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A new HGA-FLVQ model for Mycobacterium Tuberculosis  
detection

Abstract
This research aims to develop an MTB detection model from the 
FLVQ neural network to HGA-FLVQ model. In this research, the FLVQ 
method was developed through strengthening its initiation, in which 
the first cluster centers used as FLVQ input were optimized first by 
HGA. The results show that sensitivity and specificity of the HGA-
FLVQ model reach 96.30 and 95.65%, whereas the sensitivity of 
an FLVQ method is 70.83%, and the sensitivity of an LVQ method 
is 87.50%. The specificity of an FLVQ method and the specificity of 
an LVQ method are 84.62%. Based on these results, we can say 
that the HGA-FLVQ model is better than FLVQ and LVQ methods. It 
also means that relative amplitude can be used by the HGA-FLVQ 
model as a feature to detect the presence of MTB in the sputum 
of TB-suspected patients. Thus, the HGA-FLVQ model can be used 
to strengthen TB laboratory examination at Public Health Centers in 
Indonesia.

Keywords
MTB detection, HGA-FLVQ model, FLVQ method, HGA, Relative  
amplitude.

The first generation tuberculosis (TB) laboratory  
examination method (Charibaldi dan and Harjoko, 2013) 
occasionally used in developing countries is based on 
Ziehl–Neelsen (ZN) staining as the gold standard, with 
50 to 60% sensitivity (Fend et al., 2006). Neverthe-
less, in which TB negative samples examined as pos-
itive ZN staining could occur infiltration (Gibson et al.,  
2009). This ZN staining method works microscopical-
ly. Research (Kolk et al., 2010) concluded that the ZN 
staining method still has unsatisfying result; moreover, 
TB has become a global public health threat and a 
health emergency in developing countries. Hence, 
the development of TB laboratory examination meth-
od, which is more sensitive, quicker, more applicable, 
more portable, and cheaper (Bruins et al., 2013; Zhou 
et al., 2011), is needed.

The TB laboratory examination methods are newer  
compared to the ZN staining method. The first type 
of TB laboratory examination method is based on 
nucleic acid amplification, such as polymerase 

chain reaction (PCR), strand displacement amplifi-
cation (SDA), and transcription-mediated amplifica-
tion (TMA). The second type is based on serology 
and cytokine released metal rate examination. Both 
methods are considered to be more advanced. 
These two methods are commonly available in de-
veloped countries, researching continually TB exam-
ination methods. In developing countries, examina-
tion methods other than ZN staining are considered 
as complicated and expensive to be applied widely. 
Hence, a new approach, therefore, is required for the 
development of the TB laboratory examination meth-
ods (Pavlou et al., 2004). There is a TB laboratory 
examination method that uses thorax X-ray irradia-
tion (also called the generation; Charibaldi dan and 
Harjoko, 2013). This method has joined in the TB lab-
oratory examination procedure in some developing 
countries, but this laboratory examination method is 
not suitable to be implemented in countries with low 
income yet with high prevalence.
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The next generation of the development of the TB 
laboratory examination method has used an electron-
ic-nose device by detecting a volatile organic compound 
(VOC). VOC is an organic compound evaporating quickly.  
A VOC is hypothesized reasonably as containing an 
active pulmonary TB biomarker that is derived from in-
fected organisms (a metabolite of TB Mycobacterium) or 
from infected hosts (a result of oxidative stress) (Phillips 
et al., 2010). The main problem in the identification of 
VOC is the pattern similarity of the electronic-nose re-
sponse curve resulting from the low sensitivity of the 
sensing system selectivity (Polikar et al., 2001).

Previous research studies aimed at the develop-
ment of the method detecting the presence of My-
cobacterium tuberculosis (MTB) in patients’ sputum 
using an electronic-nose sensing device. These  
research studies were carried out using various ways 
to produce different specificities and sensitivities, as 
presented in Table 1.

The artificial neural network is implemented to 
support the development of the TB laboratory exam-
ination method. An artificial neural network provides 
a solution with strong robustness, for approximating 
real values, discrete values, or vector-valued goal 
function (Wang and Liu, 2014). An artificial neural net-
work is so far known as the most effective way, for 
certain types of problems, such as learning to explain 
complex real-world sensor data (Wang and Liu, 2014). 
Learning vector quantization (LVQ) is a neural network 
prototype-based learning (Elly et al., 2013). The pro-
totypes are determined in a training process from 
training dataset and can be interpreted in a straight-

forward way as they capture essential features of the 
data in the same space (Elly et al., 2013).

Therefore, it is necessary to elaborate artificial 
neural network potentials in some research works, 
especially to differentiate three different odors and to 
recognize mixed scents (Kusumoputro et al., 1999). 
The previous analysis (Kusumoputro et al., 1999) was 
carried out in an attempt to resolve the weaknesses 
of LVQ artificial neural network by using fuzzy learning 
vector quantization (FLVQ) artificial neural network. A 
result of the research showed that the odor recog-
nition probability of FLVQ artificial neural network is 
quite high to distinguish the scent of oranges, roses, 
and cananga flowers. The study (Kusumoputro and 
Jatmiko, 2002) also revealed that the recognition of 
mixed odors on the electronic sensing system us-
ing the algorithm of FLVQ artificial neural network 
is better than back propagation (BP) artificial neural 
network and probabilistic neural network (PNN). The 
research (Kusumoputro et al., 2002) was carried out 
to observe the performance of FLVQ artificial neural 
network for recognizing the mixed odors. Then, the 
recognition rate of FLVQ artificial neural network was 
compared to the recognition rate of BP artificial neu-
ral network. The combined scents tested in the re-
search consisted of two types of mixtures: first, mix-
ture of two odors and, second, the mixture of three 
scents. According to this research (Kusumoputro et 
al., 2002), the result of the recognition of the two or 
even three-odor mixtures obtained using FLVQ arti-
ficial neural network is better compared to that ob-
tained using BP artificial neural network and PNN.

Table 1. Previous researches.

Reference Sample type Classification methods Results

Fend et al. (2006) Sputum Back propagation artificial neural network Sensitivity 89.09%  
Specificity 91.14%

Gibson et al. (2009) Sputum Linear discriminant analysis Average Sensitivity 80%  
Average Specificity 75%

Kolk et al. (2010) Sputum Rob electronic-nose:  
Linear Discriminant Analysis  
Partial least square discriminant analysis

Sensitivity 57–64%  
Specificity 61–70%  
Sensitivity 42–50%  
Specificity 73–77%

Walter electronic-nose:  
Linear discriminant analysis  
Partial least square discriminant analysis

Sensitivity 56–66%  
Specificity 65–68%  
Sensitivity 37–61%  
Specificity 56–67%
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Methods

Main points relating to the development of model are 
described in this section. First, the below equation 
based on (Dahlan, 2010) calculating the sample size for 
this research is explained. Second, the developed block 
model and tasks of each block are elaborated. Third, 
various processes of the overall development of model 
are discussed from the beginning to the end. The de-
veloped model in this research is presented in Figure 1.

In this research, the sample size was calculated 
based on (Dahlan, 2010) the following equation:

n
Z Sen Sen

d P
=

−α( ) ( )2

2

1

	               (1)

Here, n denotes the research sample size, Sen 
is the expected sensitivity of the model of which the 
diagnostic value was tested, d is expected research 
precision, α is the accepted error rate to determine 
the deviation standard (Zα), and P is the prevalence 
of TB disease (the proportion of positive-TB patients 
among the TB suspects).

The following is the implementation of Equation 
(1) in this research. The error rate of type 1 (one di-
rection) that is still accepted (α) equals 5%. The de-
viation standard (Zα) is 1.96. The expected sensitivity 
is 90%. The expected research precision (d) is 10%. 
The TB prevalence (P), referring to the proportion of 
positive-TB patients after an assessment of overall 
TB suspects in 2015 who received medical treat-
ments from Prof. Dr. Barmawi Hisyam, Sp.P.D.-KP, 
equals 70%. Hence, the research sample size is as 
follows:

n
1.96 0.9 1 0.9

0.1

3.8416 0.09

0.01

34

2

2
=

−

   =

( ) ( )( )
( ) ( )

=
( )( )

( )P P

..5744 34.5744
0.7

49.392
P

= =

It is rounded up to 50 TB suspects.
After receiving Ethics Committee Approval from 

Medical and Health Research Ethics Committee 
(MHREC), Faculty of Medicine, Universitas Gadjah 
Mada, with Ref number: KE/FK/71/EC/2016, primary 

Figure 1: An HGA-FLVQ Model Block Diagram.
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data retrieval at this research could be started in TB 
laboratory, Faculty of Medicine, Universitas Gadjah 
Mada.

The e-nose device employed in this research 
consisted of six sensors, namely, TGS822, TGS813, 
TGS2611, TGS825, TGS826, and TGS2620. How-
ever, primary data (training data and testing data) of 
this research were only obtained from three sensor 
response curves. The sensors used in this research 
were TGS822, TGS813, and TGS2611, as the other 
sensors were not adequately responsive and were 
selective to significantly distinguish the character-
istics of patients (relative amplitudes) of the positive 
ZN staining and the negative ZN staining, using direct 
eye observation. Each period of the electronic-nose 
response curve of the three sensors was sampled 
every 5 sec.

There were three categories of samples, namely 
49 negative ZN staining subjects’ sputum samples, 
49 positive ZN staining patients’ sputum samples, 
and 50 sputum samples of TB-suspected patients 
who received medical treatments at Public Health 
Centers in Yogyakarta and A RESPIRA Pulmonary 
Hospital of Yogyakarta Province between February 
25 and May 8, 2016. An inclusion criterion of nega-
tive-TB samples was when a patient was diagnosed 
as a TB suspect by the doctor, but the patient was 
declared contrary by laboratory examination using 
the ZN staining sputum method. Meanwhile, the in-
clusion criterion of positive-TB samples was when a 
positively suspected TB patient was declared posi-
tive-TB using ZN staining sputum method. Exclusion 
criteria from positive-TB samples were +HIV subject 
and positive-TB in extrapulmonary.

Sensing and sampling processes shown at the 
first block of Figure 1 are elaborated. The sputum 
samples of this research were obtained three times. 
First time, on the first day, the suspected patient’s 
sputum was obtained when the TB-suspected patient 
visited the Public Health Center for the first time, and 
then the TB-suspected patient brought a sputum pot 
containing the sample on the second day, early in the 
morning. The second sample was the sputum saved 
at home, soon after the TB-suspected patient woke 
up in the early morning on the second day. On that 
day, the TB-suspected patient brought the sample 
and handed it over in the sputum pot to the medical 
officer in the Public Health Center. Third, the sputum 
sample was accepted again in Public Health Center 
on the second day, when the TB-suspected patient 
gave the morning sputum sample. In a biosafety 
cabinet, the three sputum samples were combined 
to meet the minimum volume requirement so that 
evaporation and sensing processes could be carried 

out. The sputum evaporation of a sample was per-
formed by warming it up at the temperature between 
38 and 58°C for 60 min in the electronic-nose sample 
room. The sensors of electronic-nose devise during 
the process used VOC as the biomarker to detect the 
presence of MTB. Then, the sensors calculated the 
rate of VOC and converted the chemistry magnitude 
to electrical magnitude (analog signal). After that, an 
interface application in the electronic-nose device 
transformed the analog signal of its sensor to a digital 
signal. The digital signal was presented in the form of 
response curve from each sensor with its maximum 
length of 20 cycles. Subsequently, each cycle of the 
response curve from the electronic-nose device was 
read or sampled every 5 sec to obtain digital data.

At the second block of Figure 1, the processes 
consist of two types of pre-processing, namely, noise 
reduction and feature extraction. Considering that the 
response curve of the electronic-nose came out from 
the first block still contained noises, a noise reduction 
method became essential to apply. The noises could 
be reduced using a filter as can be seen in Equation 
(4), and its results were saved in a memory.

Generally, a finite impulse response (FIR) filter as in 
Smith (1999) for the case of N-Points is shown in the 
following equation:

y n b x n k
k

M
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= 
∑

0 	               (2)

Equation (2) can be written as in Kusumoputro et 
al. (1999) as:

y n
1
N
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	               (3)

and as in Smith (1999), the case of three-point occurs 
when M = 2 and b0 = b1 = b2 = 1/3 so that Equation 
(2) would be the Moving Average Filter Equation used 
in this research:

y n x n x x x n[ ] [ ] [ ] [ ]( )= − + + +
1
3

1 1
	  (4)

The second process of the second block (pre-pro-
cessing) in Figure 1 is feature extraction (the feature 
of positive-TB and feature of negative-TB) from each 
curve of the electronic-nose response. The feature 
extraction could be done after the noises significantly  
decrease. If marker events in this research could 
be recognized in each curve of the electronic-nose 
response, the feature extraction in this research (as 
pre-processing) could be performed through searching  
peaks and troughs as landmarks or features (James, 
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2007). These searching cycles were used to obtain 
relative amplitudes (Ar) from each cycle in the elec-
tronic-nose response curve. Ar became the features 
and primary data in this research. Response curves 
of the three sensors of electronic nose were not in-
volved in the processes of feature extraction as an ob-
servation unit, because each sensor had the unique 
response when sensing was performed so that the 
calculation of Ar was performed for each response 
curve individually. The response signal of each sensor 
illustrated amplitude in time function forming a pattern 
(Kusumoputro et al., 2002). In this research, features 
of the sensor response signal were extracted using 
the following equation, as shown in a study Hardoy-
ono et al. (2015) and Figure 2:

Ar
A A

A
=

−max 0

0 	              (5)

Here, A0 is the sensor response calculated by the 
time of ‘odorant IN’ and Amax is the sensor response 
calculated by the time of ‘odorant OUT.’

At the third block, there are three processes in the 
hybrid genetic algorithm-fuzzy learning vector quan-
tization (HGA-FLVQ) model as displayed in Figure 1. 
In the first process, HGA read and normalized data 
from the pre-processing result (all of the training data) 
of each sensor’s output in the pre-processing block.

The second process was the process of assisting 
initialization of FLVQ artificial neural network so that 
FLVQ could have an optimal initial cluster center. This 
process executed HGA operators in the HGA-FLVQ 
model. Then, the HGA method took the first two Ars 
of each class (positive-TB and negative-TB) from 
the training data to become two parents. After that  
the two parents were processed by simulated- 
annealing recombination (SAR) function and simulated- 

annealing mutation (SAM) function in HGA (Adler, 
1993). A crossover operator in SAR function and a 
mutation operator in SAM function were implemented 
repeatedly. Every time HGA produced two offsprings, 
the values of fitness from these offsprings were also 
calculated to determine whether those two offsprings 
were accepted in the new generation population. If 
the offspring fitness value was better than the par-
ent fitness value, then that offspring was used to re-
place its parent. However, if not, then it was ignored, 
and the Ar cluster center of the final generation of this 
HGA was used for initialization of FLVQ artificial neural 
network.

The third process of HGA-FLVQ model was model 
training performed by FLVQ artificial neural network. 
In this research, this model training was carried out 
repeatedly using the sputum samples of a group of 98 
patients consisting of 49 positive ZN staining patients, 
40 negative ZN staining patients, and 9 healthy vol-
unteers who had never been diagnosed with TB by a 
doctor. The training process using the FLVQ method 
can be elaborated as follows. Initialization of the initial 
cluster center was performed by taking HGA output 
of each sensor. Then, some variables were calculated 
repeatedly until the desired minimum error was ob-
tained. Those variables were the weighting exponent 
(also referred to as fuzziness parameter), learning-rate 
factor (alpha), learning-rate, new cluster center, and 
error. Afterward, the last cluster center of each sensor 
data of each class was saved in a memory as a result 
of training.

This section also elaborates the result of HGA-
FLVQ model training as displayed in Table 2. The pro-
cess of this HGA-FLVQ model training from TGS813, 
TGS822, and TGS2611 sensors lasted for 5 to 8 iter-
ations since the error decreased below 0.0001. The 
error reduction process occurred on each iteration as 
shown in Figures 3,4,5.

Training processes using LVQ and FLVQ methods 
as comparator methods are elaborated in the 
following parts. Learning vector quantization (LVQ) 
aiming at classifying training data of n vectors into 
c clusters is one of the learning methods in the ar-
tificial neural network (Kusumadewi dan and Hartati, 
2010). LVQ is a simple way algorithm applied to the 
multiclass problem and the complexity of LVQ can be 
controlled during training phase according to specific 
needs (Elly et al., 2013).

In the training process of the LVQ method, the 
weight vector from the input unit to the output unit 
was referred to as a reference vector (codebook) for 
the class that the output unit represents. The output 
unit was positioned by adjusting the weight through 
supervised training. In this case, the target (a set of 

Figure 2: A Cycle of Gas Sensor (TGS) 
Response in an E-nose Device.
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patterns with known classification) was provided 
along with the initial distribution of the reference vec-
tor. The training using the LVQ method classified the 
input vector into the same class as the output unit 
that has a weight vector closest to the input vector 
(Widodo, 2005).

In this research, the result of the training using 
LVQ method is presented in Table 3. The stability 
of weight value appeared after the 10th iteration, 
either for the negative or positive class used the 
training data of each sensor. It could be seen that 
the weight value either of the negative or positive 

Table 2. Results of HGA-FLVQ model training.

Iteration
Fuzziness 
parameter

Learning rate Cluster center Error

TGS813 Sensor data

1 1.100590 0.000987 0.001400 0.108494 0.024354 0.0014483775

2 1.101180 0.001541 0.000924 0.140709 0.033404 0.00111976

3 1.101770 0.002089 0.000798 0.163612 0.039210 5.5822276E-4

4 1.102360 0.002508 0.000750 0.177564 0.042487 2.0541892E-4

5 1.102950 0.002808 0.000727 0.186139 0.044436 7.73241E-5

TGS822 Sensor data

1 1.100590 0.001144 0.001169 0.093718 0.212932 0.004191581

2 1.101180 0.001008 0.001355 0.097408 0.228077 2.4299692E-4

3 1.101770 0.000919 0.001562 0.102777 0.238711 1.41901E-4

4 1.102360 0.000857 0.001782 0.107080 0.248823 1.207616E-4

5 1.102950 0.000807 0.002042 0.110949 0.259704 1.3338469E-4

6 1.103540 0.000769 0.002332 0.114258 0.270786 1.3375138E-4

7 1.104130 0.000742 0.002620 0.116887 0.280968 1.105932E-4

8 1.104720 0.000723 0.002887 0.118887 0.289624 7.890986E-5

TGS2611 Sensor data

1 1.100590 0.000644 0.005906 0.031570 0.029312 0.0014235964

2 1.101180 0.001916 0.000857 0.055587 0.020714 6.50747E-4

3 1.101770 0.002333 0.000767 0.081313 0.015552 6.8849424E-4

4 1.102360 0.003203 0.000704 0.096225 0.017693 2.2693272E-4

5 1.102950 0.003725 0.000683 0.103321 0.018730 5.1426956E-5

Figure 3: Error Value Decrease in HGA-
FLVQ Model Training using TGS813 
Sensor Data.
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Figure 4: Error Value Decrease in HGA-
FLVQ Model Training using TGS822 
Sensor Data.
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class for the last iterations was stable at a certain 
number.

On the other hand, the training process using the 
FLVQ method is elaborated as follows. At first, an in-
itialization of the initial cluster center was performed 
by taking the first item of relative amplitude of each 
sensor. Then, the next process calculated some 
variables repeatedly until the desired minimum error 
was obtained. The variables used were weighting  
exponent (also referred to as a fuzziness parameter), 

Figure 5: Error Value Decrease in HGA-
FLVQ Model Training using TGS2611 
Sensor Data.
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Table 3. Results of weight calculation and revision of LVQ training.

TGS813  
Sensor

TGS822 
Sensor

TGS2611  
Sensor

1st Iteration

The weight of the negative class −0.051673025 0.26946884 −0.003179715

The weight of the positive class −0.002036426 0.1985224 0.21423542

2nd Iteration

The weight of the negative class −0.0356808 0.28372976 −3.8830974E-4

The weight of the positive class 0.028204879 0.14191468 0.16531087

3rd Iteration

The weight of the negative class −0.0029952978 0.3213401 0.00271485

The weight of the positive class 0.052159406 0.10385808 0.13945574

4th Iteration

The weight of the negative class 0.03716613 0.37145796 0.0097912615

The weight of the positive class 0.062625006 0.088705875 0.1361857

5th Iteration

The weight of the negative class 0.07502196 0.407575 0.017326174

The weight of the positive class 0.06537599 0.080875896 0.12186478

6th Iteration

The weight of the negative class 0.09876694 0.42662817 0.02240251

The weight of the positive class 0.06590489 0.07604013 0.1046309

7th Iteration

The weight of the negative class 0.11628124 0.44089812 0.026141549

The weight of the positive class 0.06780671 0.074578255 0.09289357

8th Iteration

The weight of the negative class 0.12786691 0.44939327 0.02856244

The weight of the positive class 0.06953817 0.07365509 0.08497784

9th Iteration

The weight of the negative class 0.13485843 0.45396066 0.029982805

The weight of the positive class 0.07066574 0.07268719 0.08011716

10th Iteration

The weight of the negative class 0.13828559 0.4564701 0.030701837

The weight of the positive class 0.07150341 0.072542615 0.07794089
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learning-rate factors (alpha), learning-rates, new clus-
ter centers, and an error.

Afterward, the last new cluster centers of each 
sensor data of each class were saved in a memory as 
the results of training. In this research, the results of 
training using the FLVQ method can be seen in Table 4.  
It is shown that the error decreased below 0.0001 
before the 10th iteration. Its reduction in error is rela-
tively faster compared to the LVQ method that needs 
up to the 10th iterations to obtain the stable weight.

The last process in this research was testing the 
HGA-FLVQ model. The testing process of HGA-FLVQ 
model consisted of four steps, namely, reading the 
test data, calculating Euclidean distances to deter-
mine the classes of each relative amplitude item, de-
ciding the classes of each suspect patient, and cal-
culating specificity and sensitivity of the model.

The first process was reading the test data. This 
process read Ar data of every cycle in the electron-
ic-nose response curve resulting from the sensing of 
a sputum sample of each TB-suspected patient.

The second process was determining the class 
classification from every Ar data item. In general, if 

P is denoted as X1, X2, … , Xn and if Q is denoted as 
Y1, Y2, … , Yn, then d(P, Q) could be calculated as in 
Johnson and Winchern, (2011) for each sensor using 
Equation (6). In this research, Pi is a variable, and Pi 
is training datum Ar, Pis are data training Ar from a 
TB-suspected patient. Q1s are the cluster centers 
of the training data resulting from every sensor 
sensing sputum sample of negative ZN staining pa-
tients. Q2s are the cluster centers of the training data  
produced from every sensor sensing sputum sam-
ples of positive ZN staining patients. Then, the total 
number of Euclidian distances between one variable 
Pi and three variables Q1s was compared with the 
total number of Euclidian distances between one var-
iable Pi and three variables Q2s. Then, the value of 
variable d1 was calculated as shown in Equation (7), 
and the value of variable d2 was calculated as shown 
in Equation (8). Then, d1 was compared with d2 to 
determine a prediction class at the variable Pi. If d1 
was lower than d2, then the prediction class at this 
Ar was represented with ‘1’ (negative), but if the re-
sult was contrary or d2 was lower than d1, then the 
prediction class at this Ar was represented with ‘2’ 

Table 4. Results of cluster center revisions of FLVQ training.

Iteration
Fuzziness 
parameter

Learning rate Cluster-Center Error

TGS813 Sensor data

1 1.100590 0.001075 0.001401 0.073105 0.072574 0.004639

2 1.101180 0.001309 0.001160 0.079481 0.068403 0.000058

TGS822 Sensor data

1 1.100590 0.001113 0.001346 0.160899 0.142446 0.004211

2 1.101180 0.001361 0.001012 0.218137 0.103790 0.004771

3 1.101770 0.001516 0.000935 0.236398 0.101749 0.000338

4 1.102360 0.001731 0.000869 0.246578 0.106190 0.000123

5 1.102950 0.001982 0.000817 0.257252 0.110136 0.000129

6 1.103540 0.002266 0.000776 0.268349 0.113576 0.000135

7 1.104130 0.002558 0.000747 0.278854 0.116367 0.000118

8 1.104720 0.002829 0.000726 0.287788 0.118478 0.000084

TGS2611 Sensor data

1 1.100590 0.003575 0.000705 0.040732 0.029254 0.001988

2 1.101180 0.002175 0.000788 0.074589 0.016031 0.001321

3 1.101770 0.002993 0.000715 0.092969 0.017238 0.000339

4 1.102360 0.003588 0.000688 0.101591 0.018471 0.000076
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(positive). This calculation was performed for all Ar 
variables:

d P, Q x y x y x yp p( ) ( ) ( ) ( )= − + − + + −1 1
2

2 2
2 2


	 (6)

d1 d11 P,Q11 d12 P,Q12 d13 P,Q13i i i= + +( ) ( ) ( ) 	 (7)

d2 d21 P,Q21 d22 P,Q22 d23 P,Q23i i i= + +( ) ( ) ( ) 	 (8)

The third process was deciding the classes of 
each suspect patient by adding up the quantity of 
the prediction classes (‘1’ and ‘2’). Then, a level of 
confidence of a new negative class was calculated 
through the number of prediction classes ‘1’ divided 
by the total number of the data Ar of the electron-
ic-nose response curve resulting from the sputum 
sample of each TB-suspected patient. Following this 
process was the calculation of the level of confidence 

of the new positive class, the number of prediction 
classes ‘2’ divided by the total number of the data Ar 
of the electronic-nose response curve resulted from 
the sputum sample of each TB-suspected patient.

If the level of confidence in the new negative class 
is higher than 50%, then the prediction class for the 
sample of the TB-suspected patient is negative. On 
the contrary, if the level of confidence in the new neg-
ative class is below 50%, then the prediction class for 
the sample of the TB-suspected patient is positive. 
If the level of confidence in the new positive class is 
higher than 50%, then the prediction class for the 
sample of the TB-suspected patient is positive. On the 
other hand, if the level of confidence in the new pos-
itive class is below 50%, then the prediction class for 
the sample of the TB-suspected patient is negative.

The fourth process was calculating specificity 
and sensitivity of HGA-FLVQ model using compara-
tor methods. Specificity is the number of negatives 

Table 5. Testing result of a positive ZN staining patient using HGA-FLVQ model.

Amplitude  
order

Target  
class

Class  
distance 1

Class  
distance 2

Prediction  
class

1 2 0.369 0.424 1

2 2 0.357 0.392 1

3 2 0.285 0.238 2

4 2 0.262 0.177 2

5 2 0.337 0.318 2

6 2 0.317 0.150 2

7 2 0.321 0.076 2

8 2 0.310 0.087 2

9 2 0.307 0.090 2

10 2 0.290 0.107 2

11 2 0.286 0.111 2

12 2 0.305 0.092 2

13 2 0.286 0.111 2

14 2 0.284 0.113 2

15 2 0.2880 0.109 2

16 2 0.292 0.105 2

17 2 0.280 0.117 2

18 2 0.288 0.111 2

19 2 0.289 0.112 2

20 2 0.280 0.117 2
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prediction classes as same as the targets (the target 
classes of test data), and the number is divided by 
the quantity of all TB-suspected patients. Then, its re-
sult is multiplied by 100%. Sensitivity is the number 
of positives prediction classes as same as the tar-
gets, and the number is divided by the quantity of all 
TB-suspected patients. Then, its result was multiplied 
by 100%.

Results and discussion

This section explains the result of HGA-FLVQ mod-
el testing and the results of the comparator meth-
ods testing (LVQ method and FLVQ method). These 
models and method testings used data from sensing 
and sampling result of the electronic-nose response 
curve on the vapor of 50 TB-suspected patients’ 
sputum. Table 5 presents the recapitulation of HGA-
FLVQ model testing result of a patient. In Table 5, tar-
get class having value ‘2’ denotes positive ZN stain-
ing, target class having value ‘1’ denotes negative ZN 
Staining, prediction class having value ‘1’ denotes 
negative HGA-FLVQ, and prediction class having val-
ue ‘2’ denotes positive HGA-FLVQ.

The performance of the HGA-FLVQ model was 
measured using a confusion matrix (Smith, 1999) as 
displayed in Table 6. Referring to Table 6, TN denotes 
true negative, FN denotes false negative, TP denotes 
true positive, and FP denotes false positive. Meanwhile, 
‘Yes’ means the presence of bacteria causing TB and 
‘No’ means the absence of bacteria causing TB.

The HGA-FLVQ model yielded 50 predictions from 
50 TB-suspected patients who were tested. Among 
50 cases analyzed using the ZN staining sputum 
method, it turned out that 24 patients were diagnosed 
as positive TB and 26 patients as negative TB. Based 
on the confusion matrix as presented in Table 6,  
some performance rates (Kuhn and Johnson, 2013) 
of the HGA-FLVQ model could be calculated as dis-
played in Table 7.

Based on the testing results displayed in Table 
6, there were five patients with negative ZN staining 
who were diagnosed as positive TB according to 
HGA-FLVQ model analysis. These five patients went 
through a re-examination by ZN staining, and the re-
sults showed that four of them were positive, whereas 
one was negative as displayed in Table 8. Therefore, 
the confusion matrix in Table 6 has been revised as 
shown in Table 9. Similarly, the performance rates of 
HGA-FLVQ model have been edited as shown in the 
third column in Table 14.

Afterward, a confusion matrix is adapted from 
Kuhn and Johnson (2013) and Maysam and Mahdi 
(2016). In this research, the confusion matrixes were 
made based on Tables 10 and 12 to observe LVQ and 
FLVQ method performance. Referring to Tables 10 
and 12, TN denotes true negative, FN denotes false 
negative, TP denotes true positive, and FP denotes 
false positive. Meanwhile, ‘Yes’ means the presence 
of bacteria causing TB and ‘No’ means the absence 
of bacteria causing TB.

Table 6. Confusion matrix of HGA-FLVQ 
model using ZN staining method.

n = 50
Predicted: 

No
Predicted: 

Yes
ZN staining: No TN = 22 FP = 4 26

ZN staining: Yes FN = 1 TP = 23 24

23 27

Table 7. Performance rates of HGA-FLVQ model.

Performance rate Formula Result

Accuracy (TP+TN)/n (23+22)/50 × 100% = 90.00%

Error rate (FP+FN)/n (4+1)/50 × 100% = 10.00%

Sensitivity (true positive rate) TP/ZN Staining Yes 23/24 × 100% = 95.83%

False positive rate FP/ZN Staining No 4/26 × 100% = 15.38%

Specificity (true negative rate) TN/ZN Staining No 22/26 × 100% = 84.62%

Precision TP/Predictive Yes 23/27 × 100% = 85.19%

Prevalence TP/n 23/50 ×100% = 46.00%
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Each of LVQ and FLVQ methods has 50 predic-
tion cases, because there were 50 sputum samples 
of TB-suspected patients tested. The testing results 
of 50 prediction cases using LVQ method are 22 pos-
itive-TB patients and 28 negative-TB patients, as pre-
sented in Table 10. Meanwhile, the testing results of 
50 prediction cases using the FLVQ method are 18 
positive-TB patients and 32 negative-TB patients, as 

shown in Table 12. In comparison, the results of ZN 
staining method testing are 24 positive ZN staining 
patients and 26 negative ZN staining patients.

From Table 10, it can be understood that the LVQ 
method correctly predicted 25 out of 26 negative-TB 
ZN staining, only one of them is false. The LVQ 
method correctly predicted 21 out of 24 positive-TB 
by ZN staining and three of them are false. After a  

Table 13. Final confusion matrix of FLVQ 
method after a re-examination by ZN 
staining.

n = 50
Predicted: 

No
Predicted: 

Yes

ZN Staining: No TN = 22 FP = 4 26

ZN Staining: Yes FN = 7 TP = 17 24

29 21

Table 11. Final confusion matrix of LVQ 
method after a re-examination by ZN 
staining.

n = 50
Predicted: 

No
Predicted: 

Yes
ZN Staining: No TN = 22 FP = 4 26

ZN Staining: Yes FN = 3 TP = 21 24

25 25

Table 12. Confusion matrix of FLVQ 
method using ZN staining as Gold 
standard.

n = 50
Predicted: 

No
Predicted: 

Yes

ZN Staining: No TN = 25 FP = 1 26

ZN Staining: Yes FN = 7 TP = 17 24

32 18

Table 8. Confusion matrix of HGA-FLVQ 
model using ZN staining re-examination.

n = 4
Re-Examination 

ZN Staining: 
No

Re-Examination 
ZN Staining: 

Yes

ZN Staining: 
No

TN = 1 FP = 3 4

ZN Staining: 
Yes

FN = 0 TP = 0 0

1 3

Table 9. Final confusion matrix of 
HGA-FLVQ model after a re-examination 
by ZN staining.

n = 50
Predicted: 

No
Predicted: 

Yes

ZN Staining: No TN = 22 FP = 1 23

ZN Staining: Yes FN = 1 TP = 26 27

23 27

Table 10. Confusion matrix of LVQ 
method using ZN staining as Gold 
standard.

n = 50
Predicted: 

No
Predicted: 

Yes
ZN Staining: No TN = 25 FP = 1 26

ZN Staining: Yes FN = 3 TP = 21 24

28 22
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re-examining for four patients resulting negative-TB 
by ZN staining but positive-TB by the HGA-FLVQ’s 
model, Table 10 has been revised in Table 11. Table 
11 edits that the LVQ method correctly predicted 22 
out of 26 negative-TB by ZN staining.

Table 12 shows that the FLVQ method correctly 
predicted 25 out of 26 negative-TB ZN staining, only 
one of them is false. The FLVQ method accurately pre-
dicts 17 out of 24 positive-TB by ZN staining but 7 of 
those are false. After a re-examining for four patients 
resulting negative-TB by ZN staining but positive-TB 
by HGA-FLVQ’s model, Table 12 has been revised in 
Table 13. Table 13 edits that the LVQ method correctly 
predicts 22 out of 26 negative-TB by ZN staining.

Table 14 lists some variables presented as the 
percentage that was calculated based on the con-
fusion matrix as shown in Tables 11 and 13. It is uti-
lized to observe the performances of the HGA-FLVQ 
model using both comparator methods (LVQ and 
FLVQ methods).

Conclusion

The conclusions of this research are as follows:

1.	� The result of HGA-FLVQ model developed in 
this research is that the model has 96.30% 
sensitivity. The sensitivity of HGA-FLVQ mod-
el is better than sensitivities of two compar-

ator methods; the sensitivity of FLVQ meth-
od is 70.83% and of LVQ method is 87.50%. 
Thus, this developed model is recommended 
for strengthening TB laboratory examination 
in Public Health Centers in Indonesia and for 
complementing sputum ZN staining method 
that has been commonly used.

2.	� The relative amplitudes in the curve of the elec-
tronic-nose sensing results can be used by the 
HGA-FLVQ model to determine the presence of 
Mycobacterium tuberculosis in each TB-sus-
pected patient’s sputum.
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