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a b s t r a c t

This study presents a novel android electronic nose construction using Kernel Extreme Learning Ma-
chines (KELMs). The construction consists of two parts. In the first part, an android electronic nose with
fast and accurate detection and low cost are designed using Metal Oxide Semiconductor (MOS) gas
sensors. In the second part, the KELMs are implemented to get the electronic nose to achieve fast and
high accuracy recognition. The proposed algorithm is designed to recognize the odor of six fruits. Fruits
at two concentration levels are placed to the sample chamber of the electronic nose to ensure the fea-
tures invariant with the concentration. Odor samples in the form of time series are collected and pre-
processed. This is a newly introduced simple feature extraction step that does not use any dimension
reduction method. The obtained salient features are imported to the inputs of the KELMs. Additionally,
K-Nearest Neighbor (K-NN) classifiers, the Support Vector Machines (SVMs), Least-Squares Support
Vector Machines (LSSVMs), and Extreme Learning Machines (ELMs) are used for comparison. According
to the comparative results for the proposed experimental setup, the KELMs produced good odor re-
cognition performance in terms of the high test accuracy and fast response. In addition, odor con-
centration level was visualized on an android platform.

& 2017 Elsevier B.V. All rights reserved.
1. Introduction

Humans' olfactory system is complex. When the perceiving
membrane in the nose cavity is confronted with different com-
posite compounds, the odor detecting cells in the membrane
generate a characteristic odor trace. Signals received by the cells
are transmitted to the brain to recognize the odors [1]. The func-
tionality of the smell organ and the details of its mechanism led
scientists to develop an olfaction machine. In the past two dec-
ades, many researchers have carried out many studies about
electronic noses by using inspiration from the olfactory systems of
humans [2]. An electronic nose is a multidisciplinary topic and is
an instrument formed from an array of electronic chemical sensors
with overlapping sensitivity, mechanical components, and a digital
system such as a microprocessor, microcontroller, or Field Pro-
grammable Gate Array (FPGA) [3,4]. An electronic nose consists of
two main parts for the perception and recognition of odor sam-
ples. The perception part includes a sensor array. A sensor reacts
differently to every odor and produces electrical signals by varying
its properties, such as conductance, voltage, and capacity. The
recognition part includes pattern recognition methods to extract and
process the qualities relating to the signal combination from the
sensor array. The characteristic data is the signature relating to each
odor stimulus and is saved in a database and is then given as input to
a pattern recognition system for detection and recognition. Electronic
noses have many applications, including the food and beverage in-
dustry [5–7], medical diagnosis [8], space applications [9], agriculture
[10], environmental monitoring [11,12], public security [13], psy-
choanalysis [14], cosmetics sectors [15], etc.

As sensor technology has developed, many types of sensitive
sensors such as Surface Acoustic Wave (SAW), optical, Quartz
Crystal Microbalance (QCM), Conducting Polymer (CP), and Metal
Oxide Semiconductor (MOS) sensors have been exhibited. Many
researchers have used the sensor arrays to obtain the character-
istic signals relating to gas, vapors, and odors [16,17]. On the other
hand, an electronic nose also requires attention to pattern re-
cognition methods to achieve reliable recognition by using signals
obtained from sensors [18,19]. The recognition problem is orga-
nized as being either a classification or regression problem. In the
literature, many electronic nose studies have included pattern
recognition methods such as Linear Discriminant Analysis (LDA),
Principal Component Analysis (PCA), Quadratic Discriminant
Analysis (QDA) [20–23], K-Nearest Neighbor (K-NN) [24], Feed-
Forward Neural Networks (FNNs) [25–27], Radial Basis Function
Neural Network (RBFNN) [28], Probabilistic Neural Networks
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(PNNs) [29], Self-Organizing Network (SON) [30], Fuzzy Logic,
Fuzzy Neural Networks (FNNs) [31,32], Naïve–Bayes [33], compe-
titive neural networks based on learning vector quantization [34],
Support Vector Machines (SVMs) [35,36], and Extreme Learning
Machines (ELMs) [37–39].

This paper proposes a new low-cost android electronic nose
system containing MOS sensor arrays that is different from sys-
tems in the extant literature. The e-nose can be used for quality
control, food analysis, and the detection of volatiles released by
different compounds, which can be used in many areas of industry.
The android nose in this paper is specifically designed to recognize
six fruit odors, namely apple, lemon, peach, banana, garlic, and
onion. The signals obtained from the MOS sensors have the ability
to perceive several fruit odors through processing using an ARM
Cortex-M4 STM32F407 microcontroller. In addition, this paper also
proposes new and simple feature extraction steps without using a
dimension reduction method similar to PCA. Moreover, Kernel
Extreme Learning Machines (KELMs) are proposed to obtain fast
and reliable results from the developed android nose [40]. The
application of the KELMs method for electronic nose applications
in this paper is the first of its kind. The performance of K-NN,
FNNs, SVMs, Least Squares Support Vector Machines (LSSVMs),
and ELMs are used as comparisons for the proposed electronic
nose [41–45]. Moreover, odor concentration levels are visualized
on an android platform remotely using Bluetooth.

The FNNs are capable of approximating a nonlinear function by
nonlinear mappings using input samples. The randomly generated
initial weights and bias parameters of FNNs are iteratively updated
by gradient-based learning algorithms. Hence, the algorithm
commonly gets trapped in local minima. Moreover, the FNNs have
a very slow learning speed and need a number of iterative learning
steps in order to obtain better learning accuracy. SVMs propose a
convex optimization problem performing both structural risk
minimization and empirical risk minimization simultaneously to
obtain a unique optimum solution. Among the used pattern re-
cognition methods, ELMs are the most preferred classifier because
of their fast learning, high performance, real-time implementa-
tion, and low human intervention [44,45]. Conventional ELMs
have the form of single layer FNNs. In ELMs, the weights of the
hidden nodes and biases are randomly chosen and the output
weights are analytically determined. Thanks to the least square
loss, ELMs construct a hidden matrix with a nonlinear differenti-
able activation function and analytically calculate the weights
between the output layer and the hidden layer. In this study, an
improved ELM version, KELM, is proposed to classify more quickly
and with higher accuracy than both the ELM and the other pattern
recognition methods. KELM uses a kernel matrix in hidden layers,
satisfying the Mercer Condition [40].

The rest of this paper is organized as follows. In Section 2, a
review of the used pattern recognition methods is given. Section 3
introduces the proposed electronic nose system, system operating
stages, the preprocessing and feature extraction steps, and the
visualization process of odor concentration. Results and discussion
relating to the comparative experimental results are described in
Section 4. Section 5 concludes the paper.
2. Used pattern recognition methods

This section briefly discusses the principles of FNN, SVM,
LSSVM, ELM, and KELM for classification problems.

2.1. Support vector machines

Consider a given set of N samples of training data
R{ } ∈ ∈ {− }x y x y, , , 1,1i i N n

1 .
SVM builds the best separating hyperplanes [ ( ) + ] ≥y w g x b 1i T i

in a high dimensional space [42]. The inputs are mapped to a
feature space by a linear/nonlinear mapping function

( ) → ( )g x g x. : i . The hyperplanes are represented by the normal
vector of the separating hyperplane R∈w n and its offset R∈b . In
order to determine the best separating hyperplane, it is minimized
to the term of w that defines the distance of the points closest to
the hyperplanes of two classes so that the margin

w
2 is maximized

[46]. In addition, SVM allows for misclassified training samples in
the margin, thereby satisfying ξ[ ( ) + ] ≥ −y w g x b 1i T i i, where ξi is
the absolute training error. In order to minimize training errors
and maximize the margin, the primal form of SVM is formulated
as:
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where the first term and second term represent empirical risk and
the structural risk, respectively, and C is a user defined regular-
ization parameter achieving tradeoff between the margin and the
training error.

Applying the Lagrange multiplier method [42] to the primal
problem in (1), its dual formulation is obtained as:
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( )λ = =
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where λ ≥ 0i are Lagrange multipliers and ( ) = ( ) ( )K x x g x g x,i j i j T is
defined as a kernel function. ( )K x x,i j is a symmetric and positive
definite function satisfying the Mercer condition. Linear and
Gaussian kernels are given, respectively, as:

( ) ( ) ( ) ( )( )= = ( )K x x g x g x x x, 3
i j i j T i j T

σ( ) = (−|| − || ) ( )K x x exp x x, /2 3ai j i i 2 2

where σ is the spread parameter of the kernel. When the quadratic
programming problem in (2) is solved, the best separating surface
of SVM is computed as:

( )∑ λ( ) = +
( )

l x y K x x b,
4support vectors

i i i j

where the support vectors refer to the data points xi of λ > 0.i
2.2. Least squares support vector machines

LSSVM builds an altered version of SVM by introducing the
square error and equality constraint [43]. The constructed opti-
mization problem is directly solved by a set of linear equations
without using quadratic programming. The optimization problem
of LSSVM is written as follows:

( )∑ξ ξ( ) = +
( )ξ =

J w b C wmin , ,
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2 5w b
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By introducing a Lagrangian function to primal problem in (5a),
the solution is equal to solving the linear equation system below:
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where Ω= ( ) ( ) = ( )y y g x g x y y K x x,i j i T j i j i j . The separating surface of
LSSVM is calculated as in (4).
Fig. 1. Block diagram of electronic nose setup.

Fig. 2. The electronic nose system built at Firat University.

Table 1
Characteristics of the five sensors.

Sensor Type Detection Objects

TGS2600 Carbon monoxide, ethanol, methane
TGS2602 Hydrogen sulfate, ammoniac toluene, ethanol
TGS2610 Propane, methane, hydrogen
TGS2620 Alcohol, organic solvent vapors
TGS826 Ammoniac, ethanol
2.3. Extreme learning machines

ELMs are a specific type of FNNs. The theory of basic ELMs was
originally developed for single layer FNNs with H hidden neurons
to achieve extremely fast training, fast testing, and better gen-
eralization capability in FNNs at both regression and classification
problems by means of only matrix calculations without using back
propagation methods [44,45]. Later, ELMs were generalized for
hierarchal structures.

Given N samples of training data with n dimension
R{ } ∈ ∈ {− }x y x y, , , 1,1i i N n

1 , the ELMs are initialized by random
weight wj and bias bj according to continuous probability dis-
tributions. A linear system is generated to determine the output
parameters vj of the conventional ELM. The mathematical model of
ELMs with H hidden neurons is as follows:

( )∑( ) = + = ( ) ∈ { … }
( )

l x v g wx b g x V i N, 1,2, , .
7j

H

j j
i
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where ( )g . is a nonlinear piecewise continuous function achieving
the universal approximation capability theorems of ELMs [44,45].

ELM constructs one against all forms of m-class classification
problems as R= [ … ] ∈Y y y y, , , L mxN1 2 . The matrix form of the ELM
output is expressed as follows:
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where G is the hidden layer output matrix and V is the output
weight matrix [44,45].

Regularized ELM is formulated to minimize both training errors
and the norm of output weights || ||V 2 as follows:
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where the definition of C and ξi are the same as those of SVM.
The V solution of the dual form of (11) is calculated as [39]:
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where †G is the Moore-Penrose generalized inverse of G and I is
the identity matrix. In that case, the output function is computed
as:

( ) = ( ) ( )l x g x V 13

The predicted output labels of ELM are determined as:

( ) = ( ) ( )= …label x arg l xmax 14j m j1, ,

where ( )l xj is the output function of the j-th output node,

( ) = [ ( ) … ( )]l x l x l x, , m
T

1 .

2.4. Kernel extreme learning machines

KELMs apply to the Mercer condition similar to SVMs in cases
where ( )g x is an unknown feature mapping [40]. Given input
vectors xi and xj, a kernel function ( )K x x,i j is used of instead of the
dot product ( )· ( )g x g xi j .
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By using V in (12), the output ( )l x of KELM is determined as:
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In KELM, the kernel function (i.e., Gaussian function) is ex-
plicitly given. Neither the feature mapping ( )g x nor the dimension
of feature space H is previously known.
3. Proposed e-nose system and experiments

3.1. Proposed Firat Electronic Nose (FEN)

In this paper, an android electronic nose systemwas built as the
result of rich studies about electronic nose systems constructed at
Fig. 3. Designed PCBs (a) sensor circuit, (b) main circuit and sensor data arrangement circ
circuit, (e) valve switching circuit.

Fig. 4. Electronic
the University of Firat. The block diagram of the developed Firat
Electronic Nose (FEN) system and its experimental setup are
shown in Figs. 1 and 2, respectively.

The developed FEN system is built in four parts, namely de-
tection, electronics, mechanics, and control box. The detection part
includes 5 MOS sensor arrays (TGS2600, TGS2602, TGS2610,
TGS2620, TGS826), a type of Taguchi Gas Sensor (TGS), LM35
temperature sensor, and an HIH-4030 humidity sensor. Table 1
shows the detection features of the five gas sensors. The electro-
nics part covers the STM32F407 development kit, MCP42XXX di-
gital potentiometer, and corrector circuit for generating required
different voltage values for sensors and valves. In the mechanical
part, there is an oxygen tube achieving both air and odors flowing
to sensors and solenoid valves. The control box is designed to in-
clude all the hardware for the detection and electronics parts and
a gas chamber made of plexiglass to replace odor samples.

The FEN system included the design of four Printed Circuit
Boards (PCBs). They are the sensor circuit, power circuit, control
circuit, and STM32F4 connection circuit. The integrated PCB board
sensor circuits are shown in Fig. 3. All circuit design was carried
out using the Altium designer software. TGS sensors were selected
due to their wide detection range and high sensitivity for
uit, (c) the control circuit of STM32F407 discovery kit, (d) 12 V–5 V converter power

nose schema.



Fig. 5. The block schema of the proposed algorithm.

Fig. 6. Basic measurement circuit of gas sensors.

Table 2
Experiment numbers for the training and testing stages.

Odor Experiment Number
Training Testing

apple 32 16
lemon 32 16
peach 32 16
banana 32 16
garlic 24 10
onion 24 10
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monitoring multiple gases and low-cost working voltage of 5 V.
However, the software didn't include a special library relating to
TGS sensors with six and four legs. Hence, first, a schematic and
PCB libraries with respect to the sensor cover and pin locations in
the sensor circuit were generated, and, secondly, PCBs were built
with a double surface and were isolated. In the circuit, the capa-
citances were used to reduce the noise effect at the power input.
PCB circuits were connected to each other by an Insulation-Dis-
placement Contact (IDC) cable. The system was supplied by 12 V.
Those 12 V were directly used for the supply valves. In addition,
the voltage was reduced to 5 V for the supply sensors, controller,
and the other components using a regularization circuit included
an LM1084 component, as can be seen in Fig. 3d. Moreover,
cooling and a fan were added to the FEN system.

Since TGS sensors are sensitive to temperature and humidity,
the humidity and temperature sensors should be used at the
system and the humidity and temperature values of the system
should be controlled. Hence, we included an LM35 temperature
sensor and HIH-4030 humidity sensor in the FEN system.

The FEN system uses a STM32F407 microcontroller. The eva-
luation board consists of a 32-bit ARM Cortex-M4 processor core
with a processing speed of 72 MHz. The microcontroller was
programmed using the Keil IDE. In the STM32F407 micro-
controller, the units of Analog Digital Converter (ADC), Universal
Synchronous Asynchronous serial Receiver and Transmitter
(USART), Serial Peripheral Interface (SPI), DMA (Direct Memory
Access), GPIO, and Timer were employed. DMA was used to save
the data from environmental units to memory, memory to mem-
ory, or from memory to environmental units without using the
CPU to get rid of the vanishing data problem in the Multi-Channel
ADC mode. Seven of 16 ADC channels on the STM32F407 were
used for five gas sensors, LM35 temperature sensor, and the HIH-
4030 humidity sensor. The digital potentiometer MCP42XXX was
used instead of RL resistance to determine the value of RS re-
sistance of the gas sensors using the SPI communication protocol.
USART was used to send data from the STM32F407 micro-
controller to the computer and android tool by the HCo5 Bluetooth
module.

3.2. System operation steps

In the proposed FEN system, the measurements were obtained
for approximate fixed heat and humidity values. The system was
tested with six fruit odors consisting of apple, lemon, peach, ba-
nana, garlic, and onion. The fruits were placed into the sample
chamber and odor samples were received. In Fig. 4, the developed
electronic nose schema is presented. The system was operated
with the following steps:

i. Valve 5, valve 3, and valve 4 were first opened and clean air was
applied for 100 s. In this way, undesired gases were purged and
the sensor resistance values were compelled to reach to their
continuous states.

ii. During the last 35 s, valve 3 and valve 4 were closed and valve
1 and valve 2 were opened at the same time. This allowed the
clean air obtained by the oxygen tube to be forwarded to the
sample chamber and the odor molecules were moved in the
sensor chamber by means of the clean air.

iii. After the convection of odor molecules for 35 s, all valves were
closed to lock in the odor molecules in the sensor chamber for
35 s.

iv. At the final stage, valve 5, valve 3, and valve 4 were opened so
that sensors were re-cleaned by removing odor molecules and
the values of sensor resistances reached a continuous state for
130 s.
3.3. Experimental data, feature extraction, and preprocessing

Each sensor reacts differently to volatiles released by the fruits.
Hence, six sensors provide six different outputs in the form of a
time series. For odor recognition, the time series should first be
further pre-processed to obtain comprehensible signals. Second,
some important features from the pre-processed time series
should be extracted for odor recognition. Finally, the features
should be imported to the KELM inputs.

Fig. 5 shows the block schema of the proposed odor recognition
algorithm. In the recognition algorithm, the experimental data
consists of time series signals relating to the output voltage
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responses of all sensors, but it doesn't directly include their con-
centration levels. However, it is known that if the concentration
level changes, the output voltage responses of the sensors change
also [24,34]. The output voltage responses of the sensors calcu-
lated for different concentration levels are included for the re-
cognition algorithm such that the FEN system is not affected by
concentration level and carries out correct recognition of each fruit
species. In this paper, the pre-processing and feature extraction
steps were generated as:

� Analog data obtained from the output voltage responses of the
sensors (e.g., see Fig. 10 in next section) was sampled at 4 s�1

frequency during 300 s by means of ADC unit of STM32F407
and a total of 1200 samples were obtained. Fig. 6 gives the basic
measurement circuit of the TGS sensors. In Fig. 6, RL is the load
resistor representing an odor and connected in series to the
sensor, and Rs is the sensor resistance. The resistance of the
sensor changes when exposed to an odor in different concen-
tration levels. A simple voltage dividing rule, sensor response, Vo
was calculated as:
)

Fig. 7. Sensitivity characteristic of TGS2602 sensor [47].

Fig. 8. Measurements for the concentration level on an android tool for the TG
=
+
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where =V V5c is the voltage across the sensor element.

� To reduce the measurement noise, the sensor response was
filtered as

( ) = [ ( − ) + ( ) + ( + )] (V j V j V j V j
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� The clean air voltage was calculated for 30 samples before the
sample chamber was exactly purged as follows:

∑= ( )
(=

V V j
1

30 19
ca

i
o

370

400

� The concentration of volatiles released by fruits make the
maximum values of the sensor voltage change. If it is used as
raw data for the pattern recognition methods inputs, this causes
false odor recognition. To get rid of the varying maximum value
problem, the filtered output voltage response of sensors was
normalized as follows:

( ) =
( ) −

(
V j

V j V
maxV 20b

o ca

o

� 400 samples corresponding to the first 100 s of the output
voltage response were used for sensor cleaning. The samples
almost did not contain the target odor information duration this
time. The remaining data was separated into five regions, in-
cluding all reactions at both the transient and steady state of
sensors. The regions consisted of the samples between 400 and
560, 560–720, 720–880, 880–1,040, and 1040–1200 corre-
sponding to 100–140, 140–180, 180–220, 220–260, and 260–300
in seconds. Each region generated 160 samples at time intervals
of 40 s.

� Three important features from each region were extracted. The
features are mean, entropy, and variance of the time series data
of each region. There are five regions. Each sensor generated
3 features x 5 regions ¼ 15 features for each odor throughout
the time interval of 100–300 s.

The inputs and outputs of all mathematical models of the
networks in this paper are defined by R{ } ∈ ∈ {− }x y x y, , , 1,1i i N n

1 ,
respectively. Hence, the inputs can be specifically expressed as:
S2602 sensor exposed to (a) half lemon odor and (b) whole lemon odor.



Fig. 9. The sensor resistance variation and output voltage variation for the TGS2602 sensor exposed to (a) half lemon odor and (b) whole lemon odor.

Fig. 10. Experimental measurements for (a) apple, (b) lemon, (c) peach, (d) banana, (e) garlic, and (f) onion.

Fig. 11. Repeatable experimental measurements for apple.
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It is clearly seen from (21) that the input number of the net-
works, n, is 75. In addition, the length of the input vector of the
classifiers, N, is equal to the total of the experiment numbers ex-
plained in detail in Table 2 in the next section. This number is 152
and 84 for training and testing, respectively.

� The outputs of the networks, y, define only the species of the
fruits. In this paper, the networks are capable of classifying odor
species, and their outputs don't include concentration in-
formation. To achieve the invariance to concentration in the FEN
system, the fruits in two different concentration levels were
used as half and whole and they were assigned to the same
label, i.e., the same species of fruit.

3.4. Visualization of concentration on an android platform

The aim of this paper is not to calculate the concentration levels
by using the pattern recognition methods. However, the calculated
concentration level using the production information of the sensor
and the sensor response obtained in the FEN system are displayed
on an android platform for visualization. For this, the production
Fig. 12. The radar plots of extracted features from (a) TGS2600, (b) TGS2
information of all of the sensors is taken into consideration [47].
When exposing to the odor a sensor, both sensor resistance and
the concentration level vary. From the sensitivity characteristics
representing the variation of the ratio of sensor resistance, Rs, to
sensor fresh air resistance, Ro, versus parts-per-million (ppm) gas
concentration level, the sensor resistances Rs are calculated first,
and then the corresponding concentration level is calculated. In
Fig. 7, the sensitivity characteristics of TGS2602 are given as an
example. It shows the sensing response of TGS2602 as a function
of different ppm concentrations of gases such as ethanol, ammo-
nia, hydrogen sulfide, and toluene.

The fruit odors in Fig. 7 or in product information of all of the
used chemical sensors are unseen. However, it can be used as a
reference the concentration curve of one of the gases exhibiting a
high sensitivity characteristic for a sensor to show the con-
centration of the other odors. Hence, in this paper, the fruit con-
centration level is visualized using a reference standard.
4. Results and discussion

In this paper, 34 different experiments were carried out for
garlic and onion and 48 different experiments for the other fruits.
Table 2 summarizes the experiment numbers. Both training and
testing experiments were carried out for two different
602, (c) TGS2610, (d) TGS2620, and (e) TGS826 for the lemon odor.
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concentrations: odors of half and whole fruits.
In the FEN system, the sensor reactions were obtained in a

healthy way. The obtained data from STM32F407 was transferred
to a computer and an android tool. The communication with the
android tool was constructed using Bluetooth module. In the an-
droid tool, a program was written to separately visualize the odor
concentration level of all sensors.

In this paper, it was only visualized the concentration
Fig. 13. The radar plots of extracted features from (a) TGS2600, (b) TGS
information obtained from TGS2602 since the results obtained
from the other sensors was similar to that of TGS2602. Fig. 8 gives
the sensor response for TGS2602 exposed to a half lemon odor and
whole lemon odor on the android tool. The output illustrates the
concentration level. In Fig. 8, the concentration level of lemon odor
was shown using the ethanol reference standard as cited in the
TGS2602 sensor product information sheet. As can be seen from
Fig. 8, the odor concentration level of the whole lemon is
2602, (c) TGS2610, (d) TGS2620, and (e) TGS826 for all fruit odors.



Table 3
Performance comparison of K-NN, SVM, LSSVM, ELM, and KELM as to the training
and testing accuracies.

Method Training Accuracy (%) Testing Accuracy (%)

K-NN – 93.75
SVM 100 97.5000
LSSVM 98.8636 97.5000
ELM 98.8636 97.5000
KELM 98.8636 100

Table 4
Performance comparison of K-NN, SVM, LSSVM, ELM, and KELM as to the training
and testing times.

Method Training Time (s) Testing Time (s)

K-NN – 0.0163
SVM 0.0102 0.0102
LSSVM 0.0458 0.0240
ELM 0.0025 0.0010
KELM 6.8884e-04 2.8164e-04

Table 5
Confusion matrix relating to the KELM classifier.

Known Class Predicted Class
Apple Lemon Peach Banana Garlic Onion

Apple 32 0 0 0 0 0
16 0 0 0 0 0

Lemon 1 31 0 0 0 0
0 16 0 0 0 0

Peach 0 1 31 0 0 0
0 0 16 0 0 0

Banana 0 0 0 32 0 0
0 0 0 16 0 0

Garlic 0 0 0 0 24 0
0 0 0 0 10 0

Onion 0 0 0 0 0 24
0 0 0 0 0 10
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approximately two times of that of the half lemon, which shows
that the FEN system operates perfectly.

On the other hand, the sensor resistance variations and its
output voltage variations versus time are shown in Fig. 9 for when
the TGS2602 sensor was exposed to a half lemon odor and whole
lemon odor. It is seen from Fig. 9 that the value of the output
voltage increases as the value of the sensor resistance reduces
throughout the duration between 100 s and 170 s in which odor
molecules are moved in the sensor chamber. In addition, it is ob-
served that the concentration level increases as the sensor re-
sistance reduces.

Fig. 10 shows the characteristic voltage responses of all the
sensors against the samples of apple, lemon, peach, banana, garlic,
and onion, respectively. Fig. 11 shows reproducible results of the
TGS2600 sensor for apple. The results explain that the FEN system
is stable and the obtained data from the FEN is correct and
repeatable.

Fig. 12(a–e) show the radar plots of the features extracted from
the responses of TGS2600, TGS2602, TGS2610, TGS2620, and
TGS826, respectively, after exposure to the lemon odor. Radar plots
are usually used to observe the differences of selected features
(i.e., fingerprints of each sensor) in electronic nose literature. The
evaluations were made only on the lemon odor to understand at a
glance a clear pattern variation between the different sensors.
Fig. 12(a–e) shows 15 feature points represented as { … }x x x, , ,1 1 15
and their values on the radar plot of each sensor. When all features
in Fig. 12(a–e) are collected, it is clearly seen that a total of 75
features were obtained from the five sensors. It is verified that the
output voltage responses of the sensors used produce distin-
guishable patterns when exposed to the lemon odor, which makes
its recognition easy.

Fig. 13(a–e) separately shows the radar plots of the features ex-
tracted from the reactions of TGS2600, TGS2602, TGS2610, TGS2620,
and TGS826 exposed to apple, lemon, peach, banana, garlic, and onion,
respectively. Each curve with different color in each radar plot of
Fig. 13 represents the features obtained from the reactions of only one
sensor for six fruits, apple, lemon, peach, banana, garlic, and onion,
respectively. There are six different values at each xi point. The mini-
mum and maximum values are given for each feature on the radar
plot. This figure clearly shows that each sensor provides a different
response pattern with the six odors and the features obtained from
them are separating salient features.

The training and testing stages of K-NN, SVM, LSSVM, ELM, and
KELM were run on a computer with a 3.4 GHz Intel i7-2600 K
2 processor in MATLAB. The open source MATLAB interface of
LIBSVM was used to implement SVM [48]. The optimal values of
the SVM and LSSVM parameters were adjusted by a 10-fold cross
validation and the combinations of 1/(2s2) ¼ [24, 23,…, 2�10] and
C ¼ [212, 211,…, 2�2]. The regularization parameter C of ELM was
optimized over [10�10, 10�3,…, 1010], and the number of hidden
nodes H was tuned from in the range of [10, 102, 103, 104]. In ad-
dition, the activation function of the hidden layer of ELM was se-
lected the “radbas” function defined with

( ) = (− + )G w x b exp w x b, , . 2 after the sigmoid and sine functions
were also tried. Regularization parameter C and kernel parameter
s of KELM were adjusted from the set of [1, 102, 104] and [10�4,
10�2, 1, 102], respectively. The classifiers were compared in terms
of the training and testing accuracy and the training and testing
speeds.

The training and testing correctness obtained by using K-NN,
SVM, LSSVM, ELM, and KELM are given in Table 3. It can be seen
from Table 3 that SVM shows high recognition performance with
the training correctness value of 100%. For K-NN, LSSVM, ELM, and
KELM, good recognition performance with a training accuracy
value of 98.8636% was obtained. On the other hand, KELM out-
performed the others with a testing accuracy value of 100%
It is seen from the results given in Table 4 that the training
durations of K-NN, SVM, LSSVM, ELM, and KELM are 0, 0.0102,
0.0458, 0.0025 and 6.8884e-04 s, respectively, while their testing
times are 0.0163, 0.0102, 0.0240, 0.0010, and 2.8164e-04 s, re-
spectively. Hence, KELM runs faster than the others. Through these
analyses, it is obvious that KELM is an efficient recognition method
in comparison to the others. Consequently, KELMs are more ap-
propriate than the others for real time implementations.

All the analyses exhibit that the proposed model is an accurate
and fast method for the recognition of fruit odors.

Table 5 gives the confusion matrix KELM in terms of training
and testing sample numbers. The diagonal lines give the number
of correct classified samples while the others shown mean the
number of misclassified samples.

To summarize, it can easily be deduced that the KELM system is
strides over and above the K-NN, SVM, LSSVM, and ELM methods
in terms of higher testing recognition rates and lower training and
testing times for recognizing fruit odors. The extracted features
from the proposed features are distinguished as the best for odor
recognition.
5. Conclusions

This paper presented an efficient and low cost android elec-
tronic nose using KELMs to distinguish it from other previous
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works. In the proposed system, low-cost MOS sensors were used
to detect and separate the patterns of fruit odors. The main aim of
the proposed system is to make use of the amazing features KELM
has, such as fast learning speed, better generalization perfor-
mance, and easier training steps without using time consuming
parameters to adjust to recognizing the fruit odors.

In the proposed system, two concentration levels of odor
samples were used for obtaining nose invariance. Sensor con-
centration levels were displayed on an android tool by using a
reference standard in the product information sheet of sensor.
Time series relating to odor samples were collected and pre-
processed. New and simple feature extraction steps were in-
troduced. The obtained comprehensible features were used for the
KELM input.

The effectiveness of the proposed systemwas shown by the sensor
reactions, repeatable sensor reactions, radar plots, training and testing
accuracy, and the training and testing speeds. Experimental results
proved that the proposed system performed significantly well in odor
recognition. It was demonstrated that KELM achieved the highest
testing accuracy (100%) and the smallest values of training time
(6.8884e-04 s) and testing time (2.8164e-04 s).

Meanwhile, a comparative study was carried out on K-NN,
SVM, LSSVM, and ELM systems. The experimental results exhibited
that KELM surpassed the others in terms of higher recognition
performance and shorter training and testing speeds.

In addition, it is notable to express that the proposed system can
also be employed for other electronic nose applications outside of the
food industry. FPGAs can be used for the electronic nose thanks to fast
training and testing properties of KELMs. The next study will be
conducted on new feature extraction methods and FPGA.
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