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Abstract

The popularity of small unmanned aircraft systems (SUAS) has exploded in recent

years and seen increasing use in both commercial and military sectors. A key inter-

est area for the military is to develop autonomous capabilities for these systems, of

which navigation is a fundamental problem. Current navigation solutions suffer from

a heavy reliance on a Global Positioning System (GPS). This dependency presents a

significant limitation for military applications since many operations are conducted

in environments where GPS signals are degraded or actively denied. Therefore, al-

ternative navigation solutions without GPS must be developed and visual methods

are one of the most promising approaches. A current visual navigation limitation is

that much of the research has focused on developing and applying these algorithms

on ground-based vehicles, small hand-held devices or multi-rotor SUAS. However, the

Air Force has a need for fixed-wing SUAS to conduct extended operations.

This research evaluates current state-of-the-art, open-source monocular visual

odometry (VO) algorithms applied on fixed-wing SUAS flying at high altitudes un-

der fast translation and rotation speeds. The algorithms tested are Semi-Direct VO

(SVO), Direct Sparse Odometry (DSO), and ORB-SLAM2 (with loop closures dis-

abled). Each algorithm is evaluated on a fixed-wing SUAS in simulation and real-

world flight tests over Camp Atterbury, Indiana. Through these tests, ORB-SLAM2

is found to be the most robust and flexible algorithm under a variety of test condi-

tions. However, all algorithms experience great difficulty maintaining localization in

the collected real-world datasets, showing the limitations of using visual methods as

the sole solution. Further study and development is required to fuse VO products

with additional measurements to form a complete autonomous navigation solution.
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MONOCULAR VISUAL ODOMETRY FOR FIXED-WING

SMALL UNMANNED AIRCRAFT SYSTEMS

I. Introduction

In 2016, the United States Air Force released the SUAS Flight Plan highlight-

ing the importance of SUAS in modern military operations and the need to further

develop and integrate these systems into the Air Force weapons set [1]. The Flight

Plan also addresses the need for higher degrees of autonomy to alleviate operational

requirements, protect against lost communication links, and enable integration with

other manned and unmanned aircraft. A central problem to solve in order to enable

autonomous operations is navigation.

1.1 Problem Statement

Current SUAS navigation solutions rely heavily on GPS which can be degraded

or denied during missions. Monocular Visual Odometry (VO) is an alternative nav-

igation solution that has made significant progress in the last decade, only recently

producing viable solutions that can be run on small mobile platforms with limited

resources. Monocular VO uses the information from images produced by a single

camera to estimate the camera’s motion [2]. Monocular VO is attractive since cam-

eras incur a low energy cost, images provide a wealth of information, and Air Force

SUAS are already equipped with cameras. However, the majority of current monoc-

ular VO research has focused on ground-based or quadrotor platforms. There have

not been many studies deploying these algorithms on fixed-wing SUAS which typi-

cally fly at higher altitudes and speeds and undergo different types of motions. This

1



thesis attempts to answer the following problem statements: are current state-of-

the-art monocular VO algorithms viable as a front-end solution for fixed-wing SUAS

navigation and what are the limitations under high-speed maneuvers?

1.2 Research Goals

This research evaluates the real-time performance of current state-of-the-art monoc-

ular VO algorithms on a fixed-wing SUAS under high-speed maneuvers. Three algo-

rithms are applied over multiple trajectories in both simulation and real-world flight

tests. The accuracy and robustness of each algorithm is analyzed and compared under

different flight conditions.

1.3 Hypothesis

This work hypothesizes that current state-of-the-art monocular VO algorithms

are viable starting points for an alternative navigation solution for fixed-wing SUAS.

However, a complete and robust solution will require fusing VO outputs with addi-

tional measurements from sensors such as an IMU and a backend system executing

loop closures.

1.4 Approach

The performance of three VO algorithms are tested and analyzed in simulation

and real-world flight tests: SVO [3], DSO [4], and ORB-SLAM2 [5] with loop closures

disabled. In order to conduct the simulations, a high-fidelity virtual environment

is created that allows the algorithms to be tested on a variety of trajectories and

terrains. The terrains consist of scaled satellite images that are mapped to elevation

data and GPS coordinates to accurately reflect real-world outdoor settings. A virtual
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camera streams live imagery of this terrain while flying above it and the imagery

stream is used as input for the algorithms.

The virtual environment [6] interfaces with an open-source autopilot software that

provides an interchangeable connection to a virtual autopilot or actual hardware. This

allows the generation of simulated trajectories with realistic flight dynamics as well

as the ability to project the status of a real SUAS. The virtual environment enables

recording and playback of truth data with multiple VO state estimation data.

Real-world flight tests are conducted over Camp Atterbury, Indiana where flight

data is gathered for real-time playback and processing post-flight. Both the flight

data and VO outputs can be projected into the virtual environment to analyze the

performances in real-time with intuitive visualization of scale and 6-DOF pose.

1.5 Assumptions/Limitations

The following assumptions and limitations are made during this experiment:

1. The camera faces downward in the aircraft’s body frame.

2. The virtual terrain image resolution is representative of real-world terrain when

viewed from mission altitudes.

3. There is negligible error from the lack of parallax from non-elevation features

in the virtual terrain such as trees when viewed from mission altitudes.

4. There is negligible distortion in the virtual terrain image from mapping the 2D

image onto the 3D elevation map for Camp Atterbury.

5. VO algorithms are initialized when the SUAS is flying level and the camera is

facing down towards the Earth’s center. The altitude at initialization is equal

to the absolute scale of the estimated trajectory.
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6. A photometric camera calibration is not provided.

1.6 Contributions

This thesis makes the following contributions to the field of VO:

1. VO/VSLAM virtual environment. This work presents a virtual environ-

ment ideal for testing and comparing VO and VSLAM algorithms in outdoor

environments. Realistic trajectories over real-world terrain can be generated

and perfect truth data is readily available. This facilitates easy testing under a

wide variety of flight conditions and SUAS parameters. Real-time reprojections

of VO results scaled to the world environment give an intuitive understanding

of algorithm performances during flight. Playback and overlays of multiple VO

estimated trajectories allow easy comparison and analysis. Although the al-

gorithms tested in this research are limited to VO, this virtual environment is

easily extensible to SLAM algorithms.

2. Fixed-wing VO. This work analyzes the performance of current state-of-the-

art monocular VO algorithms on a fixed-wing SUAS platform. It proposes a

VO algorithm for use as a front-end in a larger SLAM framework incorporating

multiple sensors and loop closure capabilities.

1.7 Thesis Overview

This thesis is organized into five chapters. Chapter 2 gives a background and

presents related research on monocular vision navigation. Chapter 3 describes the

test systems and experiment methodology. Chapter 4 provides the test results and

analysis. Chapter 5 summarizes the research and provides recommendations for future

work.
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II. Literature Review

This chapter provides a background on autonomous navigation and discusses the

application of visual solutions on a SUAS. It introduces mathematical notations for

transformations and calculations on images. It presents core concepts behind camera

calibration and VO. This chapter ends by surveying related works that have con-

tributed to the field.

2.1 Autonomous SUAS Navigation

The fundamental components used for onboard autonomous SUAS navigation are

the Inertial Measurement Unit (IMU) and GPS. The IMU contains accelerometers

and gyroscopes to calculate linear and angular movements but accumulates error from

drift over time and requires a GPS to continually correct this drift. However, GPS

signals can be degraded, lost or actively denied leading to erroneous measurement

inputs being provided to onboard control algorithms. Therefore, alternative methods

are required to either supplement or replace GPS as a navigation measurement source

[7].

Using a monocular camera on a SUAS for navigation is appealing due to the

relatively light weight, low monetary and energy cost, the discreet nature of passive

sensing, and the wealth of information available in an image. This can be compared

to other sensors such as lasers which have met with great success on larger ground-

based platforms but are typically too big and energy-intensive to use on smaller

aerial platforms with restrictive size and power limitations [8] [9]. Another navigation

method involves the use of stereo cameras which has the distinct advantage over a

monocular scheme in that the absolute scale of the environment and position can be

directly computed using the stereo baseline (distance between the two cameras) [10]
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[11]. However, this degrades to the monocular scheme when the distance from the

cameras to the scene is much greater than the baseline [2]. This is typically the case

for fixed-wing SUAS where the vehicle flies at high altitudes. RGB-D sensors have

also been used to directly obtain absolute scale but the depth sensors are limited in

range and not viable at high altitudes [12] [13] [14].

2.2 VO versus VSLAM

Research in visual navigation primarily falls under two categories: VO and VS-

LAM. VO incrementally computes the relative motion of a camera and tracks a more

localized environment [2]. VSLAM falls under the larger umbrella of SLAM which

aims to build and maintain a global map of the environment in order to calculate a

camera’s position and maintain a globally consistent trajectory [7].

Being an odometry method, VO does not maintain a global map to calculate its

state and therefore suffers from drift similar to an IMU [2]. Therefore, it also requires

additional mechanisms to periodically constrain its error. These measures can take

the form of a GPS or the incorporation of loop closures in a SLAM system.

As the name suggests, VSLAM is a SLAM solution in which visual sensors are

used as the primary input. A SLAM system is usually divided into front-end and

back-end systems [15]. The front-end system provides an open loop odometry im-

plementation and in VSLAM this is usually through VO. The back-end builds the

globally consistent map, fuses additional inputs if available, localizes the robot rela-

tive to observed landmarks, and calculates loop closures to correct the trajectory if a

previously observed landmark is re-encountered [16].
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2.3 Notation

This section defines the notation that will be used to describe core concepts and

equations for VO. The rotation and translation of a body’s coordinate frame from a

timestep or frame k−1 to k are described by the transformation matrix T k
k−1 ∈ SE(3):

T k
k−1 =

Rk
k−1 tkk−1

0 1

 (1)

where Rk
k−1 ∈ SO(3) is the rotation matrix that expresses points from frame k − 1

in frame k and tkk−1 describes the translation vector of points from frame k to k − 1

expressed in frame k.

The image taken at timestep k is given by Ik. A pixel coordinate for Ik is given by

u = (u, v)T. The pixel’s corresponding 3D coordinate relative to the camera’s frame

at timestep k is denoted by pk = (x, y, z)T.

2.4 Camera Calibration

Camera calibration is required in order to calculate a camera’s intrinsic parameters

and model the distortion effects of the lens [17]. The intrinsic parameters define the

mapping between a 3D point and its 2D image projection. The pinhole camera model

is one of the most common models used for calibration and is the model used to test

the various VO algorithms in this work. The pinhole model assumes that all the light

rays coming into the camera pass through one point in the center of the lens as shown

in Figure 1.
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Figure 1. Pinhole Model

With this model, the projection of point pk onto the image plane Ik becomes:
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where K is the camera matrix containing the intrinsic parameters fx, fy, u0, and

v0. fx and fy are the focal lengths in the respective directions and (u0, v0)
T is the

coordinate of the projection center. Kpk is scaled down by z in order to normalize

the 3D coordinates onto the same image plane [17].

Additionally, camera lenses cause radial and tangential distortions in an image so

that straight lines bulge and curve away from the center as shown in Figure 2. Given

x′ = x/z, y′ = y/z, and r =
√
x′2 + y′2, the radial distortion is modeled by Equation

3, the tangential distortion by Equation 4, and the total distortion by Equation 5.

(d0, d1, d2, d3, d4) are the distortion coefficients [18].
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Figure 2. Lens Distortion

x′radial distortion

y′radial distortion

 = (1 + d0r
2 + d1r

4 + d2r
6)

x′
y′

 (3)

x′tangential distortion

y′tangential distortion

 =

2d3x
′y′ + d4(r

2 + 2x′2)

d3(r
2 + 2y′2) + 2d4x

′y′

 (4)

x′distortion
y′distortion

 =

x′radial distortion

y′radial distortion

 +

x′tangential distortion

y′tangential distortion

 (5)

One of the most common methods of performing a camera calibration is by taking

pictures of a flat checkerboard of known size at multiple orientations and positions as

shown in Figure 3 [18]. The intrinsic parameters in K and the distortion coefficients

(d0, d1, d2, d3, d4) can then be backed out and used to undistort images taken with the

camera as well as calculate 3D position and orientation changes in VO algorithms.

9



Figure 3. Calibration Checkerboard

2.5 Monocular VO

A core concept of monocular VO is to incrementally calculate the relative trans-

formations of the camera T k
k−1 using the image data from the images Ik−1 and Ik. The

camera’s pose relative to the local starting frame at any point in the trajectory can

be recovered by chaining together all of the preceding incremental transformations

T 0
1 × T 1

2 × ... × T n−2
n−1 × T n−1

n [19] [20]. Many VO algorithms periodically designate

certain frames with unique image features as a keyframe rn and only hold onto a set

amount of keyframes [4] [5] [20] [21] [22] [23]. The keyframes keep track of the image

features and their estimated 3D positions, forming a local map. The transformations

for subsequent regular frames are then calculated relative to the latest keyframe T rn
k

and new measurements are used to refine the 3D positions of observed map points in

the previous keyframes until a new keyframe is designated.

VO algorithms differ by the density of pixels used in an image and by the method

of image comparison used. Pixel density falls into three categories: sparse, dense,
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and semi-dense [5] [22] [24]. The two predominant image comparison methods are

feature-based and direct methods [4] [5].

Sparse VO algorithms select a small number of pixels at key points throughout

an image. Dense methods on the other hand use every pixel in the image. Semi-

dense methods use pixels from regions of an image. Semi-dense image regions can be

selected based on their image intensity gradients [24]. An example of the different

pixel densities used from an image is shown in Figure 4. The green pixels in each

image show the pixels used for the VO algorithm.

Figure 4. Pixel Density. Green pixels shows the pixels used for VO calculation.

2.5.1 Feature-based Methods.

Feature-based methods identify local keypoints or areas of interest throughout an

image and extract feature vector representations, or descriptors, for each point which

are then matched between sets of images [25]. The relative transformation between

the corresponding camera poses for the image frames is calculated to optimize the

geometric error between the feature positions. Features remain invariant to transfor-

mations and changes in lighting conditions to calculate and match the same features

across different images. Extracting features to meet this criteria and matching them

between images can be costly operations. Some of the most prevalent features used

are SIFT [26], SURF [27], FAST [28], and ORB [29]. Figure 5 shows an example of

ORB features detected and matched across two images of the same scene taken at
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different positions.

Figure 5. ORB Features

The fundamental components of a feature-based VO algorithm is shown in Figure

6. Features are first extracted from the latest image and matched or tracked across

previous images. The transformation describing the motion from the previous frame

to the current frame is then calculated using the geometry of the matched feature

points between the different images. This commonly involves utilizing the epipolar

constraint shown in Figure 7 [17]. A feature viewed by the same camera in two images

Ik−1 and Ik has a 3D world coordinate pw that forms a plane with the camera centers

at frames k − 1 and k. This plane is the epipolar plane. Epipolar lines are formed

by the intersections of the epipolar plane with the image planes Ik−1 and Ik. The

projections of pw onto Ik−1 and Ik are at the 3D coordinates p′k−1 and p′k. These

points lie on their respective epipolar lines and are described relative to the camera’s

coordinate frames at k − 1 and k.
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Figure 6. Basic Components of a Feature-based VO System

Figure 7. Epipolar Constraint Components. The epipolar plane is formed by the

camera centers and feature point pw. Epipolar lines are formed by the intersection of

the epiploar plane and image planes

If Tk
k−1 is the transform that rotates and translates the camera frame from k − 1

13



to k, the epipolar constraint relies on the fact that the vectors tkk−1 (from Equation

1), p′k−1, and p′k are all coplanar on the epipolar plane. Expressing these vectors

relative to the camera at frame k would mean that the vectors tkk−1, R
k
k−1p

′k−1, and

p′k are all coplanar. This property is mathematically represented by Equation 6 [17].

Conceptually, the cross product of tkk−1 and Rk
k−1p

′k−1 yields a vector that is per-

pendicular to the epipolar plane formed by the two vectors. This cross product is

consequently perpendicular to p′k. Therefore, the dot product between the perpen-

dicular vector and p′k must be zero. This equation is normally rewritten in the form

of Equation 7 where E is known as the essential matrix and is equal to tkk−1 × Rk
k−1.

This equation can be extended to incorporate the feature point’s corresponding 2D

image coordinates uk−1 and uk. For the pinhole model, this would involve the camera

matrix K as shown in Equation 8. Rearranging Equation 8 gives us Equation 9 which

is normally rewritten as Equation 10 where F is known as the fundamental matrix

and is equal to (K−1)TEK−1 [17].

p′
kT

(tkk−1 ×Rk
k−1p

′k−1) = 0 (6)

p′
kT
Ep′

k−1
= 0 (7)

(K−1uk)TE(K−1uk−1) = 0 (8)

ukT(K−1)TEK−1uk−1 = 0 (9)

ukTFuk−1 = 0 (10)
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Given a set of matched image points corresponding to a feature, the essential

matrix is calculated in order to extract the rotation and translation of the camera

between the two frames. Random Sample Consensus (RANSAC) is also a standard

method used for outlier rejection [30]. RANSAC calculates motion model estimates

from a random sample of matched feature points and verifies it against other corre-

sponding feature samples. The model that best fits the data points is selected and

this process is repeated for a desired number of iterations.

An issue with monocular VO algorithms is the inability to compute the abso-

lute scale of the translation since the absolute depth information is lost during the

projection of 3D points onto 2D images. The relative scale of transformations can

be computed and propagated across frames although the error in scale would grow

unconstrained without continuous corrections. Therefore, monocular VO must be

supplemented by fusing measurements from other devices such as an IMU in order

to extract the absolute scale [31] [32] [33]. However, this visual-inertial odometry

configuration would still require additional corrections from loop closures or GPS [2].

After computing the rotation and translation, this estimate can be refined through

local bundle adjustment. Bundle adjustment involves tracking feature points and

optimizing the estimate over a sliding window of the last n image frames [34] [35].

This is accomplished by solving for the camera pose that minimizes the reprojection

error of the tracked features into the image at the current frame k as shown in

Equation 11. The reprojection error can be solved using a nonlinear least-squares

algorithm such as the Gauss-Newton or Levenberg-Marquardt method [36]:

T k
w = argT min

∑
i

||ui − π(Tpw
i )||2 (11)

where π describes the mapping of 3D coordinates to the 2D points on the image plane.
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2.5.2 Direct Methods.

Direct methods operate directly on the pixel intensity values in the images. The

relative pose transformations are calculated by finding the optimal transformation

that minimizes the photometric error of the selected pixels between the different

images. This tends to be faster than feature-based methods since it avoids the costly

computation steps of extracting features and matching them between images as shown

in Figure 8. However, changes in lighting conditions are a major source of error [37].

Figure 8. Basic Components of Direct Methods

The transformation between frames that will minimize the photometric error can

be found through Equation 12. In this equation, image points from Ik−1 are projected

into Ik using their corresponding depth values dui
and the transformation estimate

T k
k−1. The intensity values at the image coordinates in both Ik−1 and Ik are then

compared. Similar to the bundle adjustment reprojection error, the photometric

error is also nonlinear and a solution can be found by using a nonlinear least-squares

algorithm. Bundle adjustment can then be used to optimize the pose over the last n

frames similar to feature-based methods [3].

T k
k−1 = argT min

∑
i

||Ik(π(Tπ−1(uk−1
i , dui

)))− Ik−1(uk−1
i )||2 (12)

Until recently, feature-based methods were the predominant approach with many

algorithms using sparse pixels, especially in the earliest solutions. However, direct
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methods have been gaining in popularity along with denser pixel schemes. Currently,

real-time VO implementations for SUAS and other small mobile platforms are limited

to semi-dense schemes due to the constrained computing environment.

2.6 Related Works

The first work using visual input to calculate a robot’s motion was accomplished

by Moravec in the 1980s [38]. In this work, a sliding monocular camera was used on a

planetary rover in a method that essentially boils down to a stereo scheme. The rover

intermittently makes stops during a trajectory at which the camera slides along a rail

and takes nine pictures equal distances apart. Corner features are extracted, matched

and triangulated to determine the 3D point locations. The feature locations are then

used to estimate the robot’s motion. However, it wasn’t until 2004 that Nister et al.

implemented the first real-time large-scale VO solution [39]. This VO algorithm uses

Harris corners [40] for feature detection and RANSAC for robust motion estimation.

It was tested on an autonomous ground vehicle and was able to process frames at 13

Hz. Nister et al. also first introduced the term VO in this paper. The first real-time

VSLAM solution was produced by Davison et al. in 2007 and was called MonoSLAM

[41]. MonoSLAM maintains a probabilistic 3D map of 100 corner features detected

using the Shi and Tomasi operator [42]. This map is then used to localize the camera

at 30 Hz. It was demonstrated on a humanoid robot walking around in an indoor

environment.

Also in 2007, Klein and Murray developed Parallel Tracking and Mapping (PTAM)

which introduced the idea of splitting tracking and mapping into separate threads to

achieve higher overall performance and accuracy [23]. By not tying the tracking

process to the map update, the tracking thread is able to execute more detailed

image processing on each frame and only supply keyframes containing non-redundant
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features to the mapping thread. The mapping thread is also able to employ more

expensive but accurate methods of updating its map such as bundle adjustment due

to the relaxed time constraint in not having to incrementally update the map on every

frame. The tracking thread can then provide real-time pose estimates of the camera

using the currently built map. PTAM was originally designed for augmented reality

applications in small indoor desktop environments and its mapping system is not

scalable for large scenes. However, its scheme of separating tracking and mapping into

separate threads remains the foundational architecture for modern VO and VSLAM

algorithms.

In 2011, Newcombe et al. introduced Dense Tracking and Mapping (DTAM), a

fully dense and direct algorithm designed to be highly parallelizable and employed on

a Graphics Processing Unit (GPU) [22]. By combining computer vision and graphics

techniques, DTAM builds dense 3D surface models of the environment, textures them

with images, and reprojects them into a virtual camera. Direct methods are used to

align the whole image and find the pose that minimizes the reprojection error between

the virtual and live images. Pixels whose photometric error falls above a threshold

are ignored to allow continued tracking even with the introduction of new unmodelled

objects in the scene. DTAM is significantly more robust under occlusions, camera

blur and defocus than other feature-based methods while being able to maintain a

framerate of 30 Hz. However, most VO and VSLAM solutions for SUAS and other

mobile robotics currently focus on implementing solely CPU-based algorithms which

limits the ability to process every pixel per image. DTAM is not publicly available.

Engel et al. produced a set of real-time direct VO and VSLAM algorithms for

monocular cameras starting with Semi-Dense VO in 2013 [43]. This algorithm main-

tains a semi-dense inverse depth map for image regions with non-negligible gradients.

Tracking is conducted by minimizing the photometric error using the iterative Gauss-
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Newton method over four coarse-to-fine pyramid levels. A feature-based method is

required for the first two frames in order to compute the first transformation and

initialize the inverse depth map. This algorithm is able to maintain a tracking rate

of 30 Hz and a mapping rate of 15 Hz.

Engel et al. built upon the concepts of Semi-Dense VO to create Large-Scale Di-

rect SLAM (LSD-SLAM) in 2014 [24]. Figure 9 shows an overview of the algorithm.

LSD-SLAM is made up of three parts: tracking, depth map estimation, and map

optimization. LSD-SLAM stores the inverse depth map over keyframes and tracks

the camera pose relative to the latest keyframe in the map as in Semi-Dense VO.

Subsequent regular frames are used to refine the depth map of the latest keyframe.

A new keyframe is added if the camera is too far from this keyframe. The keyframe

is then replaced and added to the global map for map optimization. The map opti-

mization component utilizes OpenFABMAP, an open-source Fast Appearance-Based

Mapping algorithm, to detect large loop closures [44]. OpenFABMAP uses a bag-of-

words approach which represents images through feature detectors, or visual words,

and measures the similarity between images by the visual word histograms. This

allows the algorithm to efficiently find similar images out of large datasets in order

to detect loops. LSD-SLAM continuously optimizes the map by representing the

keyframes and their relative transformations as a pose-graph and employing g2o, an

open-source nonlinear graph optimization algorithm [45].
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Figure 9. LSD-SLAM

DSO was released by Engel et al. in 2016 [4]. This algorithm not only utilizes

geometric camera calibration to model the camera’s intrinsic parameters, but it also

incorporates an optional photometric camera calibration to model the camera’s expo-

sure response and pixel attenuation (vignetting) [46]. Photometric camera calibration

is not necessary in feature-based methods since features are selected to be invariant to

changes in lighting conditions but is helpful in direct methods since they depend solely

on pixel intensities. In DSO, new frames are tracked relative to the latest keyframe.

If the frame is not designated as a new keyframe, it is discarded. If a new keyframe is

created, the photometric error is optimized over a sliding window of the latest seven

keyframes. DSO tracks a fixed, sparse set of pixels across all keyframes. Candidate

pixels in an image are selected for tracking by dividing the image into blocks of size

d×d and calculating a region-adaptive gradient threshold for each block based on the

median gradient of the pixels in the block. The pixel with the highest gradient greater
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than the threshold is chosen. In order to be able to include pixels in regions with

small gradients, the process is repeated again over larger block sizes of 2d and 4d with

weaker gradient thresholds. LSD-SLAM and DSO are both currently open-source.

Several modifications and extensions have been made by members of the Com-

puter Vision Group at the Technical University of Munich following on the work on

DSO. Von Stumberg et al. created Visual Inertial DSO (VI-DSO) which tightly in-

tegrates IMU information with DSO and jointly optimizes the photometric and IMU

measurement errors [47]. This allows for the calculation of scale and increased ro-

bustness during fast maneuvers or low-textured areas. Gao et al. adapted DSO into a

VSLAM system in LDSO [48]. LDSO detects loop closures through the bag-of-words

method which requires the use of repeatable features. In order to minimize overhead,

LDSO favors corner features and uses them for both camera tracking as well as loop

closures. Currently, only LDSO is available as open-source.

ORB-SLAM is one of the leading feature-based VSLAM algorithms and was cre-

ated by Mur-Artal et al. in 2015 [49]. The system overview is shown in Figure 10.

ORB-SLAM involves three threads for tracking, mapping, and loop closing. ORB-

SLAM maintains an undirected weighted graph of keyframes that are linked to each

other based on the number of shared map points in the keyframe images. This co-

visibility graph is used for loop closures and pose graph optimizations. However, in

order to increase efficiency, a subset of the covisibility graph is also maintained as

a spanning tree and is called the essential graph. The essential graph contains all

keyframe nodes but only connects keyframes sharing the most map points.

ORB-SLAM extracts ORB features from an image and uses them for tracking,

relocalization, and loop detection which allows for high efficiency. In the tracking

thread, an initial pose estimation is obtained for the current frame by either using a

constant velocity motion model from the last frame if tracking was successful in the
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last frame or, if tracking was lost, by relocalizing from the bag-of-words recognition

database. The pose estimation is optimized by projecting the local map of keyframes

containing covisible map points into the current frame. The keyframe with the most

covisible map points is designated as the reference keyframe. If the current frame’s

image is sufficiently different from that of the reference keyframe, it is inserted into

the covisibility graph as a new keyframe in the mapping thread. Map points that have

been determined to be non-trackable or erroneously triangulated are culled. Other-

wise, new map points are triangulated from matching ORB features in connected

keyframes. Local bundle adjustment is run to optimize the current keyframe along

with the connected keyframes in the covisibility graph and all map points belonging

to those keyframes. Redundant keyframes are then culled.

The loop closing thread utilizes the bag-of-words approach to query the recogni-

tion database, find similar images, and insert new edges into the covisibility graph

for loop closures. The loop closure error is then propagated throughout the graph

by optimizing the essential graph and transforming all map points according to its

keyframe’s correction. A new version of the algorithm, ORB-SLAM2, was released

in 2017 [5]. ORB-SLAM2 adds in a full bundle adjustment step over all keyframes

and map points in a separate fourth thread. It also extends the algorithm to accom-

modate monocular, stereo, and RGB-D cameras. ORB-SLAM and ORB-SLAM2 are

both open-source.
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Figure 10. ORB-SLAM

SVO is a hybrid VO algorithm by Forster et al. that was first released in 2014 [3].

Figure 11 gives an overview of the algorithm. SVO consists of a motion estimation

or tracking thread and a mapping thread. In the motion estimation thread, an initial

estimate of the camera pose is found through sparse model-based image alignment

in which a direct method is used to minimize the photometric error with reprojected

feature patches from the previous image. The reprojected features in the new image

are then aligned with respect to the rest of the map by optimizing the 2D pixel

locations to minimize the photometric error with the reference feature patch in the

keyframe. By adjusting each individual reprojected feature locations in the new

frame, the feature alignment step violates epipolar constraints. In order to correct

this, SVO performs a bundle adjustment through the pose and structure refinement

step, optimizing the camera pose again but this time by minimizing the photometric

error with respect to optimized feature patches. If the mapping thread receives a

keyframe, it splits the image into fixed-size cells and extracts the FAST corners with
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the highest Shi-Tomasi score in each cell. Depth filters are initialized for new features

with high uncertainty. New regular frames are used to update these depth filters using

a Bayesian method and once the variance is sufficiently low, the corresponding 3D

point is inserted into the map to be used for motion estimation. By only extracting

feature points during keyframes and using direct methods to calculate the camera

pose for every frame, SVO is able to achieve high processing speeds. The authors also

presented SVO 2.0 in 2017 [21]. This extends the original SVO algorithm to large

FOV cameras, multi-camera systems, IMU incorporation, and the additional use of

edges for feature alignment. Although the original SVO algorithm is open-source,

SVO 2.0 is only available as a pre-compiled binary.

Figure 11. SVO
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SVO has been used as a baseline algorithm in multiple follow-on works by the

Robotics and Perception Group in the University of Zurich, Switzerland. REMODE

is a monocular dense reconstruction algorithm by Pizzoli et al [50]. This algorithm

uses a similar probabilistic Bayesian approach as SVO to build dense depth maps

from a monocular camera. However, REMODE is highly parallelizable and designed

to use a GPU for real-time dense reconstructions at 30 Hz. SVO is used as a compo-

nent in REMODE to estimate the camera pose. Forster et al. used both SVO as well

as a modified version of REMODE on a quadrotor to develop an onboard real-time

elevation mapping algorithm [51]. In this system, SVO pose outputs from a down-

ward facing camera are fused with IMU measurements using an Extended Kalman

Filter (EKF) multi-sensor fusion (MSF) package to obtain scaled trajectory estimates.

REMODE is scaled down by initializing depth filters for blocks of pixels instead of

every single pixel, thereby allowing onboard computation on a CPU. The depth map

built by REMODE is then used to build a 2D elevation map that remains localized

around the quadrotor and is used for autonomous landing. Alternatively, Faessler et

al. used both SVO and REMODE on a quadrotor with a downward facing camera to

autonomously execute a trajectory while providing a dense 3D map of the traversed

area in real-time [31]. SVO outputs are again fused on an onboard CPU with IMU

measurements through an EKF MSF package and the results are used to provide

inputs at 50 Hz to the low-level flight controller on the quadrotor. SVO outputs are

sent over WiFi at 5 Hz to a ground-station running REMODE to generate live dense

maps. This system was tested on a 140 m trajectory at an operating altitude of 20

m in an outdoor firefighter disaster mock-up site in Zurich.

In recent years, a completely new approach to the VO problem has been in devel-

opment applying deep learning and artificial neural networks. Wang et al. developed

DeepVO which utilizes deep recurrent and convolutional neural networks to calculate
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pose estimates from a set of images [52]. This method entirely avoids the need for

geometric optimizations or even camera calibrations as opposed to feature-based and

direct methods. It also allows recovery of the absolute scale with no prior knowledge

or additional input as this is learned while training the neural net. Li et al. proposed

UnDeepVO which uses unsupervised deep learning to allow training its neural net on

unlabeled datasets [53]. Unlabeled datasets are those that are not formatted with

ground truth data. This is useful since obtaining ground truth is usually a difficult

and expensive operation, especially if it must be gathered and synchronized from mul-

tiple sources running at different rates. In order to recover scale, UnDeepVO must

first be trained using a stereo camera configuration before using it as a monocular

VO system.

Several public VO and VSLAM datasets with synchronized truth data are available

and are used by many works to compare and report algorithm performances. The

KITTI dataset contains data from two stereo camera setups as well as a rotating

3D laser scanner captured from a station wagon driving through traffic [54]. The

truth trajectory data is gathered from a high-precision GPS/IMU system. The laser

scanner and image data are collected at a rate of 10 frames per second. The TUM

RGB-D dataset consists of color and depth images collected from a Microsoft Kinect

sensor at 30 frames per second in an indoor office environment from either a handheld

configuration or on a wheeled robot [55]. Truth trajectory data is obtained from an

external motion capture system. The TUM monoVO dataset contains 50 sequences

of monocular camera data exploring both indoor and outdoor environments from a

handheld configuration [46]. Camera image rates range from 20 to 50 frames per

second. The dataset provides both geometric and photometric camera calibrations

for all sequences. Instead of measuring the ground truth using external sensors, this

dataset has all sequences start and end at the same position and uses LSD-SLAM
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to generate the truth data after conducting a large loop closure. Therefore, the

ground truth is not perfectly accurate. The European Robotics Challenge (EuRoC)

Micro Aerial Vehicle (MAV) dataset provides stereo visual and inertial data from a

hexrotor flying in an indoor industrial environment [56]. Camera data is provided at

20 Hz and ground truth data is recorded using a laser tracking system and a motion

capture system. The laser tracking system provides millimeter accuracy at 20 Hz

while the motion capture system provides pose measurements at 100 Hz. The Zurich

Urban MAV dataset provides monocular image data collected from a quadrotor flying

outdoors over the streets of Zurich, Switzerland at an altitude of 5 to 15 m over a 2

km trajectory [57]. Ground truth data is calculated by appearance-based topological

localization and VSLAM algorithms.

The virtual environment created in this work aims to solve some critical limitations

of these datasets. The first limitation is that the datasets are aimed at handheld

platforms, ground-based vehicles or small quadrotors which operate under different

environments from fixed-wing SUAS. A second limitation is that obtaining accurate

ground truth data at high frame rates in the real world is a difficult task. However,

perfect truth data is readily available in the virtual environment. Finally, the virtual

environment allows configuration of SUAS parameters and trajectories to allow fast

and easy test flights in a multitude of scenarios that are not limited to those in the

datasets.

Ellingson et al. recently published a work on visual-inertial odometry for fixed-

wing aircraft [33]. In this work, a modified version of a previously proposed relative

navigation architecture is used. This architecture consists of a relative front end

running a multi-state constraint Kalman filter (MSCKF) for state estimation and a

global back end that maintains a pose graph and conducts optimizations as well as

loop closures [58]. This algorithm is tested in a simulation environment built using
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the Gazebo robot simulator. The simulated aircraft flies over a cityscape image at

11 m/s at an altitude of 50 m. However, the MSCKF filter implementation is not

yet fast enough to run under real-time constraints and the frame rate of the virtual

aircraft camera is limited to three frames per second.

Carson investigated the use of a Kalman Filter to implement visual-inertial odom-

etry on a fixed-wing aircraft [32]. In this work, four VO algorithm variants were

created as shown in Figure 12. These algorithms are used along with SVO in a

Kalman filter-based solution fusing additional inputs from an IMU, barometer, and

terrain elevation data. Frame-by-frame velocity calculations are output from all VO

algorithms into the Kalman filter. The created VO variants are all frame-by-frame

algorithms with no bundle adjustment or local mapping. They vary in their tracking

method as well as their method of calculating rotation. Tracking is conducted either

through feature detection and brute force matching between two images of AKAZE

features [59] or by dividing the images into uniform grids and tracking pixel features

using Lucas-Kanade tracking of optical flow [60]. The rotation matrix is calculated

either through the essential matrix from the imagery or completely supplanted by

the filtered INS measurement. The output velocity scale calculation relies on the

assumption that the camera is facing straight down throughout the entire trajectory

and requires continuous updates of the filtered altitude solution from the barometer,

IMU, and terrain elevation data.

One of the limitations of Carson’s work is that the created VO algorithms rely on

the assumption that the camera is always perfectly face-down to calculate the velocity

scale on every frame, limiting their flexibility during pitches or rolls. The comparison

against SVO also fails to account for SVO’s bundle adjustment behavior since SVO

is incorporated into the Kalman filter by calculating the output velocity from the

difference in position of two frames while never updating the local map points. Also
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in this work, SVO is tested on imagery collected at a rate of five frames per second.

This is a suboptimal condition since the algorithm relies on higher frame rates for

faster convergence and greater robustness [21].

Figure 12. Carson VO Variants used in [32].

2.7 Summary

This chapter introduced core concepts regarding autonomous SUAS navigation

and visual methods. It presented the formulations for the geometric camera cali-
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bration matrix, epipolar constraint for feature-based VO and the photometric error

optimization for direct methods. Finally, it presented works in both VO and VSLAM

that have made contributions to the field.
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III. Methodology

This work makes the following contributions in VO: a virtual environment for

testing visual navigation algorithms and an analysis of current state-of-the-art VO

algorithms applied to fixed-wing SUAS platforms. This chapter provides a detailed

description of all modules built for both virtual and real-world testing. This chapter

also presents the experimental design and methodology used to analyze and compare

the performance of the VO algorithms on a fixed-wing SUAS.

3.1 Dependencies

This section describes the core software dependencies used to build the different

modules. All modules are built and executed on an Intel i7, 2.8 GHz quad-core laptop

running an Ubuntu 16.04 operating system (OS). All modules are programmed in

C++ and requires compiler support for C++14 or greater.

3.1.1 Middleware.

A core issue for robotic systems is inter-process communication (IPC) since most

systems require the development and use of multiple subsystems running as sepa-

rate processes or nodes. Several open-source middlewares have been developed to

address this problem and one of the most popular is the Robot Operating System

(ROS) [61]. IPC in ROS is accomplished through a message-passing system where

language-agnostic message types can be built and used to generate the appropriate

language-specific data structures and files to be imported by nodes for communica-

tion. Messages are passed from publisher to subscriber nodes that are on the same

topic. Key design features in ROS are that all communications between nodes are

managed by a centralized node and that the principal protocol used is the Transmis-
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sion Control Protocol (TCP). This makes ROS less than ideal for building distributed

systems with potentially unreliable connections between nodes. However, ROS fea-

tures an extensive mature library beyond IPC with a large open-source community,

provides a centralized parameter server and launch system for easy management and

distribution of data among nodes, and maintains a build system augmenting CMake

for support in importing ROS packages and libraries.

Another open-source middleware is the Lightweight Communications and Mar-

shalling (LCM) library [62]. This was designed by students at MIT to offer the bare

essentials of just IPC. LCM operates using a similar system as ROS, passing messages

from publisher nodes to subscriber nodes that are on the same channel. Communica-

tion between nodes is accomplished through the User Datagram Protocol (UDP) in a

decentralized network, making LCM more suitable for distributed systems. However,

LCM lacks the presence of ROS’s large open-source community and libraries. LCM

also lacks a centralized parameter server, requiring alternative methods to distribute

parameters to disparate nodes.

Both ROS and LCM are used in multiple modules built for this work. ROS is

used for its launch system and parameter server to be able to correctly initialize and

launch multiple nodes. It is also used to take advantage of the MAVROS library, an

extensive and mature library for communicating with the ArduPilot autopilot and

simulator. LCM is used for compatible communication with systems being developed

at the AFIT Autonomy and Navigation Technology (ANT) Center. ROS Lunar and

LCM version 1.3.1 are used in this work.

3.1.2 AftrBurner Engine.

All virtual environment components are built using the AftrBurner engine, a cross-

platform visualization engine written in C++ and the successor to the STEAMiE
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educational game engine [63]. The visualization engine contains submodules for cre-

ating and reading virtual camera data as well as generating scaled real-world terrain

models using United States Geological Survey (USGS) elevation data and satellite

imagery. The AftrBurner engine also contains formulations for modeling the World

Geodetic System (WGS) 84 model to accurately visualize GPS coordinates. Figure

13 shows an example terrain model of the Grand Canyon created through the Aftr-

Burner engine mapped against GPS coordinates and USGS elevation data. Limiting

factors include the available resolution of terrain and satellite imagery and the image

distortion incurred from mapping a 2D overhead image onto a 3D model. This dis-

tortion is more pronounced in extreme elevation changes as shown on the cliffs and

walls of the virtual Grand Canyon.

Figure 13. Virtual Grand Canyon
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3.1.3 Qt.

Qt is a cross-platform Software Development Kit (SDK) for building Graphical

User Interface (GUI) applications. This is used to augment some of the modules built

with the AfterBurner Engine to provide intuitive controls. Qt 5.10.1 is used for all

applications.

3.1.4 OpenCV.

The Open Source Computer Vision library (OpenCV) is a C++ library that is

used for image processing applications including all of the VO algorithms used in this

work [64]. OpenCV is also used for its camera calibration functions. OpenCV version

3.4.1 is used for all applications.

3.1.5 ArduPilot.

The ArduPilot autopilot software is used to control the aircraft in both the vir-

tual environment and the real world. ArduPilot uses an EKF to fuse sensor input

and provide low-level control for various autonomous vehicles including rovers, sub-

marines, copters, and planes. Raw and fused sensor data can be read from the

ArduPilot. The ArduPilot uses the MAVLink protocol to transmit and receive data.

The MAVROS library is used to connect with the ArduPilot through a ROS node

and read MAVLink data. ArduPilot provides a Software In The Loop (SITL) pro-

gram which allows ArduPilot software to be run on a computer and simulate virtual

autopilots for vehicles. This is used to generate simulated trajectories for a fixed-wing

aircraft exhibiting realistic flight dynamics. A ground control station (GCS) program

is required to give commands and communicate with the ArduPilot. The GCS used

for controlling the simulated aircraft is QGroundControl since it is available on Linux,

allowing simultaneous execution of all modules on the same laptop computer. The
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GCS used for controlling the real-world aircraft is Mission Planner since that is the

standard GCS used in the ANT Center.

3.1.6 Vimba SmartCables Driver.

The Vimba SmartCables Driver is a LCM wrapper built around the Vimba Soft-

ware Development Kit (SDK) for interfacing with Allied Vision cameras. The driver

is maintained by the ANT Center and is tested with Vimba 2.1.3.

3.1.7 Dependency Conflict.

The AftrBurner engine requires the Boost library with version 1.66 or greater.

However, the precompiled ROS library that is installed by the Linux package man-

ager, Advanced Package Tool (APT), in Ubuntu 16.04 is compiled against an older

incompatible version of Boost. This causes a problem when using the AftrBurner

engine with ROS that prevents transmitting and receiving image messages through

the ROS image transport package. This can be corrected by uninstalling all Boost

libraries older than version 1.66 and compiling the entire ROS library from source

against the installed Boost library version 1.66 or higher. Some ROS modules may

exhibit compilation errors upon which those modules can be removed if deemed non-

essential. An example of this is OpenCV, as that should be compiled separately from

the ROS library. For other ROS modules not included in the core package such as

MAVROS, the source code for the package and each of its ROS dependencies must

be manually downloaded from their respective git repositories and compiled. Older

versions of Boost that may be installed as dependencies of other APT packages after

compiling the AftrBurner engine and ROS may cause applications to link against

the wrong version of Boost and cause the same errors during image transmission.

Removing the older versions of Boost will correct this error.
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3.2 System Design

3.2.1 VO Nodes.

The three current state-of-the-art algorithms tested are DSO [4], SVO [3], and

ORB-SLAM2 [5]. SVO is used instead of SVO2 since the source code for SVO2 is

not currently open-source. ORB-SLAM2 is allowed for comparison against the other

VO algorithms by disabling the loop closure thread so that it essentially functions as

a feature-based VO algorithm.

Although all of the algorithms provide example ROS wrappers and instructions for

implementing ROS nodes, SVO provides the most portable library and full-featured

functioning ROS node along with supporting parameter and launch files. DSO and

ORB-SLAM2 require some restructuring and rewriting of their CMake files to make

their dependencies more portable and the projects more accommodating for encap-

sulation by a wrapper node without introducing circular dependencies. Therefore,

the DSO and ORB-SLAM2 modules are modified to conform to a similar project

structure as SVO.

Figure 14 shows the standardized ROS and LCM node for each of the algorithms

along with the parameters used by the nodes which are provided through the ROS pa-

rameter server. The solid arrows show the input and output ROS topics that the node

subscribes and publishes to. The dotted arrow shows the input LCM channel that the

node subscribes to. The node primarily interacts with other modules through ROS

messages, taking in raw camera images as input and outputting the camera pose data

relative to the initial frame and an image showing the processed state of the input.

However, the node also accommodates LCM input images for flexibility in interfac-

ing with ANT Center systems. Currently, the only supported camera model that is

common to all three algorithms is the pinhole model. The cam width and cam height

parameters hold the image pixel width and height. The cam fx and cam fy parame-
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ters correspond to the camera focal lengths while the cam cx and cam cy parameters

correspond to the image center in the camera matrix. The rest of the parameters cor-

respond to the camera’s distortion coefficients. Individual VO algorithms also contain

separate parameters for detailed settings specific to the algorithms.

Figure 14. VO ROS/LCM Node

3.2.2 Camera Calibration.

A GUI-based calibration module is used to calibrate both real-world and virtual

cameras. Figure 15 shows the camera calibration modules. The Vimba SmartCables

Driver is used to interface with Allied Vision Cameras and collect images. A virtual

monocular calibration module provides imagery of a virtual checkerboard from a single

camera with adjustable settings for FOV, aspect ratio, and image resolution as shown

in Figure 16. Image data is communicated through LCM to allow interchangeability

of image sources for the calibration GUI. The calibration GUI currently only provides

calibrations for the pinhole model. The GUI accepts checkerboard properties as input

and displays the live stream of raw image data allowing the user to capture desired

images for calibration. The GUI then detects the checkerboard corners in the image,
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displays the results to the user, and stores its measurements until the user wishes

to compute the calibration matrix and distortion coefficients as shown in Figure 17.

Once the calibration is complete, the GUI displays the raw image stream side-by-side

with the undistorted result.

Figure 15. Camera Calibration Modules

Figure 16. Virtual Monocular Calibration Module
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Figure 17. Camera Calibration GUI

3.2.3 Autonomy Simulator.

The autonomy simulator is a flexible and modular virtual environment that al-

lows both simulated and real-world flight profiles to run in real-time over GPS terrain

mapped satellite imagery. It generates perfect truth data and transmits virtual cam-

era imagery at 31 fps. It also reprojects estimated pose trajectories from a state

estimation algorithm in real-time. The autonomy simulator is able to record and

play back trajectories with microsecond accuracy. Truth trajectories are recorded

either from simulated or real-world flights and multiple iterations of VO algorithms

can be run and recorded on the same truth trajectory. Figure 18 shows an overview

of the autonomy simulator and its interaction with other modules.
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Figure 18. Autonomy Simulator Overview

The autonomy simulator interprets ROS inputs from MAVROS to interact with

SITL or an actual Ardupilot autopilot to display the current state of the SUAS. The

/mavros/state topic notifies when the autopilot changes modes such as when it is

connected, armed or takes off. The /mavros/global position/global topic provides the

GPS location with latitude and longitude in degrees and an altitude above the WGS-

84 ellipsoid in meters. /mavros/global position/local provides the local orientation in

a frame with coordinate axes facing East, North, and up away from the center of the

Earth (ENU). /mavros/local position/velocity provides the linear velocity in meters

per second (m/s) in the ENU frame and the angular velocity in radians per second in

a frame with coordinate axes facing front, left, and upwards relative to the aircraft’s

body.

The autonomy simulator also accepts LCM inputs to display the current state of

the SUAS. The LCM inputs are primarily used to interface with the SUAS developed

in the ANT Center. The lcm channel/position channel provides the GPS position

with latitude and longitude in radians and an altitude measurement relative to the

starting altitude when the SUAS is first initialized in meters. lcm channel/attitude
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provides the orientation in a frame with coordinates facing North, East, and down-

wards towards the center of the Earth (NED). lcm channel/velocity provides the linear

velocity in m/s in the NED frame. lcm channel/imu provides the angular velocity in

deg/s in a frame with coordinate axes facing front, right, and downwards relative to

the aircraft’s body.

The simulator outputs imagery from the virtual SUAS camera to a VO node

through a ROS topic. The simulator also uses a ROS service call to be able to

reset VO algorithms. The VO node outputs its pose estimate relative to its starting

pose back into the simulator to be displayed alongside the current pose of the actual

SUAS. The processed VO images can be displayed by a separate node. The simulator

requires parameters to set the individual LCM input channels. Parameters must also

be provided to set the virtual SUAS camera properties to include the aspect ratio,

FOV, resolution, frame rate, and the camera orientation and location relative to the

center of the SUAS model. The frame rate of the virtual camera can be adjusted

with a maximum rate of 31 frames per second. Finally, terrain parameters must be

provided to set the boundary latitudes and longitudes as well as the satellite imagery

and elevation files to load from.

The MAVROS inputs are primarily used to interface with SITL and generate

simulated flight trajectories. QGroundControl is used to plan detailed trajectories

and set SUAS parameters such as airspeed and maximum roll rate. Figure 19 shows a

simulated flight over Camp Atterbury, Indiana with QGroundControl in the upper left

window showing the planned trajectory with live updates from SITL, the autonomy

simulator in the right window showing the live 3D trajectory with a red trailing ribbon

drawn to scale and the live raw image feed in the left window from the virtual camera

which faces downward relative to the SUAS.
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Figure 19. Simulated Flight Trajectory. QGroundControl in the upper left window,

autonomy simulator in the right window and the live virtual camera feed in the lower

left window.

Figures 20, 21 and 22 show examples of running DSO, ORB-SLAM2, and SVO

respectively on simulated flight trajectories and reprojecting the pose estimates back

into the autonomy simulator. The left windows show the processed images from

the VO algorithms with the tracked pixels or features in the current image. The

right windows show the simulator with the truth trajectory represented by the SUAS

with the red trailing ribbon and the estimated trajectory by the SUAS with the blue

trailing ribbon.

Since all of the monocular VO algorithms estimate the trajectory up to a relative

scale, the absolute scale for all VO runs in this work are determined by the initial

altitude of the SUAS when the VO algorithm is started or reset. This relies on

the assumption that the camera is facing perfectly downward when the algorithms

are initialized so that the depth of the first feature points or pixels are the same

as this altitude. Therefore, an initial leg is included in every flight plan where the
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SUAS flies on a straight and level path at 20 m/s to conduct VO initializations.

This method of determining absolute scale is susceptible to unconstrained growth in

error as the trajectory progresses but is sufficient for this work in order to strictly

compare the core VO performances of each algorithm. Future work should incorporate

measurements from additional sensors such as an IMU to determine the absolute scale

continuously. However, since the IMU also experiences drift, a loop closure method

must be employed along with the VO algorithm to reduce the drift in scale.

Figure 20. Simulated Flight With DSO. The left window shows the depth map of the

latest DSO keyframe coloring pixels with the closest to the farthest depth from red to

blue. The right window shows the autonomy simulator with the truth trajectory in red

and the estimated trajectory in blue.
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Figure 21. Simulated Flight With ORB-SLAM2. The left window shows the processed

image with selected ORB points used by ORB-SLAM2. The right window shows the

autonomy simulator with the truth trajectory in red and the estimated trajectory in

blue.

Figure 22. Simulated Flight With SVO. The left window shows the processed image

with selected FAST corners used by SVO. The right window shows the autonomy

simulator with the truth trajectory in red and the estimated trajectory in blue.
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3.2.4 Trajectory Viewer.

A separate trajectory viewer module is used to view multiple trajectories simul-

taneously. This module is primarily for playback of a single truth trajectory and

multiple estimated trajectories from VO algorithms applied to that truth trajectory.

Trajectory playback is synchronized across all trajectories, can be skipped to any

point in time and sped up or slowed down. 3D plots of the trajectory and 2D plots

for x, y, z, roll, pitch, and yaw data can also be generated. This allows detailed

analysis and visualization of algorithm performances in all six degrees of freedom and

to scale. Figure 23 shows an example of the trajectory viewer displaying multiple

trajectories.

Figure 23. Trajectory Viewer

A current limitation of the trajectory viewer is that it can only load one dataset

during each execution. Therefore, an additional trajectory plot viewer module is

provided to allow analysis and plotting of multiple datasets in one process. It also

provides more extensive plotting capabilities to be able to inspect individual plots in
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more detail as well as calculate and print out the trajectory position and rotation

errors. Figure 24 shows the controls for the trajectory plot viewer. The left-most

window pane allows the selection of directories containing truth and estimated tra-

jectories for a given flight. Selecting a directory auto-populates the next window pane

with the trajectories to allow selective plotting. The truth trajectory file must also

be identified since it is used to synchronize the estimated trajectory files to ensure

that pose plots are generated against the same flight times. The next window panes

contain controls for plotting and calculating the position and rotation errors for each

of the trajectory files.

Figure 24. Trajectory Plot Viewer. From the left window pane to the right: directory

tree for selecting datasets, trajectory file selection, plotting controls, error calculation.

3.2.5 Real-World Aircraft.

The VO algorithms are tested on data gathered from real-world flight tests using

a 1/3-scale Carbon CUB aircraft. The CUB weighs 50 lbs and has a wingspan of 14

ft. A Pixhawk 2 autopilot is used for low-level control of the aircraft. All payload

data is stored in LCM log files for playback and post-flight analysis. LCM log files

were recorded in-flight on an onboard Intel NUC7 computer with an i7 processor.

Grayscale imagery was collected from a Prosilica GT1290 camera with a resolution
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of 1280 × 960 pixels at 33 frames per second. The lens used with the camera has a

sensor format of 1/2 in and is rated for an 84 deg FOV but the camera has a sensor

format of 1/3 in, causing the actual image to have a slightly smaller FOV. The camera

faces downward relative to the aircraft. Truth GPS and IMU data were provided by

a Piksi navigation board at 10 Hz and 100 Hz respectively. All data are timestamped

using a TM2000A Precision Time Protocol (PTP) server.

3.3 Experimental Design

This work tests and analyzes three of the current state-of-the-art VO algorithms

on both simulated and real-world flight test data to determine the robustness and

accuracy of the VO algorithms at different altitudes, speeds, and roll rates. The ex-

perimental results provide an understanding of which VO algorithms are viable for

real-time fixed-wing SUAS operations and future incorporation into a larger SLAM

scheme with multi-sensor fusion and loop closure for a complete GPS-denied naviga-

tion solution.

3.3.1 Assumptions/Limitations.

The following assumptions are used in this experiment:

1. The camera faces downward in the aircraft’s body frame.

2. The virtual terrain image resolution is representative of real-world terrain when

viewed from mission altitudes.

3. There is negligible error from the lack of parallax in the virtual terrain from

non-elevation features such as trees when viewed from mission altitudes.

4. There is negligible distortion in the virtual terrain image from mapping the 2D

image onto the 3D elevation map for Camp Atterbury.
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5. VO algorithms are initialized when the SUAS is flying level and the camera is

facing down. The altitude at initialization is equal to the absolute scale of the

estimated trajectory.

Additionally, a limitation of this experiment is that a photometric camera cali-

bration is not provided for DSO.

3.3.2 Simulation.

The tests in the virtual environment are conducted on the 3.3 km trajectory shown

in Figure 25 over Camp Atterbury. The aircraft starts at the north end of the runway,

flies south to reach mission altitude by waypoint 3, continues to a straight level flight

at 20 m/s until waypoint 5 for VO initialization and then changes to mission airspeed

to fly an oscillating pattern back north. Truth trajectories are recorded starting from

between waypoints 3 and 5 once the aircraft has achieved steady level flight and

ending once the aircraft has reached waypoint 13.
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Figure 25. Simulation Test Trajectory

Experiment parameters are as follows:

• Airspeed (m/s): 10, 25

• Maximum roll rate (deg/s): 25, 45, 65

• Altitude: 50-400 m in 50 m intervals

• Image resolution: 1280 x 960

• Image aspect ratio (w/h): 1.333

• FOV (deg): 84.872

• Framerate (fps): 31, 5
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3.3.3 Real-World.

Data from four real-world flight tests with the CUB flying between 20-30 m/s over

Camp Atterbury with the following flight profiles are used to test the VO algorithms:

1. Box flight pattern as shown in Figure 26 at 450 m altitude

2. Box and then cloverleaf flight pattern as shown in Figure 27 at 400 m altitude

3. Grid flight pattern as shown in Figure 28 at 100 m altitude

4. Grid flight pattern at 250 m altitude

Figure 26. Box Flight Pattern
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Figure 27. Cloverleaf Flight Pattern

Figure 28. Grid Flight Pattern
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3.3.4 VO Algorithms.

Each of the VO algorithms are tested using their default parameter settings. Ad-

ditional tests are conducted by adjusting individual parameters specific to each algo-

rithm. In DSO, setting minGradHistAdd controls the image gradient threshold for

candidate point selection in an image. Tests are run using the default value of seven

and a lowered value of five to allow the selection of points with a lower gradient since

many of the scenes viewed over Camp Atterbury’s flightline have little texture [4].

The FAST score thresholds of ORB-SLAM2 and SVO are also tested at lower values

for the same reason. ORBextractor.minThFAST in ORB-SLAM2 and triangMin-

CornerScore in SVO are tested at their default values of seven and a lowered value of

two [21] [49].

SVO controls the creation of new keyframes through the kfSelectMinDist param-

eter which is the percentage of the average scene depth. A new frame is designated

as a keyframe if it is farther than this distance from the previous keyframes. This is

tested at its default value of 12% and a lowered value of 5% to create keyframes more

frequently and increase the robustness of the algorithm under fast movements.

3.3.5 Processing Platform.

All VO algorithms are run on a laptop computer with a quad-core Intel Core i7-

7500U CPU and a Nvidia Quadro M2200 GPU. The OS used is Ubuntu 16.04. Both

the autonomy simulator and the VO algorithms are run simultaneously in real-time

on the same laptop computer. For the real-world flight tests, flight test data including

imagery are recorded onto LCM logs which are then used for real-time playback on

the laptop computer. VO algorithms are executed on this recording and the truth

data and VO results are projected onto the autonomy simulator in real-time on the

same laptop computer.
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3.3.6 Performance Metrics.

A VO algorithm’s accuracy for a trajectory is measured by reporting the following

metrics:

1. Root mean square error (RMSE) of the position error over x, y, and z in meters

2. RMSE of the rotation error over roll, pitch, and yaw in degrees

RMSEs for position and rotation will be calculated using the following equations:

RMSEposition =

√∑n
i=1(x

′
i − xi)2 + (y′i − yi)2 + (z′i − zi)2

n
(13)

RMSErotation =

√∑n
i=1(φ

′
i − φi)2 + (θ′i − θi)2 + (ψ′i − ψi)2

n
(14)

where φ, θ, and ψ are the roll, pitch, and yaw, respectively. For a single data point

at i out of n total data points, the variable xi is the truth and x′i is the output from

the VO algorithm.

The VO’s robustness for a trajectory is reported by the percentage of the total

trajectory time that the VO algorithm is able to successfully track the trajectory

without losing localization.

3.3.7 Summary.

This chapter described the system design for all virtual and real-world modules

used to test the VO algorithms. All system dependencies were also detailed. The

experiment was presented including the assumptions, flight patterns, and the pa-

rameters being tested. Finally, the performance metrics used to evaluate the VO

algorithms were explained.
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IV. Results & Analysis

This chapter presents the results obtained from the simulated and real-world ex-

periments described in Chapter 3. The performance of each algorithm is analyzed

according to its accuracy and robustness throughout a trajectory. Test results under

multiple parameter configurations are also presented. At the end of this chapter, a

VO algorithm is recommended for further development on a fixed-wing SUAS.

4.1 Simulation Results

This section describes and analyzes the results of running the VO algorithms on

simulated trajectories generated through SITL in the autonomy simulator.

4.1.1 Default Parameters at 10 m/s.

An initial test is conducted to verify the functionality of the VO algorithms at

a lower speed of 10 m/s. The default virtual camera frame rate of 31 fps is used.

The maximum roll rate and altitude are varied as specified in Chapter 3. Each VO

algorithm is run on the same trajectory three times and the results of the run with

the lowest position error is reported. Using the specified camera frame rate, DSO is

able to run at 31 Hz, ORB-SLAM2 at 20 Hz, and SVO at 31 Hz.

Figure 29 shows the VO performance of each trajectory at maximum roll rates.

The robustness plots in the top row show the percentage of the total trajectory time

that the algorithms are able to successfully track and maintain localization. The

RMSE plots in the bottom two rows show the position and rotation errors at each

altitude and roll rate. The errors are reported as zero if the VO algorithms are

unable to successfully initialize for those trajectories and this can be verified through

the robustness plots. Table 1 shows the position and error values from the plots in
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Figure 29 and highlights the best performing algorithm for each trajectory.

Figure 29. Simulation VO Performance with Default Parameters at 10 m/s. The top
row of plots shows the percentage of the total trajectory time that the algorithm is
able to maintain tracking. The middle row shows the position errors. The bottom
row shows the rotation errors. The columns of plots are organized by roll rates. The
individual plot values are measured at mission altitudes.

The results in Figure 29 show that most of the algorithms have difficulty initial-

izing at altitudes below 200 m. This is due to the limited resolution of the satellite

imagery making up the terrain. This causes difficulties in picking up enough feature

points to initialize the algorithms at lower altitudes and a limited field of view. SVO

encounters the most difficulty initializing in the virtual environment and is unable to

successfully initialize until 300 m in altitude. SVO also proves to be the most fragile

algorithm and experiences difficulty maintaining localization during rotations. This

is due to its method of keyframe selection. SVO creates new keyframes strictly based

on the Euclidean distance between the newest frame and the previous keyframes,

failing to take rotations into account [3]. DSO and ORB-SLAM2 are able to suc-

cessfully track the entire trajectory for the majority of the test cases. ORB-SLAM2

provides the most accurate position estimates throughout all trajectories in which it

was able to initialize. Although ORB-SLAM2 and DSO produce comparable rotation
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Table 1. Simulation VO Accuracy with Default Parameters at 10 m/s. The position and
rotation errors for trajectories in which a VO algorithm failed to initialize are marked
with an X. The algorithm with the lowest position or rotation error for a trajectory is
highlighted.

Position RMSE (m) Rotation RMSE (m)Roll Rate
(deg/s)

Altitude
(m) DSO ORB SVO DSO ORB SVO
50 X X X X X X
100 170.997 X X 4.075 X X
150 X 60.898 X X 4.914 X
200 113.955 28.420 X 5.541 64.059 X
250 110.229 20.434 X 6.504 5.470 X
300 127.009 20.137 403.935 7.965 7.113 188.684
350 126.387 18.376 545.184 8.274 5.717 187.95

25

400 132.861 15.331 539.435 12.257 6.784 182.351
50 X X X X X X
100 152.962 X X 5.101 X X
150 104.605 93.130 X 26.227 28.169 X
200 136.505 28.474 X 10.358 5.355 X
250 106.315 14.406 X 8.429 6.415 X
300 146.665 15.811 428.557 11.835 5.923 184.938
350 119.18 17.349 520.012 7.558 22.937 198.616

45

400 176.371 15.749 535.812 17.827 6.922 183.166
50 X X X X X X
100 182.635 X X 83.158 X X
150 124.558 77.100 X 27.253 84.419 X
200 131.615 15.688 X 6.216 6.455 X
250 83.809 18.574 X 25.237 70.235 X
300 138.955 15.458 527.49 11.463 6.142 186.732
350 133.632 19.362 514.676 18.412 72.723 185.18

65

400 154.969 16.639 516.447 23.975 26.571 192.534

estimates with ORB-SLAM2 being slightly more accurate at lower roll rates, DSO

provides a more consistent and better estimate at the highest roll rate of 65 deg/s.

Figures 30 and 31 show a representative trajectory from this dataset along with

its individual pose data to illustrate the VO performances. This data is obtained from

the SUAS flying at 300 m in altitude with a maximum roll rate of 25 deg/s. SVO

fails 23 seconds into the trajectory before entering the first turn. DSO drifts further

from the truth’s position than ORB-SLAM2 as the trajectory progresses while both
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maintain close approximations of the rotation.

Figure 30. Simulation Trajectories at 10 m/s, 25 deg/s, 300 m
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Figure 31. Simulation Pose Data at 10 m/s, 25 deg/s, 300 m. Note that the scales are

different for each plot. For example, the scale of the z position plot is much smaller

than that of x or y, greatly emphasizing the difference in values.

4.1.2 Default Parameters at 25 m/s.

This baseline test establishes the VO performances with the same default param-

eters and environment configurations as the previous test with the exception of the

SUAS airspeed. This is set to 25 m/s and will remain the operational airspeed for the

remaining simulation tests. Figure 32 and Table 2 show the VO performance results

under these conditions.

Although the algorithms are able to maintain high levels of robustness at a maxi-

mum roll rate of 25 deg/s, the operating limit is at 45 deg/s. ORB-SLAM2 is able to
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maintain localization throughout most of the trajectories at this roll rate while DSO

experiences frequent failures and SVO continues to fail on the first turns. All algo-

rithms have difficulty maintaining localization at roll rates of 65 deg/s. ORB-SLAM2

continues to maintain a more accurate position estimate than DSO. DSO exhibits a

slightly more accurate rotation estimate at lower roll rates of 25 deg/s although this

is reversed at 45 deg/s with ORB-SLAM2 providing better estimates.

Figure 32. Simulation VO Performance with Default Parameters at 25 m/s. The top

row of plots shows the percentage of the total trajectory time that the algorithm is

able to maintain tracking. The middle row shows the position errors. The bottom

row shows the rotation errors. The columns of plots are organized by roll rates. The

individual plot values are measured at mission altitudes.

4.1.3 Framerate at 5 fps.

This test uses the default parameters and an airspeed of 25 m/s but throttles

the frame rate of the virtual camera to 5 fps. Figure 33 shows the VO performance

results. All of the algorithms suffer a decrease in both robustness and pose accuracy

from the lower frame rate. The algorithms are less capable of maintaining localiza-
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Table 2. Simulation VO Accuracy with Default Parameters at 25 m/s. The position and
rotation errors for trajectories in which a VO algorithm failed to initialize are marked
with an X. The algorithm with the lowest position or rotation error for a trajectory is
highlighted.

Position RMSE (m) Rotation RMSE (m)Roll Rate
(deg/s)

Altitude
(m) DSO ORB SVO DSO ORB SVO
50 X X X X X X
100 X X X X X X
150 X 81.206 X X 7.047 X
200 167.809 71.906 X 4.535 8.326 X
250 176.991 65.365 X 23.527 31.138 X
300 177.575 62.717 368.72 7.012 9.573 181.637
350 167.853 58.907 509.857 7.111 48.707 182.546

25

400 173.911 40.369 514.787 7.047 13.425 182.213
50 X X X X X X
100 212.844 X X 82.186 X X
150 X 210.371 X X 79.259 X
200 X 100.056 X X 49.045 X
250 381.837 90.671 X 83.847 48.052 X
300 407.325 61.127 386.2 87.066 11.731 182
350 196.225 47.466 505.137 9.248 7.815 180.623

45

400 313.935 45.072 497.773 78.373 41.819 189.143
50 X X X X X X
100 235.459 X X 59.036 X X
150 X 419.035 X X 129.506 X
200 444.963 443.574 X 88.568 185.526 X
250 482.253 519.21 X 90.544 188.444 X
300 390.829 426.205 506.941 86.453 118.167 187.349
350 513.123 194.008 506.12 181.218 89.653 182.838

65

400 499.621 508.358 498.452 179.734 186.319 180.706

tion at higher roll rates and during aggressive maneuvers. SVO and DSO are most

impacted by the lower frame rate since they rely on the Gauss-Newton optimization

for image alignment and pose estimation, leading to a heavy reliance on higher frame

rates for robust calculations [4] [21]. They also do not conduct outlier rejection using

approaches like RANSAC, so they depend on small movements of the features tracked

on the image frame. ORB-SLAM2 remains the most robust algorithm but also ex-

periences higher errors and failure rates at increased roll rates. The results confirm
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that all of the VO algorithms benefit in accuracy from higher frame rates and also

that aggressive maneuvers necessitate a high frame rate to maintain localization.

Figure 33. Simulation VO Performance at 5 fps. The top row of plots shows the per-

centage of the total trajectory time that the algorithm is able to maintain tracking. The

middle row shows the position errors. The bottom row shows the rotation errors. The

columns of plots are organized by roll rates. The individual plot values are measured

at mission altitudes.

4.1.4 Lowered VO thresholds.

Figures 34, 35, and 36 show the results of lowering VO pixel selection thresholds as

described in Section 3.3.4. DSO’s image gradient threshold is lowered to five. ORB-

SLAM2 and SVO’s FAST score thresholds are lowered to two. In all cases, lowering

the thresholds allow the algorithms to track at lower altitudes. However, this comes

with a slight cost in accuracy at higher altitudes since lower quality pixels or features

are used to calculate pose estimates. Performances are mixed at higher roll rates and

altitudes where the VO algorithms have difficulty maintaining localization. SVO is

still unable to track past the first turn in the trajectory.
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Figure 34. Simulation DSO Image Gradient Threshold Performance. The graphs com-

pare the performance of DSO using default configurations against lowering the image

gradient threshold to five. The top row of plots shows the percentage of the total tra-

jectory time that the algorithm is able to maintain tracking. The middle row shows the

position errors. The bottom row shows the rotation errors. The columns of plots are

organized by roll rates. The individual plot values are measured at mission altitudes.
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Figure 35. Simulation ORB-SLAM2 FAST Threshold Performance. The graphs com-

pare the performance of ORB-SLAM2 using default configuration against lowering the

FAST threshold to two.

Figure 36. Simulation SVO FAST Threshold Performance. The graphs compare the

performance of SVO using default configurations against lowering the FAST threshold

to two.
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4.1.5 SVO Keyframe Selection Distance.

SVO’s keyframe selection distance is lowered to 5% to induce a higher frequency

of keyframe selection and increase robustness for fast motions. However, Figure 37

shows that this is not enough to overcome a rolling motion even at 25 deg/s. Figure

38 shows a representative dataset from a trajectory obtained at a roll rate of 25 deg/s

and an altitude of 350 m in which both SVO runs with default parameters and a

reduced keyframe selection distance fail at the first turn. This is due to the fact that

SVO’s keyframe selection criteria is strictly based on Euclidean distance and fails to

account for changes in the visual field that may come with rotations [3].

Figure 37. Simulation SVO Keyframe Distance Performance. The graphs compare

the performance of SVO using default configurations against lowering the keyframe

selection distance to 5%. The top row of plots shows the percentage of the total

trajectory time that the algorithm is able to maintain tracking. The middle row shows

the position errors. The bottom row shows the rotation errors. The columns of plots are

organized by roll rates. The individual plot values are measured at mission altitudes.
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Figure 38. Simulation SVO Trajectories at 25 m/s, 25 deg/s, 350 m

4.2 Real-World Flight Test Results

The data collected from real-world flight tests over Camp Atterbury contain sev-

eral problems that raise difficulties in testing the VO algorithms. The first major

problem is inaccuracies in the truth data, especially in the reported yaw angle of

the SUAS. Although the autopilot reports filtered attitude values with GPS that are

accurate within five degrees, this was not captured in the datasets. Instead, only the

GPS-denied attitude data was captured and the yaw angle from this data repeatedly

drifts 90 degrees or more throughout all of the flights. The second problem involves

the limitations in the exposure time set on the camera to achieve its maximum frame

rate of 33 fps. This leads to a saturated image on bright days which, when combined

with the low texture environment of the airfield, provides a difficult challenge for the

VO algorithms to be able to detect and track features or pixels. An example image

from the third flight exhibiting these characteristics is shown in Figure 39. For this
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reason, none of the algorithms are able to initialize and track using the raw imagery

from the first three flights. The algorithms are able to track parts of the fourth flight

but no algorithm is able to track throughout the entire trajectory on this flight either.

Figure 39. Saturated Low Texture Image

The results reported in this section is from a 9.6 km section of the fourth flight in

which the SUAS flies in a grid pattern at 250 m altitude as shown by Figure 40. The

grid starts from the west and performs three counter-clockwise loops moving east.

The flight time for this trajectory is 284 s.
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Figure 40. Real-World Truth Trajectory

DSO is unable to successfully initialize using either default parameters or by low-

ering the image gradient threshold to five or two. ORB-SLAM2 with the default

parameters is the most successful in tracking throughout the entire trajectory. Fig-

ure 41 illustrates ORB-SLAM2’s estimated trajectory against the unfiltered truth

trajectory data. Figure 42 shows the detailed pose estimates. The most extreme

errors occur in the z axis as the algorithm initially miscalculates the pitch, leading to

oscillations in altitude between the North and South ends of the trajectory. Figure

43 shows the accumulating drift in the position error throughout the trajectory. For

this trajectory, the total position RMSE is 321 meters and the rotation RMSE is

112 degrees. Additional tests conducted by lowering ORB-SLAM2’s FAST thresh-

old to values between six and two result in the algorithm being unable to initialize

throughout the trajectory.
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Figure 41. Real-World ORB-SLAM2 Trajectory

Figure 42. Real-World ORB-SLAM2 Pose
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Figure 43. Real-World ORB-SLAM2 Position Error

For comparison, ORB-SLAM2 was also run on virtual imagery from the SUAS

flying the unfiltered real-world trajectory dataset in the virtual environment. Both

trajectories estimated from the virtual and real-world imagery are shown in Figure

44 and their pose data is shown on Figure 45. The algorithm is able to obtain better

initialization using the virtual imagery since the lighting conditions are constant and

easier to detect features in. However, it loses localization after the second loop due to

erratic jumps in the unfiltered trajectory data. In order to draw better comparisons

of algorithm performance in the virtual and real world, ORB-SLAM2 should be run

on trajectory data that is filtered and gathered at higher frequencies.
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Figure 44. ORB-SLAM2 Trajectory from Real-World Trajectory and Virtual Imagery

Figure 45. ORB-SLAM2 Pose Data from Real-World Trajectory and Virtual Imagery
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SVO experiences the same difficulties handling rotations as encountered during

simulation. The following combinations of parameters are tested:

1. Default parameters

2. Reduced keyframe selection distance: 5%

3. Reduced FAST score threshold: 5

4. Reduced keyframe selection distance to 5% and FAST score threshold to 5

As shown in Figure 46, although all cases are able initialize and track through

the first leg, only the combination of reducing both the keyframe selection distance

and the FAST score threshold allows the algorithm to continue tracking past the first

turn. However, it shortly loses localization afterwards due to the difficult texture of

the airfield in the image.

Figure 46. Real-World SVO Trajectory
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4.3 Analysis

Overall, ORB-SLAM2 proves to be the most flexible VO algorithm that is suitable

for fixed-wing applications. Both simulation and real-world flight tests show a robust

initializer and tracking capability. Although it is not able to achieve the frame rates

of SVO or DSO, ORB-SLAM2 is able to track far more robustly at higher speeds and

sharper turns, where the combination of 25 m/s and 45 deg/s is the operational limit.

Its robustness is further highlighted by its capability to maintain localization under

a greatly throttled image stream rate. ORB-SLAM2 also has the distinct advantage

in further improvement since a SLAM scheme is incorporated naturally in the design

of the algorithm.

SVO is fast but proves to be very fragile, especially during rotations. SVO is

unable to cope with any of the turns during simulation or real-world flight tests, even

at the slowest speeds and roll rates. This is primarily due to its method of designating

new keyframes by a measure of distance. If using SVO for fixed-wing applications,

this heuristic must be modified to another method such as that of ORB-SLAM2 or

DSO where keyframe creation is based on the measure of changes in its field of view.

DSO’s greatest weakness lies in the initializer. The authors note on their git

repository1 that the current initializer is not very good and requires slow, easy move-

ments with lots of translation and little rotation. This is much easier to achieve in

simulation with perfectly smooth flights creating ideal environments for initialization.

However, real-world flights prove to be much more difficult as the SUAS invariably

encounters turbulence from wind. This is shown by DSO being unable to successfully

initialize in any of the real-world datasets. If using DSO, the initializer should be

replaced by a faster method such as through feature-based homography or RANSAC.

1J. Engel, ’Direct Sparse Odometry’, 2018. [Online]. Available:
https://github.com/JakobEngel/dso. [Accessed: 23- Jan- 2019].
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The initializer could also be either augmented or completely replaced by IMU mea-

surements. Another drawback to DSO is that it is not as amenable to incorporating

loop closures as other feature-based VO algorithms, since many of the current loop

closure frameworks make use of features for the bag-of-words approach [65].

The imagery data collected from the real-world flight tests should be corrected

for brightness and re-run to test whether the VO algorithms are able to process the

data. Additionally, the truth trajectory data from these flight tests currently contain

large inaccuracies in the attitude data. This must be corrected by either filtering

the sensor data or repeating the flight tests to gather data from more sensor sources

before also filtering them.

4.4 Summary

This chapter provided the experimentation results from simulation and real-world

flight tests conducted over Camp Atterbury. In simulation, each of the VO algorithms

were tested with default parameters at 10 m/s and 25 m/s. The effects of throttling

the frame rate were also explored. ORB-SLAM2 proved to be the most robust and

accurate in the majority of cases, particularly at higher speeds and roll rates. For

both the simulation and real-world data, the VO pixel gradient and feature thresholds

were lowered and the keyframe selection distance in SVO was also reduced. Again,

ORB-SLAM2 proved to be the most robust algorithm, especially on the real-world

dataset. A further analysis was provided recommending ORB-SLAM2 for further

development on a fixed-wing SUAS and highlighting improvements to be made on

DSO and SVO before applying these algorithms on fixed-wing SUAS.

73



V. Conclusion

This chapter provides a summary of this research. The experiment and its results

are reviewed along with key conclusions drawn from this work. Finally, recommen-

dations for future work are presented.

5.1 Experiment

Three of the current state-of-the-art VO algorithms DSO, SVO, and ORB-SLAM2

were applied to fixed-wing flight and performances were compared using both simula-

tion and real-world flight tests over Camp Atterbury, Indiana. Simulation tests were

conducted to analyze the performance of the VO algorithms under varying airspeeds

of 10 and 25 m/s, maximum roll rates of 25, 45, and 65 deg/s and mission altitudes

from 50-400 m in 50 m increments over a 3.3 km trajectory. The VO algorithms were

also tested on real-world datasets and results were presented for a 9.6 km trajectory

where the aircraft flew at 20-30 m/s at a 250 m altitude.

ORB-SLAM2 was found to be the most robust algorithm and is recommended for

further development in fixed-wing applications. ORB-SLAM2 was able to continue

maintaining localization at higher roll rates and provided more accurate estimates

than DSO. DSO’s initializer proved to be a problem for the real-world dataset and

failed to successfully initialize throughout the trajectory. SVO was unable to handle

sharp rotations and repeatedly failed on turns. The operational limits of ORB-SLAM2

were determined to be an airspeed of 25 m/s and a roll rate of 45 deg/s.

5.2 Future Work

Further analysis on ORB-SLAM2 can be conducted to determine the additional

accuracy afforded by enabling its loop closure capabilities in both simulation and
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real-world flights. It should then be integrated with a filter to augment it with

measurements from additional sensors such as an IMU. This will allow for greater

accuracy as well as robustness under fast movements where ORB-SLAM2 by itself

would normally fail. This visual-inertial SLAM system will also allow continuous

computation of the absolute scale. This navigation solution should be tested on an

onboard CPU to ensure that real-time processing is a viable solution on a compact

system.

Another line of effort can involve comparing VO results between the virtual and

real worlds. This can be done by using real-world imagery and simulated imagery from

real-world trajectory data. However, since the trajectory data gathered in this work

contains too many inaccuracies in attitude, the truth data needs to be filtered and

corrected or new trajectory data must be gathered to investigate this topic. Deter-

mining this accuracy would allow for greater insight into the validity and limitations

of the simulated VO results.

Finally, a novel work could involve using the virtual environment to train deep

learning VO algorithms. The greatest obstacle in deep learning VO is that it must

first be trained through flights and reinforced with knowledge of the truth data.

Gathering accurate 6-DOF truth data at high-frequencies is a difficult task, especially

on a SUAS. Also, conducting multiple flight tests over a variety of target environments

may be an expensive, time-consuming effort or not feasible at all. However, the virtual

environment addresses both of these issues, giving easy access to perfect truth data

at 31 Hz and flight tests over any environment with publicly available elevation data

and satellite imagery. This work could investigate the use of the virtual environment

and simulated flight data to train the VO network before deploying it in the real

world.
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