1,113 research outputs found

    Nanotechnology approaches in the current therapy of skin cancer

    Get PDF
    Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized

    Onco-Receptors Targeting in Lung Cancer via Application of Surface-Modified and Hybrid Nanoparticles: A Cross-Disciplinary Review

    Get PDF
    Lung cancer is among the most prevalent and leading causes of death worldwide. The major reason for high mortality is the late diagnosis of the disease, and in most cases, lung cancer is diagnosed at fourth stage in which the cancer has metastasized to almost all vital organs. The other reason for higher mortality is the uptake of the chemotherapeutic agents by the healthy cells, which in turn increases the chances of cytotoxicity to the healthy body cells. The complex pathophysiology of lung cancer provides various pathways to target the cancerous cells. In this regard, upregulated onco-receptors on the cell surface of tumor including epidermal growth factor receptor (EGFR), integrins, transferrin receptor (TFR), folate receptor (FR), cluster of differentiation 44 (CD44) receptor, etc. could be exploited for the inhibition of pathways and tumor-specific drug targeting. Further, cancer borne immunological targets like T-lymphocytes, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and dendritic cells could serve as a target site to modulate tumor activity through targeting various surface-expressed receptors or interfering with immune cell-specific pathways. Hence, novel approaches are required for both the diagnosis and treatment of lung cancers. In this context, several researchers have employed various targeted delivery approaches to overcome the problems allied with the conventional diagnosis of and therapy methods used against lung cancer. Nanoparticles are cell nonspecific in biological systems, and may cause unwanted deleterious effects in the body. Therefore, nanodrug delivery systems (NDDSs) need further advancement to overcome the problem of toxicity in the treatment of lung cancer. Moreover, the route of nanomedicines’ delivery to lungs plays a vital role in localizing the drug concentration to target the lung cancer. Surface-modified nanoparticles and hybrid nanoparticles have a wide range of applications in the field of theranostics. This cross-disciplinary review summarizes the current knowledge of the pathways implicated in the different classes of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. Furthermore, it focuses specifically on the significance and emerging role of surface functionalized and hybrid nanomaterials as drug delivery systems through citing recent examples targeted at lung cancer treatment.The APC was funded through PHOTO-EMULSION project. Financing entity: European Union H2020-MSCA-ITN-2017

    Dendrimers as Drug Nanocarriers: The Future of Gene Therapy and Targeted Therapies in Cancer

    Get PDF
    Synthetic polymers, such as dendrimers, play a critical role in pharmaceutical discovery and development. Advances in the application of nanotechnology in medicine have given rise to multifunctional “smart” nanocarriers that can deliver one or more therapeutic agents safely and selectively to cancer cells, including intracellular gene-specific targeting. Dendrimers with their 3D nanopolymeric architectures are highly attractive class of drug and gene delivery vector. Advances in understanding and manipulating genes gave scientists a tool to make changes in people DNA to prevent or treat diseases. Over the past decade, gene therapy has been in use in clinical trials. The inactivation of the tumor suppressor genes is the main idea of the development of gene therapy in the cancer treatment. Broad spectrum of delivery concepts, including viral vectors, liposomes, cationic polymers and dendrimers, cell-penetrating peptides and gold and magnetic nanoparticles have been investigated. A well-designed vector is the most desirable approach to increase the safety of gene therapy, which is still in its infancy stages in cancer research. More experimental and clinical trials are focused on well-designed and effective doses of vectors that are essential for therapeutic efficacy of gene therapy for its potential in clinical use against a wide variety of cancers

    Smart systems related to polypeptide sequences

    Get PDF
    Increasing interest for the application of polypeptide-based smart systems in the biomedical field has developed due to the advantages given by the peptidic sequence. This is due to characteristics of these systems, which include: biocompatibility, potential control of degradation, capability to provide a rich repertoire of biologically specific interactions, feasibility to self-assemble, possibility to combine different functionalities, and capability to give an environmentally responsive behavior. Recently, applications concerning the development of these systems are receiving greater attention since a targeted and programmable release of drugs (e.g. anti-cancer agents) can be achieved. Block copolymers are discussed due to their capability to render differently assembled architectures. Hybrid systems based on silica nanoparticles are also discussed. In both cases, the selected systems must be able to undergo fast changes in properties like solubility, shape, and dissociation or swelling capabilities. This review is structured in different chapters which explain the most recent advances on smart systems depending on the stimuli to which they are sensitive. Amphiphilic block copolymers based on polyanionic or polycationic peptides are, for example, typically employed for obtaining pH-responsive systems. Elastin-like polypeptides are usually used as thermoresponsive polymers, but performance can be increased by using techniques which utilize layer-by-layer electrostatic self-assembly. This approach offers a great potential to create multilayered systems, including nanocapsules, with different functionality. Recent strategies developed to get redox-, magnetic-, ultrasound-, enzyme-, light-and electric-responsive systems are extensively discussed. Finally, some indications concerning the possibilities of multi-responsive systems are discussed.Postprint (published version

    Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Get PDF

    Multifunctional dendritic polymers in nanomedicine: opportunities and challenges

    Get PDF
    Nanotechnology has resulted in materials that have greatly improved the effectiveness of drug delivery because of their ability to control matter on the nanoscale. Advanced forms of nanomedicine have been synthesized for better pharmacokinetics to obtain higher efficacy, less systemic toxicity, and better targeting. These criteria have long been the goal in nanomedicine, in particular, for systemic applications in oncological disorders. Now, the “holy grail” in nanomedicine is to design and synthesize new advanced macromolecular nanocarriers and to translate them from lab to clinic. This review describes the current and future perspectives of nanomedicine with particular emphasis on the clinical targets in cancer and inflammation. The advanced forms of liposomes and polyethylene glycol (PEG) based nanocarriers, as well as dendritic polymer conjugates will be discussed with particular attention paid to designs, synthetic strategies, and chemical pathways. In this critical review, we also report on the current status and perspective of dendritic polymer nanoconjugate platforms (e.g. polyamidoamine dendrimers and dendritic polyglycerols) for cellular localization and targeting of specific tissues (192 references)

    Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier based Drug Delivery Systems.

    Full text link
    Cell Signaling pathways form an integral part of our existence, that allows the cells to comprehend a stimulus and respond back. Such reactions, to external cues from the environment, are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people who are asthmatic, 65 million who are suffering from COPD, 2.3 million who are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and nation annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists

    Small interfering RNA for cancer treatment: overcoming hurdles in delivery

    Get PDF
    © 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies

    Cancer Nanomedicine

    Get PDF
    This special issue brings together cutting edge research and insightful commentary on the currentl state of the Cancer Nanomedicine field
    • …
    corecore