1,601 research outputs found

    Towards optimal sensor deployment for location tracking in smart home

    Get PDF
    International audienceAmbient Assisted Living (AAL) aims to ease the daily living and working environmentfor disabled/elderly peopleat home. AAL use information and communication technology based on sensors data. These sensors are generally placed randomly without taking into account the layout of buildings and rooms. In this paper, we develop a mathematical model foroptimal sensor placement in order (i) to optimize the sensor number with regard to room features, (ii) to ensure a reliability level in sensor networkconsidering a sensor failure rate. This placement ensures the targettracking in smart home sinceoptimizing sensorplacement allow us to distinguish different zonesand consequently, to identify the target location, according to the activated sensors

    Differential Evolution-based 3D Directional Wireless Sensor Network Deployment Optimization

    Get PDF
    Wireless sensor networks (WSNs) are applied more and more widely in real life. In actual scenarios, 3D directional wireless sensors (DWSs) are constantly employed, thus, research on the real-time deployment optimization problem of 3D directional wireless sensor networks (DWSNs) based on terrain big data has more practical significance. Based on this, we study the deployment optimization problem of DWSNs in the 3D terrain through comprehensive consideration of coverage, lifetime, connectivity of sensor nodes, connectivity of cluster headers and reliability of DWSNs. We propose a modified differential evolution (DE) algorithm by adopting CR-sort and polynomial-based mutation on the basis of the cooperative coevolutionary (CC) framework, and apply it to address deployment problem of 3D DWSNs. In addition, to reduce computation time, we realize implementation of message passing interface (MPI) parallelism. As is revealed by the experimentation results, the modified algorithm proposed in this paper achieves satisfying performance with respect to either optimization results or operation time

    Clustered wireless sensor networks

    Get PDF
    The study of topology in randomly deployed wireless sensor networks (WSNs) is important in addressing the fundamental issue of stochastic coverage resulting from randomness in the deployment procedure and power management algorithms. This dissertation defines and studies clustered WSNs, WSNs whose topology due to the deployment procedure and the application requirements results in the phenomenon of clustering or clumping of nodes. The first part of this dissertation analyzes a range of topologies of clustered WSNs and their impact on the primary sensing objectives of coverage and connectivity. By exploiting the inherent advantages of clustered topologies of nodes, this dissertation presents techniques for optimizing the primary performance metrics of power consumption and network capacity. It analyzes clustering in the presence of obstacles, and studies varying levels of redundancy to determine the probability of coverage in the network. The proposed models for clustered WSNs embrace the domain of a wide range of topologies that are prevalent in actual real-world deployment scenarios, and call for clustering-specific protocols to enhance network performance. It has been shown that power management algorithms tailored to various clustering scenarios optimize the level of active coverage and maximize the network lifetime. The second part of this dissertation addresses the problem of edge effects and heavy traffic on queuing in clustered WSNs. In particular, an admission control model called directed ignoring model has been developed that aims to minimize the impact of edge effects in queuing by improving queuing metrics such as packet loss and wait time

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    The 3D Deployment Multi-objective Problem in Mobile WSN: Optimizing Coverage and Localization

    Get PDF
    International audienceThe deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the sensor network. Coverage is an important metric reflecting how well the region of interest is monitored. Random deployment is the sim-plest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. In this paper, we study the positioning of sensor nodes in a WSN in order to maximize the coverage problem and to optimize the localization. First, the problem of deployment is introduced, then we present the latest research works about the different proposed methods. Also, we propose a mathematical formulation and a genetic based approach to solve this problem. Finally, the numerical results of experimentations are presented and discussed. Indeed, this paper presents a genetic algorithm which aims at searching for an optimal or near optimal solution to the coverage holes problem. Our algorithm defines the minimum number and the best locations of the mobile nodes to add after the initial random deployment of the stationary nodes. Compared with random deployment, our genetic algorithm shows significant performance improvement in terms of quality of coverage while optimizing the localization in the sensor network
    • …
    corecore