18 research outputs found

    A new evolutionary search strategy for global optimization of high-dimensional problems

    Get PDF
    Global optimization of high-dimensional problems in practical applications remains a major challenge to the research community of evolutionary computation. The weakness of randomization-based evolutionary algorithms in searching high-dimensional spaces is demonstrated in this paper. A new strategy, SP-UCI is developed to treat complexity caused by high dimensionalities. This strategy features a slope-based searching kernel and a scheme of maintaining the particle population's capability of searching over the full search space. Examinations of this strategy on a suite of sophisticated composition benchmark functions demonstrate that SP-UCI surpasses two popular algorithms, particle swarm optimizer (PSO) and differential evolution (DE), on high-dimensional problems. Experimental results also corroborate the argument that, in high-dimensional optimization, only problems with well-formative fitness landscapes are solvable, and slope-based schemes are preferable to randomization-based ones. © 2011 Elsevier Inc. All rights reserved

    A modified bats echolocation-based algorithm for solving constrained optimisation problems

    Get PDF
    A modified adaptive bats sonar algorithm (MABSA) is presented that utilises the concept of echolocation of a colony of bats to find prey. The proposed algorithm is applied to solve the constrained optimisation problems coupled with penalty function method as constraint handling technique. The performance of the algorithm is verified through rigorous tests with four constrained optimisation benchmark test functions. The acquired results show that the proposed algorithm performs better to find optimum solution in terms of accuracy and convergence speed. The statistical results of MABSA to solve all the test functions also has been compared with the results from several existing algorithms taken from literature on similar test functions. The comparative study has shown that MABSA outperforms other establish algorithms, and thus, it can be an efficient alternative method in the solving constrained optimisation problems

    Niching grey wolf optimizer for multimodal optimization problems

    Get PDF
    Metaheuristic algorithms are widely used for optimization in both research and the industrial community for simplicity, flexibility, and robustness. However, multi-modal optimization is a difficult task, even for metaheuristic algorithms. Two important issues that need to be handled for solving multi-modal problems are (a) to categorize multiple local/global optima and (b) to uphold these optima till the ending. Besides, a robust local search ability is also a prerequisite to reach the exact global optima. Grey Wolf Optimizer (GWO) is a recently developed nature-inspired metaheuristic algorithm that requires less parameter tuning. However, the GWO suffers from premature convergence and fails to maintain the balance between exploration and exploitation for solving multi-modal problems. This study proposes a niching GWO (NGWO) that incorporates personal best features of PSO and a local search technique to address these issues. The proposed algorithm has been tested for 23 benchmark functions and three engineering cases. The NGWO outperformed all other considered algorithms in most of the test functions compared to state-of-the-art metaheuristics such as PSO, GSA, GWO, Jaya and two improved variants of GWO, and niching CSA. Statistical analysis and Friedman tests have been conducted to compare the performance of these algorithms thoroughly

    A theoretical and empirical study on unbiased boundary-extended crossover for real-valued representation

    Get PDF
    Copyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences Vol. 183 Issue 1 (2012), DOI: 10.1016/j.ins.2011.07.013We present a new crossover operator for real-coded genetic algorithms employing a novel methodology to remove the inherent bias of pre-existing crossover operators. This is done by transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and designing a boundary extension method for making the fitness function smooth at the glued boundary. We show the advantages of the proposed crossover by comparing its performance with those of existing ones on test functions that are commonly used in the literature, and a nonlinear regression on a real-world dataset

    A Rough Penalty Genetic Algorithm for Multicast Routing in Mobile Ad Hoc Networks

    Get PDF
    Multicast routing is an effective way to transmit messages to multiple hosts in a network. However, it is vulnerable to intermittent connectivity property in mobile ad hoc network (MANET) especially for multimedia applications, which have some quality of service (QoS) requirements. The goal of QoS provisioning is to well organize network resources to satisfy the QoS requirement and achieve good network delivery services. However, there remains a challenge to provide QoS solutions and maintain end-to-end QoS with user mobility. In this paper, a novel penalty adjustment method based on the rough set theory is proposed to deal with path-delay constraints for multicast routing problems in MANETs. We formulate the problem as a constrained optimization problem, where the objective function is to minimize the total cost of the multicast tree subject to QoS constraints. The RPGA is evaluated on three multicast scenarios and compared with two state-of-the-art methods in terms of cost, success rate, and time complexity. The performance analyses show that this approach is a self-adaptive method for penalty adjustment. Remarkably, the method can address a variety of constrained multicast routing problems even though the initial routes do not satisfy all QoS requirements

    Adaptive Multi-Level Search for Global Optimization: An Integrated Swarm Intelligence-Metamodelling Technique

    Get PDF
    Over the last decade, metaheuristic algorithms have emerged as a powerful paradigm for global optimization of multimodal functions formulated by nonlinear problems arising from various engineering subjects. However, numerical analyses of many complex engineering design problems may be performed using finite element method (FEM) or computational fluid dynamics (CFD), by which function evaluations of population-based algorithms are repetitively computed to seek a global optimum. It is noted that these simulations become computationally prohibitive for design optimization of complex structures. To efficiently and effectively address this class of problems, an adaptively integrated swarm intelligence-metamodelling (ASIM) technique enabling multi-level search and model management for the optimal solution is proposed in this paper. The developed technique comprises two steps: in the first step, a global-level exploration for near optimal solution is performed by adaptive swarm-intelligence algorithm, and in the second step, a local-level exploitation for the fine optimal solution is studied on adaptive metamodels, which are constructed by the multipoint approximation method (MAM). To demonstrate the superiority of the proposed technique over other methods, such as conventional MAM, particle swarm optimization, hybrid cuckoo search, and water cycle algorithm in terms of computational expense associated with solving complex optimization problems, one benchmark mathematical example and two real-world complex design problems are examined. In particular, the key factors responsible for the balance between exploration and exploitation are discussed as well

    A search algorithm for constrained engineering optimization and tuning the gains of controllers

    Get PDF
    In this work, the application of an optimization algorithm is investigated to optimize static and dynamic engineering problems. The methodology of the approach is to generate random solutions and find a zone for the initial answer and keep reducing the zones. The generated solution in each loop is independent of the previous answer that creates a powerful method. Simplicity as its main advantage and the interlaced use of intensification and diversification mechanisms--to refine the solution and avoid local minima/maxima--enable the users to apply that for a variety of problems. The proposed approach has been validated by several previously solved examples in structural optimization and scored good results. The method is also employed for dynamic problems in vibration and control. A modification has also been done on the method for high-dimensional test functions (functions with very large search domains) to converge fast to the global minimum or maximum; simulated for several well-known benchmarks successfully. For validation, a number of 9 static and 4 dynamic constrained optimization benchmark applications and 32 benchmark test functions are solved and provided, 45 in total. All the codes of this work are available as supplementary material in the online version of the paper on the journal website
    corecore