133 research outputs found

    Artificial Odor Discrimination System using electronic nose and neural networks for the identification of urinary tract infection

    Get PDF
    Current clinical diagnostics are based on biochemical, immunological or microbiological methods. However, these methods are operator dependent, time consuming, expensive and require special skills, and are therefore not suitable for point-of-care testing. Recent developments in gas-sensing technology and pattern recognition methods make electronic nose technology an interesting alternative for medical point-of-care devices. An electronic nose has been used to detect Urinary Tract Infection from 45 suspected cases that were sent for analysis in a UK Public Health Registry. These samples were analysed by incubation in a volatile generation test tube system for 4-5h. Two issues are being addressed, including the implementation of an advanced neural network, based on a modified Expectation Maximisation scheme that incorporates a dynamic structure methodology and the concept of a fusion of multiple classifiers dedicated to specific feature parameters. This study has shown the potential for early detection of microbial ontaminants in urine samples using electronic nose technology

    Neuro-Fuzzy Classifiers/Quantifiers for E-Nose Applications

    Get PDF

    A Fuzzy-Wavelet Neural Network Model for the Detection of Meat Spoilage using an Electronic Nose

    Get PDF
    Food product safety is one of the most promising areas for the application of electronic noses. The performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillet stored aerobically at different storage temperatures (0, 4, 8, 12, 16 and 20°C). This paper proposes a fuzzy-wavelet neural network model which incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modeling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results indicated that the proposed modeling scheme could be considered as a valuable detection methodology in food microbiolog

    Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques

    Get PDF
    Leaf characters have been successfully utilized to classify Camellia (Theaceae) species; however, leaf characters combined with supervised pattern recognition techniques have not been previously explored. We present results of using leaf morphological and venation characters of 93 species from five sections of genus Camellia to assess the effectiveness of several supervised pattern recognition techniques for classifications and compare their accuracy. Clustering approach, Learning Vector Quantization neural network (LVQ-ANN), Dynamic Architecture for Artificial Neural Networks (DAN2), and C-support vector machines (SVM) are used to discriminate 93 species from five sections of genus Camellia (11 in sect. Furfuracea, 16 in sect. Paracamellia, 12 in sect. Tuberculata, 34 in sect. Camellia, and 20 in sect. Theopsis). DAN2 and SVM show excellent classification results for genus Camellia with DAN2's accuracy of 97.92% and 91.11% for training and testing data sets respectively. The RBF-SVM results of 97.92% and 97.78% for training and testing offer the best classification accuracy. A hierarchical dendrogram based on leaf architecture data has confirmed the morphological classification of the five sections as previously proposed. The overall results suggest that leaf architecture-based data analysis using supervised pattern recognition techniques, especially DAN2 and SVM discrimination methods, is excellent for identification of Camellia species

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Efficient android electronic nose design for recognition and perception of fruit odors using Kernel Extreme Learning Machines

    Get PDF
    This study presents a novel android electronic nose construction using Kernel Extreme Learning Machines (KELMs). The construction consists of two parts. In the first part, an android electronic nose with fast and accurate detection and low cost are designed using Metal Oxide Semiconductor (MOS) gas sensors. In the second part, the KELMs are implemented to get the electronic nose to achieve fast and high accuracy recognition. The proposed algorithm is designed to recognize the odor of six fruits. Fruits at two concentration levels are placed to the sample chamber of the electronic nose to ensure the features invariant with the concentration. Odor samples in the form of time series are collected and preprocessed. This is a newly introduced simple feature extraction step that does not use any dimension reduction method. The obtained salient features are imported to the inputs of the KELMs. Additionally, K-Nearest Neighbor (K-NN) classifiers, the Support Vector Machines (SVMs), Least-Squares Support Vector Machines (LSSVMs), and Extreme Learning Machines (ELMs) are used for comparison. According to the comparative results for the proposed experimental setup, the KELMs produced good odor recognition performance in terms of the high test accuracy and fast response. In addition, odor concentration level was visualized on an android platform.TUBITA
    corecore