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ABSTRACT  

Chronic kidney disease (CKD), affecting 10-12% of the world’s adult population, is associated 

with a considerably elevated risk of serious comorbidities, in particular premature vascular 

disease and death. Although a wide spectrum of causative factors has been identified and/or 

suggested, there is still a large gap of knowledge regarding the underlying mechanisms and the 

complexity of the CKD phenotype. Epigenetic factors, which calibrate the cellular mechanisms 

for transcriptional regulation, are emerging as important players in the CKD-associated 

pathophysiology. In this article we review some of the current knowledge on epigenetic 

modifications and aspects on their role in the perturbed uraemic milieu, as well as the prospect 

of applying epigenotype-based diagnostics and preventive and therapeutic tools of clinical 

relevance to CKD patients. The practical realization of such a paradigm will require that 

researchers apply a holistic approach, including the full spectrum of the epigenetic landscape 

as well as the variability between and within tissues in the uraemic milieu.  
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ABBREVIATIONS 

AMPK  5’ adenosine monophosphate-activated protein kinase 

AT1R  angiotensin II type 1 receptor 

CKD  chronic kidney disease 

CLDN1  claudin-1 

CRP  C-reactive protein 

CVD  cardiovascular disease 

DN  diabetic nephropathy 

DNMT  DNA methyltransferase 

ESRD  end-stage renal disease 

FGF23  fibroblast growth factor 23 

GWAS  genome-wide association study 

5hmC  5-hydroxymethyl cytosine 

HAT  histone acetyltransferase 

HD  hemodialysis 

HDAC  histone deacetylase 

HDACi  histone deacetylase inhibitors 1 

HDM  histone demethylase 

HMT  histone methyl transferase 

IFNG  interferon gamma 

IL-6  interleukin 6 

lncRNA  long noncoding RNA 

MBP  methylation binding protein 

m6A  N6-methyladenosine 

5mC  5-methyl cytosine 

miRNA  microRNA  

mtDNA  mitochondrial DNA 

mTOR  mammalian target of rapamycin 

PD1  programmed cell death protein 1 

piRNA  piwi-interacting RNA 
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RNAi  RNA interference 

RNMT  RNA methyltransferase 

ROS  reactive oxygen species 

SAH  S-adenosylhomocysteine 

SAM  S-adenosylmethionine 

SASP  senescence associated secretory phenotype 

SHC1  SHC adaptor protein 1 

SUMO  small ubiquitin-like modifier 

TGFB1  transforming growth factor B1 

TNF  tumor necrosis factor 

VSMC  vascular smooth muscle cell   
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INTRODUCTION  

Chronic kidney disease (CKD) is a heterogeneous condition with a wide spectrum of functional 

and structural changes leading to successive loss of renal function over time [1]. The prevalence 

of CKD parallels an increased prevalence of type-2 diabetes, psychosocial stress, obesity and a 

sedentary life style [2]. Chronic kidney disease may thus be seen as a reflection of the ”burden 

of life style” where epigenetic alteration of gene expression act as a dynamic regulator of 

responses to change in environmental conditions [3]. Consequently, associations between the 

uraemic phenotype and the uraemic epigenotype deserve further research. An estimated 10-

12% of the world’s adult population is affected by CKD and although a large proportion is 

distributed among the elderly, CKD exists across all age groups [4]. Regardless of age, patients 

with CKD face an imminent risk of either progressing to end-stage renal disease (ESRD) and/or 

developing cardiovascular disease (CVD); both associated with decreased survival [5]. The 

mortality risk is proportional to the decline in renal function and whereas it is diminished by 

renal transplantation, dialysis provides only a modest risk reduction and mortality risk is 

actually higher soon after initiation of hemodialysis (HD) [6]. Dialysis patients display an 

annual mortality rate of 20%, which is comparable to metastatic colon and ovarian cancer [7], 

and the risk of death due to CKD-associated CVD is more than 20-fold compared to the general 

population [5]. Even patients with early-stage CKD have a dramatically increased risk of 

mortality and most patients will die before they reach the terminal stage of the disease [5]. Why 

CKD is associated with such a poor prognosis and large inter-individual variation with respect 

to comorbidities, rate of disease progression and survival [8], is still not well understood. This 

is reflected by the paucity of established disease biomarkers and efficient treatment options. 

The underlying mechanisms remain incompletely understood, though it is likely that both 

genetic and epigenetic factors contribute to the observed variability. 

 Recent developments in genomic technologies have offered significant 

opportunities to extract novel information in an unbiased manner, which may help identify 

individuals at higher risk of developing CKD and its associated complications. Indeed, the 

nephrology community has put a lot of faith and effort into multi-consortia genome-wide 

association studies (GWASs) to illuminate common genetic variants in potential pathogenic 

pathways [9-16]. GWAS-extracted gene candidates have, however, hitherto not given an 

explanation to the  considerable variability observed between CKD patients [17]. This “missing 

heritability” may partly be due to unidentified rare variants, but also gene-environment 

interactions and acquired epigenetic changes [18]. Epigenetic changes are dynamic and 
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influenced by external and internal environmental cues [19, 20], unlike the genetic information, 

which is “locked” in the primary genomic sequence from birth (disregarding spontaneous 

mutations). This is important, as epigenetic regulation of the genome allows genes to become 

actively expressed or repressed, which may in turn translate into different phenotypic traits. 

Any change in epigenetic regulation that deviates from a healthy state may therefore be of 

functional importance in disease development [21, 22]. Knowledge of epigenetic changes in 

human disease has expanded [23, 24]. In this review, we will provide an updated summary of 

some basic concepts of epigenetic modifications and elaborate upon their role in the uraemic 

milieu, in particular how these changes relate to premature vascular disease. Although the 

literature remains sparse, epigenetic changes as potentially modifiable targets in the treatment 

of CKD will also be discussed. 

 

EPIGENETIC MODIFICATIONS 

Epigenetic modifications are, by definition,  stably heritable (through replication and cell 

division) traits which modulate the physical structure of DNA, without affecting the primary 

nucleotide sequence [25]. 

These modifications may act transiently, or persistently, as a temporal cellular memory over 

time, to provide means for diversified gene expression programs and phenotypes in different 

cell types in multicellular organisms. Such spatio-temporal specificity is integral to a range of 

cellular developmental processes (e.g. cell differentiation and cell maturation during early 

development) as well as homeostatic processes. The most well-studied epigenetic mechanisms 

include covalent posttranslational modifications of histones and DNA cytosine methylation, 

activities which are closely allied with non-coding RNAs, including microRNAs (miRNAs) 

and long noncoding RNAs (lncRNAs). 

Histone modifications 

In the human cell nucleus, DNA exists in tightly folded and organized nucleosomal structures, 

primarily complexed with histone proteins, of which H2A, H2B, H3 and H4 are the most 

common. These proteins are assembled as octamers, each with a segment of DNA coiled around 

it, forming the nucleosomes, which are packaged into chromatin macromolecules. The 

nucleosome allows coordination of the physical structure mainly through its extruding N-

terminal ends, but also via their C-terminal regions, where histone tails have amino acid 

residues that are accessible for enzymatic modifications. Well-characterized histone marks 
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include trimethylation (e.g. H3K27me3, H3K4me3 and H3K36me3), demethylation, 

acetylation (e.g. H3K27ac, H3K14ac), ubiquitination and SUMOylation of lysine residues, as 

well as methylation of arginines and phosphorylation of serine residues [26, 27]. These 

enzymatic modifications are, among others, mediated via specific histone methyl transferases 

(HMTs) and demethylases (HDMs), histone acetyltransferases (HATs) and deacetylases 

(HDACs, including sirtuins), ubiquitin ligases and de-ubiquitinases, small ubiquitin-like 

modifier (SUMO) ligases and proteases, and kinases and phosphatases. 

Histone modifications regulate gene activity by making the chromatin more or 

less condensed, and hence more or less accessible for transcription factors, but also by defining 

chromatin structure and its temporal and spatial context in the nucleus [28]. As an example, 

acetylation of amino acid residues in the histone tail often propagate a less condensed, 

transcriptionally active state [29], while methylation at the same or other sites may correlate 

with a more condensed, transcriptionally inert, structure. In addition to regulating gene activity, 

histone modifications are crucial for other biological processes, such as initiating DNA 

replication by dimethylation of H3K79, and chromosome condensation during mitosis, which 

is mediated by a cascade of histone modifications, including phosphorylation of H3S10 by the 

Aurora B kinase [30, 31]. Histone modifications also play a vital role in the DNA repair process 

by marking sites of DNA damage; as an example gamma-H2AX is extensively phosphorylated 

in response to double strand breaks [32, 33]. The integration of all possible combinations of 

different histone tail sites with different modification provides an enormous complexity to the 

epigenetic regulation, sometimes referred to as a histone code [26]. The complexity becomes 

even greater when adding the close cross-talk existing between histone modifications, DNA 

methylation and non-coding RNAs (e.g. reviewed in [34]).  

Chromosomes are also modulated at a higher level. Chromatin remodeling, i.e how chromatin 

is folded and organized within the nucleus, is a rapidly growing field of research, as its 

implications in development and disease are increasingly recognized. Recent development of 

chromosome conformation capture (3C) technologies has made high resolution mapping and 

visualization of 3D chromatin architecture possible [35], but has at the same time shown that 

the mechanisms behind chromatin organization are substantially more complex than first 

anticipated [36]. To regulate gene activity and other key biological processes, several 

components, such as transcription factors, architectural proteins and ncRNAs, collaborate to 

modulate the chromatin architecture at different levels. For example, chromatin loops are 

formed to enable long-distance enhancer-promoter interactions [36] and at a higher level, 
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chromosomes are being directed to distinct territories within the nuclear space. Mutations in 

genes encoding ATP-dependent chromatin remodelling enzymes, often referred to as Snf2- or 

SWI/SNF-related enzymes, occur at a high frequency in many cancers and have also been 

associated with a number of complex diseases (reviewed by [37]). For an extensive review on 

the organization and function of the 3D genome see [38]. 

DNA methylation 

Active DNA methylation and demethylation have important functions in normal and 

pathological cellular processes and contribute to development and differentiation of cells and 

tissues, including tissue-specific gene expression, genomic imprinting, silencing of retroviral 

elements and X chromosome inactivation [39-41]. DNA methylation involves the addition of 

methyl groups onto the 5′-position of cytosine (5mC) rings by DNA methyltransferases 

(DNMTs) and occurs either to maintain original methylation patterns during replication, or to 

produce de novo DNA methylation. One effect is gene transcription silencing via recruitment 

of repressor proteins or prevention of transcription factor binding to DNA [34].  

DNA methylation generally appears within the context of CpG dinucleotides. 

When CpGs become methylated, methylation-binding proteins (MBPs) that bind to the site 

generate a transcriptional repressive mode via recruitment of chromatin remodeling factors 

(including HDACs). Most CpG sites within the mammalian genome are methylated, including 

CpGs found in and between genes, where intergenic DNA methylation is known to play an 

important role to repress transcription of transposable and viral elements or other potentially 

harmful genetic elements. The function of gene body DNA methylation is however, still unclear 

[42]. In contrast, CpG islands, i.e. regions of approximately 1000 base pairs that are enriched 

for CpG sites, are commonly depleted of methylated DNA, allowing an open chromatin 

structure and binding of transcription factors. CpG islands are highly conserved between mice 

and humans [43] and approximately 70% of all gene promoters, in particular promoters for 

housekeeping genes, are found in CpG islands [44]. In addition, conserved regions called CpG 

island shores, located up to 2 kb from CpG islands, show tissue-specific methylation patterns, 

which correlate with reduced gene expression [45]. The effects of DNA methylation on the 

genome may be counteracted by DNA demethylation reactions [46]. 5-hydroxymethyl cytosine 

(5hmC) is the first oxidative product in this process [46], shown to correlate with active gene 

transcription [47, 48]. As commonly utilized methods for detecting DNA methylation, 

including sodium bisulfite sequencing, do not discriminate between 5mC and 5hmC, all reports 

on 5mC assessed with bisulfite-mediated methods may be confounded by the potential presence 
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of 5hmC. Thus, new methods such as oxidative bisulfite sequencing have been developed to 

allow discrimination between the two [49].  

RNA methylation 

RNA methylation is the key component of the epitranscriptome. Although the phenomenon has 

been known for over 60 years [50], it remains one of the least understood aspects of epigenetic 

regulation. RNA methylation is found in a wide range of RNA species (including transfer RNA, 

ribosomal RNA, messenger RNA, transfer-messenger RNA, small nuclear RNA, small 

nucleolar RNA, miRNA, and viral RNA) as the result of the activities of distinct RNA-

methyltransferases (RNMTs) [51]. The best characterized eukaryotic methylation of RNA is 

N6-methyladenosine (m6A), although 5mC is common. Recent data suggest that m6A and 5mC 

RNA methylation affect the regulation of a plethora of metabolic processes, including RNA 

stability and translation, and that aberrant RNA methylation contributes to the aetiology of 

human disease [52]. Recent discoveries have shed new light on the importance of m6A mRNA 

methylation for the epitranscriptomic regulation of circadian clock genes [53] and the 

subsequent impact on metabolism. Fustin and co-workers have revealed that internal m6A RNA 

methylation of clock gene transcripts is a key regulator of circadian rhythm and that period 

length is inversely proportional to the methylation potential. They have also shown that the 

circadian cycle is dramatically lengthened following inhibition of m6A methylation by siRNA-

mediated knockdown of the m6A methylase Mettl3 and that it is shortened by Mettle3 

overexpression. 

RNA methylation has been postulated as a basis for epigenetic transcriptional memory in 

response to a previous stimulus, which can produce heritable changes in the response of an 

organism to that stimulus. A sequitur from this would be a quantitative, or qualitative change 

in gene expression. Significantly, direct evidence for this lies in chromatin changes regulating 

binding of RNAPII, which are conserved across taxa [54]. A role for RNA methylation has yet 

to be established in renal disease, though one immediate area it may manifest in is immune 

function, where post transcriptional regulation of T cell memory (and by extension 

transcriptional memory) by T cell miRNAs and methylation may be dysregulated. Precedence 

for this has already been established in SLE, where it contributes to tissue damage and 

autoantibody formation [55].  

Adenosine-to-Inosine RNA editing 
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Another important post-transcriptional process is RNA editing, which has the ability to alter 

the nucleotide sequence of both coding and non-coding RNAs and is a widespread phenomenon 

occurring in more than half of the human transcriptome [56, 57]. The most common form of 

editing in mammals is adenosine-to-inosine (A-to-I) conversion and may either modify codons, 

or insert or remove splice sites, and hence alter the amino acid sequence or length of a protein. 

As inosines have properties mimicking those of guanosines, A-to-I editing may also disturb 

RNA-RNA base pairing and change the secondary structure of a transcript [58]. In non-coding 

RNAs, such as miRNAs that act by binding to other RNA targets, changes of the nucleotide 

sequence may also have implications on binding specificity. The A-to-I conversion is catalyzed 

by enzymes of the adenosine deaminase acting on RNA (ADAR) family, which are essential 

for normal development [56, 59] and abnormal ADAR activity has been associated with many 

human diseases including vascular disease [60], cancer, neurological disorders, metabolic 

diseases, viral infections and autoimmune disorders  [61]. Drugs targeting the ADAR family of 

enzymes may seem as a promising way to future therapies. However, as the magnitude of RNA 

editing sites in the human genome has only recently been understood, and knowledge about the 

biological processes where ADARs are involved is limited, unwanted side effects using this 

approach may be considerable. An alternative strategy could be to target specific ADAR 

substrates, which was demonstrated by Tariq and co-workers, who managed to repress ADAR 

activity by altering RNA editing in a substrate-specific manner [62]. 

 

Non-coding RNAs 

miRNA 

The small (20-24 nucleotides) non-coding miRNAs add another layer of complexity to the 

regulation of gene expression that can have profound effects on  biological pathways [63]. The 

miRNAs are an evolutionary conserved class of single-stranded, non-coding RNAs that 

regulate gene expression at the posttranscriptional level. As part of the RNA interference 

(RNAi) system, miRNAs merely have a negative regulatory function, either by degradation of 

target mRNA by targeting its 3’ untranslated region and/or by inhibition of protein translation 

[64]. To date, over 1800 miRNAs have been identified in the human genome (Reference: 

www.miRbase.org), and they are estimated to affect the expression of more than 50% of the 

protein-coding portion of the human genome [65-67]. The miRNA coding sequences typically 

exist in intergenic areas but can also be found in sense or antisense orientation within introns 
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of genes. Some miRNAs are clustered in the genome and are most likely to be transcribed 

together [68].  

One specific target gene can be regulated by many different miRNAs, and one single miRNA 

may alter the expression of a large number of target genes, often involved at different levels in 

a signaling cascade of a particular biological pathway. Indeed, the majority of miRNAs exert 

their effects through the rather modest reduction of a large number of targets which altogether 

give alterations in cellular phenotype [65]. Thus, most miRNAs are highly pleiotropic and act 

differently depending on the cell type. On the other hand, the regulation of miRNAs can be 

conducted via multiple steps, such as gene transcription, processing, transport and target 

recognition. miRNAs are also regulated by long non-coding RNA (lncRNA) [69] and mRNA 

targets can reciprocally control the level and function of miRNAs [67].  

In addition, both histone modification and methylation status of miRNA 

promoters influence miRNA expression and action [70, 71]. As part of this epigenetic-miRNA 

regulatory circuit, miRNAs may in turn induce DNA methylation [72] and control the 

expression of DNMTs and HDACs [73], thereby altering gene transcription at a higher level.  

Adding to the complexity of miRNA regulation is also that, for many miRNAs, there are several 

length and/or sequence isoforms, termed isomiRs [74], that differ either in the 5’- or 3’ ends (5’ 

isomiRs and 3’ isomiRs, respectively), or harbour internal nucleotide substitutions 

(polymorphic isomiRs) as compared to the canonical sequence. The polymorphic isomiRs are 

often a result of A-to-I RNA editing [75] and may alter target specificity if located in a seed 

region, i.e the sequence essential for the binding of the miRNA to the mRNA. Several such 

alterations have been implicated in human disease. 

 

lncRNA and piwi-interacting RNA (piRNA) 

lncRNAs comprise non-coding RNA species over 200 nucleotides long. They are both inter- 

and intragenically derived and show differential tissue specific expression [76]. These RNAs 

differ from miRNAs because they regulate gene expression not only at the post-transcriptional 

but also at the transcriptional level, as well as in post-transcriptional processing of miRNA, 

imprinting and DNA methylation, chromatin remodeling, cellular reprogramming, intracellular 

trafficking and cellular stress and damage responses [77].  

Another class of small non-coding RNA molecules, the 26–31 nucleotides long piRNAs, also 

contributes to the non-coding RNA regulatory circuit in animal cells [78]. An important role 
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for piRNAs seems to be gene silencing of transposons via recruitment of DNA 

methyltransferases to transposable elements. [79]. The understanding of the RNA 

epitranscriptome and the function of non-coding RNAs in different cell types and states will 

likely improve rapidly as the development of single-cell RNA sequencing techniques advance 

[80]. For a comprehensive review on e.g. the functional role of lncRNAs in the kidney, see 

Lorenzen and Thum [81]. 

 

DRIVERS OF EPIGENETIC CHANGES IN THE URAEMIC MILIEU  

Decreased renal function generates a toxic internal milieu typified by hyperhomocysteinemia 

[82], chronic inflammation [83], oxidative and glycosative stress [84], gut dysbiosis [85], 

hyperphosphataemia [86] and dyslipidaemia [87] that increases the risk of adverse outcomes, 

including premature vascular ageing and CVD [88, 89]. The uraemic milieu may be linked to 

alterations in epigenetic regulation of cellular and physiological homeostasis [90, 91], Figure 

1. 

Hyperhomocysteinemia 

Homocysteine metabolism involves conversion of homocysteine to S-adenosylhomocysteine 

(SAH) via the derivatives methionine and S-adenosylmethionine (SAM). Whereas the latter 

serves as a universal methyl-group donor in many different methylation reactions, including 

DNA methylation, SAH is a competitive inhibitor of methyltransferases and may, thus, repress 

methylation reactions. In CKD, circulating homocysteine levels are markedly elevated  

[82] and predict cardiovascular outcome [92]. Although the homocysteine metabolism pathway 

is reversible, hyperhomocysteinemia favour SAH formation. Therefore, an accumulation of 

homocysteine is associated with DNA hypomethylation [93]. In line with this, studies on 

hyperhomocysteinemia in HD [94] or patients with CVD [95] show that those with elevated 

levels of SAH have a higher degree of global DNA hypomethylation compared to controls. 

Indeed, folate therapy, which lower homocysteine, partly restored DNA methylation in HD 

patients [94]. Yet others have conducted global DNA methylation analyses on CKD stage 2-4 

patients and observed no associations between global DNA methylation and either 

homocysteine or carotid intima-media thickness [96]. As the discrepancy between these studies 

is likely due to differences in study design and methodology for DNA methylation assessment, 

it is possible that currently improved techniques will explain these paradoxical observations. 

Moreover, SAH, rather than homocysteine per se, has been suggested as the main culprit in 
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hyperhomocysteinemia-associated CVD risk [97]. Recent data suggest that SAH, through DNA 

hypomethylation, may mediate an enhanced pro-inflammatory state with elevations in 

intermediate monocyte cell counts [98]. Whether stimulation of DNA hypermethylation in 

monocyte subsets (by supplementation of SAM) will generate reduced intermediate monocyte 

cell counts remains to be proven. 

 

Inflammation 

Many CKD patients display persistently raised levels of inflammatory biomarkers, e.g. C-

reactive protein (CRP), tumor necrosis factor (TNF) and interleukin 6 (IL-6), [99], which are 

associated with oxidative stress, protein energy wasting, endothelial dysfunction and vascular 

calcification, and serve as predictors of outcome [99]. Pro-inflammatory cytokines trigger 

changes in chromatin structure [100], regulate expression of DNMTs [101] and induce 

hypermethylation in vitro [91]. Similar to what has been observed in non-CKD populations 

[102, 103], chronic inflammation associates with DNA hypermethylation in CKD stage 3-5 and 

HD patients [91]. In addition, longitudinal observations have shown associations between both 

DNA hypermethylation and all-cause and CVD-mortality in incident dialysis patients [91]. 

However, the observed inflammation-associated hypermethylation may be a cell-specific 

phenomenon. Like other pro-inflammatory conditions, CKD is associated with a pronounced 

shift in the monocyte subset distribution, from classical towards intermediate and non-classical 

monocytes, and increased intermediate monocyte counts have been shown to predict 

cardiovascular events in CKD [104, 105]. Notably, intermediate monocytes are enriched for 

hypo- rather than hypermethylated loci compared to classical and non-classical monocytes [98]. 

This is probably also true in CKD as uraemic serum stimulates haematopoietic stem cells into 

a larger fraction of intermediate monocytes, as compared to control conditions, with an 

increased number of hypomethylated loci [98]. As several of these differentially methylated 

loci are linked to CVD, infections and/or immune diseases a potential link between uraemic 

toxins and reprogramming of monocytes into a pro-inflammatory cell profile via DNA 

methylation changes seems likely.  

Recent evidence also points to a role of miRNA dysregulation in impaired monocyte subset 

differentiation in dialysis patients receiving intravenous iron therapy [106]. Indeed, the uraemic 

environment per se is able to alter miRNA profiles involved in inflammatory pathways [107]. 

In general, total plasma levels of small RNA, including miRNA, were shown to be significantly 

lower in severe CKD, possibly due to increased degradation [108, 109]. In spite of this 
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observation, circulating levels of particular miRNAs, e.g. miR-150, miR-143, miR-145, and 

miR-223, were reported to be significantly higher in CKD patients compared with healthy 

subjects, illustrating the specificity of miRNA up- and down-regulation [110]  

Oxidative stress 

Oxidative stress, a redox imbalance where the  formation of reactive oxygen species (ROS) is 

increased and/or ROS degradation by the antioxidant system is reduced, is a prominent feature 

of CKD linked to a variety of disorders, including atherosclerosis and fibrosis [84]. Epigenetic 

marks may be implicated in this pathogenic association. For instance, the p66Shc gene (SHC1), 

encoding the p66Shc stress-response protein implicated in ROS metabolism, has been shown 

to be hypomethylated in dialysis patients, which may result in increased levels of p66Shc and 

risk for oxidative stress-mediated arteriosclerosis [111]. Oxidative stress is linked to epigenetic 

changes and active gene transcription via 5hmC [112], possibly in association with 

inflammation [113]. On the other hand, ROS recruit DNMT1 and SIRT1, associated with 

repression of gene transcription, to CpG islands [114]. Increased oxidative stress also decreases 

the DNA hydroxymethylome in vitro and in vivo [115]. Considering the role of hmC as an 

intermediate in demethylation reactions, this would intuitively imply that oxidative stress 

prevents hypomethylation and promotes hypermethylation on a global level. This may affect 

specific genes differently depending on their regulation by methylation. Considering the 

contrasting data on methylation in CKD, controlling for oxidative stress and DNA 

hydroxymethylation may be a way to reconcile these reports.  

Dyslipidaemia  

Significant alteration in lipoprotein metabolism is a typical feature of the uraemic milieu and is 

associated with increased cardiovascular risk [87]. The effect of hypercholesterolemia on 

chromatin structure has been documented for over 30 years [116] and studies made both in 

apolipoprotein E null mutant mice and on human monocyte cell lines have demonstrated a link 

between dyslipidemia and DNA methylation changes [117]. Data generated from two large 

cohort studies, the REGICOR study (discovery cohort) and Framingham Offspring Study 

(validation cohort), has identified associations between serum lipid profiles, including 

cholesterol, HDL-cholesterol and triglycerides, and differential DNA methylation on nine 

genes (SREBF1, SREBF2, PHOSPHO1, SYNGAP1, ABCG1, CPT1A, MYLIP, TXNIP, 

SLC7A11) and two intergenic regions [118]. Some of these findings, e.g. SREBF1, ABCG1 

and CPT1A, are consistent with previous studies on plasma lipid levels in relation to DNA 
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methylation, using both global, candidate gene and whole-genome approaches, recently 

reviewed by Braun et al [119]. In contrast, the relationship between histone modifications and 

blood lipids is not well studied, as is the impact of uraemic dyslipidemia on epigenetic changes.  

Overall, its impact on the epigenetic landscape remains to be defined in any significant detail 

in relation to CKD. 

Hyperphosphataemia  

Hyperphosphatemia and disturbances in bone-mineral metabolism including the fibroblast 

growth factor 23 (FGF-23)/klotho axis are frequent features of the uraemic phenotype that are 

associated with premature vascular aging [88]. The renal klotho protein is down-regulated in 

the toxic uraemic milieu [120] and recent evidence suggest that uraemic toxins may affect KL 

expression via effects on its associated epigenotype. Sun et al [121] reported that inhibition of 

KL gene expression by uraemic toxins correlates with gene hypermethylation. Since this study 

shows that accumulation of uraemic toxins can silence KL expression via hypermethylation, 

this opens a route for the epigenetic targeting of specific genes. Indeed, Rhein (a compound 

isolated from rhubarb with known renoprotective effects) was recently reported to reverse KL 

repression via promoter demethylation and protected mice with CKD against kidney and bone 

injuries [122] Thus, targeting the epigenome may have therapeutic implications for disease 

states associated with premature aging and low KL expression. Whether hyperphosphataemia 

and premature vascular calcification are related to changes in the epigenome remains unproven 

and controversial. Montes de Oca et al [123] have shown that high phosphate levels induce 

methylation of the smooth muscle cell-specific protein SM22α promoter and loss of its activity. 

Since this was accompanied by calcification, increased alkaline phosphate activity and gain of 

the osteoblast transcription factor Cbfa1, it can be speculated that high phosphate levels, at least 

in part, promote vascular calcification via epigenetic effects. On the other hand, Uchiyama et 

al [124] reported that although a phosphate-rich diet caused hypermethylation of the vitamin D 

receptor-, and calcium-sensing receptor genes in rat parathyroid glands, the degree of 

hypermethylation was of such a low magnitude that it was insufficient to down-regulate gene 

expression. Thus, the effects of a high phosphate diet on the epigenotype need further studies. 

Experimental data are supportive of a direct effect of hyperphosphatemia on the 

expression of specific miRNA. In cell culture models of human vascular smooth muscle cells 

(VSMCs), the addition of phosphate resulted in a decreased expression of miR-30b, miR-133 

and miR-143; miRs targeting Smad1 and Osx [125]. Similarly, both in vitro (VSMC) and in 

vivo (rodent model of CKD), with high Pi inducing lower expression levels of miR-133b and 
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miR-211 (targeting RUNX2) and upregulation of miR-29 [126]. Functional experiments 

modifying these specific miRNAs further confirmed their regulating role in the calcification 

process.  

Gut dysbiosis  

The link between epigenetic mechanisms in the human microbiota and how it affects human 

disease is under intense investigation [127]. Various metabolites from the metabolically active 

biomass of gut microbiota can interact with the mammalian epigenetic machinery, including 

histone modifications and DNA methylation [128]. It is of interest that CKD patients display a 

distinct gut microbial metabolism [129] and gut microbiota is associated with increased blood 

pressure in animal models [130]. Moreover, decreasing the gut microbiota biomass by 

antibiotics affect blood pressure [131]. However, the consequences of gut dysbiosis and effects 

on epigenetic modifications in the context of CKD are not clear and, thus, the possibility of 

using therapeutics targeting gut microbiota, e.g. probiotics, and epigenetic changes in patients 

with CKD remains to be examined. 

 

EPIGENETIC CHANGES: IMPACT ON PHENOTYPE AND FUNCTION  

Epigenetics research, including maladaptive regulation of cellular programming, memory and 

adaptations in relation to human disease, has taken a great leap forward during the past decade 

and the role of epigenetics has been elucidated in a number of human diseases such as cancer 

[132], psychiatric and neurological disorders [34], diabetes mellitus [133], rheumatoid arthritis 

[134] and atherosclerosis [135]. Advances in technologies for chromatin immunoprecipitation 

sequencing, genome-wide DNA methylation analyses and RNA sequencing have facilitated 

this development. The impact of uraemia on epigenetic changes and subsequent genomic 

dysregulation, is still a rather novel field. In the sections below epigenetic studies that relates 

to CKD phenotype are discussed. 

Epigenetics in CKD and disease progression 

 

Epigenetic dysregulation in renal physiology and disease progression 

A growing number of studies have revealed the involvement of miRNAs in the development 

and progression of both CKD and CVD [136, 137]. MicroRNAs play a critical role in renal 

physiology, including kidney development and function [138]. Loss of miRNA  by selective 

deletion of the miRNA-processing enzyme Dicer in mouse podocytes leads to severe 



17 
 

glomerulopathy, proteinuria and loss of renal function [139, 140]. Epigenetic aberrations may 

also play a role in renal fibrosis, a hallmark of kidney disease progression. Transforming growth 

factor B1 (TGFB1) is a major regulator of renal fibrosis, and its signaling is tightly regulated 

by the expression of many specific miRNAs  [138]. Moreover, particular miRNAs modulate 

the systemic, as well as intra-renal inflammatory response [141]. Inflammation and fibrosis are 

mediated by Smad3 signaling, which has been shown to interact with lncRNAs, including Arid2 

[81] and DNA methylation changes may also contribute. A genome-wide DNA methylation 

study of human renal tubule samples from healthy subjects and CKD patients demonstrated an 

enrichment of methylation changes for several genes known to be related to kidney fibrosis, 

including genes encoding collagens. These changes also correlated with downstream 

transcription levels [142]. Altogether, there is a potential role for an epigenetically dysregulated 

gene transcription of core pro-fibrotic pathways involved in CKD development.  

 

Epigenetic changes in diabetic nephropathy (DN) 

Epigenetic changes are clearly implicated in pathogenic processes causing DN [143]. For 

instance, studies on diabetic mice indicate that histone modifications and DNA methylation 

have protective effects on kidney damage and diabetic kidney disease via Sirt1 deacetylase 

activity [144]. Deacetylation of histone H3 and H4 triggers subsequent CpG methylation of the 

Claudin-1 (Cldn1) gene, and lower SIRT1 and higher CLDN1 expression in proximal tubule 

and glomerular regions were associated with heavy proteinuria in patients with DN [144]. Other 

studies suggest that SIRT1 maintains actin cytoskeleton in damaged podocytes via 

deacetylation of cortactin [145]. In addition, altered DNA methylation patterns causes mRNA 

expression changes in the proximal tubules in diabetic mice [146] and aberrant expression of 

several miRNAs, including miR-29a/b/c, Let-7b, miR200a and miR-21 seem to modulate pro-

fibrotic pathways associated with DN [147-150]. 

 

DNA methylation in the uraemic milieu 

Pioneering analyses made on global DNA methylation changes in CKD patients showed both 

DNA hypo- [94, 111] and hypermethylation [91], but without specifying any loci. More recent 

genome-wide analyses with single-nucleotide resolution have identified the precise locations 

of differentially methylated loci associated with CKD. One of these DNA methylation profiling 

studies, using the Illumina HumanMetylation27 Bead Chip Array, compared saliva-extracted 

DNA from diabetes patients with and without DN and were able to pinpoint 187 differentially 

methylated genes [151]. About 20% of these genes were previously reported to be involved in 
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kidney development, DN or dialysis-induced changes. Smyth et al [152] evaluated whole-blood 

DNA from 255 patients with CKD and 152 individuals without evidence of CKD using the 

larger array Illumina Infinium HumanMethylation450 BeadChip. Twenty-three genes showed 

significant methylation changes associated with CKD of which the strongest biological 

candidates included CUX1, ELMO1, FKBP5, INHBA-AS1, PTPRN2 and PRKAG2. Two of 

these, ELMO1 and PRKAG2, also showed altered gene transcription. 

 

Premature vascular ageing 

Accelerated biological ageing and the epigenetic clock  

As a prematurely aged phenotype is a prominent feature of CKD [88, 89] clarification of how 

factors in the uraemic milieu  affect the epigenetic clock and age-associated loci deserve 

attention [153]. Cellular attrition occurs at genetic and epigenetic levels during ageing of 

healthy individuals. The epigenetic landscape of normal ageing is featured by a general pattern 

of global DNA hypomethylation [19, 23, 154] and DNA damage-induced loss of 

heterochromatin [155].  In human kidneys, miRNA regulation of biological age and health span 

has been associated with expression levels of miRs 125a-5p, 125b and 217 [156]. These in turn 

are regulated by DNMT activity at their coding loci [157, 158]. This cross-talk is believed to 

be both central for enabling adaptation of renal physiology via changes in cellular metabolism 

and to its dysregulation in a uraemic milieu, where changes in the cellular methylome will have 

a direct effect of the activity of these miRNAs and hence age related renal function. Ageing is 

characterized by both inflammation and oxidative stress as well as a gradual change in the DNA 

methylome,  which lead to increased methylation within the CpG islands and a loss of 

methylation at sites outside  [23, 154]. This genome-wide dysregulation of DNA methylation 

patterns correlates with chronological age in various tissues [159-164] and changes in gene 

expression [165, 166]. Importantly, the identification of site-specific DNA methylation ageing-

patterns spurred researchers to construct quantitative models to predict age [165, 167-169], 

which were recently used as a tool to study the relationship between estimated epigenetic age 

and disease. Individuals with a higher epigenetic than chronological age were at increased risk 

for all-cause mortality [169] and an elevated hepatic epigenetic age strongly correlated with a 

high body mass index [170]. The relation between epigenetic and chronological age in CKD 

has not been studied, but should be highly relevant due to the premature ageing phenotype 

typical for CKD [88, 89]. The underlying mechanisms are unclear, but a plausible explanation 

is that the toxic uraemic milieu impairs regulation of the ageing process via inflammation, 
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resulting in increased cellular senescence, activation of the senescence associated secretory 

phenotype (SASP), oxidative stress and telomere attrition and/or decreased  expression of anti-

ageing factors [89, 171]. These pathways are likely mediated, at least partly, via epigenetic 

regulation of ageing processes. Telomere length, which is linked to ageing and stem cell 

dysfunction, is regulated by histone modifications and DNA methylation [172]. As telomere 

attrition has been observed following dialysis initiation [173] and associate with mortality in 

prevalent HD patients [174] the possibility of an epigenetic dysregulation of telomere length in 

uraemia deserves further attention.  

Vascular disease 

Premature vascular ageing in CKD patients is an example of segmental ageing; i.e. the 

biological age of organs in the same individual differ markedly [175], probably as a result of 

tissue-specific epigenetic changes. Emerging data infer strong links between epigenetic 

dysregulation and individual susceptibility to CVD [22]  and dysregulated DNA methylation 

patterns of human atherosclerosis-related genes have been reported in HD patients [176]. In 

mice, the first evidence for the involvement of miRNAs in vascular biology has come from 

studies showing that deletion of  the Dicer enzyme resulted in impaired blood vessel and yolk 

sac formation [177]. The function of Dicer in endothelial cells was confirmed by silencing Dicer 

expression in cultured endothelial cells, which resulted in angiogenesis defects [178]. Until 

now, different miRNAs have been shown to be involved in vascular homeostasis and 

pathophysiology, including (not exhaustive list) miR-21, miR-34a, miR-126, miR-146a, miR-

210 and miR-150 [179-181]. In CKD, different miRNAs are described to be involved in 

vascular disease in HD patients and in a rat model of CKD, including miR-21, miR-34a, and 

miR-126 [182, 183] [184]. Interestingly, miRNAs also play a role in blood pressure control and 

the renal and cardioprotective effects of RAAS blockade are at least partially mediated by 

specific miRNAs [185, 186]. 

 

 

THE SEARCH FOR NOVEL BIOMARKERS IN CKD 

It is important to realize that there are a number of limitations associated with global epigenetic 

profiling studies and that such results must be interpreted with caution. One limitation is that 

the epigenome often differs between tissues. Thus, the methylation pattern of blood derived 

DNA may not be reflecting the pattern of e.g. the varying cell types in renal tissue. Other 
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limitations may be associated with the analysis method, or depend on insufficient sample size 

and lack of detailed phenotype data. In addition, many studies are confounded by reverse 

causality and it is often hard to distinguish causation from correlation. 

 

Despite intense research, novel biomarkers that perform better and are more specific and cost-

effective than kidney biopsy and established biomarkers such as S-creatinine, and albuminuria 

are still lacking [187]. Deciphering the role of epigenetic modifications and miRNA in CKD 

disease progression and complications may be one feasible way to find improved prognostic 

biomarkers and novel therapeutic approaches. Recent findings on methylation sites associated 

with DN [151], CKD [152] and CKD-associated CVD [176] have suggested candidate genes 

that may be evaluated as predictive biomarkers of disease susceptibility and prognosis. In 

ANCA-associated vasculitis, gene-specific DNA methylation changes have been shown to 

predict remission [188]. On the other hand, as these studies were conducted on blood-derived 

DNA, the reported loci do not necessarily reflect causal mechanisms due to tissue-to-tissue and 

even cell variations of epigenetic patterns. To reveal pathogenic mechanisms with biological 

relevance, findings need to be considered in relation to their presumed site of action. 

Importantly, a large fraction of the candidates reported by Smyth et al [152] seemed to overlap 

findings in the kidney [142], suggesting the potential of using these as clinically useful 

biomarkers for CKD development. Indeed, it is vital that data from tissue analyses are mirrored 

by similar changes in blood or urine, or other less invasive tissues before they can become 

relevant for clinical purpose. In this regard, miRNAs are of particular interest as they act 

intracellularly but are present in body fluids (including plasma, serum and urine) [189] and 

show remarkable stability and resistance to degradation [190]. miRNAs are actively secreted 

and carry genetic information from one cell to another [137, 191]  in extracellular vesicles 

(including microvesicles, microparticles, apoptotic bodies, exosome like vesicles and 

exosomes) that physically shield miRNAs from endogenous RNAse activity [192, 193]. Thus, 

a specific miRNA signature is now defined with high sensitivity for the development of 

albuminuria in patients with DN within two years [194, 195]. In autosomal dominant polycystic 

kidney disease, the pathogenic role of miR -21 and the miR-17~92 cluster is gradually being 

unraveled [196, 197]. Similarly, the fibromiRs miR-21, miR-214 and miR-199a are thought to 

be involved in the disease progression of IgA nephropathy [198].  
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EPIGENETIC CHANGES AS THERAPEUTIC TARGETS IN CKD 

The prospect of manipulating the epigenome, or rather specific loci, is of clinical interest since 

this would mean targeting specific gene regulation that could alter pathological pathways and 

decrease disease activity. Although this field remains immature within nephrology, emerging 

observations, both in CKD and other chronic diseases, such as cancer [27], hold promises for 

finding novel means to delay, inhibit or reverse CKD progression as well as its complications. 

Such therapeutics include pharmaceutical targeting of epigenetic changes, miRNA-based 

therapeutics and lifestyle interventions. However, it needs to be emphasized that there is a 

multi-faceted challenge when identifying and using epigenetic modifiers, as the epigenetic 

landscape varies between tissues and cell populations, and drugs that target histone modifiers 

will also have effects on non-histone proteins, together increasing the risk of unwanted side 

effects.  

 

Epigenetic drugs  

A number of drugs are currently available that target epigenetic modifiers, in particular histone 

modifiers. We will not go into specific drugs but rather discuss principles. Most drugs targeting 

the epigenome were designed to repress carcinogenesis and can be divided into two classes: 

histone modifiers and DNA methylation inhibitors [23, 199]. Histone modifications involve 

both writers and erasers, i.e. enzymes that add modifications to specific amino acid residues, 

and that remove them, respectively. There are for instance both acetyltransferases and 

deacetylases that primarily modify lysines in histone (and non-histone) proteins, which can be 

inhibited by drugs. This may be used to fine-tune overall acetylation levels. The homeostasis 

of specific histone amino acid residue methylation is in turn regulated by methyl transferases 

and demethylases for which there are specific inhibitors. Other modifications may be 

specifically inhibited, such as phosphorylation/dephosphorylation of serine and threonine, but 

their specificity for histone kinases and phosphatases appear to be lower. 

Bromo and chromo domain proteins are readers, which bind to acetylated and 

methylated histones tails, respectively, conferring biological effects by recruiting other proteins 

into regulatory complexes. Also here, a number of probes can be obtained that inhibits function. 

Although epigenetic drugs are still in their infancy, histone deacetylase inhibitors (HDACi) are 

used for some hematologic malignancies, and DNA methylation inhibitors are approved for 

treatment of myelodysplastic syndrome. HDACi are also being tested in psychiatric, neurologic 

and neurodegenerative diseases. The most known example is the short chain fatty acid 
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Valproate, which is used as a mood stabilizer and as an anti-epileptic drug. In nephrology, 

losartan, an ARB-blocker, may be a drug of interest as it mitigates DN features in diabetic mice 

and reduces histone mark H3K9/14Ac at key pathologic genes associated with diabetic 

glomerulopathy [200]. ARBs also have therapeutic effects on proteinuric CKD, however not 

via deacetylation activities but rather via modulation of DNA methylation [201]. In mice, the 

use of DNMT inhibitors has been studied in the context of uraemic toxin-induced CKD 

progression. The epigenetic silencing of the renoprotective KL gene  by uraemic toxins, which 

is induced via elevated DNMT protein expression and subsequent hypermethylation, could be 

reversed by treatment with DNMT inhibitors [121]. Thus, targeting DNA methylation sites of 

specific genes may represent an effective strategy to modulate progression of CKD [202].  Use 

of these drugs alone or in combination with other epigenetic modulators, may be evaluated for 

improved treatment effects in CKD. Since observations from the use of DNMT inhibitors in 

models of neuroendocrine/psychiatric disorders have shown no adverse events, clinical trials in 

humans have been initiated [203]. The general concern regarding the targeting of epigenetic 

drugs to epigenetic modifiers, is the lack of gene locus specificity. This problem may be 

circumvented with the CRISPR/Cas9 technology. In a recent study, the epigenetic modifiers 

DNA methyltransferase DNMT3a or the Tet1 (part of DNA demethylation) was joined with 

catalytically inactive Cas9 into a fusion protein that was able to alter the methylation state - 

with functional effects - at specific DNA sequences [204]. As these experiments demonstrate 

that clinical epigenetic editing in specific loci in specific cell types may be possible, this would 

open up for exciting therapeutic possibilities. 

Epigenetic drugs that delay premature ageing and prolong lifespan in CKD would be of great 

interest. Calorie restriction is robustly associated with extending health and longevity in several 

biological model systems [205]. The possibility to modulate these systems via calorie restriction 

mimetics includes modulation of pathways involving insulin/insulin growth factor-1, 

mammalian target of rapamycin (mTOR), and 5' adenosine monophosphate-activated protein 

kinase (AMPK), of which resveratrol, metformin,  rapamycin and sirtuin modulators are the 

most extensively studied [206]. Sirtuins, which regulate diverse cellular functions via 

epigenetic modification of histones and other proteins, are considered guardians of the 

mammalian health span [207].The sirtuin family is conserved across taxa and displays NAD+-

dependent deacetylase, deacylase, desuccinylase, demalonylase, deglutarylase and ADP-

ribosyltransferase activities [208], thereby enabling a dynamic response to redox, circadian and 

metabolic changes [209].  Thus, in line with these activities, Sirtuin modulators have been 
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associated with beneficial effects in human pathologies including neurodegeneration and cancer 

[210].  

miRNA-based therapy in CKD 

A miRNA-based therapy that either restores or blocks miRNA expression and activity 

(miRmimics/pre-mirs or antisense RNA molecules, respectively) in vivo is very attractive, 

especially now that the first miRNA-targeting drug (miravirsen for the treatment of hepatitis C) 

has entered a phase II clinical trial [211]. During the last decade, most focus has been on the 

anti-miR therapeutics rather than the miR mimics, and several miRNA-targeting drugs entered 

clinical trial testing [212]. In CKD, animal studies have shown that the in vivo use of specific 

miRNA antagonists is an effective anti-fibrotic therapy [213-215]. However, some pitfalls have 

to be taken into account: first, the mutual regulation of miRNAs and target genes is challenging 

our understanding of the gene-regulatory role of miRNAs in vivo and has important 

implications for the use of these RNAs in therapeutic settings. Next, delivery and safety issues 

should be transparent.  

MicroRNAs are also believed to play a role in the pathogenesis of acute kidney injury (AKI) 

induced by renal ischemia-reperfusion, which is a major kidney disease with no effective 

therapy available at present. Specifically, studies of cultured tubular cells have shown that the 

transcriptional factor hypoxia-inducible factor-1 (HIF-1), targeting genes involved in 

erythropoiesis and angiogenesis to increase oxygen delivery, induces miR-687 expression 

during hypoxia. Upregulation of miR-687, in turn, results in repression of the tumour suppressor 

phosphatase and tensin homolog (PTEN) gene, cell cycle activation and accelerated kidney 

repair [216]. Intriguingly, in vivo studies showed paradoxical results, as mice treated with anti-

mir-687 were protected against kidney injury. One possible explanation for the discrepant 

outcomes between studies of in vitro and in vivo models may be the presence of other cells than 

tubular cells in vivo, as suggested by Nangaku M et al [217]. Apart from epigenetic regulation 

via miR-687, HIF-1 also targets histone lysine demethylases (a.k.a. Jumonji C lysine 

demethylases) under conditions of oxygen deprivation, thereby modifying histones and 

chromatin conformation [218]. Future studies will tell if the HIF-1/miR-687/PTEN signalling 

pathway is a candidate for the development of safe and effective therapeutic drugs to treat 

kidney damage. 

Life-style interventions as a way to interfere with epigenetic changes 
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As epigenetic alterations of gene expression act as a dynamic response to changes in 

environmental conditions, e.g. inflammatory, redox and nutritional stress, lifestyle 

interventions, such as exercise and diet, have great potential to prevent or counteract detrimental 

changes of the epigenome  associated with disease and ageing [133]. For instance, both DNA 

methylation patterns and histone modifications in human skeletal muscle responds to acute 

exercise [219, 220]. Moreover, acute exercise and exercise training result in changes in several 

circulating miRNAs in healthy volunteers, athletes and in CKD [110, 221, 222]. Differential 

expression of miR-210 (involved in adaptation to hypoxia) in response to an acute exercise bout 

in CKD patients who followed a formal training program, may give a clue towards 

understanding the  mechanisms underlying  the beneficial and rejuvenating effects of physical 

activity. Indeed, lifestyle intervention comprising physical activity is an effective way to reduce 

high CV risk in CKD patients [223].  

 

SUMMARY AND CONCLUSIONS 

Epigenomic studies may contribute to a better identification of patients at increased risk for 

CKD and/or an increased disease burden by designing improved genetic-epigenetic risk 

profiles. Better understanding of the inter-individual variations in progression and outcome in 

CKD is a first step in bringing  precision medicine into renal care, both in the preventive and 

therapeutic setting (e.g. lifestyle modifications, nutritional and pharmacological interventions). 

Epigenetic analyses also provide a platform enabling researchers to understand in-depth 

pathways involved in disease and could provide an explanation for divergent transcriptomic 

and proteomic data. Since epigenetics calibrate the genetic code this opens up for new 

therapeutic possibilities to reprogram our genome by modulating the gene transcription 

machineries to turn on or off genes that are identified as either protective or harmful. In the 

future, longitudinal studies are needed to assess the longevity and stability of epigenetic 

modifications in CKD. Given their close interrelation, the different elements of the epigenetic 

landscape should be studied as a whole and in context of genetic variation as well as variability 

between and within tissues in the uraemic milieu.  
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FIGURE LEGENDS 

Figure 1. Patients with chronic kidney disease (CKD) seem to be subjected to an accelerated 

ageing, which put them at high risk for developing serious comorbidities such as vascular 

disease and premature death. The inter-individual variability is however large. This discrepancy 

is likely explained by many interacting risk factors, both in the endogenous and exogenous 

milieu, which may influence the uraemic phenotype via epigenomic modulations on gene 

expression as well as aberrant loss of imprinting, chromosomal instability and telomere 

attrition. Increased knowledge of the epigenetic drivers of the uraemic phenotype may be used 

to design genetic-epigenetic-based risk profiles, diagnostic tools and to develop personalized 

interventions and therapeutics for CKD patients. 
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