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1. Introduction 

Smell is still a mystery to scientists in somehow, which cannot be studied with ease in 

vertebrates. Another problem is that the sense of smell is poorly developed in human 

beings in comparison with the same in many vertebrates (Menini et al., 2004). This makes 

realization of an artificial olfactory system a challenging task. An artificial olfactory 

system (commonly known as E-nose) provides a low cost alternative to identification, 

quantification and characterization of odours. The traditional methods of characterization 

and quantification of odours generally involve the use of a trained panel of human 

experts. The use of human panel is sensitive to individual variability, adaptation 

(tendency to become less sensitive after prolonged exposure), mental state, fatigue, 

subjectivity, infections and exposure to hazardous compounds (Nagle et al., 1998). 

Therefore, it is necessary to have a low cost and compact device to perform real-time 

analysis. It is thus natural for researchers to envisage a system, which is biologically 

inspired and modelled on the lines of an olfactory system. The increased understanding of 

the biological phenomenon of olfaction has motivated scientists to achieve artificial 

olfaction. Rapid strides made in the field of material science and fabrication technology 

has paved the way for manufacture of a large variety of micro-sensors, of which a large 

percentage is chemical sensors. 

An E-nose uses multiple sensors in the form of an array. In an array of sensors each sensor 

responds broadly to a range or class of gases rather than a specific one. This characteristic of 

a sensor array is similar to a human nose, which is also partially sensitive to several 

odorants. The partial sensitivity of the sensor array can be exploited for characterization and 

quantization of gases/odours by making use of effective signal processing and pattern 

recognition. In an electronic nose, the odorants produce changes in physical/chemical 

properties. A sensor array converts the chemical inputs into electrical signals which are 

further processed by utilizing an electronic circuit, providing an analogue signal to be 

amplified, pre-processed and/or digitised prior to being fed into a pattern recognition 

system (Shurmer et al., 1990; Nakamoto et al., 1990). Basic stages of an artificial olfactory 

system are shown in Fig. 1. 

After coming in contact with the odorants, the sensors experience a change in electrical 

properties. Each sensor is sensitive to all the odorant molecules in their specific way. Most 
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electronic noses use sensor arrays that react to gases/odours on contact: the adsorption of 

gases/odours on the sensor surface causes a change in physical properties of the sensor 

(Sarro, 1992). A specific response is recorded by the electronic interface transforming the 

signal into a digital value. Recorded data are then analyzed using computational 

techniques (Osuna et al., 2002). An artificial olfaction system can be fabricated using 

standard micro-electronic techniques for on-chip integration. An E-nose employs an array 

of chemical sensors to achieve an appreciable level of selectivity to different 

gases/odours. Metal oxide based sensors fabricated with the thick film technology are the 

most popular choice for gas/odour sensing. Most of the commercial E-noses employ 

metal oxide based sensing devices because metal oxides are most suited as gas sensors 

due to their high sensitivity and their ability to maintain structural integrity in harsh 

conditions, namely, high temperature (Moseley, 1992). The basic sensing mechanism in 

metal oxide based sensors involves a change in resistance due to chemisorptions when 

exposed to odorants/gases. 

 

Fig. 1. Artificial olfactory system 

1.1 Operating principle of tin oxide gas sensors 

It has been found that when a bead of tin oxide is heated in the presence of a combustible 

contaminant, and the conductance of the bead is measured continuously, it is possible to 

obtain a measure of the concentration of the contaminant gas (Watson, 1984). This 

observation can be explained as follows. 

By heating a bead of tin oxide in clean air, oxygen can be adsorbed onto the surface layers 

until equilibrium is achieved for that particular temperature. The measurement of the 

characteristic conductance of the bead would reveal that it is a function of both the 

temperature and partial pressure of the oxygen. Significant change in surface conductivity 

of semiconductors can be brought about by adsorption and subsequent reaction of gases 

with the adsorbed oxygen. The active material of the sensor is generally SnO2, which is an n-

type semiconductor. When oxygen is adsorbed on to it, it accepts electrons to become 2O−

O− or 2O −  (Ikohura, 1981). The adsorption of a reducing gas releases bound electrons and 

thus increases the conductance of the surface dramatically. For an oxidizing gas converse 

mechanism operates. Various dopants are used to improve the sensitivity and selectivity of 

thick film tin oxide gas sensors (Morrison, 1987). 

Sensor operating temperature plays a vital role in the development of gas selective sensors. 

Since, different classes of reducing gases have different reaction rates, sensors operating at 

different temperatures show a degree of selectivity (Sears et al., 1990). Despite having 

appreciable sensitivity to a large number of gases/odours, thick film tin oxide sensors have 

some well known limitations such as, cross sensitivity to a number of compounds and 
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saturation of sensor response at higher concentration of the odorants. These limitations can 

be overcome by employing an array of sensors whose responses are analyzed subsequently 

using appropriate pattern analysis techniques. Typical materials used for fabrication of the 

sensors are SnO2, ZnO, Fe2O3, and WO3. These metal oxide films are used with or without 

dopants like CuO, Pd, Pt and In to enhance their selectivity. Porous and sintered SnO2 is the 

most widely used for gas sensors, as it is appreciably sensitive to a large number of 

gases/odours. SnO2 sensors are available both for domestic and commercial use. For 

domestic applications, devices are available for detecting combustible gases such as CO, H2, 

alcohols, LPG, and volatile matters from food stuff. For industrial applications detectors are 

available for gases such as NH3, H2, H2S, CH4, C7H8, C8H10 and hydrocarbons. The following 

subsection presents a typical experimental set up where a sensor array is exposed to several 

odorants and the response of each sensor is noted. This particular set up is chosen for 

illustration because its response pattern is the most challenging from pre-processing and 

computational point of view. The same data would be used throughout the chapter for 

demonstrating the efficacy of the computational techniques employed. Published data from 

other sensor arrays may also be reproduced to explain some of the computational 

challenges. 

1.2 Typical experimental set up for odour sensing 

Integrated gas sensor array comprises several sensors as shown in Fig. 2. Sensors are 

fabricated on one side of an alumina substrate whereas a resistive pattern is fabricated on 

the other side to achieve uniform heating. A metal oxide paste is prepared, which is 

applied to the substrate and fired at high temperature by passing it to a furnace so that 

the paste sticks properly to the substrate. Different dopants (e.g. ZnO, Sb2O3 and NiO) are 

used respectively with the metal oxide paste, resulting in different types of gas sensors 

with different sensitivity to different odours. The diagram of a tin oxide sensor array 

pattern is shown in Fig. 2. The fabricated integrated sensor array pattern is then tested 

under closely controlled environmental conditions using some experimental chamber 

with a facility (either manual or automated) of injecting test gases as shown in Fig. 3. The 

experiment is designed for testing 4 types of whiskies, two types of rums, and ethanol 

(Nayak et al. 1992). 

Initially, the sensor array is kept in a closed ambient air under energized condition at 10W 

heater supply for more than 30 minutes to make the sensor resistances stable. At this stage, 

initial resistance of the sensors is recorded. Then a drop of test alcohol is injected into the 

chamber and it gets vaporized to gaseous phase before being adsorbed on to the sensor 

surface. Sensor readings are reported after three minutes as it is found to be optimum time 

to equilibrate with the sample alcohol. Similarly, another drop of test alcohol is injected and 

the experiment is repeated for more drops so that the observations are made for up to 12 

drops of test alcohols. After experimenting with one of the alcohols/alcoholic beverages, the 

sensors are recovered in open ambient air at room temperature and on complete recovery; 

experiments are repeated for other alcohols/alcoholic beverages. Using suitable 

mathematical manipulations, the concentration of test odorants can be converted to parts 

per million (ppm). 
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Fig. 2. Fabricated integrated sensor array pattern (Nayak et al., 1992) 

 

Fig. 3. Experimental chamber for exposing sensor array to gases/odours 

The next step is to obtain the sensor response by calculating the percentage change in 

resistance of all the sensors for all the odorants injected into the test chamber. This is done to 

nullify the effect of initial resistances. The percentage change in resistance is calculated 

using 

 100
ijo ijd

ijd
ijo

R R
P

R

−
= ≤  (1) 

where, Rijo is the initial resistance of the ith sensor for zero-th drop of jth odorant and the 

subscript d denotes a particular drop. The steady-state exposure profiles of the sensor array 

exposed to different types of alcohols and alcoholic beverages at different concentrations 

thus obtained is shown in Fig. 4. 
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Concentration in number of drops 

(a) Whisky-1 

 
Concentration in number of drops 

(b) Whisky-2 

 
Concentration in number of drops 

(c) Whisky-3 

 
Concentration in number of drops 

(d) Whisky-4 

 
Concentration in number of drops 

(e) Rum-1 

 
Concentration in number of drops 

(f) Rum-2 

 
Concentration in number of drops 

(g) Ethanol 

 

Fig. 4. Steady-state response of sensor array upon exposure to different alcoholic beverages 

(Nayak et al., 1992) 
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1.3 Limitations of sensor arrays 

In general, sensor arrays suffer from one or more of the following limitations: 

1. Overlapping sensitivity to different gases/odours leading to poor selectivity. 
2. Saturating tendency of the sensor response at higher concentration of the test gas 

leading to difficulties in quantification 
3. “Drift” in the sensor response, which is defined as the variation in the output of a 

sensor when exposed to a particular test gas under identical conditions after a finite 
interval of time. 

1.3.1 Overlapping sensitivity 

Overlapping sensitivity is by far the most challenging limitation of a sensor array. It renders 
a nicely fabricated sensor array less capable of discriminating between two gases/odours in 
spite of having an appreciable sensitivity. 

 
(a) LPG 

 
(b) CCl4 

 
(c) CO 

 
(d) C3H7OH 

Fig. 5. Sensitivity characteristics of oxygen plasma-treated array at different concentrations 
(Chaturvedi et al., 1999) 

Fig. 5 shows the plot of sensitivity with concentration of the test gas for a 6-sensor array. It is 
clear from Figs. 5 (a) and (b) that the sensor array exhibits almost identical sensitivity for 
LPG and CCl4 and hence representing a very poor selectivity for these gases. It should be 
noted that all the sensors of the array are appreciably sensitive to all the 4 test gases. In spite 
of this fact we would not be able to discriminate between two of the 4 gases (i.e. LPG and 

www.intechopen.com



 
Neuro-Fuzzy Classifiers/Quantifiers for E-Nose Applications 

 

115 

CCl4 ). Therefore, in addition to having good sensitivity, the sensors in the array should 
respond differently to different test gases/odours. 

1.3.2 Saturation and drift 

Fig. 4 shows the response vs concentration of an array of 4 sensors exposed to the vapour of 
a particular alcoholic beverage. It can be seen that responses of almost all the sensors 
saturate after a particular concentration of test gas has been injected into the experimental 
chamber. This phenomenon makes the quantification of the test gas impossible at higher 
concentrations. 

Drift introduces an unwanted temporal variation in the sensitivity of a sensor array. This 
means the response of the array to same gases under identical conditions may be entirely 
different from what was obtained previously. When previously learned sensor patterns 
become obsolete, the ability of the sensor to discriminate is lost. In fact, sensor drift is the 
highest obstacle in the wide marketability of low cost gas sensors. 

All the above mentioned problems are hindrance to proper identification and quantification 
of gases/odours. Thick film sensors are well known for their design ruggedness, ease of 
fabrication, sensitivity to a plethora of gases/odours, and most importantly for being 
economical. The above mentioned limitations of thick film sensors negate their other 
desirable features discussed above and hence, a promising technology sometimes seems to 
fall short of achieving its objectives. The limitations imposed by poor selectivity and 
response saturation can be overcome by employing computational techniques to extract 
both qualitative and quantitative information. The role of computational techniques in 
gas/odour discrimination can never be underestimated. Wherever possible, putting more 
emphasis on computational methods can save a significant amount of resources since 
breaking innovation in the fabrication technology requires time and effort. The next section 
presents an overview of computational challenges put forth by popular sensors with an aim 
of proper identification and quantification of individual odorants. 

2. Computational challenges 

Choice of an appropriate technique is highly dependent on the problem in hand. In the 
context of E-nose systems, the term pattern analysis applies to both qualitative and 
quantitative analysis of odours. The response data generated from a sensor array are 
multivariate in nature. There are several issues, which require careful consideration for a 
successful design of a pattern analysis system. Signal pre-processing, feature extraction, 
feature selection, classification, regression, clustering and multi-fold cross-validation are the 
most prominent goals of a pattern analysis system, for which critical design issues are to be 
taken care of. The first computational stage in a pattern analyzer is often the signal pre-
processing stage. The main purpose of a pre-processing stage is to select a number of 
parameters that are descriptive of the sensor array response. The choice of parameters can 
significantly affect the performance of the subsequent modules in the pattern analysis 
system. Fig. 6 (a) shows the scatter plot for S-1 as SnO2 and S-2 as SnO2 doped with Sb2O3. for 
the 4 sensor array mentioned in the previous section. 

The plots confirm that the clusters are not only overlapping but also a high degree of 
scattering of data points. The overlapping of clusters is due to the cross sensitivity and is 
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attributed to the material properties of the sensors. The goal of a pre-processing stage is to 
minimize the spread in an individual clusters and maximize the distance between two 
clusters. Therefore, a pre-processing technique should be applied, which utilizes the 
statistical properties of the data set to maximize their inter class separation and minimize 
the intra class separation. The result of such a pre-processing is shown in Fig. 6 (b) to 
establish the importance of a pre-processing stage. The technique used is Transformed 
Cluster Analysis (TCA). Details of TCA can be read from a published work of the author 
(Kumar et al. 2010). 

(a) 2-D scatter plot for responses of sensors 
S-1 and S-2 

 
 

 
(b) 2-D scatter plot for transformed 

responses of sensors S-1 and S-2 
(T1 and T2 are transformed responses of 

sensors S-1 and S-2) 

Fig. 6. 2-D scatter plot for responses and transformed responses of sensors S-1 and S-2 

The actual identification/quantification part of pattern analysis begins after pre-processing. 

Pattern analysis techniques are generally of two types viz. parametric and non-parametric 

techniques. Parametric techniques do not require any prior information on the type and 

number of different classes contained in data. In non-parametric techniques a set of response 

patterns is compared against each other on the basis of degree of similarity or dissimilarity 

(Gardner, 1987). Thus, non-parametric techniques are more general in nature. 

 Statistical pattern analysis techniques like Principal Component Analysis (PCA) and Cluster 
Analysis (CA) are one of the most popular non-parametric techniques. PCA overcomes the 
“curse of dimensionality” introduced by the response vector of a multi-sensor array by 
choosing “principal components” along the directions of maximum variance. Principal 
components are a linear combination of original variables with the redundant information 
eliminated. The reduced dimensionality of data makes the subsequent feature extraction 
task simpler. 

Feature extraction attempts to find a low dimensional mapping that preserves most of the 
information in the original feature vector. The mappings thus formed enhance the 
information content of the feature vector. Feature extraction techniques also help signal 
representation, which can be useful for extrapolatory data analysis. They are helpful in 
visualizing high dimensional data. Most of the feature extraction techniques for E-nose 
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applications are based on PCA, which is a signal representation technique that generates 
projections along the directions of maximum variance. Learning in pattern analyzers is 
viewed as the optimization of a process to obtain a minimum value for a solution of a pre-
specified objective function (criterion). Analysis of patterns by an analyzer is carried out 
either by supervised or unsupervised learning schemes. 

The pattern analysis techniques applied to the output of a sensor array should be biologically 
inspired if an E-nose is to sniff like humans. This requires application of biologically inspired 
algorithms to the senor output. Artificial neural networks (ANNs) are such a class of 
computational paradigms, the inspiration for which comes originally from the studies of 
mechanism of information processing in biological nervous system, particularly brain (Bishop, 
1994). The advantages of ANNs include massive parallelism, distributed processing and 
computation, learning ability, generalization ability and adaptability. Apart from ANNs, fuzzy 
logic and genetic algorithm are some other techniques which constitute a class of paradigms 
known as “soft computing”. Soft computing is fast replacing statistical learning techniques in 
pattern analysis applications. Also, a lot of work has been done in the area of gas/odour 
discrimination using soft computational techniques. Most of the techniques described above 
have been adopted from the field of chemometrics and they can be labelled as ‘statistical’ 
pattern recognition techniques as opposed to soft computational techniques, which are recent 
in origin and are in general biologically inspired. “Soft Computation” is a name given to a 
class of computational paradigms, which seek to find approximate solutions to ill-posed 
problems. It is tolerant of imprecision, uncertainty, partial truth, and approximation just like 
the human mind. The principal constituents of soft computing are ANNs, Fuzzy Logic, 
Support Vector Machines, and Evolutionary Computing. 

Soft computational techniques have revolutionized the arena of artificial olfaction by 
immensely reducing dependency on flawless and meticulously designed sensor hardware. 
Proper application of soft computational techniques can improve the discrimination 
obtained using the response of poorly selective sensors to a great extent thus, saving 
additional costs on possible replacement and fabrications of novel sensor hardware. ANNs 
are one of the foundation pillars of soft computing. Their enormous learning capability, 
massively parallel architecture, and availability of a large number of learning algorithms for 
their training makes them a popular choice for a wide variety of computational tasks. A 
close scrutiny of the available literature reveals that the choice of pattern analysis techniques 
for artificial olfaction has been highly problem-dependent (Osuna, 2002). Different types of 
sensor arrays generate response data with different statistical properties making selection of 
an appropriate technique a difficult task. In the context of ANNs, the choice is often between 
a lesser architectural complexity and a lower system error. In view of all these, in the next 
section identification task of 7 different alcohols and alcoholic beverages is taken up using 
ANN and the response of the 4 sensor array described in section one. 

3. ANNs for odour identification 

The basic computational unit in an ANN is neuron, which is a mathematical function used 
to approximate input–output mappings. The output of a neuron (also known as firing of a 
neuron) is dependent upon the synaptic weight connection between all the neurons in the 
network. This synaptic weight ensemble changes if the actual output is not equal to the 
desired output. The process of change in synaptic weight is known as ‘learning’ or ‘training’ 
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of ANN. A well trained ANN can perform any task related to classification, function 
approximation or prediction with some small amount of error with a brand new data set. In 
ANNs neurons are arranged in different layers with ‘hidden layer’ being responsible for 
performing most of the computational tasks. ANNs can be trained to approximate any non-
linear input-output mapping. It can be shown mathematically that any ANN trained with 
orthogonal least squares algorithm is able to approximate any input-output mapping with 
arbitrary accuracy provided the number of neurons in the hidden layer is large enough 
(Hykin, 2009). However, a back-propagation (BP) algorithm is by far the most popular 
method of training an ANN. It is less complex and requires lesser number of neurons to 
perform the computations. 

3.1 Back-propagation algorithm 

BP is an algorithm where input vectors and the corresponding target vectors are used to 

train a network until it can approximate a function, associate input vectors with specific 

output vectors, or classify input vectors in an appropriate way as defined by the user. 

Networks with biases, a hidden layer, and a linear output layer are capable of 

approximating any function with arbitrary accuracy. A standard BP is a gradient descent 

algorithm, in which the network weights are moved along the negative of the gradient of the 

performance function. The term BP refers to the manner, in which the gradient is computed 

for nonlinear multilayer networks. Basically, error BP consists of two passes through the 

different layers of the network: (1) forward pass, and (2) backward pass. 

In the forward pass the input vectors are applied to the sensory nodes of the network, and 

its effect propagates through the network layer-by-layer. The actual response of the network 

is delivered by the output nodes in the form of an output vector. The outputs are compared 

with a target vector and the difference is generated as error. Let the error signal at the 

output of neuron j at iteration n be defined by: 

 ( ) ( ) ( )j j je n d n y n= −  (2) 

where, dj (n) represents the desired output at the output node j at iteration n, and yj(n) be 

the actual output at the output node j at iteration n. 

Let the instantaneous value of the error energy for neuron j be defined as: 

21
( )

2
je n  

Then, for all neurons in the output layer instantaneous value ξ (n) of the total energy is 

given by: 

 21
( ) ( )

2
j

j C

n e n
∈

ξ =   (3) 

where, C is the set of all neurons in the output layer of the network. Let N denote the total 

number of patterns contained in the training set. The average squared energy over the entire 

training sample is now given by: 
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1

1
( ) ( )

N

avg
n

N n
N =

ξ = ξ  (4) 

For a given training set, ξ avg is called the cost function, which is a measure of learning 

performance. Minimization of the cost function is done iteratively. The weights associated 

with the network are updated on a pattern-by-pattern basis until one complete presentation 

of the entire training set (epochs) has been done. The adjustments to the weights are made in 

accordance with the respective errors computed for each pattern presented to the network. 

The arithmetic average of these individual weight changes over the entire training sets 

presents an estimate of the true change that would result from modifying the weights based 

on minimizing the cost function ξ avg  over the entire training set. Fig. 7 shows a neuron j 

being fed by a set of input signals produced by a layer of its neurons to its left. 

 

Fig. 7. Neuron ‘j’ being fed by a set of signals from a previous layer of neurons 

The induced local field vj(n) produced at the input of the activation function associated with 
neuron j is given by, 

 
0

( ) ( ) ( )
m

j ji i
j

v n n y n
=

= ω  (5) 

where m is the total number of inputs applied to neuron j, and ωji is the synaptic weight 

from neuron i to neuron j. The signal yj(n) appearing at the output of neuron j at iteration n 

is a function of the induced local field 

 ( ) { ( )}j jy n v nϕ=  (6) 

The BP algorithm applies a correction ∆ωji(n), to the synaptic weight ωji(n), which is 

proportional to the partial derivative  

( )

( )ji

n

w n

ξ∂

∂
 

Applying the chain rule of calculus, this gradient can be expressed as: 
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( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

j j j

ji j j j ji

e n y n v nn n

n e n y n v n n

∂ ∂ ∂∂ξ ∂ξ
=

∂ω ∂ ∂ ∂ ∂ω
 (7)

 

The partial derivative 

( )

( )ji

n

w n

ξ∂

∂
 

represents a sensitivity factor. It determines the direction of search in weight space for the 

synaptic weight ωji. 

Differentiating both sides with respect to ej(n) we get 

 
( )

( )
( )

j
j

n
e n

e n

∂ξ
=

∂
 (8)

 

Differentiating both sides of (2) with respect to yj(n), we get, 

 
( )

1
( )

j

j

e n

y n

∂
= −

∂
 (9) 

Differentiating both sides of (6) with respect to vj(n), we get, 

 '
( )

{ ( )}
( )

j
j j

j

y n
v n

v n

∂
= ϕ

∂
 (10)

 

Also, differentiating (5) with respect to ωj(n), we get, 

 
( )

( )
( )

j
i

ji

v n
y n

w n

∂
=

∂
  (11)

 

The use of (8) to (11) in (10) yields: 

 '( )
( ) { ( )} ( )

( )
j j j i

ji

n
e n v n y n

n

∂ξ
= −  ϕ

∂ω
  (12)

 

The correction ∆ωji(n) applied to ωji(n) is defined by the delta rule: 

 
( )

( )
( )

ji
ji

n
n

n

∂ξ
∆ω = −η

∂ω
   (13) 

where,  η is the learning-rate parameter of the BP algorithm. The gradient descent in weight 

space takes place in a direction for weight change that reduces the value of ξ (n)The use of 

(12) in (13) yields 

 ( ) ( ) ( )ji j iw n n y nηδ∆ =  (14) 
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where, the local gradient  δj(n) is defined by 

 
'

( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )

( ) { ( )}

j j
j

j j j j

j j j

e n y nn n
n

v n e n y n v n

e n v n

∂ ∂∂ξ ∂ξ
δ = − = −

∂ ∂ ∂ ∂

= ϕ

 
 (15) 

The local gradient points to required change in synaptic weights. Hence, the above relation 

between the learning rate, local gradient and weight correction can be summarized as 

follows: 

(Weight Correction) = (Learning Rate)*(Local Gradient)*(Input Signal of Neuron ‘j’) 

Learning Rate Parameter and Momentum Constant: 

The learning rate parameter η  is a measure of the changes to the synaptic weights in the 

network over subsequent iterations. Thus, a smaller learning rate parameter makes smaller 

changes in synaptic weights and the trajectory in the weight space is smoother. A smaller 

learning rate results in a slow learning. If the learning rate parameter η  is made too large to 

speed up the learning process, the resulting large changes in the synaptic weights assume 

such a form that the network may become unstable. To avoid the danger of instability while 

keeping the learning rate fast enough, another term is added to the delta rule, which is 

known as the momentum constant and is denoted by α. Hence, Eq. 14 becomes: 

 ( ) ( 1) ( ) ( )ji ji j iw n w n n y nα ηδ∆ = ∆ − +  (16) 

The inclusion of momentum term in the BP algorithm has a stabilizing effect in directions 

that oscillate in sign. The momentum term also prevents the learning process from 

terminating in a shallow local minimum on the error surface. The training through a BP 

algorithm proceeds iteratively. A prescribed set of training examples are fed repeatedly to 

the ANN. The learning process continues on an epoch-by-epoch basis till the stabilization of 

the synaptic weights and bias levels of the network, and most importantly, the convergence 

of the average squared error over the entire training set to some minimum value. A back-

propagation algorithm cannot converge. However, it is considered to have converged when 

the absolute rate of change in average squared error per epoch is “sufficiently small”. The 

rate of change in average squared error is typically considered to be small enough if it lies in 

the range of 0.1 to 1% per epoch. 

The sensor response curves of Fig. 4 were sampled at equal intervals of concentration and a 

data set was prepared. This data set will now be used to train an ANN using a BP algorithm. 

3.1.1 Identification with sampled data 

A three layer feed-forward neural network with sigmoidal activation function was 

simulated for the classification task. Neural network simulation was implemented in 

MATLAB using TRAINGDM function. The number of neurons in the input and output 

layers were fixed as 4 and 7 respectively as there are 4 sensors and 7 classes of gas/odour. 

Simulated network was trained by input vectors available with training data set while 
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learning parameters such as learning rate (η) and momentum constant (α) and the number 

of neurons in the hidden layer were optimized during experimentations. After several 

repeated experiments the optimum number of neurons in the hidden layer was found to be 

six as it gave the minimum system error, which is measured in terms of mean square error 

(MSE) .The optimized BP network with a configuration of 4:6:7 and an optimized set of 

weights and biases was trained repeatedly with 4 sets of training data and by changing the 

values of learning rate (η) and momentum constant (α) from 0.1 to 0.9. The network was 

trained for a fixed 30,000 epochs with an error goal of zero. The trained network for 

minimum system error was then tested with 4 different test data sets. The training and test 

performance for all values of learning rate and momentum constants was noted. System 

error was studied at a particular learning rate for different values of the momentum 

constants in the range of 0.1 to 0.9 for 4 different testing subsets. 

 

Fig. 8. Box whisker diagram for testing phase system error with learning rate for 4 testing 
subsets for different values of the momentum constant (m.c.) (BPNN) 

Fig. 8 shows the testing phase system error at a particular value of learning rate and a 

momentum constant corresponding to which minimum average system error is observed. 

The BP neural network (BPNN) trained with raw data exhibited poor classification 

performance for all training subsets and also very high system error in both training and 

testing phases for almost all combinations of learning rates and momentum constants. A 

high degree of spread in system error is visible from Fig. 8 implying the inconsistent 

performance of BPNN trained with raw data. The diagrams show the variation in error 

performance with an optimum combination of learning rate and momentum constant 

calculated over 4 trials with different testing subsets. 

3.2 Identification performance of radial basis function neural network 

Apart from being subjected to a BP-trained neural classifier, the sampled data were fed as 

inputs to a Radial Basis Function Neural Network (RBFNN) classifier. RBFNN was chosen 

as a classifier because it takes shorter time to train apart form having a lower system error. 

In the following subsection, a brief introduction to RBFNNs is given and the subsequent 

subsections describe the identification performance of the RBFNN with respect to the 

present problem. 
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3.2.1 Radial basis function neural network 

The radial basis function network is primarily composed of three layers. The first is an input 
layer. The second layer is the hidden layer which is primarily responsible for computation 
and the third layer consists of neurons with linear activation functions and it provides the 
output of the network corresponding to the input patterns (Hykin, 2009). The training of 
RBFNNs involves providing the best fit to the training data by finding a surface in a 
multidimensional space. An interpolation between the data points is performed in the 
testing phase. The RBFNN solves a classification problem by applying a nonlinear 
transformation from input space of lower dimension to the hidden space of higher 
dimension, since it increases the likelihood of correct classification for the given problem 
(Cover, 1965). The most popular learning strategy of RBFNNs involves the use of Gaussian 
functions with the selection of centres being done in a random manner. The standard 
deviation of the Gaussian function is fixed according to the “spread” of the centres. Given 
below is a radial basis function, with centre at ‘t’ 

 2 21
2
max

(|| || )exp( || || )i i

m
G x t x t

d
− − −   i=1,2,.....m  

 
(17)

 

where, is the number of centres and maxd  is the maximum distance between the 

randomly chosen centres. Also, the standard deviation (spread) of the RBF is given by 

 max

12

d

m
σ =  (18) 

Thus, the learning process undertaken by RBFNN involves the optimization of the hidden 
layer’s activation functions and the optimization of the output layer’s weights. Fig. 9 shows a 
typical radial basis neuron. The net input to the radial basis transfer function is the vector 
distance between its weight vector and input vector multiplied by the bias, which allows the 
sensitivity of the neuron to be adjusted. The equations used in the neural model are given by: 

 .o w p b= −  (19) 

 b=
0.833

s
 (20) 

 

Fig. 9. Radial basis function neuron 

where, o and b denote the output of a typical radial basis neuron and its bias, respectively. 
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The quantity is known as spread constant and is the most important learning parameter of a 

radial basis network. The radial basis function has a maximum of 1 when its input is 0. As 

the distance between w and p decreases, the output increases. Thus, a radial basis neuron 

acts as a detector that produces 1 whenever the input p is identical to its weight vector w. As 

is evident from the plot of radial basis function the function returns a value of 0.5 when the 

net input to radial basis transfer function is 0.833. The bias is given by Eq. (20). This 

determines the width of an area in the input space, to which each neuron responds. The 

spread constant should be large enough so that neurons respond strongly to overlapping 

areas of the input space. 

 

Fig. 10. Box whisker diagram for testing phase system error with spread constant 

3.2.2 Identification results of RBFNN classifier 

RBFNN employed in this study utilizes the newrbe function implemented in MATLAB. The 

function creates a radial basis network with the number of neurons in the hidden layer 

equal to the number of training patterns. The network was simulated first with the training 

data sets and was tested with test data sets. The spread constant of the network was varied 

from the 0.2 to 3.0 at regular intervals. The results thus obtained have been depicted in the 

form of a box whisker diagram of Fig. 10. K-fold cross validation scheme was used with 

K=6, to avoid overfitting. It is evident from Fig. 10 that as the spread constant increases, the 

variation in the results decreases. The minimum testing phase system error was obtained at 

a spread constant of 2.6 and 100% identification was achieved. 

4. Fuzzy sets for odour discrimination 

The foundations of fuzzy logic are based on the concept of fuzzy sets. A fuzzy set is a set 

without a clearly defined boundary (Zadeh, 1965). Human smell processing is inherently 
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fuzzy in nature. When the qualitative remarks are used about something, we actually do a 

fuzzy classification task, in which our sensory responses are assigned to more than one 

predefined classes with varying degrees of belongingness to them. This degree of 

belongingness is known as degree of membership in fuzzy set theory. The qualitative 

remarks come in the form of linguistic labels such as rose-like, apple-like. Apart from this, 

human olfactory system is capable of doing multi-way classification. Given 3 types of 

fragrances to smell, a human being is able to tell, which one was apple-like or rum-like or 

rose-like and also that which fragrance among the three was strongest, which one was 

weakest and which one was of in-between intensity. In the above case, along with the 

qualitative information some quantitative information has also been retrieved, which 

enables us to label the fragrances according to their ‘intensity’. This has served as the 

primary motivation for the design of a network, which can retrieve both the qualitative 

and quantitative information when the sensor array response vectors are given as input 

vectors to the network. 

Fuzzy set theory is a generalization of the conventional crisp set theory. It measures the 

degree to which an event occurs (Zadeh, 1965). As discussed above, each element of a fuzzy 

set has a degree of membership assigned to it in accordance with a membership function. 

The most commonly used membership functions in the literature being triangular and 

trapezoidal membership functions. 

Let X = {x1, x2, x3, ….., xn} be a non-fuzzy set. The subsets of X are called bit vectors or 

bivalent messages. If X = {x1, x2, x3, x4}, then X = {1,1,1,1}, φ = (0,0,0,0) and the subset A = {x1, 

x4} is represented as A = (1, 0, 0, 1). The 1s and 0s indicate the presence or absence of the ith 

element xi in the subset. Each non fuzzy subset A can be defined as one of the two-valued 

membership functions µA : X→{0,1}. The power set 2X of X is the set of all of X’s subsets. 

There are 2n possible messages defined on X (in 2X). In this example, there are 24 possible 

messages. In contrast, fuzzy subsets of X are referred to as fit vectors or fit messages. Each 

subset A of X can be defined as one of the continuum-many continuous-valued membership 

functions µA: X→ {0,1}. Fuzzy sets can also be represented geometrically and this 

representation gives more insight into the intricacies of fuzzy sets and operations related to 

them (Kosko, 2007). According to this representation, the fuzzy power set F(2X) , which is 

the set of all fuzzy subsets of X, is visualized as a unit hypercube In = [0,1]n and a fuzzy set is 

any point in the cube In. Vertices of the cube In define non-fuzzy or crisp sets, which are a 

subset of X. Thus, crisp sets are special cases of the fuzzy sets. 

Fig. 11 shows the geometrical representation of fuzzy sets. The sets on vertices are non-

fuzzy sets and long diagonals connect non-fuzzy set complements. A fuzzy set A with fit 

values 

1 4

3 5

 
 
 

 

is represented inside the unit square consisting of all possible fuzzy subsets of two elements. 

The mid-point of the unit square shown in Fig. 12 is the point of maximum fuzziness. Thus, 

the proposition for fuzziness can be summarized as follows. 
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Fig. 11. Geometrical representation of fuzzy set A 

 

Fig. 12. Fuzzy set A with its complements, under-lap and overlap 

A is properly fuzzy if 

 ≠ φ  (21) 

 ≠   (22) 

where  and  are termed as overlap and under-lap respectively. The positions of 

a fuzzy set along with its complement, overlap set and under-lap set are shown in Fig. 12. 

With the increase in fuzziness of A, all the 4 points shrink towards the midpoint of the fuzzy 
square, which is the point of maximum fuzziness. The size or cardinality of a fuzzy set A is 
given by 

 
1

( ) ( )
n

A i
i

M A x
=

= µ  (23) 
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Where, µA (xi ) is the membership value of the ith element of n-valued fuzzy set A. 

Fuzzy logic has emerged as a promising tool for biological information processing owing to 

its proximity to human perceptions of logic, and real world situations, which are full of 

ambiguity. The combination of fuzzy logic and neural networks is reported with promising 

results in the classification of wines and beverages (Das et al., 1999). The next section 

presents a novel method of fuzzy pre-processing, which gives simultaneous identification 

and quantification when the response samples are used to train an ANN classifier. The aim 

is to tell both the class and the concentration of a sample simultaneously when the sample is 

presented to an ANN. 

5. Fuzzy subsethood for simultaneous identification and quantification of 
odours 

It can be seen from Fig. 4 that the response of the sensor array to almost all the alcohols and 
alcoholic beverages in the study has saturating tendency at higher concentrations. The 
quantification task becomes more difficult for mere lack of information at higher 
concentrations. Both qualitative and quantitative classification tasks coupled together need 
an integrated approach to be accomplished successfully. As a first step to reduce the 
complexity of the problem, PCA is used on the raw data. 

Fig. 13 shows the PCA plot discriminating different alcohols and alcoholic beverages used in 
this study. Although PCA can significantly reduce the dimensionality of the data set by 
having 95% of the variance in first two principal components (PC-1 and PC-2) itself, it has 
little effect on class separability. This necessitated investigation of a technique, which is 
based on proper representation of target classes in the output feature space provided the 
representation is inclusive enough to incorporate in itself both qualitative and quantitative 
information. 

 

Fig. 13. 2D PCA for sensor array response to 7 alcohols/alcoholic beverages 

Fuzzy subsethood representation is such an appropriate technique and applied on the data 
as follows. The response curves in Fig.4 were sampled at regular intervals of concentration. 
Each curve was sampled at 48 values of concentration and a total of 336 samples were 
obtained for 7 gases. As shown in Fig. 14, each sample has two memberships, one to the gas 
class and the other to the concentration band. For each gas, twelve concentration bands were 

www.intechopen.com



 
Sensor Array 

 

128 

marked according to increasing no. of drops as band no. 1(b-1) for drops 0-1, band no. 2 (b-
2) for drops 1-2 and so on. Each such concentration band consisted of 4 samples. 

 

Fig. 14. Concentration bands in sensor response to whisky-2 

Fuzzy memberships were assigned to each sensor response sample for all gases as follows. 

Centroid jS  was calculated for each set j where j denotes a gas and jS  has 4 elements as given in 

 

1
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j

j

j
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j

m

m
S

m

m

 
 
 

=  
 
 
 

  (24) 

where m1j, m2j, m3j and m4j and represent the centroids for the responses of sensors 1(Sb2O3 
doped), 2(SnO2), 3(NiO doped) and 4(ZnO doped) respectively. In this case the centroids are 
calculated by taking the mean of individual sensor response samples for different alcohols 
and alcoholic beverages. 

The Euclidean distance djk of the sensor response vector at sample k for gas j can be obtained 
in the sensor response ratio vector space as given by 

 
1

2 2 2 2 2
1 1 2 2 3 3 4 4{( ) ( ) ( ) ( ) }jk jk j jk j jk j jk jd X m X m X m X m= − + − + − + −  (25) 

where, x1jk is the sensor response for sensor 1, gas j, and sample k and so on. Each sample k is 

assigned a membership µjk in the output feature space, in the fuzzy set Aj for jth gas at 
sample k by using triangular membership function as: 

 max

max min

jnk jnk

jnk

jnk jnk

d d

d d

−
µ =

−
  (26) 

where, djk is the Euclidean distance of the sensor response vector at sample k for gas j. |djk 
|max and | djk |min are the modulo of the maximum and minimum values respectively of djk 
for a particular gas j. Similarly, the sensor response samples obtained from different gases 
were assigned memberships in different concentration bands of those gases. 
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Centroid Sjn is calculated for each concentration band n of j where j denotes the gas (alcohol 

and alcoholic beverage type) and Sjn has 4 elements as given by 
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4

jn

jn

jn
jn

jn

m

m
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m

m

 
 
 

=  
 
 
 

  (27)

 

where, m1j, m2j, m3j and m4j represent the centroids for the responses of sensors 1, 2, 3 and 4 

respectively in a concentration band n. The centroids are calculated by taking the simple 

mean of 4 samples belonging to a particular concentration band. The Euclidean distance  djnk 

of the sensor response vector at sample k of a gas j and concentration band n of that 

particular gas can be obtained in the sensor response ratio vector space as given by 

 
1

2 2 2 2 2
1 1 2 2 3 3 4 4{( ) ( ) ( ) ( ) }jnk jnk jn jnk jn jnk jn jnk jnd X m X m X m X m= − + − + − + −   (28) 

where x1jk is the sensor response for sensor 1, gas j, band n, and sample k, and so on. Each 

sample k of band n is assigned a membership µjnk in the output feature space, in the fuzzy set 

Ajn again by using triangular membership function as: 

 max

max min

jnk jnk

jnk

jnk jnk

d d

d d

−
µ =

−
  (29) 

where, djnk is the Euclidean distance of the sensor response vector at sample k for band n of 

gas j. |djnk|max and |djnk|min are the modulo of the maximum and minimum values 

respectively of djnk for a particular band n of gas j. It is clear that the fuzzy set Ajn is a subset 

of fuzzy set Aj . 

The degree of belongingness of Ajn to Aj changes, as n changes for a particular j. Thus, all the 

elements of Ajn can be mapped to a single value, which is the fuzzy subsethood value as 

defined below, Fuzzy subsethood measures the degree of belongingness of a fuzzy set A to 

its superset B and is denoted by 

 S(A,B) = Degree(A ⊂ B)  (30) 

A fuzzy set A can be a subset of another fuzzy set B if  µA (x) ≤ µB (x) for all x. 

The fuzzy-subsethood theorem is given by 

 S(A,B)= 
( )

( )

M A B

M A

∩
 (31) 

 Sjn(Ajn,Aj) = Degree(Ajn ⊂  Aj) (32) 

Using equations (31) in (32) 
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 Sjn(Ajn,Aj)= 
( )

( )

jn jn

jn

M A A

M A

∩
 (33) 

In Fig. 15 the response of the array saturates completely after the concentration band b-4, 

resulting in a shear lack of information. However, there is a slight change in the response 

pattern of sensor 1 in band b-9. This change should reflect in the output feature space so that 

proper quantification can be obtained. For a particular concentration band n consisting of k 

samples of gas j for the response of sensor i the mean is given as mijn. 

For n = 9, j = 2, and i = 1, the variance Vijn is given by 

 129 2 2 2 2
1291 129 1292 129 1293 129 1294 129

1

4{( ) ( ) ( ) ( ) }
V

X m X m X m X m
=

− + − + − + −
  (34) 

From (28) the Euclidean distance djnk of sample k = 1 of j = 2, n = 9, is given by 

 
1

2 2 2 2 2
291 1291 129 2291 229 3291 329 4291 429{( ) ( ) ( ) ( ) }d X m X m X m X m= − + − + − + −  (35) 

It can be observed that the first term of the variance V129 finds itself as a component of the 

Euclidean distance djnk. Since the variance Vijn is calculated for the response samples of a 

single sensor i and the Euclidean distance djnk of a particular sample takes into account the 

responses of all the 4 sensors of the array, any significant change in the response of any of 

the 4 sensors in a concentration band is certainly going to reflect in the Euclidean distance of 

any sample for the same concentration band. Since membership values and subsethood are 

primarily based upon Euclidean distance, the change in variance for a particular sensor in a 

concentration band will play a part in the subsethood calculation for the response vector 

obtained from all the 4 sensors in the same concentration band. In this way, if any one of the 

4 sensors shows less saturation at higher concentrations the possibility of correct 

quantification increases. 

 

Fig. 15. Second sample of ninth band of whisky-2 
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5.1 Simulation results and discussions 

The subsethood values were obtained for each concentration band of a particular gas and 

were used as the target for the neural network classifier. For a total of 7 alcoholic beverages 

7 neurons were kept in the output layer. A neuron corresponding to a particular gas class 

was supposed to fire at a value corresponding to the fuzzy subsethood of the particular 

concentration band, to which the test sample belonged while all other neurons were 

supposed to be deactivated. A tolerance of 2% for the target fuzzy subsethood was 

considered appropriate. A single hidden layer feed-forward ANN was trained with a BP 

algorithm. The input layer consisted of 4 neurons and the number of neurons in the hidden 

layer was optimized by experimentation. The input data were divided into training and 

testing data matrices. The simulations were carried out on MATLAB platform and several 

different versions of a BP algorithm available in the MATLAB neural network toolbox 

(Mathswork Inc., 2007) were tested. Three training methods based upon a BP algorithm 

namely Trainoss, Trainscg and Trainlm have been found to give satisfactory results. To 

eliminate the possibility of over fitting m-fold cross validation scheme (Hykin, 2009) was 

used. For all the three versions logsigmoidal activation function was used. All the three 

training methodologies use default values of learning rate η and momentum constant α 

adaptively during the simulation run. The number of neurons in the hidden layer of the 

network was varied from two to nine and system error (mean square error) was noted. 

The networks were trained to a fixed 10,000 epochs with an error goal of 0.0001. Trainoss, 

Trainscg and Trainlm are found to train the network best when the number of neurons in 

the hidden layer of the network was 7, 5, and 6 respectively. In the testing phase, 12 

samples were taken for a particular beverage with one sample each from a particular 

concentration band. The proposed network was found to give the best testing phase 

performance when the network was trained with Trainlm methodology. Table 1 shows the 

summary of best classifications achieved qualitatively and Table 2 shows the quantitative 

classification results for a network with an optimized topology of 4:6:7 trained with 

Trainlm. For qualitative classification 83 out of 84 samples were identified correctly giving 

a result of 98.97%.  

 

Gas class No. of samples correctly detected out of 12 for 

each gas class 

Whisky-1 12 

Whisky-2 12 

Whisky-3 12 

Whisky-4 11 

Rum-1 12 

Rum-2 12 

Ethanol 12 

Total % classification achieved 98.97 

Table 1. Results of qualitative classification 
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Gas class No. of samples correctly detected in 
Concentration Bands b-1 to b-12 

Whisky-1 8 

Whisky-2 8 

Whisky-3 6 

Whisky-4 9 

Rum-1 6 

Rum-2 9 

Ethanol 10 

Total % quantification achieved 66.67 

Table 2. Results of quantitative classification 

Whereas, 56 out of 84 samples were detected correctly in concentration bands b-1 to b-12, 

giving a success rate of 66.67%. The results seem to be very encouraging since the sensor 

response at higher concentrations of the test gas remains saturated for almost all types of 

alcohols and alcoholic beverages, resulting in a shear lack of information at higher 

concentrations as evident from Fig. 4. 

6. Conclusions 

In this chapter a neural fuzzy identifier/quantifier was presented for discrimination of 

several alcoholic beverages using responses of a poorly selective sensor array. The 

simulation results obtained using fuzzy subsethood based feature extraction, validate the 

presumption that the limitations imposed by poor selectivity of chemical sensors can be 

overcome using appropriate soft computational technique. This chapter also highlights the 

importance of a pre-processing stage before the response sampled are fed to a neural 

classifier. The proposed technique of fuzzy subsethood encoding is also similar to a pre-

processing stage, which makes the subsequent neural classification faster and error free. It is 

important to have a classifier with a small number of neurons in the hidden layer so that it 

can be implemented easily into custom VLSI chips. The technique presented in this chapter 

accomplishes the identification/quantification task with a few neurons in the hidden layer 

(i.e. 6) and hence its efficacy is established. 

There is a scope for future work by trying to make the identification/quantification 
techniques less problem-dependent and more general in nature, which would eventually 
enable the realization of a highly marketable hand-held E-nose system. 
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