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1. Introduction

We recognized that the roles of crossover and mutation in real encoding are quite different
from those in binary encoding during performing previous work with real-coded genetic
algorithms (Yoon et al., 2012). In this study, we are to argue the distinct roles of genetic
operators in real encodings.

Recently many studies on evolutionary algorithms using real encoding have been done.
They include ant colony optimization (Socha & Dorigo, 2008), artificial bee colony algorithm
(Akay & Karaboga, 2010; Kang et al., 2011), evolution strategies (ES) (Beyer, 2001), differential
evolution (Das & Suganthan, 2011; Dasgupta et al., 2009; Kukkonen & Lampinen, 2004; 2005;
Mezura-Montes et al., 2010; Noman & Iba, 2005; Rönkkönen et al., 2005; Storn & Price, 1997;
Zhang et al., 2008), particle swarm optimization (Chen et al., 2007; Huang et al., 2010; Juang
et al., 2011; Krohling & Coelho, 2006; l. Sun et al., 2011), and so on. In particular, in the field of
ES, we can find many studies based on self-adaptive techniques (Beyer & Deb, 2001; Hansen
& Ostermeier, 2001; Igel et al., 2007; 2006; Jägersküpper, 2007; Kita, 2001; Kramer, 2008a;b;
Kramer et al., 2007; Meyer-Nieberg & Beyer, 2007; Wei et al., 2011).

Many researchers have also concentrated on using real-valued genes in genetic algorithms
(GAs), as in (Ripon et al., 2007). It is reported that, for some problems, real-coded
representation and associated techniques outperform conventional binary representation
(Eshelman & Schaffer, 1993; Herrera et al., 1998; Janikow & Michalewicz, 1991; Lozano et al.,
2004; Ono et al., 1999; Ono & Kobayashi, 1997; Surry & Radcliffe, 1996; Wright, 1991). Several
theoretical studies of real-coded GAs have also been performed (Goldberg, 1991; Higuchi
et al., 2000; Kita et al., 1998; Qi & Palmieri, 1994a;b). However, the role and behavior of genetic
operators in real-coded GAs are fundamentally different from those in binary encodings
although motivation of the operators and the framework of GAs are similar.

In this chapter, we try to verify different properties of crossover and mutation in real
encodings from those in binary encodings through various experiments. We especially
concentrate on the effect of genetic operators (the bias and functions of crossover and
mutation) when they are used in real-coded GAs.
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Fig. 1. The range of possible offspring in two-dimensional bounded real space

The remainder of this chapter is organized as follows. Traditional and recent genetic operators
in real encoding are introduced in Section 2. Previous genetic operators are presented in
Section 2.1 and ones we used in real encoding in this study are described in Section 2.2. In
Section 3, we describe the concept of bias of genetic operators and analyze that in the case of
crossover and mutation for GAs. In Section 4, experimental results for various combinations of
crossover and mutation are provided and analyzed. Finally, we make conclusions in Section 5.

2. Genetic operators in real encoding

2.1 Previous operators

The roles of crossover and mutation may change according to the selection of the operators.
We reviewed the most frequently used crossover and mutation operators for real-code
representation. We are to analyze how the roles of crossover and mutation can change by
studying various combinations of crossover and mutation operators.

In literature many crossover operators for real-code representation are found. Traditional
crossover operators for the real-code representation are described in (Bäck et al., 2000). The
two main families of traditional crossover operators (Mühlenbein & Schlierkamp-Voosen,
1993) are discrete crossovers1 (Reed et al., 1967) and blend crossovers (Michalewicz, 1996).
Blend crossover operators can be distinguished into line crossovers and box crossovers.
Important variations of the last two crossover operators are the extended-line crossover and
the extended-box crossover (Mühlenbein, 1994).

The discrete recombination family is the straightforward extension to real vectors of the family
of mask-based crossover operators for binary strings including n-point and uniform crossover.

1 It is also called dominant crossover.
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box-crossover(x, y)
{

for i ← 1 to n
zi ← a random real number in [min(xi, yi), max(xi, yi)];

return z = (z1, z2, . . . , zn);
}

Fig. 2. Pseudo-code of box crossover

extended-box-crossover(x, y)
{

for i ← 1 to n
m ← min(xi, yi), M ← max(xi, yi);
em ← m − α(M − m), eM ← M + α(M − m);
zi ← a random real number in [min(em, li), max(eM, ui)];

return z = (z1, z2, . . . , zn);
}
// α is extension rate.

Fig. 3. Pseudo-code of extended-box crossover

The mask is still a binary vector dictating for each position of the offspring vector from which
parent the (real) value for that position is taken.

The blend recombination family does not exchange values between parents like discrete
recombinations but it averages or blends them. Line recombination returns offspring on the
(Euclidean) line segment connecting the two parents. Box recombination returns offspring in
the box (hyper-rectangle) whose diagonally opposite corners are the parents. Extended-line
recombination picks offspring on an extended segment passing through the parent vectors but
extending beyond them and not only in the section between them. Analogously extended-box
recombination picks offspring on an extended box whose main diagonal passes through the
parents but extends beyond them.

Recently several new crossovers for the real-coded representation have been designed.
Several non-traditional crossover operators for real-coded representation are found in the
recent literature. They include SBX (simulated binary crossover) (Ballester & Carter, 2003;
2004b; Deb & Agrawal, 1995; Deb & Beyer, 1999; Deb & Kumar, 1995; Deb et al., 2007), UNDX
(unimodal normal distribution crossover) (Kita et al., 1998; 1999; Ono et al., 1999; Ono &
Kobayashi, 1997), SPX (simplex crossover) (Higuchi et al., 2000; Tsutsui & Goldberg, 2002;
Tsutsui et al., 2001; 1999), PCX (parent-centric crossover) (Ballester & Carter, 2004a; Deb et al.,
2002), etc (Herrera et al., 2003; 2005; Takahashi & Kita, 2001). Most of them are complex
and based on the specific probability distribution of the offspring (SBX, UNDX, and PCX),
self-adaptivity (SBX and UNDX), or multiple parents (UNDX and SPX). Some of them, e.g.,
include the function of mutation operators. In this study, we focus on traditional crossover
that does not consider the specific probability distribution of the offspring but only what
offspring can be generated with a probability greater than zero, given the two parents.
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line-crossover(x, y)
{

λ ← a random real number in [0, 1];
for i ← 1 to n

zi ← λxi + (1 − λ)yi;
return z = (z1, z2, . . . , zn);

}

Fig. 4. Pseudo-code of line crossover

extended-line-crossover(x, y)
{

m ← −∞, M ← ∞;
for i ← 1 to n

if xi �= yi

tl ← (li − yi)/(xi − yi), tu ← (ui − yi)/(xi − yi);
tm ← min(tl , tu), tM ← max(tl , tu);
m ← max(m, tm), M ← min(M, tM);

λ ← a random real number in [max(m,−α), min(M, 1 + α)];
for i ← 1 to n

zi ← λxi + (1 − λ)yi;
return z = (z1, z2, . . . , zn);

}
// α is extension rate.

Fig. 5. Pseudo-code of extended-line crossover

The most common form of mutation for real-code vectors generates an offspring vector by
adding a vector M of random variables with expectation zero to the parent vector. There are
two types of mutations bounded and unbounded depending on the fact that the range of the
random variable is bounded or unbounded. The most frequently used bounded mutations
are the creep mutation and the single-variable mutation and for the unbounded case is the
Gaussian mutation. For the creep (or hyper-box) mutation M ∼ U([−a, a]n) is a vector of
uniform random variables, where a is a parameter defining the limits of the offspring area.
This operator yields offspring within a hyper-box centered in the parent vector. For the
single-variable mutation M is a vector in which all entries are set to zero except for a random
entry which is a uniform random variable ∼ U([−a, a]). Bounded mutation operators may
get stuck in local optima. In contrast, unbounded mutation operators guarantee asymptotic
global convergence. The primary unbounded mutation is the Gaussian mutation for which M
is a multivariate Gaussian distribution.

2.2 Adopted operators for this study

As crossover operators for our analysis, we adopted four representative crossovers: box,
extended-box, line, and extended-line crossovers. Their pseudo-codes are shown in Figures 2,
3, 4, and 5, respectively and the possible range for each crossover is represented in Figure 1.
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mutation(z, p)
{

for i ← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, (ui − li)/10);
return z = (z1, z2, . . . , zn);

}

Fig. 6. Pseudo-code of mutation

// x and y are parents.
fine-mutation(x, y, z, p)
{

for i ← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, |xi − yi|);
return z = (z1, z2, . . . , zn);

}

Fig. 7. Pseudo-code of fine mutation

And, as mutation operators for our analysis, we adopted two kinds of mutation: Gaussian
mutation and fine mutation. Their pseudo-codes are shown in Figures 6 and 7, respectively.
The Gaussian mutation is a simple static Gaussian mutation, the same as in Tsutsui &
Goldberg (2001). The i-th parameter zi of an individual is mutated by zi = zi + N(0, σi) with
a mutation rate p, where N(0, σi) is an independent random Gaussian number with the mean
of zero and the standard deviation of σi. In our study, σi is fixed to (ui − li)/10 - the tenth of
width of given area. The fine mutation is a simple dynamic Gaussian mutation inspired from
Ballester & Carter (2004b). In different with Gaussian mutation, it depends on the distance
between parents and, as population converges, the strength of the mutation approaches zero.

3. Bias of genetic operators

Pre-existing crossovers for the real-coded representation have an inherent bias toward the
center of the space. Some boundary extension techniques to reduce crossover bias have been
extensively studied (Someya & Yamamura, 2005; Tsutsui, 1998; Tsutsui & Goldberg, 2001). The
concept of crossover bias first appeared in (Eshelman et al., 1997) and it has been extensively
used in (Someya & Yamamura, 2005; Tsutsui & Goldberg, 2001), in which they tried to remove
the bias of real-coded crossover heuristically (and theoretically incompletely).

Notice that the notion of bias of a crossover operator has different definitions depending upon
the underlying representation considered. The bias toward the center of the space considered
in real-coded crossovers conceptually differs from the crossover biases on binary strings,
which focus on how many bits are passed to the offspring and from which positions, which, in
turn conceptually differs from the bias considered in Genetic Programming focusing on bloat.

The notion of bias so defined can be understood as being the inherent preference of a search
operator for specific areas of the search space. This is an important search property of a search
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(a) Box crossover (b) Extended-box crossover (α = 0.5)

(c) Line crossover (d) Extended-line crossover (α = 0.5)

Fig. 8. Crossover bias in one-dimensional bounded real space

operator: an evolutionary algorithm using that operator, without selection, is attracted to the
areas the search operator prefers. Arguably, also when selection is present, the operator bias
acts as a background force that makes the search keener to go toward the areas preferred
by the search operator. This is not necessarily bad if the bias is toward the optimum or an
area with high-quality solutions. However, it may negatively affect performance if the bias
is toward an area of poor-quality solutions. If we do not know the spatial distribution of the
fitness of the problem, we may prefer not to have any a priori bias of the search operator, and
instead use only the bias of selection, which is informed by the fitness of sampled solutions
that constitute empirical knowledge about promising areas obtained in the search, and which
is better understood.

In this chapter, we investigate the bias caused by crossover itself and crossover combined
with mutation in real-coded GAs. Intuitively, box and line crossover are biased toward the
center on the Euclidean space. This intuition is easy to verify experimentally by picking a
large number of pairs (ideally infinitely many) of random parents and generating offspring
uniformly at random in the boxes (or lines) identified by the pairs of parents.
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Function n Range of xi: [li, ui]

Shifted sphere
n

∑
i=1

(xi − oi)
2 − 450 30 [−100, 100]

Shifted Schwefel
n

∑
i=1

(
i

∑
j=1

(xj − oj))
2 − 450 30 [−100, 100]

Shifted Rosenbrock
n−1

∑
i=1

(100((xi − oi + 1)2 − (xi+1 − oi+1 + 1))2 + (xi − oi)
2) + 390 30 [−100, 100]

Shifted Rastrigin
n

∑
i=1

((xi − oi)
2 − 10 cos(2π(xi − oi)) + 10)− 330 30 [−5, 5]

Table 1. Test Functions
o = (o1, o2, . . . , on) is the optimal solution, which is randomly located in the domain.

In the Hamming space, the distribution of the offspring of uniform crossover tends in the limit
to be uniform on all space, whereas in the Euclidean space the distribution of the offspring
tends to be unevenly distributed on the search space and concentrates toward the center of
the space. One way to compensate, but not eliminate, such bias is using extended-line and
extended-box crossovers. Figure 8 visualizes the crossover bias in the one-dimensional real
space by plotting frequency rates of 107 offspring randomly generated by each type crossover.
As we can see, box and line crossover are biased toward the center of the domain. We could
also observe that extended-box and extended-line crossover largely reduce the bias but they
are still biased toward the center.2

For analyzing the effect of mutation in relation with the bias, we also performed the same
test using crossover combined with Gaussian mutation. We picked 107 pairs of random
parents, generated offspring randomly using each type crossover, and then applied Gaussian
mutation. The tests are performed for various mutation rates from 0.0 to 1.0. The results
for box, extended-box, line, and extended-line crossover are shown in Figures 9, 10, 11, and
12, respectively. Interestingly, for all cases, we could observe that the higher mutation rate
reduces the bias more largely. However, even high mutation rates cannot eliminate the bias
completely.

4. Combination of crossover and mutation

In this section, we try to figure out the properties of crossover and mutation through
experiments using their various combinations. For our experiments, four test functions are
chosen from Suganthan et al. (2005). They are described in Table 1.

We mainly followed the genetic framework by Tsutsui & Goldberg (2001). Its basic
evolutionary model is quite similar to that of CHC (Eshelman, 1991) and (μ + λ)-ES (Beyer,
2001).

2 We can find consistent results with this in Someya & Yamamura (2005); Yoon et al. (2012).
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(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 9. Bias of box crossover with mutation
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(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 10. Bias of extended-box crossover (α = 0.5) with mutation
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(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 11. Bias of line crossover with mutation
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(a) Crossover without mutation (b) Crossover with mutation (p = 0.05)

(c) Crossover with mutation (p = 0.1) (d) Crossover with mutation (p = 0.2)

(e) Crossover with mutation (p = 0.5) (f) Crossover with mutation (p = 1.0)

Fig. 12. Bias of extended-line crossover (α = 0.5) with mutation
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Let N the population size. A collection of N/2 pairs is randomly composed, and crossover
and mutation are applied to each pair, generating N/2 offspring. Parents and newly generated
offspring are ranked and the best N individuals among them are selected for the population
in the next generation. The population size was 400 for all experiments. If the population has
no change during n× r × (1.0− r) generations, it is reinitialized except for the best individual.
Here, r is a divergence rate and we set it to 0.25 as in Eshelman (1991). The used GA terminates
when it finds the global optimum.

For crossover, we used four crossover operators: box crossover, extended-box crossover
(extension rate α: 0.5), line crossover, and extended-line crossover (extension rate α: 0.5). After
crossover, we either mutate the offspring or do not. We used two different mutation operators;
Gaussian mutation and fine mutation. Different mutation rates were applied to each crossover
type and the rates decrease as the number of generations increases.

Table 2 shows the results from 30 runs. Each value in ‘Ave’ means the average function value
from 30 runs. The smaller, the better. The limit of function evaluations is 50,000, i.e., the
genetic algorithm terminates after 50,000 evaluations and outputs the best solution among
evaluated ones so far over generations. In the table, k = 1 + ⌊numberOfGenerations/100⌋ and
the rate of fine mutation is 0.5/k.

From these experiments we can obtain the following properties.

• There is no superior operator combination for all over the problem instances. For the
shifted sphere, box crossover with fine mutation showed the best performance. For
the shifted Schwefel, line crossover with Gaussian mutation, for the shifted Rosenbrock,
extended-box crossover without mutation, and for the shifted Rastrigin, box crossover
with fine mutation showed the best performances, respectively. So we can know that
suitable crossover and mutation can be varied depending on the property of given
problem.

• Without mutation, extended-box crossover showed the best performance. That is, when
we do not know the characteristic of given problem, it is a general choice that we use
extended-box crossover as a crossover operator in real-coded genetic algorithms. It is
convenient since parameter tuning with mutation is not required. However, it is possible
to surpass the performance of extended-box crossover using well-designed combination
of crossover and mutation.

• Unusually, for extended-box crossover, the results without mutation is the best and the
performance becomes worse as mutation rate increases. However, for box crossover,
moderate rate of mutation has a good effect to the performance. For all cases, box crossover
with mutation showed better performance than that without mutation. From this fact, we
can infer that extended-box crossover contains the function of mutation in itself but box
crossover does not.

• Except for extended-box crossover, the results of crossover with mutation were better than
those of crossover without mutation. In particular, fine mutation was better than Gaussian
mutation. Fine mutation depends on the distance between parents so, as population
converges, the strength of the mutation approaches zero. That is, the amount of mutation
becomes very fine as population converges. In binary encodings, the main role of mutation
is perturbation effect to prevent premature convergence. However, we can know that,
in real encoding, the function of fine tuning by mutation is also important from this
experiment.
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Function Shifted Sphere Shifted Schwefel Shifted Rosenbrock Shifted Rastrigin
Crossover Mutation Ave (σ/

√
n) Ave (σ/

√
n) Ave (σ/

√
n) Ave (σ/

√
n)

0.05/k 5.46e+02 (4.59e+01) 1.68e+04 (9.05e+02) 1.87e+07 (1.70e+06) -2.66e+02 (1.91e+00)
0.10/k 6.40e+01 (2.17e+01) 1.16e+04 (5.33e+02) 4.64e+06 (3.86e+05) -2.68e+02 (1.65e+00)

None 0.20/k 1.37e+02 (1.55e+01) 7.99e+03 (4.79e+02) 4.74e+06 (2.34e+05) -2.64e+02 (1.58e+00)
0.50/k 9.87e+02 (3.13e+01) 7.87e+03 (3.18e+02) 1.89e+07 (8.19e+05) -2.27e+02 (1.28e+00)
1.00/k 2.38e+03 (6.45e+01) 1.24e+04 (3.76e+02) 7.12e+07 (2.45e+06) -1.91e+02 (1.72e+00)

None 2.46e+04 (4.46e+02) 2.47e+04 (3.03e+02) 5.36e+09 (1.69e+08) -1.83e+02 (1.64e+00)
0.05/k -3.61e+02 (1.81e+00) 1.44e+04 (1.96e+02) 2.66e+05 (8.26e+03) -2.53e+02 (1.51e+00)
0.10/k -4.02e+02 (1.13e+00) 1.22e+04 (1.42e+02) 7.86e+04 (2.26e+03) -2.60e+02 (1.11e+00)
0.20/k -4.25e+02 (6.96e-01) 9.98e+03 (1.40e+02) 4.34e+04 (1.57e+03) -2.48e+02 (2.37e+00)
0.50/k -3.40e+02 (3.04e+00) 8.10e+03 (1.17e+02) 2.16e+05 (1.02e+04) -1.94e+02 (1.90e+00)

Box 1.00/k 2.81e+02 (1.54e+01) 8.68e+03 (2.05e+02) 5.55e+06 (2.53e+05) -1.71e+02 (1.48e+00)
crossover Fine -4.50e+02 (4.63e-03) 8.74e+03 (1.16e+02) 1.40e+03 (7.16e+01) -3.03e+02 (1.60e+00)

Fine + 0.05/k -4.50e+02 (2.54e-02) 8.43e+03 (1.36e+02) 1.99e+03 (8.59e+01) -2.77e+02 (3.16e+00)
Fine + 0.10/k -4.48e+02 (8.07e-02) 8.10e+03 (1.42e+02) 3.33e+03 (1.59e+02) -2.39e+02 (3.26e+00)
Fine + 0.20/k -4.37e+02 (5.19e-01) 7.83e+03 (1.06e+02) 1.78e+04 (8.37e+02) -2.07e+02 (1.87e+00)
Fine + 0.50/k -2.11e+02 (6.63e+00) 8.83e+03 (1.72e+02) 8.47e+05 (3.91e+04) -1.82e+02 (1.64e+00)
Fine + 1.00/k 6.67e+02 (2.51e+01) 1.20e+04 (2.27e+02) 1.08e+07 (5.26e+05) -1.68e+02 (1.65e+00)

None -4.50e+02 (2.72e-04) 8.78e+03 (1.90e+02) 7.45e+02 (3.21e+01) -2.21e+02 (2.33e+00)
0.05/k -4.49e+02 (3.17e-02) 9.63e+03 (2.20e+02) 3.14e+03 (1.67e+02) -2.00e+02 (1.97e+00)
0.10/k -4.40e+02 (2.52e-01) 1.07e+04 (2.50e+02) 2.24e+04 (9.14e+02) -1.95e+02 (1.75e+00)
0.20/k -3.59e+02 (2.22e+00) 1.25e+04 (2.45e+02) 3.35e+05 (1.86e+04) -1.81e+02 (1.66e+00)

Extended 0.50/k 2.54e+02 (1.91e+01) 1.60e+04 (3.92e+02) 6.93e+06 (3.35e+05) -1.63e+02 (1.68e+00)
box 1.00/k 1.60e+03 (5.17e+01) 2.10e+04 (4.98e+02) 4.65e+07 (1.85e+06) -1.50e+02 (2.26e+00)

crossover Fine -4.23e+02 (7.81e-01) 1.76e+04 (3.62e+02) 2.07e+05 (1.21e+04) -1.75e+02 (1.71e+00)
(α = 0.5) Fine + 0.05/k -3.67e+02 (2.09e+00) 1.80e+04 (4.84e+02) 7.16e+05 (2.99e+04) -1.68e+02 (1.56e+00)

Fine + 0.10/k -2.72e+02 (3.48e+00) 1.85e+04 (4.39e+02) 1.55e+06 (6.25e+04) -1.68e+02 (1.83e+00)
Fine + 0.20/k -2.18e+01 (1.03e+01) 1.84e+04 (5.26e+02) 5.45e+06 (2.49e+05) -1.63e+02 (2.22e+00)
Fine + 0.50/k 9.07e+02 (3.03e+01) 2.24e+04 (5.74e+02) 2.69e+07 (1.32e+06) -1.52e+02 (1.92e+00)
Fine + 1.00/k 2.47e+03 (5.56e+01) 2.55e+04 (5.66e+02) 9.84e+07 (3.94e+06) -1.37e+02 (2.26e+00)

None 4.29e+04 (6.09e+02) 3.44e+04 (8.72e+02) 1.22e+10 (4.00e+08) -7.32e+01 (3.09e+00)
0.05/k -2.11e+02 (4.61e+00) 1.45e+04 (3.04e+02) 1.30e+06 (4.48e+04) -2.24e+02 (2.19e+00)
0.10/k -3.55e+02 (2.03e+00) 1.26e+04 (2.19e+02) 2.12e+05 (7.95e+03) -2.32e+02 (1.56e+00)
0.20/k -4.00e+02 (1.76e+00) 1.00e+04 (1.80e+02) 9.66e+04 (3.77e+03) -2.24e+02 (3.13e+00)
0.50/k -3.37e+02 (3.29e+00) 7.26e+03 (1.59e+02) 2.33e+05 (1.30e+04) -1.91e+02 (1.62e+00)

Line 1.00/k 2.37e+02 (2.04e+01) 6.93e+03 (1.46e+02) 4.34e+06 (2.80e+05) -1.73e+02 (1.50e+00)
crossover Fine -4.48e+02 (1.22e-01) 9.38e+03 (1.38e+02) 1.07e+04 (8.87e+02) -2.87e+02 (2.31e+00)

Fine + 0.05/k -4.47e+02 (1.52e-01) 8.81e+03 (1.73e+02) 8.13e+03 (4.91e+02) -2.58e+02 (4.68e+00)
Fine + 0.10/k -4.43e+02 (4.00e-01) 8.16e+03 (1.54e+02) 1.10e+04 (6.89e+02) -2.30e+02 (3.34e+00)
Fine + 0.20/k -4.32e+02 (5.20e-01) 7.79e+03 (1.37e+02) 2.95e+04 (1.63e+03) -2.05e+02 (1.97e+00)
Fine + 0.50/k -2.27e+02 (7.78e+00) 7.71e+03 (1.70e+02) 7.95e+05 (3.23e+04) -1.82e+02 (1.50e+00)
Fine + 1.00/k 5.76e+02 (2.37e+01) 9.91e+03 (1.62e+02) 9.54e+06 (5.55e+05) -1.62e+02 (1.68e+00)

None 3.85e+04 (9.05e+02) 3.11e+04 (6.79e+02) 9.81e+09 (5.11e+08) -1.17e+02 (3.40e+00)
0.05/k -1.37e+02 (1.20e+01) 1.21e+04 (2.97e+02) 2.97e+06 (2.14e+05) -2.40e+02 (2.59e+00)
0.10/k -3.27e+02 (4.22e+00) 9.46e+03 (2.92e+02) 5.23e+05 (3.33e+04) -2.37e+02 (2.16e+00)
0.20/k -3.67e+02 (3.37e+00) 8.19e+03 (2.09e+02) 2.02e+05 (1.00e+04) -2.13e+02 (2.53e+00)

Extended 0.50/k -2.41e+02 (6.38e+00) 7.03e+03 (1.43e+02) 6.22e+05 (3.95e+04) -1.88e+02 (1.40e+00)
line 1.00/k 4.60e+02 (2.41e+01) 8.00e+03 (1.61e+02) 7.43e+06 (3.58e+05) -1.69e+02 (1.61e+00)

crossover Fine -4.46e+02 (2.66e-01) 7.67e+03 (1.98e+02) 1.88e+04 (2.14e+03) -2.44e+02 (5.08e+00)
(α = 0.5) Fine + 0.05/k -4.39e+02 (4.12e-01) 7.69e+03 (1.76e+02) 2.28e+04 (1.56e+03) -2.26e+02 (3.84e+00)

Fine + 0.10/k -4.29e+02 (1.03e+00) 7.52e+03 (1.90e+02) 3.51e+04 (2.50e+03) -2.09e+02 (1.96e+00)
Fine + 0.20/k -3.92e+02 (2.23e+00) 7.24e+03 (1.57e+02) 1.42e+05 (7.84e+03) -1.92e+02 (1.67e+00)
Fine + 0.50/k -4.34e+01 (1.06e+01) 8.62e+03 (1.56e+02) 1.93e+06 (8.59e+04) -1.73e+02 (1.65e+00)
Fine + 1.00/k 8.69e+02 (3.33e+01) 1.10e+04 (2.63e+02) 1.51e+07 (9.43e+05) -1.57e+02 (1.86e+00)

Table 2. Results
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5. Conclusions

In this chapter, we tried to analyze distinct roles of crossover and mutation when using real
encoding in genetic algorithms. We investigated the bias of crossover and mutation. From this
investigation, we could know that extended crossover and mutation can reduce the inherent
bias of traditional crossover in real-coded genetic algorithms.

We also studied the functions of crossover and mutation operators through experiments
for various combinations of both operators. From these experiments, we could know
that extended-box crossover is good in the case of using only crossover without mutation.
However, it is possible to surpass the performance of extended-box crossover using
well-designed combination of crossover and mutation. In the case of other crossover
operators, not only the function of perturbation but also that of fine tuning by mutation is
important, but extended-box crossover contains the fine tuning function in itself.

There are many other test functions defined on real domains. We conducted experiments
with limited test functions. We may obtain more reliable conclusions through experiments
with more other functions. So, more extended experiments on more various test functions are
needed for future work. We may also find other useful properties from those empirical study.

6. Acknowledgments

The authors would like to thank Dr. Alberto Moraglio for his encouragement and valuable
comments in improving this study. This work was supported by the Research and
Development of Advanced Weather Technology of National Institute of Meteorological
Research (NIMR) of Korea in 2011.

7. References

Akay, B. & Karaboga, D. (2010). A modified artificial bee colony algorithm for real-parameter
optimization, Information Sciences . doi:10.1016/j.ins.2010.07.015.

Bäck, T., Fogel, D. B. & Michalewicz, T. (eds) (2000). Evolutionary Computation 1: Basic
Algorithms and Operators, Institute of Physics Publishing.

Ballester, P. J. & Carter, J. N. (2003). Real-parameter genetic algorithms for finding
multiple optimal solutions in multi-modal optimization, Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 706–717.

Ballester, P. J. & Carter, J. N. (2004a). An effective real-parameter genetic algorithm with parent
centric normal crossover for multimodal optimisation, Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 901–913.

Ballester, P. J. & Carter, J. N. (2004b). An effective real-parameter genetic algorithms
for multimodal optimization, Proceedings of the Adaptive Computing in Design and
Manufacture VI, pp. 359–364.

Beyer, H.-G. (2001). Theory of Evolution Strategies, Springer.
Beyer, H.-G. & Deb, K. (2001). On self-adaptive features in real-parameter evolutionary

algorithms, IEEE Transactions on Evolutionary Computation 5(3): 250–270.
Chen, Y.-P., Peng, W.-C. & Jian, M.-C. (2007). Particle swarm optimization with recombination

and dynamic linkage discovery, IEEE Transactions on Systems, Man, and Cybernetics,
Part B 37(6): 1460–1470.

Das, S. & Suganthan, P. N. (2011). Differential evolution - a survey of the state-of-the-art, IEEE
Transactions on Evolutionary Computation 15(1): 4–31.

78 Bio-Inspired Computational Algorithms and Their Applications

www.intechopen.com



The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 15

Dasgupta, S., Das, S., Biswas, A. & Abraham, A. (2009). On stability and convergence of the
population-dynamics in differential evolution, AI Commun. 22(1): 1–20.

Deb, K. & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space,
Complex Systems 9(2): 115–148.

Deb, K., Anand, A. & Joshi, D. (2002). A computationally efficient evolutionary algorithm for
real-parameter optimization, Evolutionary Computation 10(4): 371–395.

Deb, K. & Beyer, H.-G. (1999). Self-adaptation in real-parameter genetic algorithms with
simulated binary crossover, Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 172–179.

Deb, K. & Kumar, A. (1995). Real-coded genetic algorithms with simulated binary crossover:
Studies on multi-modal and multi-objective problems, Complex Systems 9: 431–454.

Deb, K., Sindhya, K. & Okabe, T. (2007). Self-adaptive simulated binary crossover for
real-parameter optimization, Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1187–1194.

Eshelman, L. J. (1991). The CHC adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination, Proceedings of the Workshop on
Foundations of Genetic Algorithms, pp. 265–283.

Eshelman, L. J., Mathias, K. E. & Schaffer, J. D. (1997). Crossover operator biases: Exploiting
the population distribution, Proceedings of the International Conference on Genetic
Algorithms, pp. 354–361.

Eshelman, L. J. & Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-schemata,
Proceedings of the Workshop on Foundations of Genetic Algorithms, pp. 187–202.

Goldberg, D. E. (1991). Real-coded genetic algorithms, virtual alphabets, and blocking,
Complex Systems 5: 139–167.

Hansen, N. & Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution
strategies, Evolutionary Computation 9: 159–195.

Herrera, F., Lozano, M. & Sánchez, A. M. (2003). A taxonomy for the crossover operator
for real-coded genetic algorithms: An experimental study, International Journal of
Intelligent Systems 18(3): 309–338.

Herrera, F., Lozano, M. & Sánchez, A. M. (2005). Hybrid crossover operators for real-coded
genetic algorithms: an experimental study, Soft Computing 9(4): 280–298.

Herrera, F., Lozano, M. & Verdegay, J. L. (1998). Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis, Artificial Intelligence Review
12(4): 265–319.

Higuchi, T., Tsutsui, S. & Yamamura, M. (2000). Theoretical analysis of simplex crossover
for real-coded genetic algorithms, Proceedings of the Sixth International Conference on
Parallel Problem Solving from Nature, pp. 365–374.

Huang, H., Qin, H., Hao, Z. & Lim, A. (2010). Example-based learning particle
swarm optimization for continuous optimization, Information Sciences .
doi:10.1016/j.ins.2010. 10.018.

Igel, C., Hansen, N. & Roth, S. (2007). Covariance matrix adaptation for multi-objective
optimization, Evolutionary Computation 15(1): 1–28.

Igel, C., Suttorp, T. & Hansen, N. (2006). A computational efficient covariance matrix update
and a (1+ 1)-CMA for evolution strategies, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 453–460.

Jägersküpper, J. (2007). Algorithmic analysis of a basic evolutionary algorithm for continuous
optimization, Theoretical Computer Science 379(3): 329–347.

79The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

www.intechopen.com



16 Will-be-set-by-IN-TECH

Janikow, C. Z. & Michalewicz, Z. (1991). An experimental comparison of binary and floating
point representations in genetic algorithms, Proceedings of the Fourth International
Conference on Genetic Algorithms, pp. 31–36.

Juang, Y.-T., Tung, S.-L. & Chiu, H.-C. (2011). Adaptive fuzzy particle swarm optimization for
global optimization of multimodal functions, Information Sciences (20): 4539–4549.

Kang, F., Li, J. & Ma, Z. (2011). Rosenbrock artificial bee colony algorithm for accurate global
optimization of numerical functions, Information Sciences (16): 3508–3531.

Kita, H. (2001). A comparison study of self-adaptation in evolution strategies and real-coded
genetic algorithms, Evolutionary Computation 9(2): 223–241.

Kita, H., Ono, I. & Kobayashi, S. (1998). Theoretical analysis of the unimodal
normal distribution crossover for real-coded genetic algorithms, Proceedings of the
International Conference on Evolutionary Computation, pp. 529–534.

Kita, H., Ono, I. & Kobayashi, S. (1999). Multi-parental extension of the unimodal normal
distribution crossover for real-coded genetic algorithms, Proceedings of the Congress
on Evolutionary Computation, pp. 1581–1587.

Kramer, O. (2008a). Premature convergence in constrained continuous search spaces,
Proceedings of the Parallel Problem Solving from Nature, pp. 62–71.

Kramer, O. (2008b). Self-Adaptive Heuristics for Evolutionary Computation, Springer.
Kramer, O., Gloger, B. & Goebels, A. (2007). An experimental analysis of evolution strategies

and particle swarm optimisers using design of experiments, Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 674–681.

Krohling, R. A. & Coelho, L. S. (2006). Coevolutionary particle swarm optimization
using gaussian distribution for solving constrained optimization problems, IEEE
Transactions on Systems, Man, and Cybernetics, Part B 36(6): 1407–1416.

Kukkonen, S. & Lampinen, J. (2004). An extension of generalized differential evolution
for multi-objective optimization with constraints, Proceedings of the Parallel Problem
Solving from Nature, pp. 752–761.

Kukkonen, S. & Lampinen, J. (2005). GDE3: the third evolution step of generalized differential
evolution, Proceedings of the Congress on Evolutionary Computation, pp. 443–450.

l. Sun, C., Zeng, J. & Pan, J. (2011). An improved vector particle swarm optimization for
constrained optimization problems, Information Sciences 181(6): 1153–1163.

Lozano, M., Herrera, F., Krasnogor, N. & Molina, D. (2004). Real-coded memetic algorithms
with crossover hill-climbing, Evolutionary Computation 12(3): 273–302.

Meyer-Nieberg, S. & Beyer, H.-G. (2007). Self-adaptation in evolutionary algorithms,
Proceedings of the Parameter Setting in Evolutionary Algorithms, pp. 47–75.

Mezura-Montes, E., Miranda-Varela, M. E. & d. C. Gómez-Ramón, R. (2010). Differential
evolution in constrained numerical optimization: An empirical study, Information
Sciences 180(22): 4223–4262.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer.
Mühlenbein, H. (1994). The breeder genetic algorithm - a provable optimal search algorithm

and its application, IEE Colloquium on Applications of Genetic Algorithms, pp. 5/1–5/3.
Mühlenbein, H. & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder

genetic algorithm I: Continuous parameter optimization, Evolutionary Computation
1(1): 25–49.

Noman, N. & Iba, H. (2005). Enhancing differential evolution performance with local search
for high dimensional function optimization, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 25–29.

80 Bio-Inspired Computational Algorithms and Their Applications

www.intechopen.com



The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms 17

Ono, I., Kita, H. & Kobayashi, S. (1999). A robust real-coded genetic algorithm using
unimodal normal distribution crossover augmented by uniform crossover: Effects of
self-adaptation of crossover probabilities, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 496–503.

Ono, I. & Kobayashi, S. (1997). A real-coded genetic algorithm for function optimization
using unimodal normal distribution crossover, Proceedings of the Seventh International
Conference on Genetic Algorithms, pp. 246–253.

Qi, A. & Palmieri, F. (1994a). Theoretical analysis of evolutionary algorithms with an
infinite population size in continuous space, Part I: Basic properties of selection and
mutation, IEEE Transactions on Neural Networks 5(1): 102–119.

Qi, A. & Palmieri, F. (1994b). Theoretical analysis of evolutionary algorithms with an infinite
population size in continuous space, Part II: Analysis of the diversification role of
crossover, IEEE Transactions on Neural Networks 5(1): 120–129.

Reed, J., Toombs, R. & Barricelli, N. A. (1967). Simulation of biological evolution and machine
learning, Journal of Theoretical Biology 17: 319–342.

Ripon, K. S. N., Kwong, S. & Man, K. F. (2007). A real-coding jumping gene genetic algorithm
(RJGGA) for multiobjective optimization, Information Sciences 177(2): 632–654.

Rönkkönen, J., Kukkonen, S. & Price, K. (2005). Real-parameter optimization with differential
evolution, Proceedings of the Congress on Evolutionary Computation, pp. 506–513.

Socha, K. & Dorigo, M. (2008). Ant colony optimization for continuous domains, European
Journal of Operational Research 185(3): 1155–1173.

Someya, H. & Yamamura, M. (2005). A robust real-coded evolutionary algorithm with toroidal
search space conversion, Soft Computing 9(4): 254–269.

Storn, R. & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces, Journal of Global Optimization 11(4): 341–359.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y., Auger, A. & Tiwari, S.
(2005). Problem definitions and evaluation criteria for the CEC 2005 special
session on real-parameter optimization, Technical Report NCL-TR-2005001, Natural
Computing Laboratory (NCLab), Department of Computer Science, National Chiao
Tung University.

Surry, P. D. & Radcliffe, N. (1996). Real representations, Proceedings of the Workshop on
Foundations of Genetic Algorithms, pp. 343–363.

Takahashi, M. & Kita, H. (2001). A crossover operator using independent component
analysis for real-coded genetic algorithm, Proceedings of the Congress on Evolutionary
Computation, pp. 643–649.

Tsutsui, S. (1998). Multi-parent recombination in genetic algorithms with search space
boundary extension by mirroring, Proceedings of the Fifth International Conference on
Parallel Problem Solving from Nature, pp. 428–437.

Tsutsui, S. & Goldberg, D. E. (2001). Search space boundary extension method in real-coded
genetic algorithms, Information Sciences 133(3-4): 229–247.

Tsutsui, S. & Goldberg, D. E. (2002). Simplex crossover and linkage identification: Single-stage
evolution vs. multi-stage evolution, Proceedings of the IEEE International Conference on
Evolutionary Computation, pp. 974–979.

Tsutsui, S., Goldberg, D. E. & Sastry, K. (2001). Linkage learning in real-coded GAs
with simplex crossover, Proceedings of the Fifth International Conference on Artificial
Evolution, pp. 51–58.

81The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

www.intechopen.com



18 Will-be-set-by-IN-TECH

Tsutsui, S., Yamamura, M. & Higuchi, T. (1999). Multi-parent recombination with simplex
crossover in real coded genetic algorithms, Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 657–664.

Wei, L., Chen, Z. & Li, J. (2011). Evolution strategies based adaptive Lp LS-SVM, Information
Sciences 181(14): 3000–3016.

Wright, A. H. (1991). Genetic algorithms for real parameter optimization, Proceedings of the
Workshop on Foundations of Genetic Algorithms, pp. 205–218.

Yoon, Y., Kim, Y.-H., Moraglio, A. & Moon, B.-R. (2012). A theoretical and empirical study on
unbiased boundary-extended crossover for real-valued representation, Information
Sciences 183(1): 48–65.

Zhang, M., Luo, W. & Wang, X. (2008). Differential evolution with dynamic stochastic selection
for constrained optimization, Information Sciences 178(15): 3043–3074.

82 Bio-Inspired Computational Algorithms and Their Applications

www.intechopen.com



Bio-Inspired Computational Algorithms and Their Applications
Edited by Dr. Shangce Gao

ISBN 978-953-51-0214-4
Hard cover, 420 pages
Publisher InTech
Published online 07, March, 2012
Published in print edition March, 2012

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities.
Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient
and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of
creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization,
prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a
compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial
immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The
works presented in this book give insights into the creation of innovative improvements over algorithm
performance, potential applications on various practical tasks, and combination of different techniques. The
book provides a reference to researchers, practitioners, and students in both artificial intelligence and
engineering communities, forming a foundation for the development of the field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yourim Yoon and Yong-Hyuk Kim (2012). The Roles of Crossover and Mutation in Real-Coded Genetic
Algorithms, Bio-Inspired Computational Algorithms and Their Applications, Dr. Shangce Gao (Ed.), ISBN: 978-
953-51-0214-4, InTech, Available from: http://www.intechopen.com/books/bio-inspired-computational-
algorithms-and-their-applications/the-roles-of-crossover-and-mutation-in-real-coded-genetic-algorithms



© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

