the different PUFs respond in the same condi-

tions [77].

As part of my research that is not explained in this thesis, I have proposed and

evaluated a new FPGA-based PUF design. Unlike previous approaches that can

only be implemented on SLICEMs, which is a less frequent resource type on the

Xilinx FPGAs, our proposed design can be implemented using the standard SLICEL

components that are about twice frequent compared to SLICEMs. Moreover, we offer

a novel per-device PUF selection approach to increase the PUF reliability compared to

other approaches. We then show that compared to other state-of-art approaches, our

design has improved reliability while behaving about the same in other performance

metrics. Additionally, the new design is more efficient in terms of the type of the

required resources, making them more available to be allocated for the design goals.

The work appears in IEEE Transactions on Very Large Scale Integration Systems

(TVLSI) [108].

In another context, it can be shown that approximate computing can unintentionally

reveal the identity of chips, or in other words, their unique process variations. In
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recent years, the growing need for energy efficient designs and the emergence of error-

tolerant application domains has prompted significant research interest in the area of

approximate computing. Approximate computing relaxes some accuracy in the results

in exchange for enhancing performance or power consumption. The inaccurate results,

however, may uniquely be tied to each device and introduce new security concerns.

With the increasing adoption of approximate computing systems in the coming years,

designers of approximate computing systems should start considering the associated

privacy risks and whether they warrant mitigation. In chapter 2 of the thesis, the

privacy leakages from adders of different styles are considered, and the amount of

identifying information leaked from each of them is explored. We investigate how

some phenomena, such as aging or environmental noises, are causing imperfection in

measurements and how different amounts of approximation would affect the accuracy

of chip identification differently.

1.4 Design obfuscation

Hardware obfuscation tries to hide the functionality of the chip against reverse

engineering. The hardware obfuscation may try to enhance the security of hardware

systems at different stages, such as protecting the chip’s functionality from an untrusted

foundry, or from a reverse engineer after the chip is manufactured. To protect against

an untrusted foundry, logic locking can be used that obfuscates the IC by locking

the netlist with a secret key. The circuit would provide the correct functionality only

when the correct key is applied to the chip by the IP vendor.

One of the state-of-art obfuscation approaches that improves the security of

hardware systems after fabrication against reverse engineering is camouflaging, which

seeks to visually hide or disguise the features of the chip so that imaging-based reverse

engineering will not recover the true function. When using camouflaging, a designer is

faced with a decision concerning which subset of gates or interconnects to camouflage.
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The designer may consider the different design or security aspects when making this

decision. He or she might simply choose random gates to camouflage, and limit the

number of total camouflaged gates based on some amount of allowable area overhead;

alternatively, the designer may use deploy camouflaging based on resolvability and

corruptibility metrics [92].

In case of gate camouflaging, an attacker trying to reverse engineer the circuit

must consider an exponential set of functions in order to find the true functionality of

the circuit. However, in the case that the attacker has prior knowledge over the circuit

functionality, he can rule out many of the possibilities and converge to an answer

more easily and quickly. In Chapter 3 of this thesis, we try to consider such a scenario

against a more knowledgeable attacker and propose an improved gate obfuscation

technique. The proposed method can make each possible function of the camouflaged

circuit seem viable from the attacker’s perspective, and an automated synthesis flow

is provided to ensure this. The resultant circuit is camouflaged in such a way that

none of the plausible functions can be easily ruled out by an attacker with additional

knowledge about the circuit functionality.

1.5 Oracle-guided deobfuscation

Although the hardware security approaches mentioned in this thesis improve the

resistance of circuits against reverse engineering attacks, there are still methods that

enable an adversary to reverse engineer an obfuscated circuit. One such method is the

SAT-attack, which converts the reverse engineering problem to a Boolean satisfiability

(SAT) formulation and uses the state-of-art SAT-solvers to find the circuit’s function

as a solution.

In case the circuit is invasively camouflaged such that all gate functions and

connections are unknown, or reverse engineering is done from the chip backside

with no information about the gate or connection, new sources of data are required
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to help with the reverse engineering. With advances in technology, new methods

and tools are also becoming more available to reverse engineers, such as powerful

optical microscopes, laser voltage probing, Scanning Electron Microscopy (SEM).

Incorporating the additional data from these techniques into the SAT formulation

requires new models and methods.

In Chapter 4 of the thesis, a novel reverse engineering approach is proposed

that incorporates laser fault injection and laser voltage probing to simplify the SAT

formulation. Similar to the scan chain that can improve the strength of SAT attacks

by increasing the circuit’s observability, internal voltage probing can enhance the SAT

attacks by adding extra points of observations in the circuit. There has not been any

previous work that would address how to incorporate this additional information into a

SAT formulation. The approach that we propose is based on a commonly used reverse

engineering method, which turns the unknowns of a circuit into a SAT problem, and

uses a working instance of the circuit as a guideline (Oracle). We model an excessively

camouflaged circuit, where all gate functions and their connections are unknown. We

then propose a new method to model this circuit, while being able to incorporate all

the additional information from laser voltage probing and laser fault injection into

the SAT problem. We then use a state-of-art SAT solver to find a solution that not

only reveals the circuit functionality but recovers a netlist that is equivalent to the

original camouflaged circuit on a gate-by-gate basis.

1.6 Secure key storage

One important idea in Cryptography is Kerckhoffs’ principle: A cryptosystem

should remain secure even if everything about the system, except the key, is public

knowledge [2]. This is in contrast to ”Security through obscurity” that attempts to use

the secrecy of design to provide security, which is provided in most hardware security

techniques such as gate camouflaging techniques. In this chapter of the thesis, we try
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to adhere to Kerckhoffs’ principle by proposing a secret key storage mechanism and

allowing an attacker to know everything about the design except for the characteristics

of certain transistors that determine the key. An example of such an approach is

a merged circuit that consists of different functions, of whom only one is the true

function of the circuit. To select the correct circuit’s function among all of the merged

functions, multiplexers can be used on the outputs (The process is similar to the one

that will be explained in more detail in Chapter 3). The select value of the output

multiplexers can be encoded as a secret key, which determines the true circuit function.

We accomplish secret key storage by encoding the secret data into the threshold

voltages of the common 6-T SRAM cells and use statistical analysis to evaluate the

reliability and security of the proposed design. One of the advantages of our method

is that it provides quantifiable security against invasive readout, and enables the

designers to achieve different trade-offs between security, cost, and reliability.

As the future work, I propose using direct accelerated aging as a mechanism to

induce the desired value within SRAM cells. The advantage of this method is that

it enables an IP designer or end-user to burn the secret data, without a need for a

trusted fabrication or a fabrication process that supports multiple threshold voltages.

Accelerated aging is usually induced by increasing the chip’s temperature and supply

voltage. Future work includes using the burnt-in secrets from actual SRAM chips that

we age in our lab and use them to evaluate the key reliability and security.
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CHAPTER 2

PRIVACY CHALLENGES OF APPROXIMATION

2.1 Introduction

In this chapter, we consider how approximate computing can compromise the

privacy of a device or a device-bearer. The basic concept of approximate computing is

simple: For many applications such as DSP, data mining and multimedia (audio, video,

graphics), a perfect result is usually not necessary. In other words, these classes of

applications can tolerate some amount of error. The relaxation of accuracy introduces

an amount of design space freedom that can be exploited to reduce power consumption

or increase performance. Many approximate computing proposals trade away more

than just accuracy, but also uniformity of results across devices. When each device is

allowed to produce a slightly different, and possibly identifying, result, privacy must

now be considered. With predictions of increasing adoption of approximate computing

systems in the coming years, designers of approximate computing systems should start

considering the associated privacy risks and whether they warrant mitigation.

Although the privacy risk is more general than one particular scenario, we consider

here an illustrative scenario of a microprocessor with approximate computing capability

that allows results to be influenced by the unique process variations of the chip. In

this setting, an adversary that can apply chosen operands to the processor and observe

computed results can use this information to identify a device or correlate results to

a single device. This leakage of identity to an unprivileged program is perhaps at

odds with privacy trends that have resulted in, for example, Intel canceling plans for

software accessible processor serial numbers and Apple removing developer access to
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unique device identifiers. Approximate circuits exploit the potential error resilience of

some classes of applications. This error resilience can have different reasons: a) the

data is coming from the real world and therefore, is noisy by nature, b) the algorithm

used is self-healing and can attenuate an amount of error, or c) the user of these

applications is able to tolerate an amount of error in the result [111]. One method of

approximate computing is to use deterministic functional approximation, in which a

particular Boolean function is replaced by a simpler one that produces similar results

at lower complexity [46, 47]. Because functional approximations compute identical

results across all chips, they pose no risk to privacy.

The computational circuits that are of interest in this work are circuits that

use non-deterministic approximations, or what are sometimes denoted timing-based

approximations [112]. In these approaches, a design is voltage overscaled or frequency

overscaled to an operating point where timing constraints may be violated by some

circuit paths. At overscaled operating points, the output of a circuit depends not only

on inputs, but also on process variation. Design techniques can be used to optimize

the quality of results while meeting a power constraint [84], or even to dynamically

control the error rate based on the needs of an application [57].

Contributions: The specific contributions we make are as follows:

• We show, for the first time, that results from overscaled approximate computa-

tions can reveal the identity of the chip that performed the computation.

• We compare and contrast the identifying ability of the outputs of three popular

styles of 32-bit adders.

• We show that random noise does not prevent identification if sufficiently many

output vectors are collected, but that a consistent bias such as aging can diminish

the effectiveness of identification.

The remainder of this chapter is organized as follows: Section. 2.2 provides related

work on approximate computing to give context to our contribution. Section 2.3
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explains how approximate computational results can reveal device identity. Section 2.4

addresses methodology. Section 2.5 presents simulation results showing how privacy

leakage varies with design, clock frequency, and noise and section 2.6 concludes this

chapter.

2.2 Related Work

Many of the efforts toward approximate computing have focused on adders as

ubiquitous basic components of digital systems (e.g. [41, 46, 47, 49, 60], among others).

More specifically, there has been a lot of research that targets ripple carry adders

(RCAs) as an approximate adder of choice because RCAs have a few long paths in the

carry chain that are rarely sensitized [49], and this enables a gradual degradation of

the quality of results when overscaled. For example, the authors in [60] have targeted

RCAs to reduce the error rate within a fixed energy budget and the authors in [41]

proposed a biased voltage scaling for probabilistic RCAs that scales the operating

voltage according to the significance of bits. Because of the focus on adders in previous

approximate computing research, we focus our study on adders as well.

Aside from computational blocks in general and adders specifically, there has also

been significant interest in approximate memories. Previous works have proposed

DRAM-based approximate memories [72] with unsafe refresh intervals to save energy,

fast but inaccurate writes to multi-level non-volatile storage cells [93], and voltage

overscaled SRAM [36]. Recently, one paper has shown that data stored in approximate

DRAM can be used as a fingerprint to reveal device identity [90]. To the best of

our knowledge, this one previous paper is the only work to explore privacy issues in

approximate computing systems, and no previous works at all have studied privacy

leakages on the computational (i.e. non-memory) side of approximate computing.

The use of process variations to identify devices is similar to the idea of a physical

unclonable function (PUF) in security. PUFs are circuits designed to extract identifying
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fingerprints from process variations via timing variations [40] or power-up states of

SRAM [44, 51]. Recent work has also shown that variations in sensors [21] and wireless

transmitters [88] are identifying and can threaten privacy. Many of the efforts toward

approximate computing have focused on adders as ubiquitous basic components of

digital systems (e.g. [41, 46, 47, 49, 60], among others). More specifically, there has

been a lot of research that targets ripple carry adders (RCAs) as an approximate

adder of choice because RCAs have a few long paths in the carry chain that are

rarely sensitized [49], and this enables a gradual degradation of quality of results

when overscaled. For example, the authors in [60] have targeted RCAs to reduce the

error rate within a fixed energy budget and the authors in [41] proposed a biased

voltage scaling for probabilistic RCAs that scales the operating voltage according

to the significance of bits. Because of the focus on adders in previous approximate

computing research, we focus our study on adders as well.

Aside from computational blocks in general and adders specifically, there has also

been significant interest in approximate memories. Previous works have proposed

DRAM-based approximate memories [72] with unsafe refresh intervals to save energy,

fast but inaccurate writes to multi-level non-volatile storage cells [93], and voltage

overscaled SRAM [36]. Recently, one paper has showed that data stored in approximate

DRAM can be used as a fingerprint to reveal device identity [90]. To the best of

our knowledge, this one previous paper is the only work to explore privacy issues in

approximate computing systems, and no previous works at all have studied privacy

leakages on the computational (i.e. non-memory) side of approximate computing.

The use of process variations to identify devices is similar to the idea of a physical

unclonable function (PUF) in security. PUFs are circuits designed to extract identifying

fingerprints from process variations via timing variations [40] or power-up states of

SRAM [44, 51]. Recent work has also shown that variations in sensors [21] and wireless

transmitters [88] are identifying and can threaten privacy.
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2.3 Identification from Overscaling

Overscaling-based approximate computing relaxes clock period constraints and

allows that the long combinational paths of a circuit may not fully propagate within the

clock period. In this case, the register at the end of the path may capture intermediate

(wrong) results on the clock edge. With shrinking feature size, the effect of process

variation has become more significant in recent years. Because of process variation,

the critical paths of different chips will have different delays. For example [105] reports

12% frequency variation at 1.1V in 45nm technology and [23] reports 30% frequency

variation for sub-90nm technologies. The variable path delays will cause different

erroneous outputs in approximate computation.

Example: We now give a concrete example to show how gate delays can lead to

different results at overscaled operating points. Figure 2.1 shows an example 8-bit

ripple carry adder that has two 8-bit input signals {a7 . . . a0} and {b7 . . . b0}, and

a 9-bit output signal {couts7 . . . s0}. Assuming that {a7 . . . a0} = 8′b11111111 and

{b7 . . . b0} changes from 8′b00000000 to 8′b00000001, a carry signal has to propagate

all the way from the least significant full adder (FA0) to the most significant full adder

(FA7) in order to generate the correct result. We now focus on what occurs after the

carry has propagated through the seven less significant full adders and signal c7 rises

on the input to FA7. The rising transition of c7 will indirectly cause both a falling

transition on s7 and a rising transition on cout; the timing of these transitions will

depend on gate delays. Letting the delay of gate i in FA7 (see Figure 2.1) be denoted

di, when the value of c7 rises, the output s7 will fall after time d2. The critical path to

cout goes through gates 3 and 5. Therefore, it takes d3 + d5 from the time c7 changes

for cout to rise.

The value captured on flip-flops after cout and s7 will depend on the delays of the

gate instances. In the presence of process variation, some gates might be faster or

slower on one chip than another. If all gates are slow relative to the clock period,
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then the rising transition on c7 may propagate to neither cout nor s7 before the clock

edge, and the output will be couts7 = 01. If gates 2,3, and 5 are all fast, then the

correct value of couts7 = 10 will be captured on the clock edge; this is depicted in

Figure 2.2a. If gate 2 is slow, and gates 3 and 5 are fast, then output s7 will not

have fallen before the capturing rising clock edge, and the captured value will be

couts7 = 11 (Figure 2.2b). If gate 2 is fast and gate 3 or 5 is slow, then output s7

will have fallen but cout will not have risen, and the captured output value will be

couts7 = 00 (Figure 2.2c). This example shows that variations in gate delays can

lead to different erroneous outputs in approximate computing; this is the reason that

overscaled approximate computing may lead to device identification. However if the

clock period was determined based on the longest and worst case scenario, none of

these would have happened.

a7

b7
s7

1

2

3

4

5

c7

cout

FA7 FA6 FA5 FA4 FA3 FA2 FA1 FA0

a0b0a1b1a2b2a3b3a4b4a5b5a6b6a7b7

cout

c1c2c3c4c5c6c7

s0s1s2s3s4s5s6s7

FA7

Figure 2.1. An 8-bit ripple carry adder with full-adder blocks.

Entropy of Input Vectors: Note that for the above example, we only considered a

portion of a small circuit. For a large circuit, each individual gate may have different

delays and there may be many different output results based on different path delays

for the same inputs. A good input vector for identification is able to distinguish

different chips with different path delays caused by process variation. When applying
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Figure 2.2. Timing diagram for FA7 of the ripple carry adder depicted in Figure 2.1

random input vectors to a circuit, only a small fraction of these inputs may be useful

for identification, because the majority of vectors will not sensitize long paths and

therefore will produce deterministic error-free outputs. To distinguish the useful

vectors from non-useful vectors, we use metric of conditional entropy. When an input

vector aj is applied across a large number of devices at a particular operating point, let

the probability of observing output xi be denoted Pr(xi|aj). The entropy associated

with the result to input aj is given by equation 2.1. Although entropy can be estimated

from the outputs of adders when viewed as a black box, the entropy associated with

different inputs to each adder type implicitly depends on the distribution of path

lengths and the path diversity inside of the adder.

H(X|aj) = −
∑
i

Pr(xi|aj)log2Pr(xi|aj) (2.1)

If an input vector has high entropy on a particular style of adder, it means we get

different results for many of the considered chips. In an ideal case, if a vector is able

to produce a different result for each chip, it can uniquely identify all chips. However,

this is not possible in practice as an input vector usually produces the same results for

many chips. Furthermore, noise can diminish the usefulness of high-entropy inputs.

Nonetheless, entropy is a useful metric that can provide insights about the identifying

ability of each adder, as will be discussed in Section 2.5.1.
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2.4 Methodology

We considered three different 32-bit adders for our evaluations: ripple carry adder

(RCA), carry lookahead adder (CLA) and Han-Carlson adder (HCA) [48]. Because our

experiments require simulating a large number of input vectors on large populations

of 32-bit adder circuit instances with different amounts of process variation, using

HSPICE simulation alone was found to be impractical in terms of simulation time.

Instead, we use HSPICE simulation to extract a number of gate delays for each gate

in the library, randomly and then use timed Verilog simulation with the extracted

gate delays to simulate the overall 32-bit circuit. We implement each adder style at

gate level with Verilog gate primitives and annotate the extracted delays as rise-time

and fall-time parameters for the timing simulation. The gate models in HSPICE are

45nm CMOS Predictive Technology Model [11] (PTM) minimum-sized transistors at

the voltage of 1.0V. Monte-Carlo simulation is performed 100 times across process

variations on Vth to provide a distribution of realistic pin-to-pin gate delays for each

gate type. When creating an instance of the overall adder circuit, we randomly select

gate delay instances from the pre-characterized distributions of each gate type. The

timed Verilog models of the adders are simulated using Icarus Verilog (iVerilog).

An overscaled operating point exists when some paths exceed the clock period due

to the supply voltage being too low for the applied clock period. Changing the voltage

and changing clock period are two different ways of affecting the same amount of

overscaling. In our experiments, we control overscaling by changing the clock period

while keeping a set of gate delays extracted at one voltage. We choose this approach

because it allows us to dial in a target error rate by performing a binary search on

the clock period until hitting the desired error rate. If instead trying to achieve a

target error rate by searching supply voltage at fixed clock period, we would need a

more complicated procedure of re-extracting gate delays many times over at different

voltages until hitting a desired error rate. We make comparisons across the different
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styles of 32-bit adders by choosing a clock period for each adder style that realizes

equivalent rates of erroneous output. For our 32-bit adders, the clock periods that

yield 1%, 2% and 5% erroneous outputs are shown in Table 2.1. Note that going

from 5% error to 1% error in an RCA requires increasing the clock period by 127 ps,

whereas both CLA and HCA require only a 20 ps increase for the same change in

error. This occurs because the RCA has many infrequently sensitized long carry chain

paths, whereas HCA is a tree adder with many near-critical paths.

To represent persistent and transient non-idealities (e.g. aging and noise) in our

timing model, we add random delay components with different scopes. These are used

to evaluate the robustness of identification.

• Random Aging: A persistent change, meant to represent issues such as aging, is

applied to each gate in the adder in some experiments. It is applied on top of

process variations by adding to the delay of each gate a random offset drawn

from a normal distribution with 0 mean and standard deviation equal to 10% of

the nominal delay. The aging component is chosen independently for each gate

in the design, and once applied, the change persists across all vectors simulated

on that adder instance.

• Random Noise: A second offset is used to represent noise. Each time noise

is added to a gate, it is drawn from a normal distribution with 0 mean and

standard deviation equal to 10% of the nominal delay. Noise is uncorrelated

across gates, and across vectors, meaning that for each new vector applied to a

circuit, the noise offsets are replaced by new values.

19



Table 2.1. Clock period used for each adder type to achieve desired error rate.

RCA CLA HCA

1% error 653 ps 345 ps 355 ps

2% error 624 ps 340 ps 349 ps

5% error 526 ps 325 ps 335 ps

2.5 Evaluation

We perform a set of experiments to study the extent to which instances of each

adder type can be identified by their outputs. We use these experiments to compare

the identifiability of the different adder styles, and the impact of noise.

2.5.1 Measuring the Entropy of Vectors

First, for each style of adder, we examine how entropy of input vectors is distributed.

We set the clock period for each adder style to achieve a 1% error rate (see Table 2.1),

and simulate 200,000 random input vectors on 50 instances of RCAs, CLAs and HCAs.

The entropy associated with each input vector is calculated using Equation 2.1. The

vectors are then binned according to their entropy and plotted in the histogram of

Figure 2.3.

Notably, Figure 2.3 shows that the percentage of vectors with 0 entropy are quite

different across adder styles, despite each using a clock period that induces a 1%

error rate on a per-chip basis. In the RCA, 97.78% of all input vectors produce the

same result on all 50 chips, while in the HCA, the same number is only 90.73%. We

investigated this issue and observed that the 0 entropy vectors are always vectors that

induce the error-free output on every chip instance1. So, in an RCA, a much higher

percentage of vectors cause errors on no chips, or in other words sensitize no paths

with a delay comparable to or exceeding the clock period. On the other hand, an HCA,

which is a tree adder, tends to have a variety of paths with similar nominal delays, and

1This is perhaps to be expected, as it would be unlikely that an input which produces a wrong
output would always induce the same exact wrong output regardless of gate delays
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a much lower percentage of vectors are error-free across all chips. Another view of this

result is as follows: when considering for each adder type the set of random vectors

that caused an error on one or more of the 50 instances, we find that each such vector

causes errors in about 71% of RCA chips, versus only 24% for CLA and 10% for HCA

adders. If each adder type is operated at the same error rate, the error-causing input

vectors will be less unique on the RCA. Note however, that non-unique input vectors

does not mean that the output vectors are less unique to each chip; instead, it only

means that the inputs that induce the erroneous outputs are less unique to each chip.

2.5.2 Identification Results

Next we explore identification of chip instances using their outputs. For this

experiment, we simulate 40,000 vectors on 50 instances of each adder type operating

at their respective clock periods for 1% error (Table 2.1). To measure similarity or

lack of similarity between the outputs produced, we use a metric of Matching Distance.

The matching distance for any two adders of the same type is the number of outputs

that are observed differently when the same (40,000) input vectors are applied to both

of them (not to be mistaken with Hamming Distance, which is the number of bits

that differ in two output vectors). The histograms of between-class and within-class

matching distances are shown in Figure 2.4. The within-class bars correspond to

the matching distance corresponding to two trials of applying the same input vector

on the same chip in the presence of noise (see Section 2.4), and the between-class

bars correspond to applying the same input vectors on pairings of two different chips.

When between-class and within-class overlap less, then one can tell whether two sets

of outputs are from the same chip, and can therefore better identify a chip.

ROC Curve: A chip can always be identified using some matching distance as a

decision threshold if the between-class and within-class distances are non-overlapping.

A Receiver Operating Characteristic (ROC) curve is used to measure the performance
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(a) Entropy of ripple carry adder

(b) Entropy of carry lookahead adder

(c) Entropy of Han-Carlson adder

Figure 2.3. Entropy distribution of vectors from Ripple carry, carry lookahead and
Han-Carlson adders styles.
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(a) Matching distance of ripple carry adder

(b) Matching distance of carry lookahead adder

(c) Matching distance of Han-Carlson adder

Figure 2.4. Matching distance based on outputs produced for 40,000 random input
vectors for each adder type.
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of chip identification. Each point of an ROC curve corresponds to a single decision

threshold and depicts the trade-off between true positives and false positives at that

decision threshold. In an ideal case where between-class and within-class distances

are separable, the ROC curve will be a step function [55], as this would indicate

that there exists some decision threshold that can correctly identify all true positives

(within-class pairings) without accepting any false positives (between-class pairings).

Figure 2.5 shows the ROC curve for the three adder styles when 40,000 vectors are

simulated on 50 instances of each adder using a clock period for 1% error rate. The

AUCs for RCA, CLA, and HCA are 0.99, 0.89 and 0.81 respectively. The RCA is

easily the most identifiable of the three adder styles in this case.

Figure 2.5. ROC curve of three adder styles

AUC Metric: An ROC curve is a two-dimensional depiction of identification

performance. To have a single scalar value for representing the overall identification

performance, one can use area-under-curve (AUC), which is defined as the area under

an ROC curve. The AUC is a portion of a unit square, so its value can vary between

0 and 1, which are the worst case and ideal case, respectively [37].
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2.5.3 Impact of Noise and Number of Vectors

If the number of vectors applied to a circuit is increased, with all else held equal,

then the distributions of within-class and between-class distances should overlap less,

and the AUC should increase. Therefore, it is expected that the identification success

increases with the number of applied vectors. We consider identification performance

under both noise and aging when a different number of vectors are applied to the

circuits. Figure 2.6a shows performance when only noise is applied. Note that the

AUC of the ROC curves in Figure 2.5 would correspond to points on this plot if

the x-axis extended to 40,000 vectors. This result shows that noise can largely be

mitigated by simply using more vectors. Figure 2.6b shows identification under aging

as described in Section 2.4. Figure 2.6c shows identification under reduced aging,

where the delay offset representing aging has a standard deviation of 5% of the nominal

gate delay, instead of 10% as in the previous figure. These results show that if the

delays of gates are changed randomly, it can have deleterious effects on identification,

especially in the case of CLA and HCA.

2.5.4 Impact of Error Rate

There is usually a trade-off between the number of errors in the outputs and

the power/performance improvement in the system. While accepting a higher error

rate can be more attractive for efficiency, our results show that a higher error rate

can increase the identifiability of a circuit. We chose carry lookahead adder for this

evaluation, and in this experiment we set the clock period such that an average error

rate of 1%, 2% and 5% are seen on the output results. The results of this experiment

are shown in Figure 2.7.
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(a) AUC in presence of only noise

(b) AUC in the presence of noise and aging

(c) AUC in presence of noise and reduced aging

Figure 2.6. Increasing the number of applied vectors increases the AUC.
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Figure 2.7. ROC curve of carry lookahead adder at different error rates

2.6 Conclusion

The possible privacy implications of voltage-overscaled or frequency-overscaled

approximate computations have been demonstrated, for the first time, in this chapter

of thesis. We perform an extensive simulation study and show that the ability to

provide inputs to a computation unit and observe corresponding outputs can reveal

the identity of the approximate computing device that performed the computation.

This is a possible privacy risk that designers of future approximate computing systems

should consider when evaluating application scenarios. The results of this work have

been published in [61].
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CHAPTER 3

CIRCUIT OBFUSCATION WITH MULTIPLE VIABLE
FUNCTIONS

The are many reasons that a chip designer may wish to prevent a reverse engineer

from learning the specific function implemented on a target chip. He may, for example,

want to avoid IP theft or, in the case of a cryptographic algorithm, prevent an adversary

from learning information about the architecture which would allow an adversary to

mount side channel attacks.

Partially prompted by the increasing practicality of invasive reverse engineering

attacks, there has been several proposals for hiding the true structures of the chip,

coined camouflaging. In the case of gate camouflaging, the attacker will only be able

to recover the topology of the connections but not the exact gate functions. In the

case of interconnect camouflaging, the attacker will only be able to recover the gate

functions but not the exact topology of connections between them. An example of

the schematic-level uncertainty introduced by camouflaging is given in Figure 3.1.

Figure 3.2 shows an example of camouflaged gate layouts of 2-input NAND and

NOR gates. Because the two layouts are different, a reverse engineer can easily

determine the gate functions by visual observation. Reverse engineering becomes

more difficult when gates use similar layouts that differ only in the contacts between

the layers inside the cells. The connections between layers are not visible from top-

down imaging, and cross-sectional imaging is impractical for a large chip, making

the gate functions not easily distinguishable from each other. Figures 3.2c and 3.2d

show a camouflaged layout with dummy contacts. These two nearly-identical layouts
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(a) Schematic of a circuit with a camouflaged gate. The circuit structure
can be interpreted as the two choices shown on the right.
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(b) A similar circuit with camouflaged interconnect. Depending on which
wire among d1 or d2 is conducting, the circuit structure can be seen as
implementing the two possibilities shown on the right.

Figure 3.1. Camouflaging of gate-level schematics

correspond to NAND and NOR gates, respectively, but the difference between the

two gate functions is determined by which contacts within the cell are made. There

can be many ways of creating dummy contacts, but certain techniques such as partially

etched vias are not commonly available in standard foundry processes.

29



(a) (b) (c) (d)

Figure 3.2. Layouts corresponding to standard 2-input (a) NAND and (b) NOR
gates. Camouflaging creates look-alike (c) NAND and (d) NOR cells that are difficult
to differentiate optically. Layout images are from the work of Rajendran et al. [92].

Given that an adversary won’t know the exact function of each look-alike cell, she

must consider an exponential set of plausible functions that the circuit may implement.

We use the terminology ”plausible function” of a circuit to denote a function that a

circuit or sub-circuit could implement given its use of camouflaged cells. Starting with

a synthesized circuit, a designer replaces ordinary cells with camouflaged look-alike

cells, and in doing so implicitly creates the exponential set of plausible functions

that are guaranteed to contain the true function as well as many other (incorrect)

functions. Yet, even a set with exponentially many plausible functions may not fool

an attacker who knows that only specific functions are viable for the chip’s application.

For instance, for an obfuscated arithmetic function, it is usually easy for an attacker to

extract the correct functionality. Previous works have not addressed how to obfuscate

against such an adversary, and have implicitly assumed that the attacker sees all

plausible circuit functions as viable functions.

In this work, we consider how to obfuscate a circuit against an adversary that has

prior knowledge of a fixed set of viable functions that might be implemented in an

obfuscated design. As a case study with practical relevance, we consider a proprietary

block cipher. The cipher is based on PRESENT [19], a popular lightweight cipher
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that is ISO-standardized [53]. In some application scenarios, it can be advantageous

to replace the original PRESENT S-Box with a proprietary function. For instance,

military and pay-TV systems are known to employ proprietary encryption algorithms.

In addition to PRESENT S-boxes, we also consider the well-known DES S-boxes that

are larger in size.

In the setting that we consider, an adversary is not able to query inner circuit

values directly, and is seeking to reverse engineer the logic function of a circuit using

the following capabilities:

• She has knowledge of the cell library used in the design, including camouflaged

look-alike cells.

• She can identify the cells and their connections by imaging the delayered circuit

and matching against the components from the library. Her knowledge of the

library allows her to infer the plausible functions of each look-alike cell instance,

but she does not specifically know which of the functions is implemented by

each cell instance.

• She has pre-existing knowledge of a specific set of viable logic functions F =

(f1, . . . , fn) for the circuit. In the example we will use, her pre-existing knowledge

comes from an assumption that the circuit must implement a cryptographically

strong S-box.

The goal of the attacker is then to use the information gained from reverse

engineering to guess which viable function is implemented by the circuit.

The goal of the designer in this scenario is to thwart the attack by obfuscating

the circuit in a way that prevents the attacker from ruling out any of the viable

functions. Specifically, the designer tries to create a single circuit with a fixed set

of interconnections for which the plausible functions of each cell will make all viable

functions of the overall circuit appear plausible to the attacker.
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Our approach for designing circuits that can obfuscate multiple viable functions

is motivated by the low probability that any viable function will be plausible when

camouflaging is performed randomly. The number of different n-input m-output

Boolean functions is doubly exponential (2m2n), whereas the number of plausible

functions is, at most, exponential in the number of camouflaged cells. Therefore, it is

improbable that the viable functions will be found in the set of plausible functions unless

they are intentionally made to be plausible. This implies that random camouflaging

is insufficient for obfuscating viable functions. In this work, we go beyond random

camouflaging to present an automation strategy that the designer can use to achieve

his goal of making plausible all of the viable functions.

The specific contributions made are as follows.

• A description of the obfuscation problem in which the adversary has partial

knowledge about circuit function but lacks the ability to query the direct outputs

of the circuit.

• A novel design automation strategy using synthesis, heuristic optimization, and

technology mapping to obfuscate circuits in a way that makes a set of chosen

functions all appear plausible.

• Evaluation of the approach on cryptographic S-box circuits, showing an area

reduction of up to 48% in DES S-boxes and up to 38% in PRESENT S-boxes

compared to an approach that does not employ this method.

3.1 Related Work

There have been several proposals for look-alike cells in which it is difficult for the

adversary to infer the gate function from its appearance [27]. Camouflaged gate libraries

use hard-to-observe structural techniques to differentiate the gate functions [26, 27,

92, 104], or functionality can be controlled without structural differences via transistor
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doping [16, 28, 54, 78, 98], or using conducting and non-conducting interconnects in a

way that cannot be distinguished by the attacker once the chip is delayered [25]. The

attacker model in these works allows that the adversary can identify the obfuscated

cells by optical inspection during reverse engineering, but do not allow her to observe

the particular aspect of each cell instance that determines its functionality.

When gate camouflaging technologies are deployed in a circuit, the uncertainty

about the functions of gate instances leads to a number of plausible functions for the

overall circuit that is exponential in the number of camouflaged gates. In the scenario

where intermediate values can be read out of registers through a scan chain, SAT-

based attacks [79] and defenses [114, 117] are applicable. To protect against reverse

engineering by querying the circuit, intermediate values should be inaccessible [118],

especially in a security-critical design. This mitigates the threat of SAT attacks.

Although SAT-based attacks can be prevented by making circuit values inaccessible,

a circuit function can be reverse engineered without observable values when some

information is known about its function. For example, an attacker can check whether

the plausible functions contain a particular function of interest (e.g. a viable function)

by checking satisfiability of a QBF problem that is similar to equivalence checking,

but with unconstrained side inputs that select which of the plausible functions is

realized by the circuit [100]. Because the unconstrained side inputs can choose any

plausible function, the result of this check indicates either that the viable function

is in the set of plausibly implemented functions, or that the viable function is not

plausible and can be ruled out. Note that the attacker is able to perform this check

without being able to observe or control any values in the circuit. This attack can be

prevented if the viable functions of the circuit are a subset of the plausible functions

of the circuit. If this condition is met, then an attacker checking whether a viable

function is plausible will always find that it is, and thus learn nothing about which

viable function is actually implemented.
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In another context outside of security, there has been work that considers the

problem of creating polymorphic circuits that implement two different functions,

depending on the operating conditions such as supply voltage or temperature. One such

work uses Cartesian Genetic Programming (CGP) to evolve polymorphic circuits [39],

and later work proposes to speed up the fitness function evaluation of CGP with

SAT-based equivalence checking [95]. These techniques, while promising, do not

appear to be scalable as the number of functions grow, and may not converge to

a solution even when the number of polymorphic functions is small. Avoiding the

daunting task of trying to evolve a circuit that plausibly implements up to 16 different

functions, we rely in this work on an algorithmic synthesis-based approach that is

guaranteed to produce a solution.

3.2 Setting

Although our technique is general, we demonstrate the work on the crucial problem

of obfuscating S-boxes. The viable functions in this setting are the different cryp-

tographically strong S-box functions, as described below. Our objective is then to

design a circuit in which all these strong S-box functions are plausibly implemented.

3.2.1 Illustrative Example: S-Box circuits

We evaluate two kinds of S-boxes for our work. Our primary application is 4-bit

S-boxes that are used in lightweight block ciphers such as PRESENT [19], which uses

a substitution-permutation structure with sixteen S-boxes in each round. Although

the S-box functions are generally specified as part of the algorithm, Leander and

Poschmann [71] give 16 families of different optimal 4-bit S-box functions that all have

equivalent security. Each such S-box is a 4-bit-input 4-bit-output function that requires

around 30 gate equivalents to implement. Using proprietary, i.e., non-standardized,

S-Boxes can be advantageous in certain applications. For instance, mounting side-
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channel attacks against ciphers with unknown S-Boxes can be a considerable challenge.

Also, other key-extraction attacks are of limited use if the cipher that is being used is

not known.

We also evaluate our approach on non-proprietary 6-bit-input 4-bit-output S-boxes

that are used in DES. Each of these S-boxes is around 150 gate equivalents in area.

Although the DES S-boxes are standardized and not proprietary, we use 8 different

DES S-boxes for the purpose of having a second related test case for our design

technique.

3.2.2 Cell Library

Although our technique is compatible with any library of camouflaged cells, we

use cells that are constructed by modifying the doping of nominal library cells. By

modifying doping to turn transistors ON and OFF, a cell can be made to implement

the positive and negative co-factors of its nominal function with respect to each input.

For example, consider the camouflaged 2-input NAND as shown in Figure 3.3a.

The nominal function of the cell is f = AB. In a variant where p2 is always ON and

n2 is always OFF, the cell implements fB, which is constant ’1’. On the other hand,

if p2 is always OFF and n2 is always ON, then the cell is implementing fB which is

A. The cell can be similarly modified to implement fA = 1, fA = B, and fAB = 0.

Figure 3.3b shows the truth table of all possible functions that can be achieved by

changing the transistor doping of a 2-input NAND gate. We use the same approach

to create camouflaged versions of the other library cells as well.

3.3 Problem Formulation

We propose a three-phase approach for synthesizing circuits that can plausibly

implement a chosen set of functions. We first use ordinary logic synthesis to create a

merged logic circuit with the capability to implement all the functions. We then add
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Figure 3.3. The library cell for a 2-input NAND gate

heuristic optimization to decide how to impose the functions onto each other in a way

that maximizes logic sharing in synthesis. Lastly, we perform technology mapping to

cover the synthesized circuit using the plausible functions of the camouflaged look-alike

cells, to reduce cost while preserving security.

3.3.1 Phase I: Multi-Function Synthesis

To have a general circuit that can implement viable functions (f0, f1, . . . , fn−1), we

write RTL for a design that contains all of the functions with shared input signals, and

add multiplexers at the outputs to choose between the outputs of the different functions.

Figure 3.4 shows the high-level schematic of this merged circuit for n functions, each

with four inputs and four outputs. The select inputs to the multiplexers choose

which function’s output will be the overall output of the circuit, and therefore, for

appropriate assignment to the select inputs, the merged circuit is equivalent to any of

the viable functions.

The merged design containing all viable functions is then synthesized to produce

a gate-level design where the select signals are inputs that may be used anywhere

in the circuit, and not only right at the outputs. We use ABC [4] for synthesis to
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Figure 3.4. High level schematic for the circuit merging n different 4-input 4-output
functions, such as 4-bit S-boxes

enhance logic sharing and minimize area with our own script comprising multiple

refactor, rewrite and balance commands. Because ABC has limited input syntax,

we use Yosys [10] to map RTL into a blif netlist that can be read by ABC. ABC maps

the blif to a set of logic gates comprising inverters, buffers, and 2-4 input NAND,

NOR, AND, OR gates.

3.3.2 Phase II: Maximizing Logic Sharing

Circuit synthesis of a merged design will inherently try to share logic across the

viable functions in order to minimize area. However, the potential for logic sharing

depends on the input and output pin assignments of the merged functions. Assuming

that an adversary doesn’t know which specific signals are carried on particular input or

output wires, he must consider a function to be plausible as long as there is some input

and output interpretation that causes the obfuscated block to plausibly implement

that function. The designer can exploit this degree of freedom to choose the input

and output correspondence across the viable functions in a way that will maximize

logic sharing.
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Figure 3.5 shows two different ways of mapping the functions f0 = (AB + CD)E

and f1 = (FG+HI)+J onto each other. A designer that wants to show both functions

as plausible must decide which input of f0 corresponds to each input of function f1.

The mapping in Figure 3.5a is preferable because it allows the sub-circuit surrounded

by a dotted line to be used in both functions f0 and f1. However in Figure 3.5b,

the input placement does not allow the same extent of sub-circuit sharing between

functions f0 and f1, and more gates are needed to implement the function. This

example shows that assigning input position of each function can increase opportunities

for logic sharing between functions and can hence reduce redundant logic to save area.

The same observation about effective pin assignment also holds for outputs when the

respective functions have multiple outputs.

Considering the first function to have fixed input/output positions and letting the

input/output position of all other functions change with respect to this one, then

there will be (inputs!)|F |−1.(outputs!)|F |−1 possible pin assignments, where |F | denotes

the number of viable functions. When the number of viable functions is large, it

is infeasible to find the best pin assignment by exhaustive search. Furthermore, a

random search may not yield a good solution. To address this issue, we find effective

pin assignments using genetic algorithm with the Python Package DEAP [7]. The

fitness function used to evaluate the quality of a pin assignment is the synthesized

circuit area as reported by ABC. Therefore, we are using repeated logic synthesis in

our exploration of pin assignments to try to find a pin assignment that will minimize

area by enabling a high degree of logic sharing across the functions.

The genotype of genetic algorithm is a vector that specifies the pin assignments

of the viable functions. For inputs, the genotype determines which input pin of

each viable function will share the same input pin of the overall merged circuit. For

outputs, the genotype specifies which output pins of each viable function will connect

to the function-selecting multiplexer of each output in the merged circuit. The fitness
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Figure 3.5. An example showing the importance of input positioning for logic sharing

of genotypes is evaluated using the area reported by synthesis as explained above.

Note that synthesis-reported area overestimates the final area because our subsequent

technology mapping step reduces area. Nonetheless, area is a useful objective because

it encourages configurations that maximize sharing. Genotype instances with high

fitness (low area) are propagated using mutation and crossover. In mutation, new

instances are created from existing instances by randomly swapping input or output

pin assignments within a single function. In crossover, two genotypes are merged

to create a new genotype that inherits the pin assignments of some viable functions

from one individual and inherits the remainder from a second individual. Figure 3.6

depicts crossover by showing three different genotypes for pin assignment of three
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viable functions (f0, f1, f2). In individual 0’s genotype, the single input pin (i[0]) of

the merged circuit is shared by input i0[0] of f0, by i1[2] of f1, and by i2[1] of f2.

For the output pins of viable functions, the genotype similarly specifies which viable

function outputs are grouped as inputs of each single multiplexer that produces an

output of the merged circuit. A new genotype is created from the crossover that

inherits the pin assignment of functions f0 and f1 from individual 0 and inherits the

pin assignments of f2 from individual 1.

f0

i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3] i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3]
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Individual 0:

i[1] i[2] i[3] o[0] o[1] o[2] o[3]

f2

i2[2] i2[3] i2[0] o2[3] o2[2] o2[1] o2[0]i2[1]

i[0]

f0

i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3] i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3]

f1

i0[1] i0[2] i0[3] o0[0] o0[1] o0[2] o0[3] i1[3] i1[2] i1[0] i1[1] o1[2] o1[0] o1[3] o1[1]

Individual 1:

Crossover:

i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3]

f2

i2[2] i2[0] i2[3] i2[1] o2[3] o2[1] o2[2] o2[0]

f0

i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3] i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3]

f1

i0[1] i0[0] i0[2] i0[3] o0[2]o0[1]o0[0]o0[3]i0[0] i0[1] i0[2] i0[3] o0[0] o0[1] o0[2] o0[3] i1[2] i1[3] i1[1] i1[0] o1[1] o1[0] o1[3] o1[2]

i[0] i[1] i[2] i[3] o[0] o[1] o[2] o[3]

f2

i2[2] i2[0] i2[3] i2[1] o2[3] o2[1] o2[2] o2[0]

Crossover point

i0[0]

Figure 3.6. Example connectivity array used for genetic algorithm

Figures 3.7a and 3.7b together show that the genetic algorithm is able to find

solutions that use less area than what can be achieved by trying random configurations.

Figure 3.7b shows how the area improves across iterations of genetic algorithm. The

reported areas are in units of GE (gate equivalents) which is the circuit area normalized

to the area of a NAND2 gate in the same technology. The x-axis shows the number of

generations in the genetic algorithm, with each generation creating and evaluating a

number of individuals. For comparison, we also assess a number (9726) of random pin

assignments that is equal to the number of individuals evaluated during the genetic

algorithm process; the distribution of areas from the random individuals is shown
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(a) Area distribution when using random input pin assignments
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Figure 3.7. Synthesized circuit area of 8 merged PRESENT S-boxes when pin
assignment is random or chosen by genetic algorithm.

in Figuew 3.7a. The area of the average and best random solutions are drawn as

horizontal lines on Figew 3.7b to show visually that the genetic algorithm method

is clearly finding pin assignment solutions that surpass what can be achieved by

generating the same number of configurations randomly.

3.3.3 Phase III: Technology Mapping to Deploy Cells

The synthesized merged circuit has a number of logical ”select” inputs that choose

between the viable functions. This circuit gets mapped to a circuit with camouflaged

gates such that all viable functions in the synthesized circuit become plausible functions

in the mapped circuit. One could accomplish this by adding a stealthy mechanism

to connect each select signal to supply or ground; the attacker, without knowing
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the values of the select signals, would not be able to rule out any viable functions.

However, instead of assigning values to the select signals, we use technology mapping

to reduce the area cost of the circuit and eliminate the select signals. As will be

explained, the key to this mapping is ensuring that, locally for any subcircuit with

camouflaged cells, the plausible functions of the subcircuit include all corresponding

functions of the synthesized circuit for any assignment to its select inputs. Meeting

this condition ensures that all viable functions that were plausible in the synthesized

circuit will remain plausible in the mapped circuit.

As is common in technology mapping [66], our approach decomposes the circuit

graph into trees and uses dynamic programming tree covering to map the trees into

cells. Each tree describes a fanout-free subcircuit with a single output that implements

some Boolean function over the leaf nodes of the tree. The significant difference

between our approach and ordinary technology mapping by tree covering is that in

ordinary technology mapping, a subtree can be mapped to a cell if the cell’s single

function is equivalent to the subtree’s single function. In our approach, since we have

to consider multiple functions depending on the value of the select signals, a subtree

can be mapped to a cell if the cell’s plausible functions contain all of the desired

functions for the subtree.

To allow tree covering to be used on the synthesized circuit, we first create a forest

of trees from the circuit by splitting it at all fanouts. If any trees have only select

signals as leaf nodes, we duplicate the tree and prepend a copy to every other tree

that uses its output as a leaf node. Then the original tree is deleted as an independent

tree. This step is performed because trees with select inputs for all nodes will incur

cost if they are technology mapped, but add no cost when mapped as parts of other

trees because when they can be absorbed into the covering of subsequent gates.

The procedure absfunc (Algprithm 1) determines the functions that need to

be covered by the mapped version of any tree from the synthesized circuit. This
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procedure abstracts the values of any select inputs that are leaf nodes in the tree.

The output of the procedure is the set of Boolean functions must be plausible in the

mapped version of the tree. Note that select inputs will appear only as leaf nodes of

trees because they are primary inputs of the circuit.

The tree-covering procedure for mapping each tree to camouflaged cells is described

in Algorithm 2. The algorithm uses dynamic programming starting from the leaf

nodes of the tree and working toward the output. Whenever a node is considered

for mapping, minimum-cost mappings will have already been discovered for all nodes

in its transitive fanin. To cover a node, different-sized subtrees having that node

as output are candidates to be mapped to a new camouflaged cell. Each candidate

subtree will have different leaf nodes from the other candidate subtrees. If a subtree

is mapped to a cell, the cost of that covering is the cost of that cell added to the cost

of the optimal coverings of all of its leaf nodes (line 10 of Algorithm 2). The lowest

cost covering is chosen for each node in the tree until the entire tree is covered.

Algorithm 1 Perform abstraction of select inputs on a logic function described by a
fanout-free circuit t. The result after abstraction is a set of Boolean logic functions F
where the domain of each function in F is the set of leaf nodes of t that are not select
inputs.

1: function absfunc(t)
2: . input t is tree topology circuit of logic gates
3: . let f denote the Boolean function of output node of t
4: F ← {f} . f : 2|Leaves(t)| 7→ {0, 1}
5: for each Si ∈ select signals of t do
6: for each f ′ ∈ F do
7: F ← F \ f ′
8: F ← F ∪ {f ′

Si
, f ′Si} . replace f ′ with cofactors

9: end for
10: end for
11: return F
12: end function
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Algorithm 2 Technology mapping to cover a tree with camouflage cells to eliminate
the select inputs while preserving as plausible all functions of the output node that
could occur under any assignment of the select inputs.

1: function tree-cover(t)
2: cost(ni)←∞ ∀ nodes ni ∈ t
3: for each node ni ∈ t, in topological order do
4: for each subtree ts with output ni and depth < 3 do
5: . leaves of ts are already-covered nodes in t
6: F (ts)←absfunc(ts) . functions to preserve
7: for each camouflage library cell gj do
8: if plausiblefunctions(gj) ⊇ F (ts) then
9: . cell gj contains all functions of ts

10: c← cost(gj) +
∑

nk∈Leaves(ts) cost(nk)

11: if c < cost(ni) then
12: cost(ni)← c . new opt. cover for ni
13: . Cover ni by mapping ts to cell gj

and using optimal covers for leaf
nodes of ts

14: end if
15: end if
16: end for
17: end for
18: end for
19: return mapped circuit for tree
20: end function
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3.3.3.1 Example

We demonstrate the tree covering algorithm (Algorithm 2) using the simple tree

shown in Figure 3.8a. The three nodes B, D, and E must be covered, in that order.

Covering B: The only subtree that outputs node B is the one with leaf node S0. The

abstracted function of this subtree is the set containing the constant 0 (as would occur

if S0 is 1) and constant 1 (if S0 is 0), so this subtree gets mapped to a cell that has

both such functions as plausible. The subtree gets mapped to INV cell because that

has the lowest cost among all cells that plausibly implement constant 0 and constant

1, and therefore the cost of covering B is 2/3 (in terms of gate equivalents).1

Covering D: The algorithm considers two alternative subtrees that have node D as

their outputs. One has leaf nodes B and A, and has no select inputs, so its abstracted

function is simply the NOR2 function. Mapping this subtree to NOR2, the cover of

node D would be the NOR2 in addition to the INV that covers B, at a total cost

of 5/3. A second subtree to consider for node D has leaf nodes S0 and A, and its

abstracted functions are as shown in the center table of Figure 3.8a. These functions

are INV and constant 0, and both are plausibly implemented by a single INV gate

with A as its input. Because this covering has a cost of 2/3, it is chosen as the optimal

covering of node D.

Covering E: One subtree with output node E is the one with leaf nodes S1, C and

D. The abstracted function of this subtree contains the NAND2 function (if S1 is 1)

and the constant-1 function (if S1 is 0); both are implemented by the camouflaged

NAND2 (see Figure 3.3), so this subtree can be mapped to the NAND2, and the cover

for E would be the NAND2 in addition to the optimal covering of node D, at a total

1the select input S0 remains in the circuit at this point, but will be removed later when the next
gate gets covered. This is always the case when the outputs are constants because any gate that can
cover the constants can also eliminate the gate and cover its inputs for a lower total cost.
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cost of 5/3. All larger subtrees that have E as their output have abstracted function

sets that are not contained within the plausible functions of any cell in the library.
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logic functions that need to be preserved.

A ? ?
C

E

D

(b) Mapped circuit with camouflaged gates

Figure 3.8. Example used for describing technology mapping

3.4 Evaluation

To evaluate our proposed method, we use the 16 different 4-bit S-box functions from

Leander and Poschmann [71] to create obfuscated designs that plausibly implement

2, 4, 8 or all 16 of the S-box functions in a single circuit. Additionally, we create

obfuscated designs that plausibly implement 2,4, or all 8 of the 6-bit-input 4-bit-output

DES S-boxes. We use genetic algorithm as discussed in Section 3.3.2 and generate

random pin position assignments equal to the number of total individuals that are

evaluated in genetic algorithm. We then use the technology mapping algorithm from

Section 3.3.3 to map the resulting circuits into our camouflaged library cells. To

validate the correctness of our implementation, we verify using ModelSim that the

resulting circuits can implement each of the viable functions when appropriate gate

functions are supplied. Table 3.1 reports the synthesized area for the best case and
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average case of random pin assignment, as well as the area when genetic algorithm is

used (GA), and the area when genetic algorithm is followed by technology mapping

(GA+TM); all areas are given in units of GE (gate equivalents).

As can be seen, when comparing our final area to the synthesized result for the

best randomly discovered pin assignment, our techniques provide an area improvement

of up to 38% for the PRESENT S-box and up to 48% for the merged DES S-box

circuit. The area savings from our approach generally increases with the size of the

circuit. The modest incremental cost of going from 8 to 16 PRESENT S-boxes is

due to the limited size of the circuit. Note that our savings are conservative, as the

area cost of the randomly generated solutions do not include the additional costs that

would be needed to stealthily connect the select inputs to supply or ground.

Figure 3.9 shows the layout for the camouflaged circuit that plausibly implements

8 4-bit S-boxes, generated from Cadence SoC Encounter using the Nangate 45nm

Open Cell Library [12]. The technology mapped circuit contains no select inputs and

all camouflaged gates have the layouts of standard logic gates, giving the adversary a

large space to explore.

Figure 3.9. The layout for 8 S-box merged camouflaged circuit
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Table 3.1. Area comparison for merged S-box circuits

Random
GA GA+TM Improvement(%)

Circuit #S-boxes avg best

PRESENT

2 54 42 41 39 7

4 108 84 74 65 23

8 205 164 118 101 38

16 248 213 183 141 34

DES

2 257 217 200 195 10

4 496 447 257 242 46

8 923 805 473 416 48

3.5 Summary of Results

In this chapter, an automation technique for designing circuits that can plausibly

implement a number of chosen functions was proposed. Our procedure comprises

synthesis and optimization of pin assignments to maximize shared logic between

the functions, and a technology mapping step that deploys camouflaged cells while

ensuring that all desired functions are plausible in the final circuit. For the problem

of S-box design, this technique saves up to 38% area in PRESENT S-boxes and 48%

in DES S-boxes. This approach can find wide application in a number of practical

scenarios where the adversary has partial information about what functions would be

viable in an obfuscated design.

48



CHAPTER 4

SAT-BASED REVERSE ENGINEERING OF
OBFUSCATED CIRCUITS

4.1 Introduction

Gate camouflaging is a technique that has attracted the attention of chip designers

in past years. Camouflaging seeks to hide the true structures of the chip so that

imaging-based reverse engineering cannot easily recover the details of the implemented

design. The purposes of camouflaging include IP protection and preventing targeted

attacks. The related work section of this document described some of the different

camouflaging mechanisms that exist in academia and industry.

A number of attacks exist against camouflaging including the SAT attack which

is based on Boolean satisfiability solving. In this attack, a reverse engineer uses an

uncertain model of the design, together with a functional instance of the chip as

an oracle, to discover a set of tests that will reveal the exact logic function of the

design. The SAT attack extracts the correct function of the design but is unable to

make any claim regarding whether it has recovered the same gate-level schematic of

the obfuscated design, or another gate-level schematic that is functionally equivalent

to the obfuscated design. In this work, we present a stronger SAT attack for small

circuits that makes the following contributions:

• We show how an attacker with probing and fault injection capability can use

SAT-based reverse engineering to guide his decisions about which faults to apply

and which nodes to probe.
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• We propose a new SAT-based reverse engineering formulation that can solve

for unknown connections while restricting the search to acyclic networks and

avoiding combinational loops that can thwart SAT attacks.

• We show that probing can be used to make inference about connections even

when gate functions are unknown.

• We show that fault injection and probing provide additional discriminating

factors in reverse engineering that can help SAT attacks to recover schematics

that are equivalent to the target on a gate-by-gate basis, instead of merely

functionally equivalent in traditional SAT attacks.

4.1.1 Related Work

Imaging-based invasive reverse engineering works by decapsulating the chip, imag-

ing and removing each layer in succession, and then using the images to reconstruct

the circuit schematic. Among other applications, reverse engineering is used for

competitive analysis in the IC industry, and was used to break the weak cryptography

in the Mifare Classic RFID tag [86]. Torrance and James give an overview of the

state of the art in invasive reverse engineering [107]. A multi-layered defense model is

presented in [89] that incorporates different countermeasures in the device to provide

aggregated protection against various attacks. At architectural level, memory tim-

ing side channel attacks are also possible that can be addressed with memory-level

obfuscation methods [58, 59].

4.1.2 SAT Attacks

An attacker model for reverse engineering circuits with camouflaged gates is

given by Rajendran et al. [91]. The logic function of a camouflaged circuit should

remain secret when the attacker has knowledge of all non-camouflaged gates and

can apply inputs to the circuit and observe outputs. Techniques from oracle-guided
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synthesis [56] are used in SAT-based attacks to reverse engineer gate camouflaging

or logic encryption [79, 101]. SAT attacks are based on the principle of finding

discriminating input vectors, which are input vectors that can eliminate at least one

additional circuit function hypothesis once the corresponding output vector is known.

Once no further discriminating vectors can be found, it means that no further circuit

functions can be ruled out by any tests, and therefore the current set of discriminating

inputs is sufficient to uniquely identify the circuit function.

Figure 4.1a shows the basic schematic of a SAT attack. The main idea of the

SAT attack is finding distinguishing input patterns (DIPs) that can differentiate

between two circuit functions that both seem possible from an attacker’s perspective.

The distinguishing input patterns are determined by iterative SAT solving and the

corresponding outputs for each DIP are found by applying the DIP to the Oracle

and observing its output. The SAT solver terminates the process after no more DIPs

can be found, meaning that the current set of DIPs is sufficient to recover the exact

function of the circuit.

It is important to note that a circuit reverse engineered by oracle-guided synthesis

is only guaranteed to be functionally equivalent to the obfuscated circuit, and there is

no assurance that it will match the obfuscated circuit on a gate-by-gate basis. Ensuring

gate-by-gate equivalence to the obfuscated circuit is generally impossible because the

attack only has information about the inputs and outputs. Designs recovered through

oracle-guided synthesis are therefore unsuitable for certain classes of side-channel

attacks or fault injection attacks that require knowing the states of all combinational

circuit nets. In this chapter, we propose a SAT-based de-obfuscation technique that

assumes very little knowledge about the obfuscated circuit connections or gates, yet

still attempts to reconstruct the exact gate-level schematic of the obfuscated circuit.
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Figure 4.1. Using SAT based approach to solve an obfuscated circuit with unknown
key value K; (a) The model that includes a MITER for two circuit copies with different
keys K1 and K2; (b) The Oracle is a working chip with correct key K being internally
applied.

4.1.3 Attacker Model

The attacker model we consider in this work represents an adversary that is

trying to reverse engineer a circuit from the backside. This scenario may arise in

some chips that have anti-tamper mechanisms that prevent delayering to learn the

interconnections of each metal layer. From the backside, the adversary has a very

limited knowledge of the circuit as listed below:

• Connections: All connections in the circuit are unknown.

This means that any gate input in the circuit could be connected to the output

of any other gate in the circuit.
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• Gate inputs/outputs: Each gate has a single output, and the output pin of

the gate can be identified, yet the adversary cannot see what the gate output

connects to. The adversary can know how many inputs each gate has, but cannot

know which signals (primary inputs or outputs of other gates) are driving them.

If the number of inputs to each gate cannot be determined, the attacker can be

conservative and overestimate the number of inputs to each gate.

• Gate functions: Our model considers that the attack may know nothing about

the gate functions. That is, a gate with n inputs can implement any of 22n

possible functions, as it can produce a 0 or 1 output for any of the 2n input

combinations. However, the model has the potential to incorporate further

knowledge about the gate library.

The assumed attacker capabilities in this work are as described below:

• Circuit inputs/outputs: Attacker has a working circuit instance, and can

apply the desired inputs to the circuit and observe the outputs. Therefore,

primary inputs to the combinational logic block are controllable, and primary

outputs are observable. The circuit instance used to correctly map input vectors

to output vectors is called the ”oracle”. In our scenario, we assume that the

attacker has full control over the circuit. In case the circuit is part of an

encryption hardware, the attacker can control the input to the encryption

hardware and knows (or is able to set) an internal secret key. This enables

calculating any intermediate values that might occur during computation (the

primary outputs of our target circuit). Later, we will exemplary target a

PRESENT S-Box as the target for reverse-engineering. Based on the secret key

and the plaintext, the attacker can calculate both the input and the output of

the S-Box although they are not visible as primary inputs or outputs.
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• Probes: At some points in the work, the attacker is allowed to probe the value

of arbitrary gate outputs. In this setting, the attacker still has no knowledge of

connectivity and hence doesn’t know what else is being driven by the node that

is probed. This represents laser probing. Due to the nature of probing, it is not

possible to probe the value of gate inputs.

• Fault Injection: At some points in the work, the attacker is allowed to inject

faults using a laser. Due to the structure of CMOS circuits, the attacker can

either target the pull-up-network or the pull-down-network, forcing the output of

the circuit to 0 or 1. However, the attacker does not necessarily know whether the

node was a 0 or 1 before the fault was injected so the fault might be ineffective.

Both laser probing and fault injection use in principle a very similar setup.

Note that although this model is very conservative in terms of reverse engineer’s

knowledge, it has the potential to incorporate further knowledge about the

gate library to simplify the reverse engineering process. These less constricting

scenarios may include an attacker that tries to reverse engineer an invasively

camouflaged circuit from the front-side where he knows a little about gate

library functions or their connections, or reverse engineering the circuit from

the backside but with a knowledge about plausible function of the circuit, like

our assumption from Chapter 3.

4.2 SAT Formulation for Unknown Gates and Connec-

tions

As previously mentioned, our attacker model assumes no knowledge of the

circuit except for the existence of the gates and the number of their inputs. The

attacker will use a SAT attack to determine the functions of these gates and the

connections between them. In SAT attacks, the adversary translates uncertainty
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about the circuit to the state of certain variables, and then uses observations

from the oracle circuit to constrain the values of those variables.

We demonstrate the modeling of connections and gate functions using the

example shown in Figure 4.2. In this example, an unknown 2-input gate has

output node C and thus is denoted as gate C. The gate exists within a circuit

having five nodes (A, B, C, D and E). In this model, the uncertainty about

the logic function of gates and uncertainty about wiring connections are both

translated into Boolean configuration variables (shown as white dotted-line

boxes) that are connected to multiplexers. The values of the configuration

variables are unknown, and the SAT solver’s task is to find them.

4.2.1 Configuration Variables for Unknown Connections

Since nothing about the connection of gates are known to the attacker, multi-

plexers are added that are responsible for selecting which node in the circuit is

connected to each input of the gate. For example, in Figure 4.2, since the gate

has output C, the connection multiplexers choose from the other four nodes

of the circuit (A, B, D and E) to determine which is connected to each of the

gate’s inputs. Therefore in a circuit with N nodes, the connection multiplexers

are (N − 1)-to-1 input multiplexers, as they can select any other node in the

circuit except for that gate’s own output (node C). In some cases, as will be

shown later, certain connections can be ruled out and the number of multiplexer

inputs would reduce accordingly.

To keep track of the connectivity between gates, as will be needed later to ensure

that the solver only considers acyclic networks, we define transition relation

predicates for all pairs of gates. If there is a connection from output of gate A

(node A) to one of the inputs of gate C (that has output node C), the predicate

R(A,C) will be 1 and otherwise it will be 0. In other words, R(A,C) corresponds
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directly to certain assignments of the configuration variables to the connection

multiplexer for gate C. In Figure 4.2, predicate R(A,C) is true if and only if

the configuration variables for the connection multiplexer connect the output of

gate A to an input of gate C; therefore, R(A,C) is true whenever sel1sel0 = 00

or sel3sel2 = 00.

4.2.2 Configuration Variables for Unknown Functions

The second type of multiplexer employed is for choosing the function of the gate

based on the selected inputs from the connection multiplexers. The function

multiplexer can be regarded as implementing the truth table of the gate function,

choosing which combination of input values should result in which binary value

on the gate’s output. For a gate of n inputs, the function multiplexer would be

a 2n to 1 multiplexer. Note that our model puts no restrictions on the function

of the gates. That is, the function of the gate can be any Boolean function.

However, if the attacker has knowledge of the gate library used, he can put

restrictions on the configuration variables that determine the gate’s function.

For example in Figure 4.2 if the attacker knows that the 2-input gate could

only be NAND or NOR, then he can restrict the multiplexer’s input values to

”1110” (for NAND gate) and ”1000” (for NOR gate) by adding clauses to the

SAT problem to disallow all other combinations.

4.3 Learning from Voltage Probing

Adding more constraints and knowns to the SAT problem can make it easier

to solve. One approach that can help the attacker with reverse engineering is

a semi-invasive technique called laser voltage probing (LVP) [74, 113]. In laser

voltage probing, the target transistors are illuminated and the signal values are

inferred based on the measured emitted light. Two broad classes of voltage
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Figure 4.2. An example of the proposed gate model. Depending on the values of the
configuration variables, this model allows each gate input to be driven from any node,
and allows the gate to implement any possible logic function over its inputs.

probing are frontside and backside. The frontside of the chip is the side of metal

layers while the backside is the side of the substrate. With the growing number

of metal layers on the frontside, backside probing may seem more promising as

it keeps the metal layers intact and preserves the proper functionality of the

circuit [67]. Preparing the chip for frontside probing requires decapping the chip

by removing epoxy and blocking metal layers to access the internal signals or

transistors while backside probing only requires simple thinning and polishing

from the back [20, 110].

Having access to the value of internal signals can also help make inference about

the possible connections between gates. Even when gate functions are unknown,

it is known due to the nature of circuits that each gate instance must implement

a deterministic Boolean function; in other words, any gate must always map the

same gate input value to the same gate output value. Access to internal values

allows an attacker to check whether some candidate connections would violate

this condition. Any connections that cause functional consistency of a gate to be

violated can be ruled out from further consideration as the inputs to that gate.
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input circuit nodes

vector A B C X

0000 1 1 0 0

0001 0 1 0 1

0010 1 1 1 0

0011 0 0 1 0

0100 0 1 0 1

(a) Probed node values.

AB X AC X BC X

00 0 00 1,1 00

01 1,1 01 0 01 0

10 10 0 10 0,1,1

11 0,0 11 0 11 0

(b) Gate truth table under different connections.

Table 4.1. Example showing that probed values can rule out certain connections.
Among the three possible node pairings that could be the inputs of the gate producing
node X, one of the three is non-deterministic and can be ruled out.

As a demonstration of how probing can eliminate some candidate connections,

consider the example of Table. 4.1 that shows the values of selected nodes when

five different primary input values are applied to a circuit. Assume in this case

that the attacker knows that node X is the output of a 2-input gate and nodes

A, B, and C are other nodes in the circuit. Without knowing the connections

of the circuit, the attacker knows only that the inputs to the 2-input gate that

produces X are either (A,B), (A,C), or (B,C). The different combinations of

gate input values shown in Table. 4.1b are a result of applying different primary

input vectors to the circuit and can be observed with laser voltage probing, along

with the corresponding output value of the gate. It is possible that multiple

primary inputs induce the same combination of gate input values; however, the

value of the gate’s output node ”X” should remain the same when different

primary inputs induce the same resultant gate inputs. Looking at these truth

tables in Table 4.1b, the attacker can see that it is impossible for the gate input

connections to be (B,C), because X takes different values in the three primary

input vectors that induced (B,C) to have the values (1,0). Input combinations

(A,B) and (B,C) both imply a consistent (deterministic) function for the gate,
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so neither of these can be ruled out. Note that our pair notation is not ordered;

in other words, (ni, nj) = (nj, ni).

Using probed values to rule out infeasible input combinations leads to, for each

gate, a set of feasible input pairs. If the set of nodes in the circuit is denoted as

N , for each node nx ∈ N that is the output of a 2-input gate a set of feasible

input pairings (F (nx)) can be calculated as shown below, where nji is the value

of node ni ∈ N when the jth input vector is applied to the circuit.

F (nx) := (ny, nw) ∈ N2 |
(
(niy, n

i
w) = (njy, n

j
w)
)
⇒
(
nix = njx

)
(4.1)

Due to the implementation of the SAT formulation, it is easier to allow or

disallow single wires instead of pairs of wires. Therefore, we allow as the possible

inputs to each gate nx, the set of all nodes that appear in any of the feasible

node pairs in F (nx). In principle, the input from logic probing is redundant to

the information that will be available in the SAT formulation. In other words,

the same functional inconsistencies being exploited to eliminate connections

would eventually lead to conflicts in the SAT formulation that would prevent the

solver from choosing the infeasible connections. However, limiting the number

of feasible inputs for each gate as a pre-processing step is a simple way to

reduce the size of the SAT problem. To keep the pre-processing simple, we only

apply the function consistency check on 1-input and 2-input gates so that we

would be able to consider all combination of wires as their inputs. Checking

function consistency for all possible combinations of wires quickly becomes

time-consuming when the gates have more than 2-inputs.

We apply the proposed pre-processing approach to an 8-bit AES S-box circuit

with 501 gates, among which 194 are 2-input gates. Figure 4.3 shows the

reduction in the number of feasible input pairs for 50 of the 2-input gates that

59



are chosen at random. As more primary inputs are applied to the circuit, many

pairs of wires can be ruled out as infeasible input pairings for each gate. Overall,

The pre-processing approach reduced the number of possible input pairs of

2-input gates from 128,778 to an average of 335, a reduction of more than 99.7%.
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Figure 4.3. Number of feasible input pairs for 50 different gates with respect to the
number of primary inputs applied to an 8-bit AES S-box.

4.4 Learning from Fault Injection

Our formulation incorporates the use of fault injection in the reverse engineering

process. Just as input/output observations and probing observations provide

information that allows an attacker to discriminate between different circuit

functions, the results of fault injection experiments provide the attacker with

another source of discriminating information. The use of fault injection is

important when trying to reverse engineer gate-level schematics because primary

input/output observations and probing can be insufficient to uniquely recover the

implementation. In our setting, the attacker targets specific nodes as instructed

by the SAT solver, but performs each fault injection on a node without knowing

the function of any gates or their connections.

In laser fault injection, the attacker can use a setup that is very similar to

that used for probing [94]. However, instead of measuring the reflected light
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as in probing, he chooses wavelength and energy of the laser pulse so that the

photoelectric effect occurs. When focusing the laser beam at a transistor node,

an electric current is generated. The induced current might charge or discharge

the output of the gate, depending on whether the targeted transistor is a PMOS

in the gate’s pull-up network or an NMOS in the gate’s pull-down network. The

ability to inject such single bit errors has been experimentally verified down to

45nm feature size [96]. Given that the duration of laser faults can exceed the

clock period, they can be modeled as stuck-at faults in the circuit model.

Masking is an important consideration in fault injection. When the attacker tries

to force a 0 or 1 value onto a node for some applied input vector, the induced

value will have no effect if it matches the fault-free value of the same node.

Similarly, even if the induced value does change the value of the targeted node, it

is possible that the changed value may not propagate to the outputs, depending

on the connections and gate functions of the remainder of the circuit. Cases

where an induced fault changes the output are perhaps the most informative

in reverse engineering. In these cases, the attacker learns that the fault-free

value of the node is opposite the induced value, and learns the specific output

value that is caused by the fault. The information learned from different fault

injection outcomes is listed in Table 4.2. For a circuit with 2m input vectors and

x nodes that each can be faulted to induce a 1 or 0, the total number of fault

scenarios that can be considered in reverse engineering is 2 ∗ 2m ∗ x, and each of

the scenarios will correspond to one of the outcomes in Table 4.2. We show in

the formulation described in Section 4.5.2 that inference from fault injection can

be integrated into a SAT-based reverse engineering framework, and this leaves

the deductions shown in Table 4.2 to be made by the SAT solver.
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Table 4.2. Each fault injection attempt comprises an applied input vector, a target
node being faulted, and a specific induced value at the target node. When a fault
is applied, a corresponding output observation is made that is either ocorrect (if it
matches the non-faulted circuit output) or ofaulty (if it differs from the non-faulted
output). The table summarizes the information that is revealed by each outcome.

condition output information learned

SA-1 ofaulty
fault-free value of target node is 0 AND

fault must propagate to observed outputs

SA-0 ofaulty
fault-free value of target node is 1 AND

fault must propagate to observed outputs

SA-1 ocorrect
fault-free value of target node is 1 OR

fault does not propagate to outputs

SA-0 ocorrect
fault-free value of target node is 0 OR

fault does not propagate to outputs

4.5 Extended SAT Formulation

We have previously shown how to model each gate based on the attacker’s

knowledge about the circuit, as discussed in Section 4.2. In this section, we first

show how to enforce gate levelization in our model to restrict the solver to loop-

free circuits, and then we show how to incorporate the additional information

from voltage probing and fault injection into the SAT problem so that it can be

used by an attacker that has these capabilities.

4.5.1 Restriction to Acyclic Topologies

The basic SAT formulation given in Section 4.2 allows for cycles in the wiring

connections that would not occur in combinational circuits. The possibility of

cycles is problematic because cycles allow circuit nodes to become undefined

state variables (that are not determined by the circuit inputs). For a simple

example, consider the cycle shown in Figure 4.4, in which node A can have

either a 0 or 1 value. When the solver considers a wiring connection such as

this one, regardless of the applied inputs the solver has the freedom to assign
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any value to node A that will satisfy a SAT formula. This allows the solver to

repeatedly find erroneous discriminating inputs, which in reality are not useful

in the reverse engineering process.

To avoid this problem, we modify the SAT formulation to disallow cycles while

still allowing arbitrary acyclic topologies. Our solution for disallowing cycles is

to enforce that the SAT solver only finds solutions in which the topology can

be levelized (i.e. topologically sorted). We solve for the circuit’s levelization

as part of the same SAT formulation that solves for the gate functions and

connections. To do this, we add auxiliary variables (to denote levels) and

levelization constraints to the SAT problem. Our proposed levelization enforcing

approach is not only helpful for our problem and assumptions, but also can help

making any SAT attack feasible when there is an uncertainty in connections

that would otherwise make a loop in the circuit.

AB

Figure 4.4. Cycles in a circuit

In the conventional levelization definition, levels increase from inputs to outputs,

such that the level of each gate must exceed the levels of all gates that provide

its inputs. In our formulation, the levels increase from outputs to inputs, but

otherwise the levelization notion is the same. Any gate connected to a primary

output should be assigned level 1, and the level of every gate must be exceeded

by the levels of the gates providing its inputs. In other words, the level of any

gate should be higher than the level of all its fanout gates.
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4.5.1.1 Encoding Constraints

For each gate gj in a circuit with n levels, we define a bit-vector of auxiliary

variables (l0(gj), l1(gj), . . . , ln(gj)) to encode the level of the gate. The level of

the gate is encoded in a thermometer code style, with a number of 0 values

followed by a number of 1 values. If bit li(gj) is 0, then gate gj exceeds level i.

If bit li(gj) is 1, then the level of gate gj is less than or equal to i. Therefore,

the level of the gate can be said to be the left-most bit position in which the

value is 1. For example in Figure 4.5, the level of g2 is 2 because l2(g2) is the

left-most bit position with value of 1. In any legal thermometer coded value,

every 0 bit in the vector other than the first must be preceded by another 0 bit,

and this is enforced by the encoding invariant shown in Table 4.3. The first and

last bit of the level encoding vector must be 0 and 1 respectively for all gates.

Table 4.3. The levelization constraints enforced in the SAT problem to avoid
combinational loops

Encoding Constraint ∀i>0, gj :

level>i︷ ︸︸ ︷
¬li(gj)⇒

level>i−1︷ ︸︸ ︷
¬li−1(gj)

∀gj : ¬l0(gj) ∧ ln(gj)

Ordering Constraint ∀i>0, gj, gk :

 level≥i︷ ︸︸ ︷
¬li−1(gj)∧R(gk, gj)

⇒fanin level≥i+1︷ ︸︸ ︷
¬li(gk)

Uniqueness Constraint ∀i>0, gj :

level≥i+1︷ ︸︸ ︷
¬li(gj)⇒

exists fanout at level≥i︷ ︸︸ ︷∨
∀gk

(R(gj, gk) ∧ ¬li−1(gk))

4.5.1.2 Ordering of Levels

For the circuit to be levelized, each gate gj at level i or greater must get its

inputs from gates at level i + 1 or greater. Using transition predicate R(a, b)
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R(g1,g0)
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0 0 1 1 1

level = 4
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0 0 0 1 1 level = 3

Figure 4.5. Sample levelization encoding in a circuit

(see Section 4.2) to denote a connection from output of gate a to an input of

gate b, any legal level-ordering between nodes a and b must obey the ordering

constraint in Table 4.3. For example in Figure 4.5, l1(g2) = 0 (meaning that gate

g2 is level 2 or higher) and we have R(g0, g2) = 1 and R(g1, g2) = 1, indicating

that both g0 and g1 fan out to g2. Therefore, the ordering constraint enforces

that l2(g0) and l2(g1) must both be 0, meaning that gates g0 and g1 are at level

3 or higher.

4.5.1.3 Uniqueness of Levelization

Our ordering constraint prevents cycles, but does not minimize the number of

levels, and allows for the skipping of levels as long as ordering is not violated.

To minimize the number of levels used, we add an additional constraint that

ensures a unique (minimum) levelization. This constraint, shown in Table 4.3

enforces that, for each gate gj at level i (or higher), at least one of the gates

it fans out to must be at level i− 1 (or lower). When applied to the example

of Figure 4.5, given that gate g1 is at level 4 (l3(g1) = 0 and l4(g1) = 1), this

constraint requires that either l2(g0) or l2(g2) should be 0, meaning that one of

them should be level 3 or higher. The ordering constraint has already restricted

them not to be level 4 or greater, so it follows that g0 or g2 must be at exactly
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level 3. In this way, the uniqueness constraint, when added to the ordering

constraint, ensures that each gate’s level is only one greater than the level of

one of its fanout gates.

4.5.2 Adding Voltage Probing to SAT problem

In this work we extend SAT attacks to incorporate voltage probing. Voltage

probing has the effect of selectively making internal nodes of the circuit visible to the

attacker, which in the attacker’s model is equivalent to selectively making internal

nodes appear as part of the observable output vector. We create an input signal that

selectively activates the observability of this node so that, when the SAT solver finds

a discriminating input, that input now indicates to the attacker whether any internal

signals should be probed when the vector is applied to the Oracle. The corresponding

output vector and probed value are fed back into the SAT attack as the additional

constraints on the circuit configuration variables.

Probing is illustrated in Figure 4.7 using a model of a circuit with a single internal

node C. The newly added input signal ProbeC selects whether the value of node C

can be considered when finding a discriminating input vector. Whenever the solver

decides to assert the input signal ProbeC , then a discriminating vector is one that

can produce different values on the primary outputs or the now-observable signal

C. Whenever the solver does not assert ProbeC , then the approach reverts to the

standard SAT attack that discriminates between possible configurations based on the

primary outputs only.

4.5.3 Adding fault injection results to SAT problem

In this work, we extend SAT attacks to also account for the attacker’s ability to

inject faults. To incorporate fault injection results into the SAT problem, the attacker

can add the structure shown in Figure 4.6 to all nodes (except primary inputs) in

his model, and then allow the SAT solver to guide his fault injection trials as will be
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shown. In this structure, injectFaultx is a primary input that selects whether or not a

fault should be injected onto node nx. Primary input signal FaultV al determines the

value that is forced onto the selected node. Node nx fe is the fault-enabled version

of the node, which is either the value computed by the circuit for nx, or the value

forced onto the node by fault injection. Because nx fe is the value that fanout gates

would see in the circuit, it is this signal that is fed to the connection multiplexers (see

Section 4.2) at the inputs of all other gates.

FaultVal

nx

InjectFaultx

nx_fe

Figure 4.6. The multiplexer that is used to model fault injection for each node nx.

Figure 4.7 shows how the fault injection mechanism is used as part of the overall

circuit model when trying to reverse engineer a simple circuit with three gates.

Discriminating inputs produced by the solver now provide the reverse engineer with

an input vector to apply to the circuit, as well as a node to fault, and a faulty value

to inject on that node. The attacker applies these conditions to the oracle circuit,

finds the resulting output vector, and feeds the conditions back into the SAT solver as

constraints. The ability to have additional discriminating information through fault

injection, can allow an attacker to better distinguish between circuit implementations.

4.6 Results

We have evaluated our approach for two small circuits. The first is ISCAS’85

benchmark circuit c17 comprising 6 gates, 4 internal wires, 5 primary inputs, and
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Figure 4.7. The circuit shown on top would be modeled as the one shown on the
bottom. The multiplexers in thick lines are used to incorporate fault injection and
the AND gate controlled with ProbeC signal is used to add voltage probing into the
SAT problem.

2 primary outputs; the second is an S-Box from the PRESENT block cipher [19]

comprising 20 gates, 16 internal wires, 4 primary inputs, and 4 primary outputs. For

our oracle, we simulate the circuit and perform fault simulation using ModelSim. The

attack is performed on a fully-camouflaged netlist where all gates and connections are

unknown and modeled as explained in Section 4.5. We perform the SAT attack using

a modified version of a publicly available program from existing work [119].

For each circuit, we evaluate the effect of changing different parameters and

enabling and disabling features. The results for runtime and number of iterations

(i.e. the number of discriminating inputs found) before the algorithm terminates

are shown in Tables 4.4 and 4.5, and explained in the following subsections. The
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Figure 4.8. Proportion of CNF variables being used toward each component of model
in ISCAS’85 c17 circuit.

algorithm terminates when no more discriminating inputs can be found, and at that

time, the recovered solution is compared to the original netlist to see whether they

are equivalent on a gate-by-gate basis.

4.6.1 Distribution of SAT variables

In all cases, the levelization constraints are found to be necessary for the SAT attack

algorithm to terminate successfully (see Section 4.5.1 for details). The majority of the

variables and clauses in the SAT problem are used to implement the constraints (see

Table 4.3) that enforce levelization. For circuit c17, Figure 4.8 shows the proportion

of SAT variables that are used in each of the following aspects of the formulation: The

function variables that help with solving gate functions, the connection variables that

are created to solve the gate connections, the levelization variables that are created to

enforce levelization in the circuit, the fault injection variables that are used to add

fault injection capabilities to the model, and the variables related to circuit’s primary

inputs and outputs and constraints thereof.

4.6.2 Effectiveness of fault injection and probing

As can be seen in Tables 4.4 and 4.5, the problem is not solved within hours if

probing and fault injection are not used. When probing is enabled but fault injection

is not, the algorithm converges to a solution in a timely manner, but the solution is
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not unique, and in the case of the S-Box, it doesn’t match the structure of the target

circuit that is being reverse engineered. Therefore, probing alone doesn’t fulfill our

objective of finding solutions that are structurally equivalent to the original netlist on

a gate-by-gate basis.

Using fault injection along with voltage probing in reverse engineering makes it

possible to find a unique solution for both circuits. In case of the S-box circuit with

fault injection and probing, 788562 variables and 5089036 clauses as part of the SAT

problem. This solution is identical to the target circuit in all connections and all gate

functions. Note that the formulation that includes both probing and fault injection

requires more iterations (more discriminating inputs). This occurs because of the

large space of fault injection tests and the need to rule out every possible circuit

configuration that is not exactly the same as the target, instead of merely ruling out

the configurations that are not functionally identical to the target.

4.6.3 Adding Additional Constraints

Our experiments also study the impact of applying the function consistency

approach discussed in Section 4.3 as a preprocessing step. In this approach, it is

assumed that all nodes are probed for all input vectors. Each of the 2-input gates has

90 possible input pairings in c17 and 253 pairings for the S-Box circuit. Once function

consistency is enforced, an average of only 2.3 pairs and 10.6 pairs remain feasible

per gate for c17 and S-box circuits, respectively. We then modify the circuit model to

disallow a connection between any two gates if that connection does not exist in one

of the feasible pairs. We find that this additional preprocessing step has only a modest

improvement on runtime, and in some cases the runtime increases slightly. Note that

putting constraints on the connections not only reduces the number of connectivity

variables, but also will reduce the number of levelization variables; and therefore can
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Table 4.4. Results for c17 circuit

fault injection probed nodes func. consistency CPU time(s) iterations unique?
CPU time

(with gate function limitation)

7 7 7 timeout* - - timeout*

7 3 7 5.990 12 Yes 6.425

7 3 3 0.717 9 Yes 0.864

3 7 7 874.894 34 Yes 328.623

3 3 7 9.178 24 Yes 8.086

3 3 3 1.3293 14 Yes 1.068

* Timeout is considered after 16 hours.

Table 4.5. Results for the 4-bit PRESENT S-Box

fault injection probed nodes func. consistency CPU time(s) iterations unique?
CPU time

(with gate function limitation)

7 7 7 timeout* - - timeout*

7 3 7 1029 16 No 485

7 3 3 1198 16 No 409

3 7 7 timeout* - - timeout*

3 3 7 611 54 Yes 438

3 3 3 416 44 Yes 308

* Timeout is considered after 24 hours.

have a significant impact on reducing the complexity of SAT problem as both of these

are the main contributors on the total number of variables.

Additionally, we also consider the scenario in which an attacker knows the set of

gate functions that might be used. In our case, we do this by restricting all gates to

implement only functions that are among the 37 gate functions in our gate library,

which consists of 2 1-input, 7 2-input, 18 3-input and 19 4-input gates. As shown in

the rightmost column of Tables 4.4 and 4.5, we find that this additional constraint

can offer a speedup, and could be a viable strategy for the attacker if he has some

partial information about gate functions that he is attacking.

4.7 Conclusions

This chapter of the thesis introduced a SAT-based invasive reverse engineering

technique that uses probing and fault injection for deobfuscating a circuit. Starting

with no knowledge about the gate functions or how they are connected, this approach

provides the reverse engineer with a specific set of fault injection and probing experi-
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ments to perform on the obfuscated circuit that will allow him to eventually resolve all

of its unknown gate functions and connections. Moreover, a new function consistency

approach for voltage probing is proposed that can resolve unknown circuit connections

without knowing the logic function of any gates. Unlike existing SAT attacks, we show

that our approach can recover the exact gate-by-gate netlist of the obfuscated circuit.
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CHAPTER 5

SECURE KEY STORAGE IN HARDWARE RESILIENT
TO REVERSE ENGINEERING AFTER FABRICATION

5.1 Introduction

This chapter of the thesis deals with the problem of storing a secret key in hardware

that is resilient to reverse engineering after fabrication. One of the applications of

a hardware secret key is providing a secure hardware storage for storing the secret

key of a cryptography core. Additionally, the hardware secret key can be used for

the purpose of hardware obfuscation while adhereing to Kerckhoff’s principle 1 in

separating the secret key from the design. In our proposed key storage approach, the

attacker is allowed to know everything about the design except for the characteristics

of certain transistors that determine the key. The advantages of separating the secret

from the design’s hardware as a secret key will be the following:

1. Modularity: Involving an arbitrary logic circuit in obfuscation comes with extra

difficulties for design and test. However, if the key is separate from the logic, the

interactions between obfuscation and logic are minimal and well-defined. This

allows for a detailed exploration of key obfuscation without regard to its impact

on logic.

1An important idea in Cryptography is Kerckhoffs’ principle – that security should rely only
on the key, and it should not matter whether an adversary knows the algorithm. In other words,
a system should remain secure even if everything except the key is public knowledge. A common
restatement of this principle is to avoid “security through obscurity.”
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2. Generality: A key is perhaps the most general type of information to hide on

a chip, and an obfuscated key can also be used in a straightforward way to

obfuscate logic [116].

3. Use of error correction: Most importantly, a separate obfuscated key storage al-

lows for the use of error correction, which is not possible when logic is obfuscated

directly. We will show that error correction is crucial for allowing the thresh-

old differences to be small enough to fool the attacker without compromising

reliability.

5.1.1 Related Work

5.1.1.1 Threshold Voltages to Prevent Reverse Engineering

The modification of threshold voltages can make transistors permanently on/off

or can adjust their characteristics in a way that will change the function of a logic

gate [28, 35, 85]. Design automation for logic obfuscation can be used to deploy

the aforementioned modified transistors as basic library cells [63]. Note that all

obfuscations techniques of this type induce the same logic function on all chip instances;

this provides an attractive high-value target for a determined attacker. Although

threshold voltages cannot be learned from optical analysis during reverse engineering,

techniques do exist which can measure thresholds. Sugawara et al. [102] show that

it is possible to invasively read out information about transistor doping of the type

utilized by Becker [16].

Similar to obfuscated logic that can be attacked invasively, data stored in flash

memory or antifuses can be attacked and read out invasively when a chip is not

powered. This is especially troublesome in the case of high-value master keys that

must be stored on many instances of a chip. To mitigate the threat of invasive readout,

Valamehr et al. present a scheme to protect data from invasive attack [109]; in their

work, an attacker is required to read out a large number of cells correctly in order to
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extract the key, but the information read by the attacker is still digital information.

By contrast, the approach we will present uses distributed analog secrets to prevent

attack, in order to offer even stronger defense by not having any sensitive digital

artifact that can be attacked at rest.

5.1.1.2 Physical Unclonable Functions for secure keys

PUFs are device-tied secrets that are dependent on the unique process variation

of the device. They are repeatable (can be regenerated via device evaluation under

the same situation), yet unpredictable (one cannot tell what the secret would be,

without evaluating the PUF). PUFs are generally used for two applications: device

authentication and key generation [50]. Several PUF schemes have been proposed

over the years, such as Ring-Oscillator PUFs [103] that uses variations in the delay of

identically implemented ring oscillators, SRAM PUFs [44, 51] that exploit the inherent

threshold variation of the cross-coupled SRAM cells and butterfly PUFs [70] that use

contention on cross-coupled latches to generate output bits. There also exist a number

of FPGA-specific PUF designs, such as [14] and [108] that leverage the difference in

feedback paths of two identical SLICEs in Xilinx Zynq-7000 FPGAs.

To improve the randomness and correct the inherent noise from a PUF response,

the output of the PUF cannot directly be used as a key and helper data or fuzzy

extractor is used. The helper data is made publicly available and should reveal limited

information about the secret key. However, it has been shown that helper data can

be exposed to manipulation attacks [15, 30, 31] and hence leak information about

the secret key. Note that our approach does not require a public helper data and is

inherently immune to these attacks.

5.1.2 Proposed Approach

Figure 5.1 shows the overall key generation process from the designer and attacker

perspective. The design consists of a block containing cells with modified threshold
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Figure 5.1. The overall design approach, both from the designer’s and attacker’s
perspective

voltages, which is used to generate the encoded secret key when it is needed. The

output of this block is given to an error correction block, which decodes the encoded

secret key in a way that tolerates errors. The designer can choose the threshold offset

of cells to store the encoded secret key, and can choose the parameters of the error

correction codes to ensure key reliability. The attacker is allowed to know the error

correction used, and knows the mechanism that the designer uses to configure the

cells; the attacker can even invasively measure the threshold voltages of the cells, but

does so imperfectly. If the attacker is able to get enough information about the cells,

then he will be able to guess the encoded key accurately enough to produce the secret

key by applying the known error correction scheme to it.

The specific contributions of this work are as follows:

• We present the first approach that combines threshold-based obfuscation and

error correction.

• Our proposed key generation approach does not require a helper data, which

makes it immune to helper data manipulation attacks.
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• We show that this approach leads to quantifiable protection against invasive

readout using a very conservative attacker model that only assumes some amount

of imprecision when invasively measuring device threshold voltages.

• We give a CAD flow for deploying the proposed approach in a way that can

achieve various tradeoffs between reliability, security, and cost.

5.2 Sketch of Approach

Figure 5.2 shows our overall design flow. An engineer can use this framework

to implement obfuscated keys that achieve desired tradeoffs of cost, reliability, and

security. Each step of the flow is described in detail in the following sections. In the

first step the designer chooses a cell type to use for storing the obfuscated constants,

and chooses a threshold voltage offset to use for biasing the cells to generate codewords

of the encoded key; from this, a cell reliability model is extracted. In the second step,

the designer uses the cell reliability model and the chosen key reliability criteria to

decide which error correcting code strengths are compatible with the circuit design. A

candidate design then exists, and in the third step its security against invasive readout

attack is quantified. Depending on whether the security level is deemed adequate, the

design can be revised. Examples of revision can be to trade cost against security by

decreasing threshold offset and increasing error correction, or trade reliability against

security by using a weakened error correction.

5.3 Threshold-Based Key Storage Elements

Threshold voltages of transistors are commonly chosen for power-performance

tradeoffs, but recent works have shown that modifications to threshold voltages can

also be used to determine the logical function of cells. The basic idea behind these

works is to use multiple classes of transistors with different threshold voltages. The

modification of threshold voltages can permanently make transistors on/off or can
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adjust their relative characteristics to cause the circuit to implement a specific function

[28, 35, 63, 85].

There exist a number of ways in which threshold voltages can determine digital

values produced in a circuit. In another context, intrinsic variations in threshold

voltages have been used to create device-tied identifiers [73, 99] or secret values in

PUFs. It has been previously shown that the power-up state of an SRAM cell depends

on the intrinsic threshold voltage differences between transistors which are caused by

process variation [51]. In the same way that intrinsic differences in threshold voltages

can randomly bias cells toward generating specific values, intentional differences in

threshold voltages can bias cells toward specific values in a way that is common across

chip instances.

Consider a designer that wants to modify the 6-T SRAM cell of Figure 5.3 so that

it will generate a certain value each time it is powered up.

Without loss of generality, we assume the desired state is the 1 state (Q = 1, Q = 0)

while noting that the 0 state works the same way due to the symmetry of the cell. For

simplicity, we assume the designer wants to induce the desired state by changing the

threshold voltage of only one transistor in the cell. Then the question arises regarding

which transistor should be changed, and by how much should its threshold be changed.
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The designer can change the threshold voltage of one transistor in the cell in

the following ways to bias the cell toward the 1 state: 1) increase the magnitude

of threshold voltage on N1; 2) decrease the magnitude of threshold voltage on N2;

3) increase the magnitude of threshold voltage on P2; or 4) decrease the magnitude

of threshold voltage on P1. Regardless of which transistor threshold is modified, a

larger magnitude change will make the cell more reliably biased, but will also give

the attacker a better chance of correctly measuring the threshold difference invasively

during reverse engineering. The designer, therefore, seeks to maximize the reliability

that can be obtained for a given amount of threshold offset.

To determine which transistor should be modified, we evaluate the 1-probability of

the SRAM cell versus its threshold offset. For any threshold offset, the 1-probability

shows the fraction of cells that are biased toward producing the desired 1 state

after process variations are added. The evaluation is based on 1000 Monte Carlo

simulation instances of an SRAM cell in HSPICE using 45nm CMOS Predictive

Technology Model [11] (PTM) with a nominal threshold voltage of 469mV for NMOS

and -418mV for PMOS transistors. We consider the standard deviation of threshold

voltage distribution to be 30mV. The result of this comparison is shown in Figure

5.4. It can clearly be seen that biasing the threshold of PMOS transistor results in

a higher 1-probability. Therefore, we conclude that adding a threshold offset on the

PMOS transistor is a more effective way to influence the value generated by the cell,

compared to the same threshold offset on an NMOS transistor. Based on this analysis,

the threshold-based cell programming that we use is to increase the magnitude of

P2 to induce a 1 value in the cell (amongst the three other choices). Because of

the symmetric structure of an SRAM cell, a 0 is stored in a complementary way, by

increasing the magnitude of P1.
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Figure 5.3. A simple 6T SRAM cell. The cell is biased toward the 1-state by
increasing the magnitude of transistor P2, and biased toward the 0-state by increasing
the magnitude of transistor P1.

5.3.1 Fabrication Questions

We have shown that it is more beneficial in terms of value stability to choose

PMOS over NMOS transistors. Therefore, our technique requires two different kinds

of PMOS devices with two different thresholds to choose from. One is nominal, and we

assume in several places that the second is a threshold of our choosing. Multi-threshold

processes are common, but different fabrication processes will typically offer fixed

choices for thresholds. There are no technical barriers to having the second threshold

be arbitrary, and for the sake of exploring the achievable limits of obfuscation, we

will assume fabrication cooperation that allows us to freely choose a threshold. For a

slightly more granular approach, a designer can choose among a discrete number of

thresholds that are available in existing commercial processes.

5.4 Reliability of Threshold-based Keys

In cryptography, even a single key bit upset may cause discernible consequences,

and threshold-programmed values are inherently unreliable due to phenomena such

as noise and process variation. For this reason, our scheme uses error correction in
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addition to the threshold-programmed cells. The parameters of error correction and

the cell threshold offsets must be chosen together to ensure that the key meets a

reliability criterion; a larger threshold offset improves cell reliability and allows weaker

error correction to suffice, while a smaller threshold offset will require a correspondingly

stronger error correction. Due to variations across chips, the chips will not all have

the same key failure rates. Any reliability criterion must therefore specify both a key

failure rate and a fraction of chips that must have key failure rates below that number.

The reliability criterion that we use is that at least 99% of chips must have a key

failure rate of less than 10−6. The error correcting code selected for any threshold

offset must cause this criterion to be satisfied.

Because key failures are such infrequent events, it is not possible to check whether

a design meets the given reliability criterion using random simulation alone, so we rely

on a careful combination of simulation, modeling, and statistics. The scheme we use to

check reliability is a two-step process. The distribution of cell error probabilities is first

captured in a two-parameter abstracted model. The model of cell error probabilities

is then used within a procedure that calculates the distribution across chips of the key

failure rate for different error correction schemes.

81



5.4.1 Distribution of Error Probabilities across Cells

Each cell is biased to produce a single 0 or 1 bit of a codeword as chosen by the

designer, but due to noise and variability, it may not produce this desired value in a

given trial. In fact, due to process variations, some cells may almost never produce

the desired value, while other cells will produce it sometimes or almost always. Circuit

simulation is used to learn the distribution of cell error probabilities for a given

threshold offset.

Our baseline data for cell reliability is generated using HSPICE simulation of

SRAM cells in 45nm Predictive Technology Model (PTM). We created 512 SRAM

cell instances with variation on transistor threshold voltages according to PTM, and

evaluated each cell in the presence of transient noise 300 times. Noise is captured

in the simulations of each instance by doing a single-sample Monte Carlo transient

noise analysis with the .TRANNOISE command. From these simulations, a set of

empirical cell error probabilities is obtained.

Noting that an SRAM cell with an intentionally offset threshold voltage is similar

to a biased PUF, we adopt a modeling approach from PUFs to compute an expression

that describes the distribution of cell error probabilities. The most straightforward

approach for modeling the behavior of cells is to use a fixed error rate model, where

each cell used for key generation is assumed to have the same probability of error.

The problem of this simple model is that it cannot accurately capture the behavior of

a cell as in reality, some cells are more subject to failure than others. To have more

accuracy in our evaluations, we use The heterogeneous error rate model proposed for

PUFs by Roel Maes [76]. The model assumes two sources of variation in a cell: The

process variable (M) that models the persistent impact of bias and process variations,

and the noise variable (Ni) that accounts for the cumulative effect of all noise sources

during evaluation. Both variables are normally distributed. The process variable has

an unknown mean and variance, while the noise variable is modeled as having 0-mean
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and unknown variance. These three unknowns reduce to two unknown parameters

λ1 and λ2 in the model (Equation 5.1); φ(x) and φ−1(x) represent the cumulative

distribution function of standard normal distribution x and its inverse, respectively.

Parameters λ1 and λ2 are chosen by fitting Equation 5.1 to the empirical CDF of

cell error probability from circuit simulation using Levenberg-Marquardt algorithm.

Figure 5.5 shows the fitting of the model to simulation data for various threshold offsets.

Having an expression for the distribution of cell error probabilities (Pe) allows us to

sample from this distribution in order to obtain representative cell error probabilities.

cdfPe(x) = φ(λ1φ
−1(x) + λ2) (5.1)
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Figure 5.5. Cumulative distribution function of error probabilities from the simulation
data and their relative fitted curves for different magnitudes of voltage offsets

5.4.2 Distribution of Key Failures Across Chips

For any threshold voltage offset, using the known distribution of cell error prob-

abilities, we can compute the distribution of key failure rates that will be achieved

using different error correcting codes, and can check which codes satisfy our reliability

criterion. We focus on BCH codes, which is a class of codes with different block sizes

and numbers of correctable errors in each block. We denote a certain BCH code as

BCH[n, m, t]; where n is the block size, m is the number of useful information bits
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per block after error correction, and t is the number of correctable errors in each block.

In our setting, n is the number of SRAM bits used to store a portion of the encoded

key, m is the number of key bits generated from decoding the n bits, and t is the

maximum number of SRAM bit errors that can be tolerated. If an error correcting

code is able to correct t bits, the block fails if more than t bits are erroneous.

The number of blocks required to generate a key using a given BCH code will

depend on the desired key size (k) and the number of useful information bits from

each block in that BCH code (m). The number of blocks needed for key generation is

therefore d k
m
e. The key generation fails if at least one code block that contributes to

the key fails. If PFblock,i is the probability of failure in block i, then the key failure

probability is given by Equation 5.2.

PFkey = 1−
d kme∏
i=1

(1− PFblock,i) (5.2)

For each block of BCH[n, m, t] code, the probability of producing an erroneous

result is the probability that the number of errors in that block exceeds t. With a

heterogeneous error rate model of cells, each block in a chip will have a failure rate

that depends on the unique error rates of its cells. Hence, we cannot use binomial

distribution to find failure rate of each block and instead, we use a more general case

of binomial distribution, called ”Poisson-binomial distribution”. The distribution is a

discrete probability distribution to calculate the summation of Bernoulli trials that

are not necessarily identically distributed. Given a set of n non-uniform cell error

rates P n
e = (pe,1, pe,2, ..., pe,n) in a block, the probability of having less than t errors

is calculated using cumulative distribution function of Poisson-binomial distribution

FPB(t;P n
e ) as shown by Maes [76] and given by Equation 5.3; this describes the

probability of correctly decoding the block. Therefore, the failure rate the same block

is given by Equation 5.4.
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FPB(t;P n
e ) =

t+ 1

n+ 1
+

1

n+ 1

n∑
m=1

(1− e
−j2πm(t+1)

n+1 )

(1− e
−j2πm
n+1 )

.
n∏
k=1

(pe,ke
j2πm
n+1 + (1− pe,k))

(5.3)

PFblock = 1− FPB(t;P n
e ) (5.4)

We now describe the steps to use the equations given above for evaluating key

reliability with a given BCH code and given threshold offset. First, we sample cell error

probabilities from the fitted cdfPe (Equation 5.1) using inverse transform sampling

to obtain a set of n representative cell error probabilities (P n
e ); because the error

probabilities are fitted to simulation results, this accounts for circuit-level reliability.

We repeat the sampling for the number of required blocks, and then for each one

calculate the block failure rate (PFblock) using Equation 5.3 and Equation 5.4, and

use the block failure rates to compute the key failure rate using Equation 5.2. This

calculated key failure rate is for one chip instance with a specific combination of

threshold offset and BCH code. Repeating the whole calculation multiple times

produces the distribution of key failure rates, and we use that distribution to evaluate

whether the combination of threshold offset and BCH code satisfy our reliability

criterion of at least 99% of chips having key failure rates of less than 10−6.

Among all the BCH codes that will satisfy our reliability criterion for a given

threshold offset, we use only the lowest cost BCH code, which is the one that corrects

the fewest errors among all sufficiently reliable codes. A designer can choose from

different combinations of threshold voltage offsets and error correcting codes to reach

the desired reliability for the key. Figure 5.6a shows the key read failure rate for

threshold offset of magnitude 200mV, evaluated for different BCH codes. As can be

seen, the least expensive code that meets our reliability criterion is BCH[255,131,18].
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Figure 5.6. Key failure rates of different design options

Figure 5.6b shows, for each threshold offset, the distribution of key failure rates

that occurs when the minimal BCH code meeting the reliability criterion is used.

Table 5.1 shows the area of each of these combinations in order to generate a 128-bit

key that satisfies the reliability requirement of at least 99% of chips having key failure

rate of less than 10−6. For our area overhead evaluations, we used SRAM cell area

of 0.345µm2 as reported in [83] and synthesized the BCH decoders using NanGate
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Table 5.1. Evaluation of equivalent-reliability designs. Each pairing of threshold
offset and BCH code are chosen such that the BCH code is the lowest cost code that
will satisfy the reliability criterion for that threshold offset.

∆vt(mV ) 100 150 200 250 300

BCH code parameters (n, m, t) [255,47,42] [255,91,25] [255,131,18] [255,155,13] [255,171,11]

Number of cells to store encoded key 765 510 255 255 255

Cells area overhead (µm2) 264 176 88 88 88

BCH decoder area (µm2) 61403 40723 31428 24835 21602

Total area (SRAM cells + BCH decoder (µm2)) 61667 40899 40899 31516 21690

Attacker success for a single chip (RSkey) 8.99e-36 1.45e-28 5.26e-13 6.90e-11 7.66e-08

45nm Open Cell Library [12]. The cost of each option is provided in terms of area

in µm2 units. Given that equivalent reliability can be obtained by these different

combinations of threshold offset and BCH code, one must consider the implications of

choosing among the equivalent-reliability design alternatives. As we will show in the

next section, each of these approaches comes with some tradeoff of cost and security.

Using a higher threshold voltage offset makes reverse engineering easier, but using a

stronger error correcting code comes with more expense in terms of area and power

consumption.

5.5 Resistance Against Invasive Readout

If the designer uses the proposed technique to store a key, the first question that

comes to mind is how resistant this key is to reverse engineering attacks. As explained

in the previous sections, our approach benefits from the use of error correcting codes

to correct the impact of noise and manufacturing issues on key values. The strength of

this code is chosen in accordance with the threshold offset (∆V t); a smaller threshold

offset will require stronger error correction to reach its desired reliability. Selecting a

small threshold offset makes it harder for a reverse engineer to distinguish between

the different measured threshold voltage values, but the stronger error correction can

also help the attacker to correct errors in his invasive measurements. This makes it
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difficult for a designer to increase security without compromising reliability and leads

to a space of trade-offs between reliability, security, and cost that must be considered

during design. In this section, we will evaluate the resistance of each design option

against reverse engineering.

5.5.1 Attacker Model

We conservatively assume that an attacker knows everything about the encoded

secret key except for the key value that the designer has encoded. The attacker knows

which cells store the encoded values, and knows that the secret key bits are encoded

into the cells by increasing the magnitude of threshold voltage on either transistor P1

or P2 to encode a 0 or 1 bit. The attacker also knows the parameters of the BCH

error correction that is used.

Using this knowledge to reverse engineer the encoded values, the attacker has to

somehow guess enough bits correctly that applying the error correction to his guess

will produce the key. For example, if the designer added a BCH error correcting block

capable of correcting t errors, the attacker’s guess of the encoded key must be within

t bits of the value that the designer intended to store. The attacker learns about

encoded key bits by invasively measuring the threshold voltages of P1 and P2 to guess

whether the cell stores a 0 or 1 value.

Since threshold voltage cannot be learned through conventional methods such

as delayering and imaging, most works on multi-threshold obfuscation regard the

threshold voltage as being perfectly secure. However, there are still methods such

as spreading resistance profiling (SRP) [81], scanning capacitance microscopy (SCM)

[68], scanning spreading resistance microscopy (SSRM) [29] and Kelvin probe force

microscopy (KPFM) [69] to measure the concentration of dopant atoms in the channel

and hence reveal the threshold voltage. However, these methods still have low read
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accuracy and high overhead. We evaluate the key stealthiness even for high threshold

read accuracies that may not be feasible yet with today’s technology.

Regardless of the technique used to invasively measure transistor threshold voltages,

there will be some imperfection to the measurements. Measuring the threshold of

transistors and their relative values can be a difficult task since the measurement

precision of threshold voltages may not be perfect, and even the task of preparing the

chip for measurement can be difficult. There are two sources of inaccuracy that limit

the attacker’s success in reverse engineering the obfuscated key:

1. Manufacturing Variations: Process variations cause the threshold voltages

of manufactured transistors to differ from the nominal values intended by the

designer. The effect of process variation on threshold voltage of each transistor

has a distribution of N (0, σ2
var). This is the same process variation model used

in circuit simulation in Section 5.3.

2. Measurement Error: Regardless of the type of measurements performed by

the attacker to read out the threshold voltages, some inaccuracy is inevitable.

Measurement error causes the reverse engineer to measure a threshold volt-

age that differs slightly from the true threshold of the transistor. We model

measurement error as N (0, σ2
err).

An attacker can successfully find out the value of an SRAM cell if he correctly

guesses the relative threshold value of PMOS transistors that was intended by the

designer. If an unlucky process variation messes up the intended relative relation

between values of threshold voltages, the attacker still captures a wrong value even

if he correctly measures the voltages. As mentioned before, a designer uses error

correcting codes to compensate for these probable errors. Knowing which BCH code is

used to generate the key, the attacker can use the same algorithm for error correction,
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whether to correct the effect of measurement inaccuracies or structural flaws caused

by process variation.

Consider the attacker’s view of a cell that is designed to store a 1. The magnitude

of threshold voltages of P2 and P1 are N (vt+ ∆vt, σ
2
var) and N (vt, σ2

var) respectively,

because an increased threshold on P2 is the mechanism used to create a 1-value. The

threshold voltages of P1 and P2 as read by the attacker with measurement error

are N (vt+ ∆vt, σ
2
var + σ2

err) and N (vt, σ2
var + σ2

err) respectively. The attacker should

guess that the cell stores a 1 value if he measures a higher threshold voltage on P2.

The difference between the measured threshold voltages of P2 and P1 follows the

distribution of N (∆vt, 2σ
2
var + 2σ2

err), and when this difference is positive, the attacker

guesses a value for the cell that is the same as what the designer intended for the cell.

The probability (Pre) that the attacker will infer the wrong value for the cell is then

the cumulative distribution function of N (∆vt, 2σ
2
var + 2σ2

err) evaluated at point x = 0

(Equation 5.5).

Pre = cdfN (∆vt,2σ2
var+2σ2

err)
(x = 0) (5.5)

Figure 5.7 shows the probability, for different values of ∆vt and σerr, of an attacker

inferring a value that disagrees with the value intended by the designer. As would

be expected, this probability of misreading a cell is higher when the threshold offset

(∆vt) is small, or the standard deviation of measurement error (σerr) is large.

5.5.2 Attacker’s Success Rate for Key Readout

To correctly guess the key, the attacker has to guess the encoded key bits with a

number of errors that is within the error correcting capacity of the BCH code. Having

the probability of cell read error (Pre) from Equation 5.5, the number of errors in a

block is binomially distributed, and the probability of the attacker successfully reading

out a single block of a BCH[n,m,t] error correcting code is given by Equation 5.6.
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Figure 5.7. For different values of ∆vt, plot shows the probability (Pre) that an
attacker reads a value for a cell that differs from the value programmed by the designer,
as a function of the attacker’s measurement error (σerr).

PRSblock =
t∑
i=0

(
n

i

)
(Pre)

i(1− Pre)n−i (5.6)

Given that multiple error correction blocks may be required to generate the entire

key, the attacker will only succeed in reading out the key when all blocks are read

correctly. The probability of the attacker reading out the key successfully is denoted

PRSkey and calculated as shown in Equation 5.7. Table 5.1 reports the attacker success

rate (PRSkey) for different threshold offset magnitudes when σerr = 200mV .

PRSkey =

d kme∏
i=1

PRSblock,i (5.7)

5.5.3 Cost of Readout by Attacking Multiple Chips

When the same key is encoded in multiple chips, an attacker can choose to attack

multiple chips in order to improve accuracy by averaging out deviations in measurement

error and process variations. In this case, the attacker sees the differences between the

transistor threshold voltages in a cell as N (∆vt,
2σ2
var+2σ2

err

C
), where C is the number

of chips measured. Changing the normal distribution of Equation 5.5 to account for

this reduced variance leads to a reduction in Pre which benefits the attacker. Note
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Figure 5.8. Effect of multiple chip measurements on reverse engineering success rate
for different threshold offsets with σerr = 200mV

that taking measurements from additional chips is preferable over taking multiple

measurements of the same chip, which only reduces measurement noise but not process

variations. Depending on the costs of preparing a chip for measurement, there could

be advantages to re-measuring a single chip, but we do not consider that here.

Figure 5.8 shows the relation of reverse engineering success rate with the number

of individual chips used for measurements for each threshold offset. As an example,

one can observe that when the threshold offset (∆V t) is 100mV, the attacker has to

measure about 13770 transistors to have more than a 53% chance of extracting the

key. This requires measuring two transistors from all 6885 cells that store the encoded

key on 9 instances of the chip. However, it should be noted that although having

more chips increase the attacker’s success rate, it also comes with an extra cost of

measuring multiple threshold values.

As mentioned before, parameters of a BCH code are denoted as [n,m, t] where n

is the block size, m is the size of useful data after error correction and t is the size of

correctable errors in a block. For a key of size k that uses BCH blocks of size [n,m, t],

a total of d k
n
e blocks are used. Therefore, there are m ∗ d k

n
e input bits for BCH blocks

that are provided by threshold-biased SRAM cells. The reverse engineer needs to
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measure the threshold of two PMOS transistors for each cell, making a total number

of 2m ∗ d k
n
e transistor threshold measurements per chip in order to extract the key in

this setting.

If the reverse engineer tries to increase the key read reliability by measuring the cell

values from C chips, it will increase the number of transistor threshold measurements

to a total of C ∗ 2m ∗ d k
n
e. In this way, using a smaller value of ∆vt combined with

stronger error correction has two advantages. By storing information more diffusely,

it requires more measurements to be made on each chip, and requires more chips to

be attacked before the key can be guessed.

5.6 Design Tradeoffs

Having shown analysis of reliability and security for different design scenarios, we

now discuss how a designer can maximize her advantage over the attacker for effective

security tradeoffs. While most changes will impact both reliability and security, some

will represent more effective tradeoffs for the designer to consider.

5.6.1 Loosening Reliability Constraints

Error correcting code choice is constrained by our reliability criterion which specifies

a maximum key failure rate for chips in the first percentile of reliability. In other

words, we’ve specified that 99% of chips must satisfy some reliability bound. If we

allow weaker error correction to be used, then the failure rate of chips in the first

percentile of reliability will increase. Yet, at the same time, the attacker’s success rate

for extracting the key will decrease.

To compare the key reliability of the design to the key read success rate of an

attacker, Figure 5.9 shows the security versus reliability tradeoff offered by different

error correcting codes. This plot analyzes a scenario with a threshold offset (∆vt) of

200mV, and a low measurement error (σerr) of 100mV. The leftmost point shows the
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Figure 5.9. Tradeoff between attacker’s key read success rate (PRSkey) and key failure
rate (PFkey) that can be achieved by using different error correcting codes.

attacker’s high success rate if the BCH code used is strong enough to ensure that 99%

of chips have an error rate less than 1E-6, as was used before. If different BCH codes

are used, the plot shows how the failure rate of first-percentile chips increases and

the attacker success rate decreases, with increasingly weaker BCH codes. This curve

represents a set of tradeoffs that a designer can make. Allowing a higher failure rate

in key generation may be desirable in some scenarios if higher level error correction

mechanisms occur. Note that this particular scenario is one in which the attacker is

already able to make highly precise measurements, and that the achievable tradeoffs

can be even better in other cases.

5.6.2 Majority Voting

Majority voting using multiple values obtained from each cell provides a way for

the designer to mitigate the effects of on-chip noise. This an interesting tradeoff for

the designer because on-chip noise, which is detrimental to key reliability, does not

present any difficulty to the attacker since his read-out is not based on observing

digital values from a functional chip. Therefore, majority voting is an attractive way

to improve the reliability of cell values and allow a weaker BCH code to be used,

which has the effect of making the attacker’s task more difficult without compromising
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key reliability. In other words, the designer can strategically replace some amount of

algorithmic error correction that helps the attacker, with an amount of circuit-level

error correction that does not help the attacker.

5.7 Conclusions

This work presents a methodology for storing obfuscated master keys with quan-

tifiable security against an attacker that knows everything about the design except for

the values of the secret key bits. The underlying technique is to combine threshold-

based secrets with error correcting codes to allow secrets to be stored diffusely, which

gives the designer an advantage over attackers that try to read out the secrets with

some amount of imprecision. The proposed methodology enables designers to achieve

different tradeoffs of area cost, key reliability, and security against invasive readout.
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CHAPTER 6

SECURE KEY STORAGE IN HARDWARE WITH
PROGRAMMING BY DIRECTED AGING

6.1 Motivation and Background

The secret key storage approach proposed in Chapter 5 has several fundamental

limitations:

1. It assumes that the foundry supports multi-threshold fabrication with arbitrary

choice of threshold voltages, which can impact the fabrication cost.

2. It assumes that the foundry is trusted. The designer adjusts the threshold

voltage of SRAM transistors based on the secret key that needs to be encoded in

the SRAM cells and sends the design to the foundry. Hence, the foundry knows

the relative threshold voltage of transistors and can infer the secret key. This

can cause security issues in case the foundry is untrusted.

3. It requires that all chip instances will store the same readout resisting key.

The aforementioned limitations show the need for a secure key storage mechanism

that eliminates the support of a foundry and enables the IP integrator or users to

encode their own secret data. In this chapter, we show that a reliable threshold

encoded key can be created by imposing directed accelerated aging on transistors

within SRAM cells and build a hardware prototype of such a secure key storage system.

Although we envision a system that would ultimately be implemented on a single

integrated chip, in experiments, we use commercial off-the-shelf SRAM to represent
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the SRAM of the integrated solution, and hardware designs on FPGA to perform the

processing that the integrated solution would include.

We first give an overview of our proposed method to secret key storage in Section 6.2.

We characterize the power-up values of SRAM cells and conduct experiments to observe

the effects of aging and recovery on SRAM cells in Section 6.3. In Section 6.4, we

evaluate the key reliability under different error correction parameters and choose the

ones that can ensure the design key reliability criterion. We then design and build a

hardware prototype of the system and measure over time the reliability of generated

keys in Section 6.5. Finally in Section 6.6, a new model-based method for evaluating

the security of key against invasive readout is presented that obviates the need for

threshold voltage measurements of the experimental data and can adapt to different

strengths of measurements from the attacker’s side.

6.1.1 Transistor Aging

After a chip is manufactured, some physical parameters of transistors such as

threshold voltage change over time with usage. The changes usually manifest them-

selves as degradation in the performance of integrated circuits. For example, the

authors in [13] discuss the delay faults that occur because of the chip speed degradation,

and propose a hardware design to predict the circuit failure due to aging.

Although aging is usually considered to be an undesirable phenomenon that

impacts performance and reliability, previous work has shown that it can be helpful

for some applications, such as reinforcing the value of PUF cells to increase their

reliability [17, 18, 80].

The most prevalent types of transistor aging are NBTI (Negative Bias Temperature

Instability) and HCI (Hot Carrier Injection) [75]. NBTI aging occurs when a negative

bias is applied to PMOS transistors, and interface traps and oxide-fixed-charge are

generated by the electrochemical reaction of holes and Si-H bonds at the Si− SiO2
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interface [13]. The threshold increase that is induced through aging depends on factors

including:

1. The gate-source bias voltage

2. The time for which the bias is applied

3. The working temperature of the chip

4. Characteristics of the technology node, such as gate oxide thickness [13]

Therefore, in cases where the aging effect is desired, e.g. improving PUF reliability as

mentioned, it can be accelerated by increasing the temperature of the chip and the

gate-source voltage of transistors.

6.2 Proposed Method

Fig. 6.1 shows an overview of the proposed idea. The potentially untrusted foundry

is only responsible for providing the user with the necessary infrastructure to store

a secret key, but has no knowledge about the key value. In fact, the fabricated

infrastructure is general and can be used to store any key value. This infrastructure

consists of the SRAM cells that store the key through modifications in their threshold

voltages, and an error correction block. The key is programmed after chip fabrication

through directed accelerated aging. The aging biases transistors such that the secret

key is generated from the power-up values of the SRAM cells. The final secret key is

read from the output of the error correction block.

Since the key is programmed by user/IP integrator after fabrication, chip instances

need not hold the same key, and different chips can be programmed to store different

keys. The unavailability of multiple chips that store the same key can eliminate

the possibility of an attacker measuring multiple chips to improve the key readout

accuracy, as was suggested in Section 5.5.3. Additionally, similar to the key storage

approach in Chapter 5, this approach does not require storage of a secret data to

generate the key, which makes it immune to the helper data manipulation attacks.
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Figure 6.1. Proposed method of storing the secret key. The key storage infrastructure
consists of SRAM cells and error correction block that are built by an untrusted foundry.
The trusted user/IP integrator encodes the secret data through directed aging of the
SRAM cell transistors.

Fig. 6.2 shows the setup that is used for performing experiments on SRAM bias

and key reliability in Sections 6.3, 6.4 and 6.6. We use an Arduino Mega to write the

required values to SRAM for the directed accelerated aging, and for reading out the

SRAM power-up values for key generation. All the analyses were done by different

Python and Matlab scripts on the offline data that was read from the SRAM chips.

/

Python and Matlab
scripts

Key reliability, key security,
design trade-offs

Verilog RTL
simulations

SRAM chip  Microcontroller

Write SRAM values
for aging

Power-up SRAM and read values
after aging

Personal computer

USB cable

Figure 6.2. Setup to induce aging and perform key evaluations after aging

6.2.1 Error Correction

As previously shown in Chapter 5, if the threshold voltage offset is small, the

accumulative effects of process variation and environmental noises can cause the
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power-up value of an SRAM cell to be different from its intended value. While

considering threshold voltage offset values ranging from 300mV to 100mV, it was

shown in Tab. 5.1 that the reliability increases with the threshold voltage offset. The

threshold voltage biasing from directed accelerated NBTI aging is less substantial

than the chosen thresholds from Chapter 5, and is generally smaller than 40mV [18].

The small amount of threshold voltage change caused by aging requires a strong error

correction scheme in order to ensure the key reliability. Different error correction

strategies to address the key reliability include:

1. Using BCH codes: We previously discussed BCH error correction in Chapter 5.

BCH decoders usually have a significant area overhead, especially the stronger

ones that are capable of correcting a large number of errors. Moreover, the small

threshold voltage changes caused by aging can result in a large number of errors,

such that even the strongest BCH codes would not ensure the desired reliability.

2. Using Repetition codes: Another error correction scheme that can be used is

repetition codes, which is achieved by replicating a single bit value over a number

of cells. A simple example of a repetition decoder is majority voting, which

decides on the final value based on the value produced from the majority of

cells. Because of the small area overhead of SRAM cells, the area overhead for

creating redundancy is usually low. However, repetition codes typically provide

modest reliability improvement compared to BCH codes.

Using repetition codes alone in our scheme would require a large number of

replicated SRAM cells to store each bit. On the other hand, a complex BCH decoder

with the capability to correct a large number of errors can be expensive in terms of

area. A concatenation of these two error-correcting methods will most efficiently meet

the reliability criterion, as discussed in previous work [24, 82].
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Fig. 6.3 shows how a secret key is stored using our approach. The user determines

what values should be written into the cells by encoding their secret key using the

BCH encoder. This process is independent of the hardware infrastructure and can

be performed in software. The encoded key is then redundantly stored in hardware

through directed aging of cells, as will be discussed in the next section. For an M-bit

repetition-based error correction, M SRAM cells are biased towards each single bit

value of the encoded key, making M replications of the encoded key as shown in

blocks of Rep 1 through Rep M . If the encoded key is of size K, the length of each of

these replicated blocks would be K bits, and a total of M ×K SRAM cells are used

for storing the key. The reading procedure comprises powering up the SRAM cells,

calculating the output of the repetition block from the cells that store the same bit

values redundantly, and passing the result to the BCH decoder. The M -bit repetition

decoding block and the BCH decoder block together comprise the error correction

block and are responsible for correcting the errors in the power-up value of SRAM

cells. The key will be generated on the output of the error correction block.

Purposefully
aged cells

M-bit 
repetition 
decoder

Key

Key Storage Module

Enc. Key Rep 1

Enc. Key Rep 2

Enc. Key Rep M

…

BCH
decoder

Encoded
key

Error Correction

BCH 
Encoder

Key
Encoded

key

K bits

Figure 6.3. Key generation scheme
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6.2.2 Inducing Bias in SRAM cells

In our experiments of Sections 6.3, 6.4 and 6.6, NBTI-induced accelerated aging

is caused by exposing the devices to a temperature of 85◦C in a TestEquity 115A

Temperature Chamber [9] for one hour. We use two different models of SRAM chips

for these experiments: 23LC1024 from Microchip Technology Inc. [3] and N01S830HA

from ON Semiconductor Corporation [8]. Both of these chip models are 1Mbit serial

SRAMs. The SRAM chips are powered with 5V supply, which is within the normal

range of supply voltage specified in their datasheets. During the accelerated aging,

each SRAM cell is programmed to hold the value opposite to the one we wish to

generate later at power-up as shown by previous work [51]. To induce aging, the

memory chip is placed in the thermal chamber, then once it reaches the desired

temperature the chosen values are written to it. The SRAM chip remains powered

for one hour in the thermal chamber, during which each cell holds its chosen value.

After one hour, the SRAM memory chip is powered off and removed from the thermal

chamber.

6.3 Experiments on the SRAM Bias

Our system writes values into the initial state of SRAM using directed accelerated

aging. In this section, we examine through experimentation (1) The extent to which

we can bias the power-up state of SRAM using NBTI-induced accelerated aging, and

(2) How these SRAM devices retain this given bias. The experiments of this section

were done in collaboration with an undergraduate student, Peter Stanwicks, that I

helped advise in Summer 2018.

6.3.1 Non-uniform SRAM Bias

Before the devices received directed aging, multiple observations of the power-up

state were recorded for each device. These initial measurements showed that SRAM
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cells exhibit different power-up value probabilities, depending on their address. To

investigate this observation, the average Hamming weight of each byte was measured

before the SRAM received any bias. The average Hamming weight of a byte is a value

between 0 and 8, reflecting the number of bits that hold a value of 1 within that byte.

We measured the average Hamming weight for each byte over 25 trials on 9 different

chips.

Fig. 6.4 shows the heatmap of the average byte Hamming weights for a single

SRAM chip. The y and x dimensions of the heatmap correspond to the most significant

bits and least significant bits of addresses, respectively. The colors closer to white

correspond to an average byte Hamming weight that is closer to 0, meaning that the

bits within the byte are more likely to power-up to 0. A color closer to red is a higher

average byte Hamming weight (closer to the value of 8) and corresponds to bits with

a higher tendency to power-up to 1. Similar patterns are observed in both models of

SRAM devices.

Based on the observed pattern on average byte Hamming weights of SRAM

cells, they can be classified into two different groups. The classification threshold is

considered to be the midpoint of the lowest (value 0) and highest (value 8) possible

values for the average byte Hamming weights, the value 4. If the byte’s average

Hamming weight is less than 4 the byte is considered in the low group, and if it is

greater or equal to 4 the byte is considered in the high group. The distribution of

both these two groups can be seen in Fig. 6.5. This categorization will be later used

to increase the accuracy of our model-based key reliability evaluation in Section 6.4.3.

The power-up state of an SRAM cell is affected by both its inherent bias and the

induced aging. The different pre-aging Hamming weights of SRAM cells can interfere

with and mask the effect of directed accelerated aging. In other words, cells with

high pre-aging Hamming weight would provide stronger ones if aged towards holding

logic-1 and would provide weaker zeros if aged towards holding logic-0. Therefore to
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increase the reliability of the keys, the pre-aging values of the SRAM cells should be

taken into account when making inferences about their values. We propose a new

repetition decoding method that takes the pre-aging Hamming weights into account,

which will be further discussed in Section 6.4.1.
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Figure 6.4. Heatmap of SRAM memory before receiving directed aging, sorted by
address. Each dot represents the Hamming weight of a single byte as a gradient of 0
to 8. Colors closer to red show a higher byte Hamming weight, meaning the bits are
more likely to power-up to ”1”. The lower byte Hamming weights, where bits have a
high tendency to power-up to ”0” are shown with whiter dots.
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Figure 6.5. Histogram showing the two distributions of byte groups before biasing.
The average Hamming weight of a byte is 2.50 in the white distribution and 5.47 in
the red distribution.

6.3.2 SRAM Recovery

Over time, some amount of biasing from the aged cells is reverted through a

phenomenon called aging recovery. Recovery can threaten the reliability of the biased

values and introduce a challenges to utilizing directed aging for encoding reliable secret

values. To our knowledge, there is no existing accurate model on the effect of recovery

in terms of both active usage and time in SRAMs. The recovery can be observed by

comparing the Hamming weight measured at different times following the directed

aging.

To investigate the effect of recovery, the chip is first aged as explained in Sub-

section 6.2.2. To maximize recovery, an active recovery approach [45] is applied to

the SRAM cells, in which data that opposes the directed aging is written to the

chip and held for a specified duration (30 seconds in our experiments). The chip is

then powered off for a specified amount of time toff , and the process repeats. The

procedure of this experiment can be seen in Fig. 6.6. The SRAM chips are periodically

powered-up to generate their fingerprints, written values opposing their aging, and

then powered-off again 30 seconds later. Experiments are performed for four different
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toff values: 10s, 100s, 1,000s and 10,000s, each on three different chips. All recovery

measurements are performed at room temperature, 22◦C. Fig. 6.7 shows the percentage

of difference between the average Hamming weights measured after directed aging and

the average Hamming weight that was measured before directed aging. Four different

cases were considered while studying the effect of recovery: (1) SRAM cells with a

”high” Hamming weight natural tendency that are further aged towards 1 (displayed

in dark red) (2) Cells with a ”high” tendency that get biased towards 0 (light red)

(3) Cells with a ”low” tendency that get biased towards 1 (dark blue); and (4) Cells

with ”low” tendency that get biased towards 0 (light blue).

Power on,
Read memory

Reading... Holding Values...

Write to Memory Power off

Single Trial

toffSingle 
Chip

time

Figure 6.6. Process used to test recovery after directed aging. Parameter toff , the
time between power on trials, is varied in different experiments.

Since the natural power-up tendency of each SRAM cell affects the post-aging

Hamming weight of their relative repetition blocks, it is best to consider each high

and low Hamming weight region (as shown previously in Fig. 6.5) independently when

studying the effect of recovery. The experiments are repeated on three different chips,

and each line in this figure represents one of them. As can be observed from this

figure, the recovery effect manifests itself as the percentage of difference in average

Hamming weights getting closer to their relative unbiased values (shown as a black

line at center) over time.
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Figure 6.7. Recovery of three SRAM memory devices over 4000 hours with power-on
cycles every 1000 seconds. Y-axis shows the percentage of difference between the
pre-aging average Hamming weights and the after-aging average Hamming weight.

6.3.2.1 Recovery as a Function of SRAM Usage

We have investigated the effect of chip power-up cycles and the elapsed time on

the amount of recovery after aging. Fig. 6.8 shows a comparison between recovery as

a function of use time and recovery as a function of the number of power-up trials,

specifically examining the sections of memory that received bias towards logic-1. We

introduce a metric called percent bias that can be calculated according to Eq. 6.1. In

calculation of bias at time t (Biast), btj represents the actual value of bit j that is

observed at time t after the aging, and HWj is the pre-aging Hamming weight of bit j

and is a representation of the natural power-up tendency of the bit. j iterates through

every bit in memory with capacity C bits, which is 1M bits in our experiments. All

values of bias are normalized with respect to the maximum amount of bias, which is

seen at the start of each experiment.

Fig. 6.8 illustrates the effect of recovery using the Percent Bias value from Eq. 6.1.

A lower value of Percent Bias indicates a greater amount of recovery. Fig. 6.8a depicts

the amount of recovery with respect to elapsed time, showing that the chips that were
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powered on more frequently recovered more than chips that were powered on less

frequently. For example, the rate of recovery is highest for chips with toff = 10s and

lowest for chips with toff = 10, 000s. Fig. 6.8b shows the Percent Bias changes with

respect to the number of power-up trials. It can be seen that the amount of recovery

is comparable across chips regardless of the different toff values. This indicates that

the amount of recovery is related to how long the SRAM chip is powered, and not to

the total elapsed time since the aging. To minimize the amount of recovery, power-

gating techniques can be used to deactivate and power-off the SRAM between the key

generations to minimize the amount of recovery that acts against the reliability of the

programmed key. This finding implies that it is possible to store keys in thresholds for

a long duration provided that SRAM cells are powered up only when key generation is

required and are powered off at the rest of the time. We use this point in Section 6.5

when designing the hardware prototype.

Percent Biast =
|
∑C

j=1(btj −HWj)|
|
∑C

j=1(b0
j −HWj)|

(6.1)

6.4 Characterizing the Key Generation Scheme

As explained in Section 6.2, the value that is generated at the SRAM power-up

goes through an error-correcting phase, which consists of a repetition decoding block

and a BCH decoder block to generate the key. In this section, we observe how key

reliability changes with different amounts of repetition and the number of correctable

errors in a BCH error correction block. We then use the two-parameter model to find

the design parameters that meet the design’s reliability criterion. The parameters we

need to determine are size of the repetition and strength of the BCH decoder in terms

of the maximum number of errors that can be corrected in each block. We measure

the hardware costs for implementing the system under different design parameters

in terms of area and perform simulation-based analysis to estimate the amount of
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(b) Percent of Bias Remaining vs. Number of Power-on Trials for 23LC1024 SRAM

Figure 6.8. Plots show same data against different x axes. Recovery depends
primarily on number of uses since the aging was applied, and not on the elapsed time.

induced bias in transistors. For the rest of this chapter, we put our focus on a single

model of SRAM chip (23LC1024) and perform our analysis based on the data collected

from this type. A similar analysis should be performed on any SRAM model that

would be used in our system, regardless of whether it is a standalone chip or SRAM

block on the Integrated key generation circuit.
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6.4.1 Repetition Decoder

Based on the observation that the expected Hamming weight of each SRAM cell

depends on its address (see Fig. 6.4), the effect of directed aging can be more accurately

detected when taking into account the expected Hamming weight of the same cells

before they received aging. Therefore when generating the key values, we put some

weight into the natural power-up tendancy of SRAM cells. We take into account

the Hamming weight of the unbiased SRAM cell when decoding the repetition block.

Considering a repetition block of M bits, the expected Hamming weight of block i

(HWi) can be calculated as shown in Eq. 6.2. In this equation, hwi,j is the expected

Hamming weight of j − th bit in block i.

HWi = hwi,1 + hwi,2 + ...+ hwi,M (6.2)

We deduce the power-up value from repetition block i, corresponding to the ith

bit of secret data (bi), based on Eq. 6.3. In this equation, xi,j denotes the after-aging

power-up value of the SRAM bit at position j in block i. The summation of post-aging

bit values in repetition block is compared to HWi, which is the expected Hamming

weight of block i calculated with Eq. 6.2, to find bi.

bi =


0 ; if (

∑M
j=1 xi,j) ≤ HWi

1 ; otherwise

(6.3)

6.4.2 Key Reliability of Empirical Data

We first evaluate the key reliability from the empirical data, that is, the data

from standalone SRAM chips collected using the microcontroller. The average key

reliability is defined as the ratio of the correctly generated keys to the total number

of key generation trials. We chose different 128-bit keys to be stored in each SRAM

chip. To investigate the effect of repetition size on the key reliability, each key passes
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through a fixed BCH decoder, which is of type BCH[255,215,5] for this experiment,

but a varied repetition size. The size of the key is 215 bits, from which 128 bits are

used. The total number of SRAM cells required to store each encoded key is therefore

M × 255, where M is the repetition size and 255 is the size of BCH encoder’s output.

We have chosen M to be the upper bound of all repetition values that we wanted

to experiment, which enabled us to select different sized of repetition for the later

experiments by using subsets of the data. A total of 8 different encoded keys are

written in the same way on 9 SRAM chips, to be sure of including the effect of process

variation in our experiments. The SRAM cells are biased to write the desired values

as explained in Section 6.2.2. Fig. 6.9 shows the key reliability versus the size of the

repetition block. Each line in this plot corresponds to the average key reliability over

200 key generation trials at different stages of chips’ lifetime: right after the aging and

zero key generations, and after 200, 400, 600, and 800 key generations. The power-up

trials were conducted in intervals of 10 seconds (toff = 10s). The figure shows that the

key reliability degrades with the total number of SRAM power-ups and implicates the

necessity to account for recovery and the expected lifetime of the device when choosing

error correction parameters. The figure also shows how increasing the repetition size

can improve the reliability and counteract the recovery effect.

6.4.3 Key Reliability Model

As previously mentioned in Chapter 5, the infrequent occurrence of bit errors can

cause a challenge in calculating the key reliability. This challenge can be addressed

by using an accurate model, which provides us with bit error rates for virtually an

infinite number of cells to perform our key reliability calculations. In this subsection,

we perform a model-based key reliability evaluation using the experimental data from

SRAM cells. We used the same data as of Section 6.4.2, this time only considering

the values between the 900th and 1000th power-ups to allow a certain amount of
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Figure 6.9. Key reliability as a function of cell repetition size for BCH[255,215,5]

recovery to occur in the cells.The SRAM cells that store redundant copies of each

bit are from consecutive addresses, and therefore, likely adjacent in physical layout.

Based on our observations from Section. 6.3.1 and Fig. 6.5, there are two groups of

cells in the SRAM chips in terms of their inherent before-aging power-up Hamming

weights. We refer to these as high and low Hamming weight groups. Considering only

the cells that are aged to store a 1 for each group, parameters λ1 and λ2 are chosen

by fitting Eq. 6.4 to the empirical CDF of cell 1-probabilities from experiments using

Levenberg-Marquardt algorithm. The error probability is equal to the probability

that the cell is powered-up to ”0” (P0), as we only consider the cells that are aged

towards ”1”. Fig. 6.10 shows the cumulative distribution function (CDF) of bit error

probability for each of the high and low Hamming weight groups, as well as their

relative fitted model.

cdfP1(x) = φ(λ1φ
−1(x) + λ2) (6.4)

Assuming the expected Hamming weight of the SRAM cell in repetition block i is

HWi and that the cells are aged to produce value ”1”, the block produces an erroneous

result (value ”0”) when the total post-aging Hamming weight of the power-up values
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Figure 6.10. Cumulative distribution function of error probabilities from the experi-
mental data and their relative fitted curves for the two SRAM cell groups with high
and low Hamming weights.

in the block is less than HWi (Eq. 6.3). If PM
1,i = (P1,i,1, P1,i,2, ..., P1,i,M) denote the

list of 1-probabilities from M SRAM cells in repetition block i, the Poisson-binomial

distribution FPB(HWi;P
M
1,i ) calculates the probability of having fewer than HWi bits

powering up to value ”1”, or the probability that the power-up value from repetition

code is ”0” according to Eq. 6.3. The value FPB(HWi;P
M
1,i ) can be calculated based

on Eq. 5.3. The error rate Pe,i of M -bit repetition block i can therefore be calculated

according to Eq. 6.5.

Pe,i = P0,i = FPB(HWi;P
M
1,i ) (6.5)

We calculated the error probabilities after repetition decoding by randomly choosing

from the two groups (high and low Hamming weight cells) and using inverse transform

sampling to pick P1 of individual cells for each distribution. The P1 values were then

used in Eq. 6.5 to find the error rates after repetition decoding. Having the error rate

of bits generated from the repetition block, the BCH block failure rate and the key
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failure rate are calculated based on Eq. 5.4 and 5.2, respectively. We have repeated

this procedure 100 times to measure the reliability of 100 different keys.

Fig. 6.11 shows the average key failure rate with respect to the repetition size M ,

for different BCH decoders. As expected, increasing the repetition size usually results

in a decrease in the average key failure rate. Additionally, using a stronger BCH code

that can correct a large number of errors also increases the reliability. For example,

BCH[255,131,18], which is the strongest error correction code shown in this figure

with the capability to correct 18 error bits in a block of 255 bits, has the smallest

failure rates for the same repetition size compared to the other BCH decoders.
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Figure 6.11. Average failure rate of key generation based on model from experimental
data, with different amount of repetition. Each line represents one particular BCH
code. Increasing the repetition size and using a stronger BCH code can both reduce
the key failure rate.

6.4.4 Hardware Costs

As explained in previous sections, the key reliability can be adjusted by changing

the repetition size and/or the strength of the BCH error correction block. Different

combinations of these two can be used to meet a particular reliability criterion, and

the various overheads should be considered while making these choices.
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The reliability criterion that we consider is that 99% of chips should have failure

rates of less than 10−6 after 900 trials of active recovery with ton = 30s and toff = 10s.

We anticipate that a much higher number of uses is possible, but chose 900 power-ups

since that is what our model is fit to. To find the combinations of repetition and BCH

decoder that meet the desired reliability criterion, we measure the key failure rate for

different combinations of repetition sizes and BCH strengths based on the procedure

explained in Section. 6.4.3. For each amount of repetition, we choose the weakest

(and therefore lowest overhead) BCH code that will satisfy the reliability criterion

mentioned earlier.

The BCH and repetition decoders are synthesized with Design Compiler using

Nangate 45nm open cell library. To evaluate the area cost of SRAM, we use a

value of 0.346µm2 as reported in [83] for the area of a single SRAM cell in 45nm

technology. Table. 6.1 reports different pairs of repetition and BCH decoder parameters

that meet our reliability criterion, as well as their area cost. It can be seen that

amongst all choices of BCH and repetition, using a combination of 127-bits repetition

and BCH[255,187,9] provides the smallest area overhead (as highlighted in green).

Note that these numbers may vary for different technologies, and hence the optimal

combination might differ, but the same methodology can be used to identify it.

Table 6.1. Combinations of repetition and BCH error correction that meet the
reliability criterion of 99% chips having less than 10−6 error probabilities. The
highlighted row corresponds to the lowest area cost. The reported area is in the units
of µm2.

Rep. BCH code #cells Cells area Rep. area BCH area Total area

31 [255,9,63] 118,575 41,027 27,964 48,574 187,566

63 [255,79,27] 32,130 11,117 5,205 27,714 44,036

95 [255,131,18] 24,225 8,382 3,918 21,658 33,958

127 [255,187,9] 32,385 11,205 4,460 17,120 32,785

159 [255,207,6] 40,545 14,028 4,950 15,485 34,463

191 [255,215,5] 48,705 16,852 5,441 15,067 37,360

255 [255,223,4] 65,025 22,499 6,531 14,359 43,389
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6.4.5 Amount of Induced Bias in Cells

Since the details of the technology used in off-the-shelf ICs are usually unknown,

there is no evidence on the value of threshold voltage of transistors in our experiments,

nor on how much of threshold voltage offset the aging induces in cells. In this

subsection, we try to correlate our experimental results to simulation data to estimate

the amount of threshold offset that our aging experiments induce in cells.

We consider two cases for the experimental data: Right after the accelerated aging

and before any recovery happens on the chip and after 1000 power-ups of cells with

the active recovery of ton = 30s. For each of these cases, we calculate the average

Hamming weight of all cells in the SRAM chip: 0.6168 before recovery and 0.5769

after the recovery.

We simulated a 6-T SRAM cell for a number of threshold voltage offsets (that

cause it to favor the ”1” state) in the presence of process variation. Since we do not

know the technology that is used in our SRAM chips, we simulate different technology

nodes: 45nm, 65nm, 90nm, and 180nm. The simulations are done in HSPICE using

Predictive Technology Model (PTM) [11]. Threshold voltage offsets are varied in steps

of 1mV, each considering 10,000 Monte-Carlo instances using the values reported in

[87] for process variation in each technology. For each case, we evaluate the average

Hamming weight and then compare these results to the average Hamming weight of the

experimental data from before and after recovery to see how much threshold voltage

change would cause the observed amount of bias from the experiments. The average

Hamming weight for different values of threshold offsets for each technology is shown

in the plot of Tab. 6.2. The Hamming weight from the SRAM aging experiments is

shown as dashed horizontal lines for ”before recovery” and ”after recovery” cases. The

intersection of these lines with the plot of each technology node specifies the threshold

voltage offset that produces the same Hamming weight as the experimental data.

These values are reported in Table. 6.2. Each row of the table estimates how much
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the threshold voltage shift would have been if the SRAM chips from our experiments

were built with the corresponding technology.

Table 6.2. Threshold offsets of different technology nodes from SPICE simulation
that can explain the bias observed in power-up state of the experimental data. Data
in table is derived from the plot at right, which shows the average Hamming weight
corresponding to different threshold voltages at each technology nodes.

Technology Before
recovery(mV)

After
recovery(mV)

180nm 31.7 23.1

130nm 19.3 14.1

90nm 17.7 10.9

65nm 17.1 10.6

45nm 12.4 8.6

6.5 Hardware Prototype Implementation

The key reliability evaluations in the previous sections were all performed using

post-processing of SRAM data read out by an Arduino. In this section, we design and

implement a hardware prototype of the full key generation system, using a combination

of FPGA and SRAM chip. Our IP module prototype can be used to implement the

aging-based keys on an ASIC. The encoded keys are programmed and written on this

module by user or IP integrator through a USB interface from a personal computer,

and the key is generated upon request as an output of this module. The SRAM

holds the value of secret data in its biased transistors from the proposed aging-based

approach discussed in the previous subsections. The FPGA interacts with the SRAM

to perform read and write procedures, as well as performing error correction on the

SRAM data to generate the key. Notably, the FPGA also controls power gating to the

SRAM chip so that the chip is only powered on for the short duration of generating
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the key. Employing power-gating is important because it minimizes the recovery. We

will explore the hardware design in further detail in the following subsections.

6.5.1 Hardware Design

Fig. 6.12 shows the sketch of key generation hardware. For writing the key, the

user sends the encoded key from a personal computer to the FPGA to handle writing

it on the SRAM. The encoded key is replicated to the amount of repetition size and

is written on SRAM by the read/write module through an SPI protocol that will

be explained in Section. 6.5.1.1. Note that writing the key is done from a personal

computer to avoid allocating any storage of secret data in hardware that can be

vulnerable to reverse engineering. The module is then put into the thermal chamber

to receive directed accelerated aging. After enough time for the SRAM chip to age,

the hardware is removed from the thermal chamber, and the key values are ready

to be generated from the biased power-up sate of SRAM cells, without any external

interference from a user. The read/write module powers up the SRAM and reads

out its secret value that is induced via aging. The read data then passes through

the repetition decoding hardware that will be discussed in Section 6.4.1. To avoid

allocating extra storage and save area in FPGA, each repetition block i is decoded

serially after enough bits (M bits in an M -bit repetition block) are read from SRAM,

before moving on to reading the next block. The output of the repetition decoder

hardware then goes to the BCH decoder, which generates the final key value on its

output. The generated secret key can then be used for arbitrary purposes but should

never be revealed in clear.

All modules that are shown in Fig. 6.12 as part of the AXI4 peripheral IP block

within the FPGA are written in Verilog from scratch, except for the BCH decoder

that is from [33]. The IP was then used in a Vivado block design, in addition to

Microblaze processor, which is part of a CMOD A7 FPGA. The Microblaze processor
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controls and monitors reading and writing to some of our AXI4 IP signals through

Xilinx Software Development Kit (SDK) environment. For example, the encoded key

that is provided by the user as shown in Fig. 6.12 is done in the SDK environment.

Additionally, we read out the keys generated on the output of the module from the

SDK environment to verify the key reliability.
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Figure 6.12. Sketch of the key storage hardware module

6.5.1.1 Read/Write Module

The memory chip is controlled by a read/write module that we designed in Verilog,

which is based on the Serial Peripheral Interface (SPI) protocol. The SPI protocol

used in the 23LC1024 SRAM chips contains four essential bus signals: a clock input

SCK, a serial input data SI, a serial output data SO, and an active-low chip select CS.

Fig. 6.13a and 6.13b depict the read and write sequences of SPI protocol, respectively.

The SRAM chip is selected for read/write operations by pulling CS low and providing

a clock on SCK.

The 8-bit instruction is shifted through SI input, which is 00000011 for the read

and 00000010 for the write operation. The 24-bit byte-address is shifted in after the

instruction, with the seven MSB bits of the address being ”don’t care” bits. After the
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address, the 8-bit data value is applied on SI for a write operation, or collected from

the shifted out data from SO for a read operation.

(a) Read sequence

(b) Write sequence

Figure 6.13. Read and write operations in SPI protocol [3]

In addition to the signals that implement the SPI protocol, the FPGA also provides

the supply voltage VCC to the SRAM such that the power is applied when reading and

cut-off when reading from SRAM is complete. This power-gating approach alleviates

the recovery effect by reducing the amount of time that the SRAM chip is powered-up

when it is not used. In our experiments on the hardware prototype, the SRAM chips

are only needed to be powered on for 200ms for a read operation, which is much

shorter compared to ton duration of the 30s from the previous sections. Considering the

previously observed phenomenon that the recovery is dependent on the power-on time

of the SRAM, we expect that our power-gating approach in the hardware prototype

can improve the key reliability.

Aside from the ports that are used to communicate with the SRAM chip, the

read/write protocol has other ports for communicating with the modules at the FPGA
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side. These ports include 8-bit Din and Dout ports, a read/write input port that

specifies the type of operation, and start and done ports that are used for handshaking

with the other modules inside FPGA. Fig. 6.14 depicts the interfacing of read/write

module to the SRAM and the other modules inside FPGA.
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Figure 6.14. Interfacing of the read/write module to the FPGA side and SRAM side

6.5.1.2 Repetition Decoder Hardware

Fig. 6.15 shows the RTL schematic of the repetition decoder. The SRAM block

provides the input to the repetition decoder, and contains the programmed cells that

are aged towards holding the pre-defined values. Decoding is done serially, where

fetching block i from the SRAM and calculating its corresponding output value is done

before moving on to the block i+ 1. Each block i has an expected pre-aging Hamming

weight HWi that are constants derived from Eq. 6.2 and feed the input of a multiplexer

with i as the select bit. Shift reg1 and Counter2 calculate the post-aging Hamming

weight of block i by summing up bits of the block i read from SRAM, which is then

compared to the output of Multiplexer (HWi) to deduce the output value bi (Eq. 6.3).

The output value is saved in Shift reg2, and then Incremental Addr. issues the

address corresponding to block i+ 1 to be fetched from SRAM.
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Figure 6.15. RTL schematic of the repetition decoder block from Fig 6.12

6.5.2 Hardware Implementation

We first verified the correct functionality of the design by implementing a working

prototype on a breadboard. We used Cmod A7-35T FPGA from Digilent and 23LC1024

SRAM from Microchip. CMOD A7 has 28 I/O ports, from which we used five for

the interfacing signals with the SRAM. The maximum clock frequency of this SRAM

chip is 20MHz [3], and the clock frequency we provided was 10MHz. The FPGA

provides the supply voltage to the SRAM directly from a 3.3V I/O of Cmod A7. The

chip’s operating voltage during accelerated aging was the same 3.3V. In our previous

experiments, the chips received a supply voltage of 5V for one hour at 85◦C. In this

section, we allow a longer time to compensate for the lower supply voltage. During

aging, the hardware remained in the thermal chamber for 3 hours at 85◦C. The chip is

then set to cool off too room temperature for about 20 minutes. The repetition value

M is 255 bits, meaning that each encoded key bit value is stored on 255 individual

SRAM cells. The BCH code was BCH[255,131,18], meaning that it could cover up to

18 bits of errors in a block of 255 bits. Note that the error correction is different than

the one reported in table 6.1 because the aging conditions have changed, which in
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turn changes the amount of induced bias in SRAM cells. The design was synthesized

and implemented in Vivado, as shown in Fig. 6.16. A total of 4699 slices are used on

the FPGA, which constitutes about 23% of its total available resources.

Figure 6.16. Device view from the implementation of the hardware design on the
FPGA in Vivado

The design prototype is implemented and tested first on a breadboard and then

on a PCB. Fig. 6.17 shows the prototype hardware implemented on a breadboard and

Fig. 6.18 shows a picture of the fabricated prototype on PCB. The prototypes were

tested for both read and write operations by writing the encoded key values in the

SRAM and inducing accelerated aging in the thermal chamber, and reading SRAM

values and generating keys multiple times after removing the chip from the thermal

chamber. The hardware module was scheduled to generate the key in intervals of 10
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seconds for one week, totaling to 60,000 key generations. We observed that the five

out of five tested modules generated the correct key in 100% of the trials.

Figure 6.17. Key storage hardware prototype on breadboard

Figure 6.18. Key storage hardware prototype on printed circuit board
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6.6 Resistance against Invasive Readout

In this section, we will evaluate our approach in terms of its resistance against

reverse engineering. We use the same model as in Chapter. 5 here as well. Recall that

the heterogeneous error rate model assumes two sources of variation in a cell. The

first source of variation is the process variable (M) that accounts for the persistent

impact of bias and process variations, and is modeled with a normal distribution of

N(µM , σM). The second source of variation is the noise variable (Ni) that accounts

for the cumulative effect of all noise sources during evaluation, and is modeled with

a normal distribution of N(0, σNi). The three unknowns in these distributions are

reduced to two parameters λ1 and λ2, wthere λ1 = σNi/σM and λ2 = (t − µM)/σM .

The model parameters already account for the effects of manufacturing variations and

noise. We model the measurement error as an increase of the noise parameter (Ni)

for the attacker. The value of λ1 corresponds to the ratio of noise variation to the

process variation. Hence, an increase in λ1 would indicate an increase in σNi or the

amount of noise. The P1 of SRAM cells from the attacker’s measurements can then

be estimated by increasing λ1 after fitting the model while keeping λ2 constant. The

attacker’s ability to read out the key can then be calculated using the same model

that calculates the key failure rate, and can be found using Eq. 6.5, 5.4 and 5.2.

For our results on the attacker’s key readout, we have assumed that λ1 = σNi/σM =

1. In other words, the total cumulative noise from both environmental noises and

attacker’s measurement inaccuracies are considered to be equal to the amount of

process variation (σNi = σM). This ratio can be increased or decreased to reflect

different attacker read accuracies. The parameters are fitted to the experimental

data as in Section. 6.4.3, and with separate fitting for high and low Hamming weight

regions. The value of λ1 that we considered for modeling the attacker’s key readout is

about eight times as the original value of λ1 for both high and low Hamming weight

groups. Fig. 6.19 shows the average bit error rate with different amounts of repetition
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for three cases: (1) The average bit error rates that are directly measured from the

experimental data, (2) The average bit error rates that are calculated from the model,

where σNi is set to 0 after fitting the model to the experimental data, (3) The average

bit error rates that are calculated from the model, where σN is set to be equal to σM

after fitting the data to the model, to reflect the attacker’s measurement inaccuracies.

Note that the average bit error rate from the experimental data and the model with

zero environmental noise more closely correlate, as compared to the case where the

average bit error rate is increased due to the increased effect of noise that models the

attacker’s read inaccuracies.
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Figure 6.19. Bit error rate with only repetition and no BCH

As a comparison for the attacker’s success versus the key reliability, we have

depicted the key reliability versus the attacker’s read failure rate, as shown in Fig. 6.20,

for different combinations of repetition size and strengths of BCH error correction.

The key failure rate decreases with going down at the y-axis, and the attacker’s success

rate drops with going left at the x-axis. Hence, the scheme provides more reliability if

its corresponding point in the plot is more down and is more secure if it is more to

the left compared to the other points. Based on the design requirements, the designer
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can choose between these different trade-offs to provide acceptable key reliability and

security against reverse engineering.
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Figure 6.20. Attacker’s read success rate versus key reliability for a combination of
repetition and BCH codes

6.7 Conclusions

We have proposed and demonstrated a hardware key generation design that resists

invasive readout, and is secure against an untrusted foundry. Our scheme incorporates

NBTI-based accelerated aging in conventional 6-T SRAM cells to store secret keys.

While the foundry is only responsible for fabricating the necessary infrastructure for

storing the secret key, programming the keys is done after chip fabrication by a user

or an IP integrator. We have proposed using an optimal combination of repetition

and BCH decoder for error correction to ensure the key reliability of our approach

while minimizing cost. Additionally, our approach uses a new repetition decoder that

accommodates the non-uniform pre-aging patterns that we observed in SRAM cells.

The amount of threshold voltage shift from the accelerated aging method is estimated

by correlating our experimental results to the simulation data from different technology
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nodes. We evaluated the key reliability of our approach, using both experimental

evaluations and model-based analysis. Moreover, we have designed and fabricated a

working prototype of the key generation hardware module on PCBs and verified the

correct functionality and reliability of its key generation over time. Finally, a model-

based security analysis method against reverse engineering is proposed to quantify the

likelihood of successful readout for an attacker.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary and Conclusions

From their use in smartphones and smartwatches to their applications in healthcare

and aviation, semiconductors have become a fundamental part of our daily lives. The

growing application of semiconductors raises the need for addressing their security

and privacy challenges as well. If hardware security is not well taken care of, it can

provide an easy backdoor for a reverse engineer that tries to steal secret information

stored in the hardware or steal and counterfeit intellectual property. This thesis has

tried to address some of the security concerns of today’s hardware systems.

First, we have investigated the privacy implications of voltage-overscaled or

frequency-overscaled approximate computations. By performing a simulation-based

analysis of different adder styles, we have shown that the identity of approximate

computing devices can be revealed by providing certain inputs to them and observing

their corresponding outputs.

Next, we have addressed the problem of protecting the chip against reverse en-

gineering by improving the state-of-art gate obfuscation methods. We assumed the

scenario of a more knowledgeable attacker that has partial knowledge about the

functions that are viable in an obfuscated hardware design, and we have proposed an

automation technique for designing circuits that can plausibly implement a number

of chosen functions. The procedure comprises iterated synthesis and uses genetic

programming to find an optimized pin assignment that maximizes shared logic between

the functions.
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Additionally, we have introduced a new SAT-based invasive reverse engineering

technique that requires no knowledge about the gate functions or the connections

between them. The new SAT formulation incorporates additional data from voltage

probing and fault injections, and includes new levelization constraints to enforce

acyclic topology and avoid encountering loops while solving the SAT formulation.

Unlike existing SAT attacks, our method can recover the exact gate-by-gate netlist of

the obfuscated circuit.

Finally, we have investigated the problem of secret key storage in hardware by

first introducing a key generation approach that provides quantifiable security against

invasive reverse engineering. The key generation scheme is based on offsetting the

threshold voltage of transistors in a conventional 6-T SRAM cell and requires foundry

support. We performed a model-based approach to evaluate the key reliability of our

proposed scheme and its resistance to invasive readout. We then demonstrated a key

generation approach that uses NBTI-based directed accelerated aging to program

the key without the support of a trusted foundry. In this new scheme, the foundry

fabricates the circuitry of the key storage module without knowing the key that the

user/IP integrator will program afterward. We have built and validated a hardware

prototype of this key storage approach on PCB using FPGA logic and standalone

SRAM chips.

The following peer-reviewed articles are published as part of the research done

towards this degree [32, 61–65, 108, 115].

7.2 Suggestions of Future Research

This dissertation has addressed some of the issues in protecting hardware designs

against reverse engineering. However, there are still open challenges on the way to

reaching a secure hardware design. Possible extensions from this thesis research are

summarized as follows.
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The first challenge is the security evaluation of cyclic obfuscation. Cyclic ob-

fuscation is an approach in which combinational cycles are put intentionally in the

design under the intent that a potential cycle in the circuit can put the SAT solver

in an infinite loop when trying to deobfuscate the circuit [97]. In this dissertation,

the SAT-based decamouflgaging method for backside reverse engineering restrict

solution space to acyclic circuits using levelization constraints. Future work can inves-

tigate the possibility of breaking cyclic obfuscation approaches with these levelization

formulation.

In the area of secret key generation, we have proposed using accelerated NBTI-

based aging to induce bias in the threshold voltage of transistors to store the secret

data. One of the advantages of NBTI-based accelerated aging is that it does not

require an additional circuit to induce the aging effect. However, as proposed in [18],

the baking time of the NBTI can be relatively high while the amount of induced

threshold shift in transistors is low. While the HCI-based accelerated aging requires

additional aging circuitry, the stress time is in the order of seconds and can create

voltage shifts of greater than 100mV [18]. Future work can investigate the use of

HCI-based accelerated aging for the proposed key storage: analyzing the amount of

recovery from HCI-based accelerated aging over time, measuring the key reliability,

and quantifying the attacker’s success rate with this approach.

Finally, there is a problem of protecting a design against an untrusted foundry

that tries to insert malicious hardware, which can enable and facilitate certain kinds

of attacks. For example, it has been shown that setting the LSB of the 14th round

of DES implementation to zero helps with recovering the secret key in only two

messages [22]. An untrusted foundry can therefore insert hard-to-detect malicious

hardware to control these data after fabrication and steal the secret information. One

of the state-of-art approaches for addressing the issue of an untrusted foundry is

split-manufacturing, which hides the function from the foundry by withholding upper

131



metal connections. Split manufacturing, however, comes with the additional overhead

of around 1.6x the power consumption, 1.8x delay, and about 3x the area [52]. As a

possible research direction, a new approach can be investigated to provide security

against untrusted foundry in terms of state-of-art security metrics [52], while enabling

the IP integrator/users to program the design and allow the correct functionality after

the fabrication. Therefore, the proposed scheme should encompass hardware that

enables design configurability with minimum hardware overhead, while still providing

sufficient security, i.e. appearing ambiguous enough to the untrusted foundry.
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