4,772 research outputs found

    A new power MEMS component with variable capacitance

    Get PDF
    Autonomous devices such as wireless sensors and sensor networks need a long battery lifetime in a small volume. Incorporating micro-power generators based on ambient energy increases the lifetime of these systems while reducing the volume. This paper describes a new approach to the conversion of mechanical energy, available in vibrations, to electrical energy. The conversion principle is based on charge transportation between two parallel capacitors. An electret is used to polarize the device. A large-signal model was developed, allowing simulations of the behavior of the generator. A small-signal model was then derived in order to quantify the output power as a function of the design parameters. These models show the possibility of generating up to 40 muW with a device of 10 mm 2. A layout was made based on a standard SOI-technology, available in an MPW. With this design a power of 1 muW at 1020 Hz is expected

    Printing 3D lithium-ion microbattery using stereolithography

    Get PDF
    Microbatteries have been gained a lot of importance since the development of micro- and nanotechnologies. Integrating the microbattery system will enable a variety of applications, such as implantable biomedical devices and wireless sensor networks. In this paper, we demonstrated a new method to fabricate three dimensional lithium-ion microbattery using stereolithiography. A UV-curable gel polymer electrolyte resin is first synthesized and characterized. The electrolyte resin is then applied to build into 3D architecture by stereolithography. The gel electrolyte structure is designed into a zigzag shape in order to improve the contact area between electrode and electrolyte. Battery\u27s active material, LiFePO4 (LFP) and Li4Ti5 O12 (LTO), are mixed with the gel electrolyte resin and then flow into the gel electrolyte structure. The result demonstrates a feasibility of lithium-ion microbattery fabricated by stereolithgraphy

    3D lithium ion batteries—from fundamentals to fabrication

    Get PDF
    3D microbatteries are proposed as a step change in the energy and power per footprint of surface mountable rechargeable batteries for microelectromechanical systems (MEMS) and other small electronic devices. Within a battery electrode, a 3D nanoarchitecture gives mesoporosity, increasing power by reducing the length of the diffusion path; in the separator region it can form the basis of a robust but porous solid, isolating the electrodes and immobilising an otherwise fluid electrolyte. 3D microarchitecture of the whole cell allows fabrication of interdigitated or interpenetrating networks that minimise the ionic path length between the electrodes in a thick cell. This article outlines the design principles for 3D microbatteries and estimates the geometrical and physical requirements of the materials. It then gives selected examples of recent progress in the techniques available for fabrication of 3D battery structures by successive deposition of electrodes, electrolytes and current collectors onto microstructured substrates by self-assembly methods

    Advanced architecture designs towards high-performance 3D microbatteries

    Get PDF
    Rechargeable microbatteries are important power supplies for microelectronic devices. Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas. In addition to the development of new high-performance electrode materials, the device configurations of microbatteries also play an important role in enhancing the output energy and miniaturizing the footprint area. To make a clear vision on the design principle of rechargeable microbatteries, we firstly summarize the typical configurations of microbatteries. The advantages of different configurations are thoroughly discussed from the aspects of fabrication technologies and material engineering. Towards the high energy output at a minimal footprint area, a revolutionary design for microbatteries is of great importance. In this perspective, we review the progress of fabricating microbatteries based on the rolled-up nanotechnology, a derivative origami technology. Finally, we discussed the challenges and perspectives in the device design and materials optimization

    From bibliometric analysis: 3D printing design strategies and battery applications with a focus on zinc-ion batteries

    Get PDF
    Three-dimensional (3D) printing has the potential to revolutionize the way energy storage devices are designed and manufactured. In this paper, we explore the use of 3D printing in the design and production of energy storage devices, especially zinc-ion batteries (ZIBs) and examine its potential advantages over traditional manufacturing methods. 3D printing could significantly improve the customization of ZIBs, making it a promising strategy for the future of energy storage. In particular, 3D printing allows for the creation of complex, customized geometries, and designs that can optimize the energy density, power density, and overall performance of batteries. Simultaneously, we discuss and compare the impact of 3D printing design strategies based on different configurations of film, interdigitation, and framework on energy storage devices with a focus on ZIBs. Additionally, 3D printing enables the rapid prototyping and production of batteries, reducing leading times and costs compared with traditional manufacturing methods. However, there are also challenges and limitations to consider, such as the need for further development of suitable 3D printing materials and processes for energy storage applications

    Pie-like electrode design for high-energy density lithium–sulfur batteries

    Get PDF
    Owing to the overwhelming advantage in energy density, lithium–sulfur (Li–S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a ‘pie’ structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers ‘filling’ and amino-functionalized graphene ‘crust’, the free-standing paper electrode (S mass loading: 3.6 mg cm[superscript −2]) delivers high specific capacity of 1,314 mAh g[superscript −1] (4.7 mAh cm[superscript −2]) at 0.1 C (0.6 mA cm[superscript −2]) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm[superscript −2] by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm[superscript −2].National Science Foundation (U.S.) (DMR-1120901)Wuxi Weifu High-technology Group Co., Ltd

    Extrusion-based 3D Printing of Macro/Microstructures for Advanced Lithium/Sodium Batteries

    Get PDF
    With the development of electronics and electric vehicles, high-performance batteries with high energy density, high safety, and aesthetic diversity are greatly needed as dominating power sources. However, the electrodes and electrolytes fabricated with traditional techniques have limited form factors, mechanical flexibility, and poor performance. Extrusion-type 3D printing techniques have thus been applied to fabricate 3D batteries with high performance since 3D printing techniques have great advantages in the fabrication of complex 3D structures and geometric shapes from various materials. The research in this thesis aims at fabricating high-performance Li/Na batteries via 3D printing of advanced electrodes and solid electrolytes

    Power requirements for commercial communications spacecraft

    Get PDF
    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment
    corecore