10,432 research outputs found

    Signaling pathways in cell models of Fabry disease nephropathy

    Get PDF
    Chronic Kidney Disease is a leading cause of morbidity, impaired quality of life and premature death in patients with Fabry disease, being of major public health significance. At the cellular level, besides within lysosomes, glycosphingolipids that accumulate in Fabry disease due to alpha-galactosidase A (α-gal A) deficiency localize to membrane microdomains, which play crucial roles in protein clustering, membrane trafficking, and especially cell signaling. The mechanisms by which increased levels of these glycosphingolipids and consequent changes in microdomain dynamics and lysosomal dysfunction all result in cellular and organ injury are not well understood. To effectively study Fabry disease disease mechanisms at the cellular level, I first established and characterized an epithelial kidney cell model of Fabry disease in Madin-Darby canine kidney (MDCK) cells using small interfering RNA (siRNA). I then examined protein dynamics at the plasma membrane of a model raft-associated protein, GFP-GPI, in this model system. Number and Brightness Analysis in live cells showed a significant increase in the oligomeric size of antibody-induced clusters in α-gal A silenced cells compared to control cells (5.08 ± 0.45 vs 2.74 ± 0.24, respectively). To explore possible consequences of these findings in signaling pathways that are relevant to human disease, I first generated human kidney cell models of Fabry disease in immortalized podocytes and tubule epithelial cells (HK-2) applying the genome editing technique of clustered, regularly interspaced, short palindromic repeats and associated endonuclease 9 from S. pyogenes (CRISPR/Cas9). I compared abundance and phosphorylation of relevant signaling proteins through a high-throughput phosphorylation profiling for Fabry disease and control immortalized human podocytes. Fabry disease podocytes showed significant changes in total protein abundance and/or phosphorylation in 59 proteins. Pathway analysis predicted differential signaling of several canonical pathways in Fabry disease podocytes. These studies provided for the first time an understanding of raft protein dynamics and signaling in kidney cells deficient for α-gal A, potentially opening new avenues for biomarker discovery and drug development for Fabry disease nephropathy

    The Placental Transcriptome in Late Gestational Hypoxia Resulting in Murine Intrauterine Growth Restriction Parallels Increased Risk of Adult Cardiometabolic Disease.

    Get PDF
    Intrauterine growth restriction (IUGR) enhances risk for adult onset cardiovascular disease (CVD). The mechanisms underlying IUGR are poorly understood, though inadequate blood flow and oxygen/nutrient provision are considered common endpoints. Based on evidence in humans linking IUGR to adult CVD, we hypothesized that in murine pregnancy, maternal late gestational hypoxia (LG-H) exposure resulting in IUGR would result in (1) placental transcriptome changes linked to risk for later CVD, and 2) adult phenotypes of CVD in the IUGR offspring. After subjecting pregnant mice to hypoxia (10.5% oxygen) from gestational day (GD) 14.5 to 18.5, we undertook RNA sequencing from GD19 placentas. Functional analysis suggested multiple changes in structural and functional genes important for placental health and function, with maximal dysregulation involving vascular and nutrient transport pathways. Concordantly, a ~10% decrease in birthweights and ~30% decrease in litter size was observed, supportive of placental insufficiency. We also found that the LG-H IUGR offspring exhibit increased risk for CVD at 4 months of age, manifesting as hypertension, increased abdominal fat, elevated leptin and total cholesterol concentrations. In summary, this animal model of IUGR links the placental transcriptional response to the stressor of gestational hypoxia to increased risk of developing cardiometabolic disease

    Proteomics in cardiovascular disease: recent progress and clinical implication and implementation

    Get PDF
    Introduction: Although multiple efforts have been initiated to shed light into the molecular mechanisms underlying cardiovascular disease, it still remains one of the major causes of death worldwide. Proteomic approaches are unequivocally powerful tools that may provide deeper understanding into the molecular mechanisms associated with cardiovascular disease and improve its management. Areas covered: Cardiovascular proteomics is an emerging field and significant progress has been made during the past few years with the aim of defining novel candidate biomarkers and obtaining insight into molecular pathophysiology. To summarize the recent progress in the field, a literature search was conducted in PubMed and Web of Science. As a result, 704 studies from PubMed and 320 studies from Web of Science were retrieved. Findings from original research articles using proteomics technologies for the discovery of biomarkers for cardiovascular disease in human are summarized in this review. Expert commentary: Proteins associated with cardiovascular disease represent pathways in inflammation, wound healing and coagulation, proteolysis and extracellular matrix organization, handling of cholesterol and LDL. Future research in the field should target to increase proteome coverage as well as integrate proteomics with other omics data to facilitate both drug development as well as clinical implementation of findings

    Current epigenetic aspects the clinical kidney researcher should embrace

    Get PDF
    Chronic kidney disease (CKD), affecting 10-12% of the world's adult population, is associated with a considerably elevated risk of serious comorbidities, in particular, premature vascular disease and death. Although a wide spectrum of causative factors has been identified and/or suggested, there is still a large gap of knowledge regarding the underlying mechanisms and the complexity of the CKD phenotype. Epigenetic factors, which calibrate the genetic code, are emerging as important players in the CKD-associated pathophysiology. In this article, we review some of the current knowledge on epigenetic modifications and aspects on their role in the perturbed uraemic milieu, as well as the prospect of applying epigenotype-based diagnostics and preventive and therapeutic tools of clinical relevance to CKD patients. The practical realization of such a paradigm will require that researchers apply a holistic approach, including the full spectrum of the epigenetic landscape as well as the variability between and within tissues in the uraemic milieu

    Comprehensive metabolomic study of the response of HK-2 cells to hyperglycemic hypoxic diabetic-like milieu

    Get PDF
    Diabetic nephropathy (DN) is the leading cause of chronic kidney disease. Although hyperglycaemia has been determined as the most important risk factor, hypoxia also plays a relevant role in the development of this disease. In this work, a comprehensive metabolomic study of the response of HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells, to hyperglycemic, hypoxic diabetic-like milieu has been performed. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O-2) were compared to cells in control conditions (5.5 mM glucose/18.6% O-2) at 48 h. The combination of advanced metabolomic platforms (GC-TOF MS, HILIC- and CSH-QExactive MS/MS), freely available metabolite annotation tools, novel databases and libraries, and stringent cut-off filters allowed the annotation of 733 metabolites intracellularly and 290 compounds in the extracellular medium. Advanced bioinformatics and statistical tools demonstrated that several pathways were significantly altered, including carbohydrate and pentose phosphate pathways, as well as arginine and proline metabolism. Other affected metabolites were found in purine and lipid metabolism, the protection against the osmotic stress and the prevention of the activation of the beta -oxidation pathway. Overall, the effects of the combined exposure of HK-cells to high glucose and hypoxia are reasonably compatible with previous in vivo works

    Peripheral blood gene expression reveals an inflammatory transcriptomic signature in Friedreich's ataxia patients.

    Get PDF
    Transcriptional changes in Friedreich's ataxia (FRDA), a rare and debilitating recessive Mendelian neurodegenerative disorder, have been studied in affected but inaccessible tissues-such as dorsal root ganglia, sensory neurons and cerebellum-in animal models or small patient series. However, transcriptional changes induced by FRDA in peripheral blood, a readily accessible tissue, have not been characterized in a large sample. We used differential expression, association with disability stage, network analysis and enrichment analysis to characterize the peripheral blood transcriptome and identify genes that were differentially expressed in FRDA patients (n = 418) compared with both heterozygous expansion carriers (n = 228) and controls (n = 93 739 individuals in total), or were associated with disease progression, resulting in a disease signature for FRDA. We identified a transcriptional signature strongly enriched for an inflammatory innate immune response. Future studies should seek to further characterize the role of peripheral inflammation in FRDA pathology and determine its relevance to overall disease progression

    Scale Drop Disease Virus (SDDV) and Lates calcarifer Herpes Virus (LCHV) coinfection downregulate immune-relevant pathways and cause splenic and kidney necrosis in barramundi under commercial farming conditions

    Get PDF
    Marine farming of barramundi (Lates calcarifer) in Southeast Asia is currently severely affected by viral diseases. To better understand the biological implications and gene expression response of barramundi in commercial farming conditions during a disease outbreak, the presence of pathogens, comparative RNAseq, and histopathology targeting multiple organs of clinically “sick” and “healthy” juveniles were investigated. Coinfection of scale drop disease virus (SDDV) and L. calcarifer herpes virus (LCHV) were detected in all sampled fish, with higher SDDV viral loads in sick than in healthy fish. Histopathology showed that livers in sick fish often had moderate to severe abnormal fat accumulation (hepatic lipidosis), whereas the predominant pathology in the kidneys shows moderate to severe inflammation and glomerular necrosis. The spleen was the most severely affected organ, with sick fish presenting severe multifocal and coalescing necrosis. Principal component analysis (PC1 and PC2) explained 70.3% of the observed variance and strongly associated the above histopathological findings with SDDV loads and with the sick phenotypes, supporting a primary diagnosis of the fish being impacted by scale drop disease (SDD). Extracted RNA from kidney and spleen of the sick fish were also severely degraded likely due to severe inflammation and tissue necrosis, indicating failure of these organs in advanced stages of SDD. RNAseq of sick vs. healthy barramundi identified 2,810 and 556 differentially expressed genes (DEGs) in the liver and muscle, respectively. Eleven significantly enriched pathways (e.g., phagosome, cytokine-cytokine-receptor interaction, ECM-receptor interaction, neuroactive ligand-receptor interaction, calcium signaling, MAPK, CAMs, etc.) and gene families (e.g., tool-like receptor, TNF, lectin, complement, interleukin, chemokine, MHC, B and T cells, CD molecules, etc.) relevant to homeostasis and innate and adaptive immunity were mostly downregulated in sick fish. These DEGs and pathways, also previously identified in L. calcarifer as general immune responses to other pathogens and environmental stressors, suggest a failure of the clinically sick fish to cope and overcome the systemic inflammatory responses and tissue degeneration caused by SDD

    Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    Get PDF
    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions

    Transcriptome and Genome Analyses Applied to Aquaculture Research

    Get PDF
    Aquaculture is an important economic activity for food production all around the world that has experienced an exponential growth during the last few decades. However, several weaknesses and bottlenecks still need to be addressed in order to improve the aquaculture productive system. The recent fast development of the omics technologies has provided scientists with meaningful tools to elucidate the molecular basis of their research interests. This reprint compiles different works about the use of transcriptomics and genomics technologies in different aspects of the aquaculture research, such as immunity, stress response, development, sexual dimorphism, among others, in a variety of fish and shellfish, and even in turtles. Different transcriptome (mRNAs and non-coding RNAs (ncRNAs)), genome (Single Nucleotide Polymorphisms (SNPs)), and metatranscriptome analyses were conducted to unravel those different aspects of interest

    Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment

    Get PDF
    The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.Peer reviewe
    • …
    corecore