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Abstract
Technology is developed to benefit society. One of the applications 
of technology in the healthcare sector is telehealth monitoring 
system. The system proposes a new way of communication 
between the doctor and the patient, even in a very remote location. 
In this paper, we elaborate the progress and challenges regarding 
the development of Tele-ECG in Indonesia, which includes data 
acquisition, feature extraction, data compression, classification 
algorithm, mobile and web development system and small device 
implementation on an FPGA board. The classification is conducted 
by using LVQ, GLVQ, FNLVQ, FNLVQ-PSO, FNGLVQ, and AM-GLVQ. 
The compression is conducted by using SPIHT algorithm. Tele-ECG 
can assist in monitoring heartbeat anomalies and reduce the risk of 
heart attack. It could also be a solution for infrastructure discrepancy 
in healthcare.

Keywords
Telehealth, ECG, LVQ, GLVQ, FNLVQ, FNLVQ-PSO, FNGLVQ, 
AM-GLVQ, SPIHT, FPGA.

Mobile technologies provide a medium for long-
distance communication systems, where the users 
interact with each other without having to physically 
meet. Long-distance communication systems, using 
mobile technologies, are useful for critical and urgent 
matter, such as healthcare. Many research works 
regarding the implementation of these systems in 
healthcare services have been conducted. This is 
shown by researchers who have developed these 
kinds of systems (Dabiri et al., 2009; Feng et al., 
2015). In this field, the systems are commonly known 
as telehealth monitoring systems. These systems 
are primarily focused on the interaction between the 
doctor and the patient. The doctor could provide 
a consultation via the mobile device to monitor the 
patient’s condition. In addition, the patient could input 
his/her own condition, so the doctor could review the 
progress of the patient’s treatment. Another common 
feature included in these devices is a first response 

classification system. These telehealth monitoring 
systems could detect the anomalies in the data 
obtained from the patient. Several examples of these 
classified data are ECG (electocardiogram), USG 
(ultrasound images), EEG (electroencephalogram), 
and many other data. These data will be classified 
by the system according to the disease that could 
possibly cause the symptoms. The data will be sent 
to the appropriate practitioner in order to respond to 
the patient as fast as possible. The architecture of a 
telehealth monitoring system can be seen in Figure 1.

In the present day, there are a myriad of telehealth 
monitoring systems that have been researched and 
developed. An example of this telehealth system is 
the tele-USG system. This system is used to monitor 
fetus in a pregnant mother. The mother can consult 
the doctors to know the progress and condition of her 
fetus by using a mobile device. The system has been 
developed and implemented in our previous studies 
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(Jatmiko et al., 2015a). Our previous research in this 
field also includes an automatic detection for fetal 
organs, such as fetal head and fetal humerus in an 
USG image. The automatic detection of the organs 
was implemented in the Tele-USG system (Ma’sum 
et al., 2015a, 2015b; Jatmiko et al., 2015b).

One of the most interesting telehealth monitoring 
systems to be researched is Tele-ECG. This system 
is commonly researched due to the fact that the 
cardiovascular-type disease is one of the most 
common causes of death by a non-communicable 
disease (W. H. Organization, 2016). Therefore, many 
efforts have been done in order to try and solve 
this problem, which is divided into several fields. 
In the field of ECG data quality and compression, 
Tobón et al. proposed an electrocardiogram quality 
index to maintain the quality of the ECG signals that 
were obtained for use in an automatic classification 
system (Tobon et al., 2016). The quality is maintained 
by measuring the change of spectral image 
representation. In the field of ECG data recognition, 
an implementation of the telehealth monitoring system 
was conducted by Marcolino et al. (Soriano Marcolino 
et al., 2016). In several other studies, QRS algorithms 
was utilized to analyze the electocardiogram data 
in a telehealth monitoring system (Hayn et al., 2012; 
Khamis et al., 2016).

In this study, we examine the complete telehealth 
monitoring systems for cardiovascular disease 
patients. We focus on transmitting electrocardiogram 
(ECG) data by the patients in the telehealth monitoring 
system. The analysis includes an application for a 
consultation between the doctors and the patients. 
This study also analyzes several compression 
algorithms that are utilized to compress the data, 
before sending to the server, to minimize the size of 
the data. Furthermore, this study also analyzes and 
tracks the development of classification algorithms 
for classifying and analyzing the ECG data for a first 
response inside the system. In addition, the ECG pre-
processing methods are also included in this study. 

To complete this paper, we have also included several 
implementations of telehealth systems that focus on 
monitoring cardiovascular disease.

Data preprocessing

In this paper, we will elaborate the progress and 
challenges of developing a smart tele-ECG device 
by examining several data pre-processing methods. 
Data pre-processing method is crucial in this study to 
extract the features of the heartbeat. These features 
are going to be used to process the data using 
various classification algorithms. This section will be 
divided into three different sub-sections. The first 
sub-section explains the anatomy of the ECG data. 
The next section will discuss about the normalization 
of the beats, which involves the process of removing 
the baseline wander, commonly known as baseline 
wander removal. The final sub-section will explain 
about the individual beat segmentation from the ECG 
data.

Electrocardiogram signal

Before we explain the pre-processing stage of ECG 
data, we need to know about the ECG data (Tawakal  
et al., 2012). A single beat in an ECG signal is comprised 
of several sections and points. The first point is the P 
point, which is the first small peak of the ECG signal. 
After the P point, there is a decline as the beat enters 
the Q point. It then peaks into the R peak, which 
is the tallest peak in the beat, and it declines again 
into the S point. Finally, the beat will reach the T point. 
The distance between the Q, R, and S is called a QRS 
complex. The distance after the P reaches its peak 
and the Q point is called a PR segment, whereas the 
distance before the P reaches its peak and the Q point 
is called the PR interval. The QT interval is the distance 
between the Q and the T point (after the peak), and the 
ST segment is the distance between the S and T point 
before the peak. The distance between two R peaks 
is called the RR interval. ECG beat is aptly illustrated in 
Figure 2.

Baseline wander removal

In the pre-processing stage of data, the data are 
usually normalized so that they are uniformed. This 
normalization process is key to having a correct 
classification system later on. In the case of the 
ECG data, the data are generated from the sensor 
continuously. During this continuous process, there 
are occasional noises that could affect the recording 
of the ECG beats. One example of the noise that 

Figure 1: A telehealth system 
architecture.
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could affect the ECG data is low frequency noise. 
This noise will affect the ECG data in terms of the 
up and down shifting of the ECG data. Therefore, 
the acquired data do not lie completely on a straight, 
iso-centric line. This is a challenge that needs to be 
addressed in order to have uniformed ECG data.

In a previous study conducted by Ima et al. (Setiawan 
et al., 2011), cubic spline interpolation is utilized in order 
to remove the baseline wander. The method will estimate 
the baseline from the ECG data so that the ECG data 
could be normalized and straightened on the iso-centric 
line. The PR segment was used in that study to generate 
the cubic spline, which, in turn, will estimate the baseline 
of the data. Therefore, it is essential to detect the QRS 
complex and PR segment from the data to conduct this 

process. The process of baseline wander removal can 
be seen in Figure 3.

In 2012, Isa et al. used discrete wavelet transform 
in order to remove the baseline wander from the ECG 
signal (Isa et al., 2012a). This wavelet transformation 
method provides a multiresolution analysis that helps 
to remove the baseline wander from the ECG signal. 
This is conducted according to a previous statement 
from the study of Sargolzaei et al., which mentioned 
that the baseline spectrum is below the spectrum 
of the ECG signal (Sargolzaei et al., 2009). They 
mentioned that the baseline wander could be detected 
from the approximation coefficients inverse wavelet 
transform during the time the energy coefficient in a 
level of the decomposition reaches the local minima.

Figure 2: The illustration of QRS complex in an ECG signal.

Figure 3: The ECG data before and after the cubic spline interpolation in order to remove the 
baseline wander.



4

Developing smart Tele-ECG system

Individual beat segmentation

The individual beat segmentation is a three-step 
process. The first process is the beat extraction 
process. This process will segment the continuous 
beats in an ECG data into individual beats. The next 
process involves removing the outliers on the beats. 
Finally, the features of the beat will be extracted and 
processed by the classification algorithm.

Beat extraction

As mentioned previously, the ECG data obtained from 
the ECG sensors will be continuous. The example 
of these continuous data can be seen in Figure 3,  
where the ECG data are comprised of many smaller 
individual beats. However, in order to extract the 
features of the beats, we will need to extract the 
continuous beats into individual beats. This process 
will utilize the cutoff technique, as previously 
conducted in the study of Jatmiko et al. (2016). The 
method approximates each individual beat to be 
300 data points in length. In addition, the center of 
the individual beat will be on the R peak. This means 
that the individual beat starts on R-150 data point and 
ends on R + 149 data point. The continuous signal will 
then be cutoff at these points in order to extract the 
individual beats. The cutoff technique can be seen in 
Figure 4.

Outlier removal

In the ECG data, there will be various unnecessary 
beats that are captured by the sensor while recording 
the data. These unnecessary beats tend to distract the 
classification process, which is conducted on the later 
stage. Therefore, these unnecessary beats need to be 
removed. These unnecessary beats are referred to as 
outliers in the data. These outliers are found outside 
of the distribution of the data; hence, Ima et al. and 
Jatmiko et al. used a simple outlier removing procedure 
known as the interquartile range (IQR) technique. 
The technique will determine the outlier by creating a 
boundary from the percentile of the data. In the study 
of Jatmiko et al. (2016), they chose the upper quartile 
(Q1) in the 25th percentile and chose the lower quartile 
(Q2) in the 75th percentile. The interquartile range (IQR) 
can be calculated by using the following equation:

 Inter quartile range IQR( ) = −Q Q3 1.  (1)

The lower extremity level and the higher extremity 
level for the boundary of the outliers can be calculated 
by using the following equation:

Lower level ,= − ×Q1 1 5. IQR

Higher level .= + ×Q3 1 5. IQR  (2)

After Equation (2) has been calculated, it is applied 
to every feature of the data. However, it should be 
noted that the correlation between each feature is 
not considered. Afterwards, the beat located outside 
the extremity levels (either from the lower and higher 
levels) will be removed from the whole data set. The 
process of removing these outliers using IQR can be 
seen in Figure 5, and the ‘before and after’ data of the 
outlier removal process can be seen in Figure 6.

Feature extraction

Feature extraction is one of the key aspects of pre-
processing techniques, as this process will select 
the features that will be used by the classification 
process later on. Therefore, it is essential to extract 
the best features from the data set, as selecting 
better features will lead to better outcome during 
the classification process. To extract the features, 
wavelet transformation is proven effective, as shown 
in the studies of Setiawan et al. (2011) and Jatmiko 
et al. (2016). The wavelet transform definition can be 
seen in the following equation:

W f x f x x
s

f t
x t

s
dts s( ) = ( )× ( )= ( ) −






−∞

+∞

∫y y
1

.  (3)
Figure 4: The individual beat 
segmentation.
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Figure 5: Outlier removal using IQR.

Figure 6: Beat features before and after outlier removal using IQR.

In Equation (3), the notation s denotes the scaling 
factor, the basic wavelet y (x) with an s scaling 

factor dilation is  y ys x
s

x
s

( )





=

1 . Let s = 2 j, where j is an 
element of the integral set. The wavelet transform is 
called a dyadic wavelet transform (Zhao and Zhang, 
2005). Mallat algorithm (Mallat, 1989) can calculate 

the dyadic wavelet transform from a digital signal. The 
Mallat algorithm is shown in the following equations:

S f n h S f n kj
k Z

k j
j

2 2 1
12( ) = − −( )

∈
−

−∑ ,  (4)

W f n g S f n kj
k Z

k j i
j

2 2
12( ) = − −( )

∈
−

−∑ .  (5)
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In Equation (4), the notation S2j denotes the 
smoothing operator, whereas the low-frequency 
coefficients are represented as S2jf(n). The coefficient 
is an approximation of the original signal S2jf(n) = aj·aj. 
In Equation (5), the W2jf(n) denotes the high-frequency 
coefficient. The high-frequency coefficient is the detail 
of the original signal W2jf(n) = dj·dj. In order to obtain 
the important information in the wavelet coefficients, 
a very crucial part in wavelet theory is to select the 
mother wavelet and also the decomposition level. 
In the case of the arrhythmia’s usage of the ECG 

signals, Daubechies is selected as the mother wavelet 
since it achieves a better performance as, described 
by Senhadji et al. (1995). In the studies of Setiawan 
et al. (2011) and Jatmiko et al. (2016), Daubechies 
level 8 proved to have a better result than the other 
mother wavelet. The research then used the db8 as 
the mother wavelet and decomposed the individual 
beats from 1 to 5. The decomposition of Daubechies 
8 can be seen in Figure 7.

The coefficient that will represent the signal has to 
be selected properly in order to select the best features 
that represent the signal. In the studies of Setiawan 
et al. (2011) and Jatmiko et al., (2016), d2, d3, d4, and 
d5 represent the high-frequency signal. a1, a2, a3, a4, 
and a5 represent the signal approximation; hence, it 
has the important features of the signal. Therefore, 
the study selects the coefficients for the beat. The 
decomposed ECG signal that was conducted by 
Jatmiko et al. (2016) can be seen in Figure 8. There 
are imbalanced data in ECG signal, which could 
degrade the performance on recognizing a minor, 
but significant, class. A study has been performed 
for examining the performance of oversampling on 
imbalanced data (Sanabila et al., 2016).

Classification: early algorithm

In this section, we will be discussing two basic and 
early classification algorithms that are commonly 

Figure 8: The ECG decomposed signal.

Figure 7: Daubechies 8 5-level 
decomposition (Setiawan et al., 2011).
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used in classifying ECG signal data. These algorithms 
are learning vector quantization (LVQ) algorithm and 
generalize learning vector quantization. The learning 
vector quantization is an earlier version of the generalize 
learning vector quantization algorithm. The generalize 
learning vector quantization algorithm provides several 
improvements in accuracy and cost function compared 
to the learning vector quantization algorithm.

Learning vector quantization (LVQ)

The learning vector quantization (LVQ) algorithm is an 
algorithm that is based on the self-organizing map 
(SOM) algorithm (Kohonen, 1990). This algorithm was 
first proposed by Kohonen. The algorithm modified 
the self-organizing map into a supervised method for 
classification by modifying the learning and update 
procedures. In addition, the class is also assigned to 
each codebook. The basic function of this algorithm 
is to measure the codebook and adjust it to the input 
vector. If the winning codebook and the input vector 
share the same class, then the winning codebook 
will be pulled closer to the input vector. However, if 
the winning codebook and the input vector do not 
share the same class, then the winning codebook 
is pushed away. This is shown in Equations (7) and 
(8). The closest codebook vector is defined in the 
following equation (Figure 9):

w x wc i= −min .  (6)

In Equation (6), notation wc denotes the closest 
codebook vector, the input vector is defined as x 
and the notation wi denotes the codebooks with a 
previously assigned class. These classes are denoted 
by i. The equation for pushing and pulling the codebook 
can be seen in Equations (7) and (8), respectively:

w t w t t x t w tc c c+( )= ( )+ ( ) ( )− ( )



1 a .  (7)

Equation (7) applies when x and the closest 
codebook are in the same class:

w t w t t x t w tc c c+( )= ( )− ( ) ( )− ( )



1 a .  (8)

Equation (8) applies when x and the closest 
codebook are on different classes. The value of α  
decreases over time and 0 < α < 1.

According to Nascimento (2005), there are 
several known limitations of the LVQ algorithm. These 
limitations include the overtraining problems and non-
well specified clustering goals. These drawbacks will 
be further addressed by the generalize learning vector 
quantization (GLVQ) algorithm, which is explained in 
the next section.

Generalize learning vector  
quantization (GLVQ)

In 1996, Sato and Yamada proposed an improvement 
of the learning vector quantization algorithm, which 
is called the generalize learning vector quantization 
(GLVQ) algorithm (Sato and Yamada, 1995). The 
advantage of this algorithm is that it minimizes the 
cost function from the LVQ algorithm. In addition, 
it also minimizes the rate of the misclassification 
error. The reference vector for the input vector class 
Cx = Cw1 is defined by w1, and the closest reference 
class from a different class Cx ≠ Cw2 is defined as w2. 
The error of misclassification could be defined as 
Equation (9):

j x
d d
d d

( ) = −
+

1 2

1 2

.  (9)

In Equation (9), the distance between the input 
vector x and the reference vector w1 is denoted by d1, 
whereas the distance between the input vector x and 
the reference vector distance between w2 and input 
vector x is denoted by d2. Equation (10) will minimize 
the cost function during the learning process:

S f x
i

N

= ( )( )
=
∑

1

j .  (10)

In Equation (10), f(ϕ(x)) is a rising monotonic 
function. To minimize S, we used the steepest descent 
method. The update rules for w1 and w2 are defined in 
the following equation:

w w
S
w

ii i
i

← − =α
δ
δ

, , .12  (11)Figure 9: The architecture of the LVQ 
algorithm.
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We could assume that the discriminant function is 
a Euclidian; therefore, Equation (11) can be formulated 
as Equation (12) and Equation (13):

δ
δ

δ
δϕ
δϕ
δ
δ
δ

δ
δϕ

S
w

S
d

d
w

f d

d d
x w

1 1

1

1

2

1 2

2 1

4
= =−

+
−

( )
( ),   (12)

δ
δ

δ
δϕ
δϕ
δ
δ
δ

δ
δϕ

S
w

S
d

d
w

f d

d d
x w

2 2

2

1

1

1 2

2 2

4
= =−

+
−

( )
( ).  (13)

The update rules can be derived as Equation (14) 
and Equation (15):

w w
f d

d d
x w1 1

2

1 2

2 1

4
← +

+
−

( )
( )α

δ
δϕ

,  (14)

w w
f d

d d
x w2 2

2

1 2

2 2

4
← +

+( )
−( )α

δ
δϕ

.
 

(15)

In GLVQ algorithm, the sigmoid function that is 
used as the monotonic function can be defined as 
Equation (16) and Equation (17):

f t
e t

j j, ,( ) =
+ −

1
1

 (16)

δ
δϕ

ϕ ϕ
f

f t f t= ( ) − ( )( ), , .1  (17)

Classification: advanced algorithm

In this section, we will examine several advanced 
algorithms that are used for classifying ECG signal 
data. The algorithms that will be discussed are fuzzy-
neuro learning vector quantization (FNLVQ), fuzzy-neuro 
learning vector quantization particle swarm optimization 
(FNLVQ-PSO), fuzzy-neuro generalize learning vector 
quantization (FNGLVQ), and the adaptive multilayer 
generalize learning vector quantization (AM-GLVQ). 
These algorithms are developed from early algorithms 
that were explained in the third section by modifying the 
structure, membership function, update rule, or adding 
optimization function.

Fuzzy-neuro learning vector quantization

In the previous research, Benyamin et al. improved 
LVQ classifier by applying fuzzy membership function 
(Kusumoputro et al., 2002). The new algorithm is 
called fuzzy-neuro learning vector quantization 
(FNLVQ). In the research, FNLVQ is deployed in odor 
discrimination system. The FNLVQ architecture is 

shown in Figure 10. FNLVQ has three layers, that is 
input layer, output layer, and hidden layer. The input 
layer is used for representing the feature of the data, 
the hidden layer is used for representing the reference 
vectors (codebook) of the classifier, and the output 
layer is used for representing the output class. As the 
reference vector uses fuzzy membership function, 
each vector has three components/values, that is 
wij(l), wij, wij(r), which represent min, mean, and max of 
the fuzzy triangle, respectively.

The FNLVQ uses winner-take-all approach in 
training phase as used in LVQ method. The reference 
vector is updated on the basis of the winner vector. 
Same as in LVQ, the winner vector is the closest 
vector to the input, which is the vector with highest 
similarity value. The similarity value for FNLVQ is the 
intersection of input fuzzy triangle and reference 
vector fuzzy triangle. The method to compute the 
similarity value for two fuzzy triangles is shown 
in Figure 11. In Figure 11, x is the input vector, hx is 
the fuzzy membership function of vector x, wi is 
the reference vector for class i, and hwi is the fuzzy 
membership function of reference vector wi.

Figure 10: FNLVQ architecture 
(Kusumoputro et al., 2002).

Figure 11: Computing similarity in 
FNLVQ (Kusumoputro et al., 2002). 
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Mathematically, the similarity value for feature j in 
class i, μij, is calculated by using the following equation:

µ h hij xj wij= ( )max Λ .  (18)

Then, the similarity value for class i is calculated 
by using the following equation:

µ µj ij= ( )min .  (19)

The update for reference vector is conducted by 
following three conditions. The first condition is that if 
the winner class label is the same as the input vector 
class label, then the reference vector will be updated 
by using the following equations:

d x w tij i j ij← × −{ }( )× − ( ){ }( )( )α µ1 ,   (20)

w w dij ij ij← + ,  (21)

w l w l d
ij ij ij( ) ( ) +← ,  (22)

w r w r d
ij ij ij( ) ( ) +← .  (23)

Then, Equations (20)–(23) are followed by widening 
or narrowing of the fuzzy triangle using the following 
equations:

w l w l w w l
ij ij ij ij

( ) ( ) + × − ( )( )← ( )b ,  (24)

w r w r w r w
ij ij ij ij( ) ( ) − × ( ) −( )( )← b .  (25)

The second condition is that if the vector class is not 
the same as the input label class, then the reference 
vector will be updated using the following equations:

d x w tij i j ij← × −{ }( )× − ( ){ }( )( )α µ1 ,  (26)

w w dij ij ij← − ,  (27)

w l w l d
ij ij ij( ) ← ( ) − ,  (28)

w r w r d
ij ij ij( ) ( ) −← .  (29)

Then, Equations (26)–(29) are continued by fuzzy 
triangle adjustment (widening or narrowing) that is 
conducted by using the following equations:

w l w l w w l
ij ij ij ij

( ) ( ) + × − ( )( )( )← b ,  (30)

w r w r w r w
ij ij ij ij( ) ( ) − × ( ) −( )( )← b .  (31)

The third and final condition is that if the winner 
class label is the same as the label of input class, but 
the similarity value is 0, then the reference vector will 
be updated by using Equations (20)–(23). Then, the 
fuzzy triangle is widened and narrowed by using the 
following equations:

w l w l w w l
ij ij ij ij

( ) ( ) − × − ( )( )( )← b ,  (32)

w r w r w r w
ij ij ij ij( ) ← ( ) + × ( ) +( )( )b .  (33)

In the equations above, α is the learning rate value 
and β is a constant value between 0 and 1. Concerning 
testing in FNLVQ, the process is conducted by 
computing the closest vector (winner vector) to the 
input vector. The predicted class from the classifier is 
this winner vector class label.

Fuzzy-neuro learning vector quantization 
particle swarm optimization (FNLVQ-PSO)

In a previous research, Jatmiko et al. added 
optimization process for FNLVQ training. The authors 
applied particle swarm optimization (PSO) algorithm to 
train FNLVQ, which resulted in FNLVQ-PSO (Jatmiko et 
al., 2009). PSO is an optimization algorithm that uses 
colony of agents to find the optimum value (Kennedy, 
2011). In FNLVQ-PSO, optimization is used to find the 
best reference vector. The fitness value to measure the 
reference vector is the training error or matrix similarity 
analysis (MSA). The structure of FNLVQ-PSO is shown 
in Figure 12.

PSO is an optimization method that is inspired 
from colony of animal. The PSO is used to find an 
optimum value on a search space. Each particle will 
move and look for the optimum point (position) using 
the following equations:

V t V t c rand P t X t

c rand P

i i i i

g

( )← ⋅ −( )+ ⋅ ⋅ −( )− −( )( )(
+ ⋅ ⋅

g ( )

( )

1 1 1 1

2 tt X ti−( )− −( )( )1 1 ,

 (34)

X t X t V ti i i( )← −( )+ ( )1 .  (35)

In the above equations, Vi(t) is the current velocity 
of the particle, Vi(t − 1) is the previous velocity of the 
particle, Xi(t) is the current position of the particle, 
Xi(t − 1) is the previous position of the particle, c1 
and c2 are constants, γ is a construction factor that 
has a value between 0 and 1, Pi(t − 1) is the previous 
local base of the particle, and Pg(t − 1) is the previous 
global base of all particles. The local best is the 
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point with optimum fitness value for a particle from 
start to current time (iteration). The global best is the 
point with optimum fitness value for all particles from 
start to current time (iteration). In the FNLVQ-PSO, 
each particle is represented as a reference vector 
(codebook), same as reference vector (codebook) in 
FNLVQ. During the training process, the classifier is 
optimized to find the optimum reference among all the 
candidates (particles). The training process in FNLVQ-
PSO is conducted by using the following steps:

1.  Initializing the reference vector: the number of 
particle is given by user input. In FNLVQ-PSO, 
the particles are reference vectors. Therefore, 
by doing this step, we have several candidates 
of reference vector to be chosen later.

2.  Training the FNLVQ algorithm for each particle 
by computing similarity value between refer-
ence vector and input vector.

3.  Computing matric similarity analysis (MSA) for 
each particle: the MSA is an n × n size matrix 
where n is the number of output class.

4.  Computing MSA and fitness using the following 
equation:

f m m i jk
i

n

ii ij
j

n

i

n

= − ≠












= ==
∑ ∑∑

1 11

if .  (36)

5.  Computing local best for each and global best 
for all particles.

6.  Updating the reference vector using the follow-
ing equation:

w t w t v tij ij i+( )= ( )+ +( )1 1 ,  (37)
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 (38)

7.  Updating the fuzzy triangle of each particle using 
the following equation:

w l t w l t d
ij ij ij( ) +( ) = ( ) ( )+1 ,  (39)

w r t w r t d
ij ij ij( ) +( ) = ( ) ( )+1 ,  (40)

  where dij is the distance between the particle 
and input vector.

8.  Repeating Steps 2–7 until given number of 
iteration or until the reference vector converges.

Fuzzy-neuro generalize learning vector 
quantization (FNGLVQ)

FNGLVQ is an enhancement of GLVQ by adding the 
fuzzy membership function. In the previous work, 
FNGLVQ was proposed to classify heart diseases 
(Setiawan et al., 2011). The architecture of FNGLVQ is 
illustrated in Figure 13 (Setiawan et al., 2011).

Figure 12: FNLVQ-PSO architecture (Jatmiko et al., 2009).
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Figure 13: FNGLVQ architecture 
(Setiawan et al., 2011).

First, the distance value in Equation (9) is redefined 
into d = 1 − μ, resulting in the following equation:

ϕ
µ µ
µ µ

x( ) = −
− −

2 1

2 12
,  (41)

where μ1 is the similarity between the input vector and 
the reference vector from the same class Cx = Cw1, 
whereas μ2 is the similarity between the input vector 
and the closest reference vector from a different class 
Cx ≠ Cw2. Then, reference vector update is defined by 
the following equation:

δ
δ

δ
δϕ
δϕ
δµ
δµ
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w
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wi i

= ⋅ ⋅ .  (42)

By applying fuzzy membership function, the ref-
erence vector is defined with a triangular function,  
wij(wmin,ij, wmean,ij, wmax,ij), which is defined as follows:
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 (43)

Derivation of the membership function to (wmean) 
lead is divided into three conditions, resulting in the 
learning formula below:

•	 If wmean < x ≤ wmean:
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•	 If wmean < x < wmax:
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 (47)
•	 If x ≤ wmin then x ≥ wmax:

w t w t ii i+( )← ( ) =1 12, , .  (48)

In these equations, w1 is the reference vector from 
the same class as the input vector Cx = Cw1, and w2 
is the reference vector from a different class Cx ≠ Cw2. 
Update rules for wmin and wmax follow the equation 
below:

w w t w t w tmin mean mean min← +( )− ( )− ( )( )1 , (49)

w w t w t w tmax mean mean min← +( )− ( )− ( )( )1 . (50)

The value of α is between 0 and 1, and its value 
will decrease along with the value of the number of 
iteration (t), as defined in the following equation:

a at
t

tmax

+( )= × −










1 10  (51)

To achieve a better performance, additional rules 
need to be defined to adjust wmin and wmax, as written 
in the conditions below:

•	 If (μ1 > 0 or μ2 > 0), and ϕ < 0, then increase the 
fuzzy triangular width by using the following 
equations:

w w w wmin mean mean min← − −( )× + ⋅( )( )1 β α  (52)

w w w wmax mean max mean← + −( )× + ⋅( )( )1 β α  (53)

•	 If the input class is recognized into the wrong 
class (ϕ  ≥ 0), then decrease the triangular width 
using the following equations:

w w w wmin mean mean min← − −( )× − ⋅( )( )1 β α  (54)

w w w wmax mean max mean← + −( )× − ⋅( )( )1 β α  (55)

•	 If μ1 = 0 and μ2 = 0, then the fuzzy triangular 
vectors must be increased using the following 
equations (γ is a constant, with a value of 0.1 in 
this research):
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w w w wmin mean mean min← − −( )× − ⋅( )( )1 γ α  (56)

w w w wmax mean max mean← + −( )× + ⋅( )( )1 γ α  (57)

Adaptive multilayer generalize learning 
vector quantization (AM-GLVQ)

Adaptive multilayer generalized learning vector 
quantization (AM-GLVQ) is an enhancement of GLVQ 
by using a multi-layer approach proposed by Imah  
et al. (2012). The idea is to modify GLVQ into a multi-
layer structure. The architecture of the AM-GLVQ is 
shown in Figure 14.

In AM-GLVQ, the input vector is denoted as x. The 
input data in the Eigenspace are denoted as x’, as 
written in the following equation:

x T xT′=  (58)

Therefore, we need to find the best values of 
transformation matrix T during the training process. 
Update rule for matrix T is defined in the following 
equations:

T T
f d

d d
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2 1 1
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δ
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where w
1
 is the nearest reference vector that belongs 

to the same class of x. Similarly, w2 is the nearest 
reference vector that belongs to a different class from x.

Signal compression methods

With the large amount of ECG data that will be 
processed, there has to be an efficient method to 
transmit and store the data, so that there are no 
interruptions in the classification process. In this 
section, we will discuss several methods to compress 
the ECG data in order to efficiently store and transmit 
the ECG data. These methods were proposed by the 
previous researchers. This paper primarily discusses 
compression methods by using set partitioning in 
hierarchical trees (SPIHT). There will be two main 
sub-sections in this section. The first section will 
explain two-dimensional SPIHT compression, while 
the second sub-section will discuss about three-
dimensional SPIHT compression.

Two-dimensional SPIHT

In the present day, several researchers have proposed 
using two-dimensional SPIHT method to compress 
ECG data. In 2012, Isa et al. used SPIHT in order to 
compress the ECG data (Sato and Yamada, 1995; Isa 
et al., 2012a, 2012b). This method is a state-of-the-art 

Figure 14: AM-GLVQ architecture (Imah et al., 2012).
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Figure 15: The process of two-dimensional SPIHT as proposed by Isa et al.

lossless compression method. In this sub-section, we 
will discuss the compression stage of the algorithm. 
The stages that were proposed by Isa et al. in SPIHT 
coding can be seen in Figure 15. We will not discuss 
the 2D wavelet transform phase, as it has been 
discussed previously in this paper (please refer to the 
pre-processing section).

Beat reordering

During the compression stage of the SPIHT, the 
initial method that is conducted is beat reordering 
method. The beat reordering method is conducted 
in order to arrange the ECG beat to optimize the 
SPIHT coding. The arrangement of beats will be 
based on their similarities, as Isa et al. pointed out 
that a higher compression rate is more achievable in 
highly predictable data. This method is chosen due to 
the fact that the ECG beat data do not have a highly 
predictable nature because they repeat according to 
the heart rate (Zhao and Chen, 2006).

In the beat reordering method, the initial step is to 
use fuzzy c-means clustering techniques in order to 
cluster the beats that have a high similarity. After we 
have clustered the similar beats, we will arrange the 

order of the beats of each cluster on the basis of the 
distance to the center of the cluster. In Figure 16, we can 
see the before and after result of the beat reordering 
technique. As shown in the figure, it can be inferred 
that after the beat reordering method has been applied 
to the ECG data, there are less noticeable peaks and 
granulation of the data. This results in a smoother ECG 
data, and this is because the beat reordering method 
will reduce the high-frequency components and reduce 
the variance among beats that are adjacent to each 
other. This method will optimize the process of SPIHT 
compression in ECG data.

Overview of SPIHT

Several works on ECG signal compression have 
been conducted previously (Lu et al., 2000; 
Moazami-Goudarzi et al., 2006; Linnenbank et al., 
1992). In this section, we will be discussing about 
SPIHT. The set partitioning in hierarchical trees (SPIHT) 
is a wavelet-based coding method that uses a set 
partitioning algorithm in order to transform coefficients 
based on the sub-band pyramid. In the SPIHT 
method, the most important information coefficient will 
be sent first. The hierarchical quad-tree data structure 
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is adopted on a wavelet signal. The low-frequency 
coefficient is the center of the wavelet transformed 
signal, where the coefficients are ordered in a hierarchy 
that includes a sub-band parent–child relationship.

There are four main steps in the SPIHT method, 
with the first step being the initialization step. The 
initialization step will empty the List of Significant (LIS). 
Afterwards, the list of insignificant points (LIP) and the 
list of the insignificant sets (LIS) will also be set. The 
threshold is also set at T0 = 2n, with n log (max c(i, j)). In 
the threshold, c(i, j) denotes the coefficient at position 
(i, j). The next step in the SPIHT method is the sorting 
pass in LIP, where the coefficients in the LIP are 
examined. The significant and important coefficients 
are transferred to the LSP. Then, we encode sign 

bits of the important coefficient. The next phase is 
the sorting pass in the LIS. If the entry in the LIS is 
important, 1 will be sent. Also, two of the offsprings 
will be examined. However, if it is not important, a 0 will 
be sent instead. The final phase will be the refinement 
pass in which the previous entries of the LSO are 
examined. If it is important with the current threshold, 
1 is sent and the magnitude is reduced by the current 
threshold. However, if it is not important, a 0 is sent.

Improvement with predictive coding

In 2015, Jati et al. proposed an improvement over 
Isa et al.’s SPIHT coding by adding predictive coding 
(Linnenbank et al., 1992). The main objective of this 

Figure 16: The ECG data before and after the beat reordering method.
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Figure 17: The process of two-dimensional SPIHT as proposed by Jati et al.

Figure 18: The process of predictive 
coding by Jati et al.

predictive coding method is to reduce the variation 
of amplitudes in the 2D ECG signals. By applying 
the predictive coding method, the signal value will 
be relatively smaller than before. The flowchart of the 
SPIHT process that was conducted by Jati et al. can 
be seen in Figure 17.

In order to reduce the signal value, we first need 
to select the beat that will represent the group of 
clustered beats during the beat reordering method. 
This selected beat will be chosen as the benchmark 
beat. To select the benchmark beat, we can apply 
several statistics values of all samples of 2D ECG 
array (mean, min, or max) or we can use the most 
important beat in the ordered cluster. After we have 
obtained the benchmark beat, we have to recreate 
the new 2D ECG array by computing the difference 
between the real signal value with the obtained 
benchmark value. Figure 18 shows the process of the 
proposed predictive coding by Jati et al.

Three-dimensional SPIHT

To accommodate the recent improvements in 
the biomedical imaging, Isa et al. proposed a 

Figure 19: The spatial orientation tree 
of 3D SPIHT.

three-dimensional SPIHT compression (Isa et al., 
2014). The three-dimensional SPIHT compression 
is a modified two-dimensional SPIHT compression 
by modifying the spatial orientation tree concept. 
The original 2D SPIHT compression has four 
offsprings on each node of a wavelet coefficient, 
whereas the proposed 3D SPIHT has eight 
offsprings. Figure 19 shows the concept of the 3D 
SPIHT compression.

In Isa et al. (2014), the multi-lead ECG signal was 
constructed with a combination of two-dimensional 
residual arrays. This combination will produce a 
three-dimensional residual array. The samples, 
ECG leads, and the heartbeat are defined by the 
axis of the volumetric structures. The intra-beat, 
the inter-beat, and the inter-lead redundancies are 
de-correlated by the 3D SPIHT method. The 3D 
residual array of the 3D SPIHT method can be seen 
in Figure 20.
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Figure 21: The architecture of Tele-ECG.

System implementation

In the study before, a smart Tele-ECG system has 
been developed. The main purposes of the system 
are early detection of heart diseases and heart 
monitoring. Several works have been conducted 
on telehealth systems (Sudhamony et al., 2008; 
Hababeh et al., 2015). The architecture of the system 
is shown in Figure 21. The system is comprised of 
four components: the ECG sensor, smartphones, 
FPGA, and the server. The first component, the 
sensor, is used to acquire heartbeat signal from 
patient’s body. The transducer, a component of the 

sensor, that is used in this system is commonly used 
in Indonesian hospitals. The second component is 
the smartphone. The smartphone is used to visualize 
and analyze the heartbeat signal sent by ECG sensor. 
The third component, the FPGA, was developed for 
ECG signal processing and classification. The FPGA 
implementation is intended for designing a chip that 
is dedicated to process ECG data. The ECG sensor 
is connected to the smartphone or FPGA through a 
bluetooth network. The last component is the server 
that is used for communication between the patient 
and the cardiologist. The mobile application of the 
smart Tele-ECG accommodates both patient and the 

Figure 20: 3D Residual array of the 3D SPIHT method.
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Figure 22: The ECG sensor.

doctor. However, the doctor has a unique privilege to 
verify the heartbeat signal sent by the patient.

Single-lead ECG sensor

In the previous research, we built an ECG sensor 
using electrical components. The ECG sensor used 
in this system has several components, as shown 
in Figure 22. The first component is the transducer 
that is attached to patient’s body. The amplifier 
component is functioned to amplify the acquired raw 
signal. The main amplifier chip in the ECG sensor is 
INA118. This amplifier can generate output signals 
up to 10 times the original input signal’s strength. 
In this first amplifier, we used electronic circuit 
called the right-leg-driven loop. The circuit is used 
as inverted version of the interference at the right 
foot of the human body. Therefore, the circuit can 
decrease interference generated by human body. 
This electronic circuit is also used for human safety 
system. Detailed characteristics and functionality of 
the circuit is explained in the INA118 datasheet.

The second amplifier is used to amplify the signal 
resulted from previous components. This amplifier 
strengthens the input signal that is in range 5 mV 
to 40 mV. The OP07 circuit is used for the second 
amplifier. The Op07 is a non-inverted amplifier. In 
the sensor we built, the reinforcement value for 
the second amplifier is 100 times. The following 
component is a filter, a component that is used to 
separate the wanted signal from unwanted signal. 
The ECG signal has two types of filters that is low 
pass filter (LPF) and high pass filter (HPF). LPF is 
used to pass signal that has lower frequency than the 

threshold, whereas HPF is functioned to pass signal 
from higher frequency. In the sensor, The HPF is used 
to remove human body noise, whereas LPF is used to 
remove contained noise that is already in ECG signal.

Besides the single-lead ECG sensor, the system 
also used multi-lead ECG sensor to acquire heartbeat 
signals from the human body. The main engine of the 
multi-lead ECG machines is similar to the engine in 
the single-lead sensor. The main modules in multi-
lead sensor are amplifier, filter, and adder. Figure 23 
shows the electronics of ECG single-lead device.

ECG telehealth mobile application

In the previous research, smartphone is the 
component for visualizing, classifying, and saving/
storing the user’s heartbeat data. The application is 
deployed as mobile apps in Android operating system. 
The view of the Tele-ECG mobile application is shown 
in Figure 24. The application has several menus to 
accommodate the users for heartbeat monitoring 
and early detection of heart diseases. The menus are 
retrieve heartbeat data from ECG, heartbeat history, 
user management, cardiologist information, hospital 
information, heart disease information, doctor’s 
special menu, settings, and help.

The main processes in the smartphone device are 
heartbeat signal acquisition, signal preprocessing, 
signal classification and compression. The classification 
is used to predict the patient’s heart condition. It 
predicts if the patient heartbeat shows symptoms 
of heart disease. To classify the heartbeat signal, the 
system uses neural network classifier that has been 
mentioned in the previous section: generalized learning 
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Figure 23: Multi-lead and single-lead ECG machines.

vector quantization (GLVQ) and fuzzy-neuro generalized 
learning vector quantization (FNGLVQ). We select these 
classifiers due to the simple structure of the methods 
and fast process, and the good performance of the 
method. The computational time of the methods is 
relatively faster than other neural network methods, 
such as multi-layer perceptron (MLP) or deep learning.

ECG telehealth server

The server has two modules: web services and 
database. The tele-ECG server was implemented 
using java platform and Java EE framework. The web 
services provide many functionalities for create, read, 
update, and delete (CRUD) and other services, that is 
save heartbeat, verify heartbeat, register user data, etc. 
There are 11 services built in the server that provide the 
users server to carry out the telehehalth function of the 

Figure 24: The mobile system on Tele-EG.

system. The detailed information about the services 
provided by Tele-ECG server is shown in Table 1.

Classification on field-programmable 
gate array (FPGA)

In this section, we will discuss about the implementation 
of ECG signal in a microprocessor. Field-programmable 
gate array (FPGA) is an integrated circuit that is 
designed to be configured after the manufacturing 
process. This device enables the programmer to 
add new features by changing the configuration even 
after the program has been installed on the board. In 
our previous research, we used Spartan 3AN board 
from Xilinx (Xilinx, 2011). Several research studies on 
FPGA that were focused on analyzing ECG signal 
have been conducted (Figueiredo and Michael, 2013; 
Risman et al., 2014). In this section, we will elaborate 
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Table 1. Tele-ECG services.

No. URL Service

1 /RegsiterPatien Registers user data as patient, then the data are saved in patient table of the database

2 /RegsiterDoctor Registers user data as doctor, then the data are saved in doctor table of the database

3 /UploadHistory Uploads patient heartbeat history, then the heartbeat data are saved in history table 
of the

4 /LookHistory Checks status of patient heartbeat history if it is verified by a doctor (cardiologist)

5 /GetDoctorData Downloads doctor (cardiologists) information

6 /GetHospitalData Downloads hospital information

7 /GetUnverifiedHistory Downloads unverified patient heartbeat history to be verified by doctor (cardiologist)

8 /VerifyHistory Verifies patient heartbeat history by doctor (cardiologist)

9 /RegisterHospital Registers hospital data, then the data are saved in hospital table of the database

10 /RegisterAffiliation Affiliates the doctor (cardiologist) into hospital

11 /GetDoctorAffiliation Downloads doctor’s (cardiologists’) affiliations.

Figure 25: The ECG classifier on FPGA.

the implementation of FLVQ, FNLVQ, and AFNGLVQ 
algorithm in FPGA (Setiawan et al., 2011; Suryana  
et al., 2012; Afif et al., 2015).

The design of ECG classifier in FPGA consists of 
three modules. These modules are ROM module, 
preprocess module, and classification module. 
The ROM module serves as the initial data storage. 
The preprocess module will decompose the input 
data with the fourth-order wavelet Daubechies 
and prepare the data that will be used for in the 
next stage, which is the classification module. This 
module consists of three sub modules, namely the 
wavelet Daubechies 4 module, float to fixed converter 
module, and data normalization unit module. Wavelet 
Daubechies 4 module is employed for extracting 300 

features per beat into 40 features per beat. The float 
to fixed converter module is used to convert float-
point (wavelet Daubechies module result) into fixed-
point number, which becomes the input type for the 
classification module. The data normalization unit 
module normalizes the data using Z-score. The last 
module is classification module, which is responsible 
for doing classification using FLVQ on ECG data. The 
result of the classification stages will be displayed on 
the LCD module. The illustration of the ECG classifier 
on FPGA can be seen in Figure 25.

During the preprocessing stages, the original 
signal is decomposed into half-length for each 
iteration. This decomposition process uses 16-bit 
floating points, consisting of 5-bit exponent and 10-bit  
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mantissa. The input signals have 300 features long 
scalar and will be run for three iterations that will 
produce 40 features of long scalar. The wavelet 
Daubechies architecture is shown in Figure 26. The 
features should be padded before they are passed 
to the convolution stages. The signal will be padded 
with mirroring at the head and tail of the input 
signal. As the main part of the Wavelet Daubechies 
submodule, the convolution component has a role to 
convolve the padded input signal. Furthermore, the 
convoluted signal is downsampled into half-length 
data and stored in the output RAM. Values kept in 
the output RAM would serve as the input for the next 
decomposition operation.

The convolution unit consists of four components: 
Shift Register (4 temporary registers), Daubechies 
Constant (4 hard-coded constants), 16-bit FPMultiplier 
that handles multiplication operation, and 16-bit FP 
Adder that handles addition operations. The convo-
lution process initially separates 306 features into 19 
chunks of data. Furthermore, the FPMultiplier performs 
multiplication operation between each data chunk and 
Daubechies Constant. The results of the multiplication 
process are summed up to obtain the convolution re-
sult. Figure 27 shows the convolution architecture.

The classification module is the implementation 
of FLVQ algorithm for classifying the data. The 
component of this module consists of input data RAM, 
vector reference RAM, expected value RAM, neuron 
component, similarity divider component, updater 
component, and state machine. The input data RAM is 
the location for storing the output of the preprocessing 
process from the wavelet decomposition. Meanwhile, 
the vector references RAM is used to store the 
vector references that come from the output of the 
fuzzification process. The neuron component is 
responsible for measuring the similarities of each 
feature; meanwhile, the similarity divider component 
has a role to determine the winner vector. Moreover, 
the winner vector is updated by moving or changing 
the shape of the corresponding fuzzy triangle based 
on the update case by the updater component. 
The output of this classification process is stored 

in expected value RAM. The design of the FLVQ 
architecture in FPGA is shown in Figure 28.

We have also implemented FNGLVQ in the FPGA. 
Some additional modifications have been done, 
including the addition of a sigmoid derivative core unit, 
which expands the number. The arithmetic operations 
in this design uses 32-bit fixed-point format, which 
consists of 16-bit integer and 16-bit fraction. The 
main reason of using fixed-point rather than floating-
point format is the expressiveness and the resource 
usage. Moreover, using the fixed-point format can 
increase the computation speed and increase the 
efficiency. As a comparison, an addition operation of 
two 32-bit number fixed-point unit spends 32 slices, 
whereas a floating-point unit spends 500 slices when 
run on 1 clock. The design of FNGLVQ in FPGA is 
shown in Figure 29.

The FNGLVQ algorithm is implemented in a 
state machine. The state machine defines the 
connectivity of the component in the design. The 
designed state machine is illustrated in Figure 30. 
Based on the experiment (Sudhamony et al., 2008), 
the performance of FNGLVQ in the FPGA is slightly 
degraded compared to the top-level implementation 
of FNGLVQ. The performance of FNLGLVQ in the 
FPGA degrades around 2%. The main reason of 
this degradation in performance is the number 
format that is used in the FPGA, which is a fixed-
point number format. Floating-point number format 
has a more detailed and precise value compared 
to a fixed-point number. Thus, it produces better 
performance. However, floating point number in 

Figure 26: The Daubechies Wavelet 
architecture.

Figure 27: The Convolution Unit 
Architecture.
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Figure 28: The design of FLVQ architecture.

Figure 29: The design of FNGLVQ in 
FPGA.

Figure 30: The State machine of 
FNGLVQ.

FPGA requires substantial resource allocation and 
extra computational time. Fixed-point number has 
a slightly lower performance; however, it is faster 
and requires smaller resource than a floating-point 
number.

In addition to the FNGLVQ, we had also 
implemented the AFNGLVQ algorithm in the FPGA 
board. The design of the AFNGLVQ algorithm is 
relatively similar to the FNGLVQ. The main difference 
is in the state machine. The state machine will receive 
the input vectors and store them in the wmin, wmean, 
and wmax. Furthermore, the state machine will update 
the value of reference vector weight and store it in 
three components, that is wmin, wmean, and wmax. The 

designs of AFNGLVQ and state machine during the 
training phase are depicted in Figures 31 and 32.

In the FPGA board, AFNGLVQ achieves a better 
performance compared to the FNGLVQ (Afif et al., 
2015). The adaptive feature on AFNGLVQ has a 
beneficial impact on performance. Hence, it still has 
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Figure 31: The top-level design of AFNGLVQ in FPGA.

Figure 32: The top-level design of AFNGLVQ in FPGA.
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premature beat (NP) aberrated atrial premature beat 
(aAP), and ventricular escape (VE). Before classifying, 
there are several preprocessing steps that were 
applied to the dataset. These preprocessing steps are 
baseline wandering removal (BWR), outlier removal, 
and wavelet transform.

In the experiment, FNGLVQ was compared to LVQ, 
LVQ21, and GLVQ. The experiment was conducted 
using 150 epochs. The dataset was divided into 10 
parts. Each part has training and testing set with 
50:50 ratio. The experiment results are shown in 
Figure 33. Figure 33 shows that parts 1 to 10 have 
a similar trend. FNGLVQ has the highest accuracy, 
followed by GLVQ, LVQ21, and LVQ. Over all, 
FNGLVQ achieved 95.52% accuracy, GLVQ achieved 
93.36%, LVQ21 reached 87.41% accuracy, and LVQ 
reached 73.73% accuracy. This means that in the 
MIT–BIH arrhythmias dataset, FNGLVQ outperformed 
GLVQ, LVQ21, and LVQ, with a margin of 2.16, 8.07, 
and 21.79%, respectively. This infers that adding 
fuzzification in arrhythmia classification improves the 
accuracy.

Round robin impact in arrhythmias  
classification

Diane et all continued the research by Setiawan by 
investigating the impact of round robin approach on 
training process (Fitria et al., 2014). The investigation 
was applied in various LVQ-based classifiers. The 
classifiers are LVQ1, LVQ2, LVQ2.1, FNLVQ, FNLVQ 
MSA, FNLVQ-PSO, GLVQ, and FNGLVQ. In the study, 

Figure 33: Accuracy of Arrhythmias classification using LVQ-based classifier.

a slightly lower performance compared to the high-
level implementation of AFNGLVQ due to the number 
format. Floating-point number has a more detailed 
and precise value compared to the fixed-point 
number. Thus, the FPGA implementation has had 
competitive result, and it is worth to be implemented 
in a micro device.

Performance evaluation

This section discusses the performance of the 
ECG telehealth system. The measurement consists 
of the accuracy of the arrhythmia classification, 
compression error and arrhythmias classification in 
FPGA. This section summarizes the experiments that 
were conducted in the previous study.

Arrhythmias classification using  
LVQ-based classifier

As mentioned previously, FNGLVQ is a GLVQ that has 
a fuzzy membership function. A study by Setiawan  
et al. utilized FNGLVQ to classify arrhythmias based on 
the ECG sensor data (Setiawan et al., 2011). Setiawan 
et al. also used MIT–BIH arrhythmias dataset, which 
consists of 12 classes. These twelve classes are 
normal beat (NOR), right bundle branch block beat 
(RBBB), left bundle branch block beat (LBBB), paced 
beat (P), premature ventricular contraction beat (PVC), 
atrial premature beat (AP), fusion of paced and normal 
beat (fPN), fusion of ventricular and normal beat (fVN), 
nodal (junctional) escape beat (NE), nodal (junctional) 
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the authors only used 5 classes from the MIT–BIH 
dataset. The classes are normal beat (NOR), right 
bundle branch block (RBBB), left bundle branch 
block (LBBB), paced beat (PACE), and premature 
ventricular contraction (PVC).

The experiment result is shown in Figure 34. The 
figure shows that without round robin approach, 
the classifiers achieved 74.62, 82.29, 86.55, 82.25, 
83.66, 92.54, 88.09, and 94.07% for LVQ1, LVQ2, 
LVQ2.1, FNLVQ, FNLVQ MSA, FNLVQ-PSO, GLVQ, 
and FNGLVQ, respectively. However, when using 
round robin approach, the classifiers achieved 
74.78, 86.75, 98.04, 84.5, 86.12, 90.43, 98.12, 
and 94.31% for LVQ1, LVQ2, LVQ2.1, FNLVQ, 
FNLVQ MSA, FNLVQ-PSO, GLVQ, and FNGLVQ, 
respectively. Figure 34 shows that round robin 
approach improves the accuracy for almost all 
classifiers: LVQ2, LVQ21, FNLVQ, FNLVQ-MSA, and 
GLVQ. The round robin approach increases the 
classification accuracy from 2 to 11%. For LVQ and 
FNGLVQ, the round robin approach has a slightly 
higher accuracy than without round robin. But for 
FNLVQ-PSO, the round robin approach actually 
decreased the accuracy.

Arrhythmias classification with  
unknown class

As mentioned in the previous section, Imah et al. 
developed an adaptive multilayer generalized learning 
vector quantization (AM-GLVQ), which integrates 
feature extraction and classification for Arrhythmia 
heartbeat classification (Imah et al., 2012). In the 
study, Imah et al. also investigated the performance of 
the classifiers in the dataset with unknown class and 

compared them with normal case (without unknown 
class). The authors used MIT–BIH Arrhythmias 
dataset, as used by Setiawan et all. There were 
14 classes, where 12 classes were explained in 
subsection A, with an addition of escape beat (AE), 
and supra ventricular premature beat (SP).

There are two scenarios, without unknown class 
and with unknown class. In this evaluation, AM-GLVQ 
is compared to backpropagation, GLVQ, LVQ, and 
SVM. The experiment results are shown in Figure 35. 
For both scenarios, AM-GLVQ achieves the highest 
accuracy among all the algorithms. AM-GLVQ 
reached 95.16 and 95.04% accuracy for the data 
set without unknown class and with unknown class, 
respectively. As shown in Figure 35, in the dataset 
with the unknown class scenario, the accuracy of 
many classifiers decreased when compared to the 
scenario without unknown class in the dataset. The 
reduction of accuracy varies from 3 to 4%. However, 
AM-GLVQ can still maintain its performance in 
scenario with unknown class.

Compression error

This sub-section summarizes performance of ECG 
compression from previous studies. To evaluate 
the performance of ECG compression, we used 
percentage root-mean-square difference (PRD). This 
sub-section will summarize the performance of 2D 
SPIHT proposed by Sani et al., 3D SPIHT proposed 
by Sani et al., and 2D SPIHT on embedded device 
proposed by Jati et al. (Isa et al., 2012b, 2014; Grafika 
Jati et al., 2014). 2D SPIHT was tested in MIT–BIH 
dataset, whereas 3D SPIHT was tested in INCART 
data set.

Figure 34: Impact of Round Robin in Arrhythmias classification.
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Table 2. ECG compression performance.

Compression algorithm Data set Proposed by CR PRD

2D SPIHT MIT–BIH Isa et al. (2012b) 13 2.49

16 2.82

3D SPIHT INCART Arrhythmia Isa et al. (2014) 14 4.58

2D SPIHT on embedded device MIT–BIH Grafika Jati et al. (2014) 8 1.48

16 2.17

24 3.17

32 4.06

64 11.00

128 12.32

PRD values of the compression algorithm are 
shown in Table 2. Table 2 shows that 2D SPIHT and 
3D SPIHT achieve a good performance, their PRD 
values are less than 5, with a compression ratio of 
16 and 14 for 2D SPIHT, and 3D SPIHT, respectively. 
2D SPIHT that was implemented in the embedded 
device has an acceptable compression ratio up to 32. 
Above this ratio, the PRD value is more than 10.

ECG telehealth services responsiveness

In addition to the classification and compression, in the 
previous study, the telehealth system responsiveness 

Figure 35: Arrhythmias classification with unknown class.

was also evaluated. There are URLs available in the 
ECG telehealth, which are as follows: /Register -
Doctor, /RegisterPatient, /LookHistory, /UploadHistory,  
/GetHospitalData, /GetDoctorData, /VerifyHistory,  
/GetUnverifiedHistory, /RegisterAffiliation, /Register-
Hospital, and /GetDoctorAffiliation. Each URL has 
a different function and service itself. In the previous 
study, we measured the responsiveness of the service.

The response time for the ECG telehealth is shown 
in Table 3. In the table, the mean response time varies 
from 129.6 ms (register patient) to 556.4 ms (upload 
history). Upload history takes longest service time 
because this service is used to upload the heartbeat 
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performance of the classifiers in the FPGA and compare 
it to high language (Matlab) version.

The result of the experiment is shown in Figure 36. 
Figure 36 shows that there are similar trends in all 
sets. FPGA implementation of FNGLVQ has a higher 
accuracy compared to FPGA implementation of 
GLVQ. However, the accuracy is lower compared 
to Matlab version of FNGLVQ. Overall, the GLVQ 
implementation in FPGA achieved 68.3% accuracy, 
whereas FNGLVQ implementation in FPGA achieved 
75.16% accuracy. Matlab implementation of FNLGVQ 
achieved 81.41% accuracy.

Conclusion

We have elaborated the progress and challenges 
in developing Tele-ECG system for early detection 
and monitoring heart disease. This includes the 
data acquisition, data and feature extraction, data 
compression, classification algorithm, web and 
mobile system implementation, and micro device 
implementation on the FPGA board. Tele-ECG system 
provides new fundamental interaction between 
doctor and patients by exploiting technology. Tele-
ECG system helps to monitor the anomalies of 
heartbeat and reduces the risk of heart attack. Early 
detection of heart beat should be conducted; thus, 
the risk can be eliminated, which, in turn, can reduce 
the mortality of heart attack.

Several issues regarding Tele-ECG should 
be considered and explored. Issues in various 
areas such as security, privacy, and the effect of 
embedding the new device in a patient should be 
explored. Nevertheless, researchers should also 
consider about the adaptation of new technology in 
the medical field. Thus, the Tele-ECG is a promising 
technique to diminish the risk of heart failure by giving 
an early warning, speed up the diagnosis, improve 
patient treatment and long-term outcomes, and 
alleviate patient discomfort and travel time.

Future works

Nowadays, the data growth in any area is exceptional, 
including the medical field. Based on specific 
medical data, anyone could learn patterns and draw 
conclusions regarding someone’s life. Therefore, the 
concern of security and privacy in telehealth system 
should be considered. It involves several security 
risks, such as medical entity breach, appointment 
data privacy, and patient privacy. Therefore, we will 
conduct deep exploration in ECG data encryption 
and employ differential privacy methods in a medical 
record.

Figure 36: Arrhythmias classification in 
FPGA.

data by the patient. The size of the data is relatively 
larger than the patient’s identity data. Therefore, this 
service takes the longest response time. The average 
service response time is 251.3 ms.

Arrhythmias classification in FPGA

Jatmiko et al. developed the architecture of FNGLVQ 
and GLVQ in FPGA. The architecture of the classifiers 
and the state diagram is explained in the previous 
section. The classifiers that were implemented in the 
FPGA were evaluated using MIT–BIH data set. However, 
only five sub-sets of the MIT–BIH data set were used in 
this experiment. The goal of the experiment is to find the 

Table 3. ECG compression performance.

No URL
Mean response 

time (ms)

1 /RegisterPatient 129.6

2 /RegisterDoctor 218.9

3 /LookHistory 206.6

4 /UploadHistory 556.4

5 /GetHospitalData 231.7

6 /GetDoctorData 192.3

7 /VerifyHistory 160.7

8 /GetUnverifiedHistory 227.8

9 /RegisterAffiliation 201.8

10 /RegisterHospital 215.0

11 /GetDoctorAffiliation 423.9

Mean 251.3
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