4,028 research outputs found

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    Modeling and Simulation of a Sounding Rocket Active Stabilization System

    Get PDF
    The Horizon Simulation Framework is a modeling and simulation framework developed to verify system level requirements. In this thesis, the framework is extended to include the Dynamic position type that existed in the early development phase of the framework. The Dynamic position type is tested through the modeling and simulation of a sounding rocket. An active control system based on linear-quadratic regulator (LQR) control theory is implemented and tested in the simulation to determine the overall effect on altitude. A first order aerodynamics and aeroprediction model are created within the framework to allow for rapid changes early in the design process of the sounding rocket. The flight dynamics are compared to two different sounding rocket flights and the aeroprediction model is validated against public wind tunnel test data

    A CASE STUDY OF VARIOUS WIRELESS NETWORK SIMULATION TOOLS

    Get PDF
    4G is the fastest developing system in the history of mobile communication networks. Network connectivity is paramount for all kinds of big enterprises.  4G not only provides super-fast connectivity to millions of users, but can also act as an enterprise network connectivity enabler and it has inherent advantages such as higher bandwidth, low latency, higher spectrum efficiency along with backward compatibility and future proofing. The design of the 4G based Long Term Evolution physical network provides the required flexibility for optimization during the development phase. In this paper LTE Network related supporting simulation tools is presented to demonstrate the need of Hardware co-simulation of the LTE system. After the feasibility analysis, the importance of the model is to be ported Field Programmable Gate Array platform is examined in survey in detail with the supporting inferences along with the comparison of different wireless network simulators suitable for LTE

    Portable dVRK: an augmented V-REP simulator of the da Vinci Research Kit

    Get PDF
    The da Vinci Research Kit (dVRK) is a first generation da Vinci robot repurposed as a research platform and coupled with software and controllers developed by research users. An already quite wide community is currently sharing the dVRK (32 systems in 28 sites worldwide). The access to the robotic system for training surgeons and for developing new surgical procedures, tools and new control modalities is still difficult due to the limited availability and high maintenance costs. The development of simulation tools provides a low cost, easy and safe alternative to the use of the real platform for preliminary research and training activities. The Portable dVRK, which is described in this work, is based on a V-REP simulator of the dVRK patient side and endoscopic camera manipulators which are controlled through two haptic interfaces and a 3D viewer, respectively. The V-REP simulator is augmented with a physics engine allowing to render the interaction of new developed tools with soft objects. Full integration in the ROS control architecture makes the simulator flexible and easy to be interfaced with other possible devices. Several scenes have been implemented to illustrate performance and potentials of the developed simulator

    Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform

    Get PDF
    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project) and from the European Unions Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1)

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    UGV Navigation in ROS using LIDAR 3D

    Get PDF
    This works addresses to give a step forward the achievement of robust Unmanned Ground Vehicles (UGVs), which can drive in urban environments. More specifically, it focuses in the management of a four wheeled vehicle in ROS using mainly the inputs provided by a LIDAR 3D. Simulations were carried out in ad-hoc scenarios designed and run using GAZEBO. Visual information provided by sensors is processed through PCL library. Thanks to this processing the needed parameters to manage the UGV are obtained and its guidance can be carried out though a PID controller.El foco de este trabajo consiste en avanzar un paso hacia la consecución de vehículos terrestres no tripulados robustos, que puedan circular en zonas urbanas. Más concretamente se centra en el manejo de un vehículo de cuatro ruedas en ROS usando, sobre todo, las entradas proporcionadas por un LIDAR 3D. Las simulaciones se llevaron a cabo en escenarios ad-hoc diseñados y ejecutados usando GAZEBO. La información visual de los sensores es procesada mediante la librería PCL. Gracias a este procesamiento se obtienen los parámetros para conducir el UGV y su guiado puede ser llevado a cabo mediante un controlador PID.Máster Universitario en Ingeniería Industrial (M141

    Monocular Visual Odometry for Fixed-Wing Small Unmanned Aircraft Systems

    Get PDF
    The popularity of small unmanned aircraft systems (SUAS) has exploded in recent years and seen increasing use in both commercial and military sectors. A key interest area for the military is to develop autonomous capabilities for these systems, of which navigation is a fundamental problem. Current navigation solutions suffer from a heavy reliance on a Global Positioning System (GPS). This dependency presents a significant limitation for military applications since many operations are conducted in environments where GPS signals are degraded or actively denied. Therefore, alternative navigation solutions without GPS must be developed and visual methods are one of the most promising approaches. A current visual navigation limitation is that much of the research has focused on developing and applying these algorithms on ground-based vehicles, small hand-held devices or multi-rotor SUAS. However, the Air Force has a need for fixed-wing SUAS to conduct extended operations. This research evaluates current state-of-the-art, open-source monocular visual odometry (VO) algorithms applied on fixed-wing SUAS flying at high altitudes under fast translation and rotation speeds. The algorithms tested are Semi-Direct VO (SVO), Direct Sparse Odometry (DSO), and ORB-SLAM2 (with loop closures disabled). Each algorithm is evaluated on a fixed-wing SUAS in simulation and real-world flight tests over Camp Atterbury, Indiana. Through these tests, ORB-SLAM2 is found to be the most robust and flexible algorithm under a variety of test conditions. However, all algorithms experience great difficulty maintaining localization in the collected real-world datasets, showing the limitations of using visual methods as the sole solution. Further study and development is required to fuse VO products with additional measurements to form a complete autonomous navigation solution
    corecore