277 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    A Building Automation and Control micro-service architecture using Physics Inspired Neural Networks

    Get PDF
    In this work, we present a micro-service architecture which defines a Digital Twin (DT) framework for adaptive building automation and control. The DT framework primarily involves the orchestration of several containerized micro-services, promoting the scalability and deployability of the proposed framework within the industrial context. In the proposed framework, containerized microservices facilitate: (i) model-based control strategies; (ii) data-driven learning; (iii) data management; (iv) the inclusion of an internal High-Fidelity Simulator (HFS) to enable bootstrapped learning; and (v) a User Interface/User Experience (UI/UE) micro-service orchestrator. To validate the usefulness of the proposed framework, we implement a Physics Inspired Neural Network (PINN) to adapt the model-based control strategies for plant-model uncertainty and utilize bootstrap sampling against an internal HFS.publishedVersio

    SIMULATION OF ELECTRIC AND HYBRID VEHICLES IN A VEHICLE SIMULATOR BASED ON A DETAILED PHYSICAL MODEL, FOR THE PURPOSE OF HMI EVALUATION

    Get PDF
    In this article, we propose a software solution to study HMI of electric and hybrid electric vehicles in vehicle simulators. We will start with the description of a development process of a physical model for HEV simulation in IGNITE software and equation-based language Modelica. A short introduction to the language, its possibilities, and explanation, why it is more suitable for the development of such models (vehicle powertrain), are presented in the first part of the article. A fusion mechanism of the physical engine with the model by means of FMU (Functional Mock-up Interface) is also described in this part The second part is dedicated to the description of the model constructed in third party software IGNITE. This model has a detailed calculation of energy consumption and energy flow based on the selected control strategy. The last part of the article describes a possible experiment methodology

    Digital Twins of Building Physics Experimental Laboratory Setups for Effective E-learning

    Get PDF
    Hands-on experiments in laboratories are fundamental educational tools for technical sciences. However, laboratories are expensive and not always accessible to students: lockdown and in-person meeting restrictions due to the ongoing Covid-19 pandemic, distant location of teachers and students, facilities used for higher-priority purposes. Moreover, creating specific experimental setups for teaching only can be costly. In that context, digitalizing laboratory setups provides an attractive teaching alternative for remote e-learning. Digital twins are not meant to replace real-world experiments but should enable flexible teaching and effective learning at a lower cost. They complement physical setups and can be virtual extensions, allowing for larger and more complex study cases. e-learning is now popular and many educational institutions provide open-access videos of entire courses. However, the digitalization of practical exercises for engineering is yet limited. The e-learning effort presented in this paper aims to establish a series of digital twins of experimental setups for teaching building physics, energy in buildings and indoor environment. The development of the two first digital twins is detailed here. They are designed for teaching operation and balancing hydronic heating systems. Their numerical models and graphical user interfaces are created with the LabVIEW programming environment

    Software-in-the-Loop Simulation of a Planetary Rover

    Get PDF
    The development of autonomous navigation algorithms for planetary rovers often hinges on access to rover hardware. Yet this access is usually very limited. In order to facilitate the continued development of these algorithms even when the hardware is temporarily unavailable, simulations are used. To minimize any additional work, these simulations must tightly integrate with the rover’s software infrastructure. They are then called Software-in-the-Loop simulators. In preparation for the 2015 DLR SpaceBot Camp, a simulation of the DLR LRU rover became necessary to ensure a timely progress of the navigation algorithms development. This paper presents the Software-in-the-loop simulator of the LRU, including details on the implementation and application

    The Internet of Simulation: Enabling Agile Model Based Systems Engineering for Cyber-Physical Systems

    Get PDF
    The expansion of the Internet of Things (IoT) has resulted in a complex cyber-physical system of systems that is continually evolving. With ever more complex systems being developed and changed there has been an increasing reliance on simulation as a vital part of the design process. There is also a growing need for simulation integration and co-simulation in order to analyse the complex interactions between system components. To this end we propose that the Internet of Simulation (IoS) as an extension of IoT can be used to meet these needs. The IoS allows for multiple heterogeneous simulations to be integrated together for co-simulation. It's effect on the engineer process is to facilitate agile practices without sacrificing rigour. An Industry 4.0 example case study is provided showing how IoS could be utilized

    Future Perspectives of Co-Simulation in the Smart Grid Domain

    Full text link
    The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems
    • …
    corecore