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Abstract

Synthetic polymers, such as dendrimers, play a critical role in pharmaceutical discovery 
and development. Advances in the application of nanotechnology in medicine have given 
rise to multifunctional “smart” nanocarriers that can deliver one or more therapeutic 
agents safely and selectively to cancer cells, including intracellular gene-specific target-
ing. Dendrimers with their 3D nanopolymeric architectures are highly attractive class of 
drug and gene delivery vector. Advances in understanding and manipulating genes gave 
scientists a tool to make changes in people DNA to prevent or treat diseases. Over the past 
decade, gene therapy has been in use in clinical trials. The inactivation of the tumor sup-
pressor genes is the main idea of the development of gene therapy in the cancer treatment. 
Broad spectrum of delivery concepts, including viral vectors, liposomes, cationic polymers 
and dendrimers, cell-penetrating peptides and gold and magnetic nanoparticles have been 
investigated. A well-designed vector is the most desirable approach to increase the safety 
of gene therapy, which is still in its infancy stages in cancer research. More experimen-
tal and clinical trials are focused on well-designed and effective doses of vectors that are 
essential for therapeutic efficacy of gene therapy for its potential in clinical use against a 
wide variety of cancers.
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1. Introduction

Cancer is one of the world’s most stressful diseases with no apparent cure in sight for several 

tumor types and millions of new cases reported every year [1]. Cancer chemotherapy using con-

ventional anticancer agents has been slowed down by several challenges such as severe toxicity, 

poor membrane permeability, rapid clearance, and narrow therapeutic index. In this regard, a 

wide range of nanoparticles such as liposomes, polymeric micelles, polymeric nanoparticles, 

dendrimers, silica nanoparticles, and carbon nanotubes with their structural, physicochemical, 

and functional diversity can be utilized to enhance drug loading and enable drug internalization 

in target cancer cells while limiting uptake in normal tissues and cells [2, 3]. The development 

of smart cancer treatment approaches revolves engineering such unique nanosystems carrying 

drug and gene payloads that can passively or/and actively target cancer cells [4]. Gene therapy 

and newer molecular target-based anticancer tactics involve the use of potent but highly labile 

agents such as monoclonal antibodies, aptamers, siRNA and miRNA that are readily degraded 

and/or have limited stability in vivo [5]. The big limitation of conventional anticancer agents is 

a poor therapeutic response and adverse side-effects involving healthy organs [6]. To overcome 

those limitations searching for new effective carrier vectors is very important. They might protect 
the payload from degradation during the transit, enhance targeting efficiency, optimize drug 
release profiles, and reduce the adverse toxic effect caused by the non-target organ accumulation 
of cytotoxic drugs [7–9].

2. Dendrimers

Dendrimers are globular macromolecules sized 1–100 nm with an architecture consisting of 

three distinct domains: a central core, a hyperbranched mantle, and a corona with periph-

eral reactive functional groups [10]. The high level of control over the synthesis of dendritic 

architecture makes dendrimers a nearly perfect (spherical) nanocarrier with predictable 

properties. Many different kinds of dendrimers, including polyamidoamine (PAMAM), 
poly(propylene imine) (PPI), poly(glycerol-co-succinic acid), poly-l-lysine (PLL), melamine, 
triazine, poly(glycerol), poly[2,2-bis(hydroxymethyl)propionic acid], poly(ethylene glycol) 

(PEG), and carbohydrate-based and citric acid-based ones, have been successfully developed 
for drug delivery [11–14]. The most widely investigated vectors for medical application are two 

dendrimers: PAMAM and PPI [15, 16]. Those two amine-terminated dendrimers display stim-

uli-responsive (pH-dependent) drug release behavior. The tertiary amine groups are deproton-

ated at high pH (alkaline), causing a collapse of the dendrimer on itself, which is named ‘back 

folding’ [17]. The utility of dendrimers can be appreciated by their ability to traverse several 

delivery barriers using two overarching principles, namely active and passive tumor targeting.

3. Cancer treatment and limitations of chemotherapy

Surgery and radiation are the main common treatment in solid tumors as soon as they are 

recommended to undertake considering the tumor infiltration. These kinds of treatments are 
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considered as local treatments [18]. As it is well recognized, surgery can be disfiguring and 
radiation can be damaging to local healthy tissues and organs. Chemotherapy is the third option 

in cancer treatment, which is called adjuvant therapy to surgery and radiotherapy. It is based on 

cytotoxic effect (cell-killing therapy). The most desirable effect of chemotherapy is to eliminate 
cancer completely, which is still in most cases the wishful thinking. If such a cure is not pos-

sible, the good result is to even stop the growing tumor [19]. Despite some excellent drugs are 

available, the efficacy of many existing chemotherapeutics is limited by their inability to reach 
their therapeutic site of action in sufficient amounts to be effective [20]. In most cases, patients 

are administered with an excess of medications that are distributed throughout the whole body, 

and thus, it is extremely difficult to avoid distribution into healthy organs and tissues and the 
depression of the immune system. It always gives the limitation of dosage that can be given 

and, in turn, prevents these drugs from achieving the potential cures [21]. Current anticancer 

drugs often have a poor therapeutic index and they cause a lot of side effects [22]. A major con-

cern is when the medications affect non-cancer cells, causing the adverse reduction of red and 
white blood cells, and affecting the gastrointestinal tract triggering nausea and diarrhea  [23]. To 

reduce, or even better to avoid such side effects, the drug delivery to the tumor is optimized by 
preparing carriers containing an active agent associated with a molecule capable to accurately 

target cancer cells such as antibody drug conjugates (ADC) or nanoparticles [24–26].

4. Dendrimers as drug delivery systems

Dendrimers have been engineered as nanodevices, either in nanocarrier drug approaches or 

as drugs per se. The biological effect of dendrimers is caused by terminal moieties and is 
responsible for the global efficiency. Dendrimers due to their proper, reproducible, and opti-
mized design parameters overcoming the physicochemical limitations of classical drugs (for 

example, solubility, specificity, stability, biodistribution, and therapeutic efficiency) are suc-

cessful. They are also able to omit biological problems to reach the right targets such as first-
pass effect, immune clearance, cell penetration, and off-target interactions [27]. Polymers are 
commonly used materials for nanoparticles-based delivery [28], among them dendrimers are 

the ones more commonly used as a non-viral delivery system. The best drug carrier should 

meet several requirements such as drug retention, release the drug, unaffecting by the immune 
system, extending the time in blood circulation, and specific targeting to cells or organs [29]. 

When a drug carrier is applied to the patient and reaches the level of the blood, it starts an 

intricate trip before it is able to reach the destination of the target site. When they attach to the 
target cell membrane, they undergo the endocytosis process. There are several parameters of 

dendrimers that can facilitate the process. We have to emphasize also the impact of the body 

structure including size, shape, additional chemistry on the surface, and mechanical flexibil-
ity [30]. The nanoparticles, due to their size, have a huge impact on the circulation time if they 

are applied intravenously (IV), so they are safe for the smallest capillaries and they are not 

able to clog them [31]. Cellular uptake by phagocytosis and endocytosis is also particle size 

dependent [32, 33]. The unique uniformity of dendrimers gives them the ability to cross the 

membrane of cancer cells. The anticancer drug can be either non-covalently encapsulated in 

the core of the dendrimer or covalently conjugated to its surface, being possible to customize 
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the drug release profiles by controlled depolarization processes [34, 35]. When amphiphilic 

dendrimers with a hydrophobic core and hydrophilic branches encapsulate the anticancer 

drugs, it helps to utilize these dendrimers in local treatments such as intratumoral injections. 

Such a solution helps to solubilize the hydrophobic drugs and leaves the drug unaltered [36]. 

The attachment of anticancer drugs to the surface groups of the dendrimer by covalent chemi-
cal bonds offers also some other advantages compared to the non-covalent encapsulation. 
Besides the enhancement of solubilization of the drugs, it is possible to attach many different 
hydrophobic anticancer drugs, and the controlled release is being maintained [37, 38].

Dendrimers have already been used as passive anticancer nanocarriers [38–41]. There are pre-

clinical promising results in vitro as well as in vivo with active targeting dendrimers [36]. For 

example, antibody-dendrimer conjugates showed better efficacy than free antibodies [42–45]. It 

has been also reported that dendrimers modified with folic acid on the surface generated better 
tumor accumulations that untargeted controls or free drug, producing a stronger reduction of 

the tumor mass [46, 47]. Moreover, sugar-modified PPI dendrimers tested by our research team 
at University of Lodz, Poland, are very attractive and specific for leukemia and lymphoma 
cells derived from lymphocytes B. Depending on the sugar on the surface and the number of 

molecules, we can observe the different extend of triggering apoptosis in those cells due to 
the diversity in affecting particular gene pathways [48–51]. Lysine dendrimers, PAMAM, PPI, 
and phosphorus have been reported to be able to modulate amyloid peptide aggregation in 

solution [52–54]. The deposition of amyloid fibrils is characteristic in neurological disorders as 
well as prion and Alzheimer’s diseases. Some of the positively charged dendrimers could even 

inhibit the growth of amyloid fibrils or even disrupt existing mature of these fibrils. Others 
could decrease the number of toxic amyloid oligomers [55, 56]. The slow translation of preclini-

cal studies to clinical trials may be due to the toxicity of dendrimers [46, 47], with the aim of the 

current research in the development of new biocompatible and less toxic alternatives [57, 58].

Once these molecular machines arrive at the target site inside the living organism, several 

barriers must be overcome. Nanocarriers are usually internalized by endocytic processes [59], 

the processes called vesicular internalization. The most widely studied endocytic pathways 

are clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, 

but other cellular pathways have been recently identified, including clathrin- and caveolae-
independent endocytosis and phagocytosis [60]. Molecules, which are internalized by the cell 

membrane, are endocytosed by the early endosomes pathway. They may progress later to late 

endosomes and lysosomes. If the loading of dendrimer targets the nucleus, thus the nuclear 

membrane is another barrier that the dendrimer should come across [61].

We should be very careful designing the drug delivery system because unexpectedly our 

desired nanovector might have its own power. This is what our genetic research has shown—

4th generation PPI glycodendrimers with maltotriose molecules directly trigger mechanism 
of apoptosis in mitochondria of lymphocytes B, particularly those transformed to the leuke-

mic cells. That discovery was successfully patented (US 9,877,85) and applied as a potential 

drug for lymphoproliferative disorders coming from B cells, such as chronic lymphocytic 

leukemia (CLL) or B-lymphoma. The power of these glycodendrimers relied on the ability 
to affect several genetic pathways simultaneously, and as opposed to the commonly used 
drugs or the new ones already proved by FDA, they affect the cell genome very quickly and 
efficiently according to the natural death process initiation (Figure 1).
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5. Delivery of RNA therapeutics

During the past decades, RNA-based drugs have arisen as good candidates to cure the dis-

eases at the gene and RNA levels. Since 1990, it has been known that nucleic acids can be 

used to modify protein production in vivo [62]. However, therapeutic RNA delivery has been 

limited for a long time by many different factors [63]. It is known that naked, single-stranded 

RNA is easily degraded by nucleases. It can also activate an immune system and is too large to 

be able to passively cross the cell membrane. Moreover, the negative charge of RNA causes the 

problem to enter the cell. Therefore, an additional solution should be provided to facilitate cel-

lular entry and escape from endosomes [63, 64]. Typically, cationic polymers (e.g. dendrimers) 

are used to electrostatically condense the negatively charged RNA into nanoparticles [65]. 

Very important for effective nucleic acid delivery are modifications made to RNA itself [66], to 

make it more resistant to degradation and render them unrecognizable by the immune system 

[67]. RNAs can be modified by means of chemical alterations to the ribose sugar [67, 68], the phos-

phate linkage, and the individual bases [69–72]. One of such modified RNA is locked nucleic 
acid (LNA) modification. LNA’s ribose moiety is modified with an extra bridge between the 
2′ oxygen and 4′ carbon. The bridge “locks” the ribose in the 3′-endo(North) conformation. 

LNA nucleotides can be mixed with DNA or RNA residues in the oligonucleotide whenever 

Figure 1. Mechanism of action—PPI-G4-OS-Mal3 dendrimers in B-lymphocyte (the illustration prepared by B. Ziemba).
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preferred and hybridize with DNA or RNA according to Watson-Crick base-pairing rules. 

Due to the high stability of LNA-RNA it started to be used in a biotechnology field in a phar-

maceutical business [73]. The multi-valent folate (FA)-conjugated 3WJ RNP constructed to 
harbor anti-miR-21 LNA sequences (FA-3WJ-LNA-miR21). Specifically targeted anti-miR-21 
LNA was delivered to glioblastoma cells. It caused the knock down of miR-21 expression in in 

vitro and in vivo models with favorable biodistribution. The results are indicative of the clinical 

benefit of FA-3WJ RNP-based gene therapy for the successful targeted therapy of developing 
and even recurring glioblastoma [74]. In the other study, (LNA)-anti-miR was reported as a 
blockage factor of miR-182-5p in human breast cancer cell line (MCF-7). MTT (3-[4,5 dimeth-

ylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and annexin/propidium iodide stain-

ing at different time points after LNA-anti-miR-182-5p transfection were accomplished. The 
results showed that miR-182-5p inhibition induces apoptosis and thus reduces the viability 

of MCF-7 cells. These results can be used in translational medicine for future investigation in 

breast cancer and approach treatment based on antisense therapy.

siRNA is not the only RNA drug to be examined for protein knockdown at the clinical stage 

(NCT01676259) [75, 76]. Antisense oligonucleotides (ASO) were the first RNA drugs success-

fully reported in clinical trials. They are able to block protein translation through Watson-

Crick base pairing with the target mRNA, similar way to siRNA mechanism, and they can 

also be modified to improve their stability [77–79]. Despite that the ASOs inhibit protein 

production through the sterically blocking ribosome attachment or eliciting RNase-H activa-

tion, they are also able to promote the exon skipping, which may lead to a deletion of faulty 

sequences within proteins and thus it can make a protein upregulation, that can be used in 

diseases where certain genes are repressed [80].

An emerging, but less clinically improved, is microRNA (miRNA) platform for protein knock-

down. Endogenous miRNAs are non-coding RNAs that are regulatory factors for a variety 
of cellular pathways and are often downregulated in diseases [81]. Exogenous mRNAs, or 
miRNA mimics, delivered therapeutically could make a knockdown of several proteins 

simultaneously, which might be very useful in cancer, where having a single disease-relevant 

target is rare [82]. The first miRNA mimic therapy to enter clinical trials was MRX-34—a 
liposomal-encapsulated miRNA mimic from Mirna Therapeutics meant to treat variety of 

cancers [83]. Despite the big number of carriers, mRNA molecules are significantly larger 
than (600–10,000 kDa) than the previously discussed siRNAs (~14 kDa) and ASOs (4–10 kDa), 

which poses an additional challenge for delivery of mRNA therapeutics [84]. Therapeutic 

applications based on mRNA are currently being explored as vaccinations against cancer, 

infectious diseases, and gene editing. Cancer mRNA vaccines have experienced accelerated 

development in cancer immunotherapy. The majority of approaches tested in clinical trials 

employ adoptive transfer of DCs transfected with mRNA coding for tumor-specific antigens 
(TSAs) and immunomodulation of T cells with mRNAs expressing chimeric antigen receptors 

(CARs) or TSAs [85–87].

The most recent and the most sophisticated gene delivery is CRISPR-Cas system that also 
relies on Watson-Crick base-pairing between a single guide RNA (sgRNA) and a correspond-

ing DNA target site followed by a distinct protospacer-adjacent motif (PAM), which is a 3–5 
nucleotide DNA sequence required for binding Cas9 and cleavage of the target sequence.  

Dendrimers - Fundamentals and Applications12



It leads to the double-stranded break (DSB) into a DNA molecule [88]. DSBs can be repaired 

by cells using non-homologous end joining (NHEJ) and homology-directed repair (HDR). 
NHEJ results in insertions and deletions causing permanent gene knockout [89]. CRISPR-
Cas components based on nanoparticle mRNA delivery are therapeutically attractive due to 
the temporary ability of mRNA expression. There is also no risk of genomic integration and 

mRNA cytoplasmic activity, mitigating the need to overcome the nuclear barrier in compari-

son with pDNA [90]. The major challenges for RNA-based drugs and CRISPR-Cas therapies 
will be shaping the scope of upcoming clinical trials.

6. Clinical studies of dendrimers for targeted cancer therapy

To design the most effective and variety therapies for different kinds of cancer, an effective 
vector protecting siRNA that is non-toxic and can be targeted at selected cells is necessary 

[91, 92]. Several classes of dendrimers seem to be good candidates for carriers of oligonucle-

otides. Cationic carbosilane dendrimers (CBD) characterized by Si─O or Si─C bond and ter-

minated with ammonium or amine groups, form also complexes with siRNAs.

There are many reports presenting promising results in the topic of nucleic acids delivery using 

complexes called ‘dendriplexes’ [93–95]. Among variety of proposed candidates, PAMAM 
dendrimers are the most explored dendrimers type, followed by poly(propylene imine) (PPI) 
dendrimers, poly(l-lysine) (PLL) dendrimers, and some others [96].

PAMAM dendrimers, hydrophilic, biocompatible, and non-immunogenic particles, are build 
of ethylenediamine core (most commonly) and methyl acrylate and ethylenediamine branches 

[97, 98]. They have been successfully used as nucleic acid delivery systems in many in vitro 

and in vivo researches of which we present selected examples [107–119].

The transfection efficiency of PAMAM dendrimers largely depends on their generation, 
which determines the structure of the PAMAM molecule: higher generations are more com-

pact and spherical than the low ones and provide a surface with a high density of primary 

amines therefore form more stable dendriplexes with higher efficiency [99, 100]. However, 

dendrimers with high generations results in higher toxicity due to a large number of terminal 

cationic groups which can interact with negatively charged cell components, e.g. cell mem-

branes causing their disruption [101, 102]. This disadvantage can be diminishing by surface 

modification with different targeting or shielding moieties providing with not only low toxic-

ity but also enhance the cell uptake and specific accumulation of nucleic acid molecules inside 
cells [103–106]. For example, novel targeted nanoparticle system consisting of FLT3 ligand-
conjugated PAMAM G7 encapsulating a pivotal tumor suppressor and negative regulator 
of FLT3 miRNA—miR-150, was developed by Jiang et al. [107] to treat FLT3-overexpressing 

acute myeloid leukemia (AML), a leukemia associated with unfavorable prognosis. The sys-

tem demonstrated high efficacy significantly inhibiting progression of FLT3-overexpressing 
AML in vivo with no obvious side effects on normal hematopoiesis. In other research, Liu 
et al. demonstrated that triethanolamine (TEA)-core PAMAM dendrimer is able to deliver 
Hsp27 siRNA effectively to a castrate-resistant prostate cancer model in vitro [108] and in 

vivo [109] and produce potent gene silencing of the heat-shock protein 27 (HSP27), leading 
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to a notable anticancer effect. To further improve the delivery system, the arginine-termi-
nated PAMAM-G4 dendrimers were developed with the aim of combining and harnessing 
the unique siRNA delivery properties of the TEA-core PAMAM dendrimer and the cell- 
penetrating advantages of the arginine-rich motif. The modification led to improved cell 
uptake of siRNA by comparison with non-modified bearing PAMAM-G4 and to yield potent 
gene silencing in human hematopoietic CD34+ stem cells [110] and anticancer effects with no 
discernible toxicity in both in vitro and in vivo models [110, 111]. Another example of a deliv-

ery system where the modification aiming at increasing the efficiency yield is FA-decorated 
PAMAM G4 (G4-FA) used as a vector for local delivery of siRNA against vascular endothelial 
growth factor A (siVEGFA) in a xenograft HN12 tumor mouse model of head and neck squa-

mous cell carcinomas. The G4-FA/siVEGFA complex exhibited high tumor uptake, sustained 
retention properties and pronounced tumor suppression in even single- or two-dose regimen 

studies [112]. Thioaptamer (TA)-modified PAMAM dendrimers, on the other hand, are pro-

posed as effective miRNA deliver system to breast cancer cells constituting a prototype that it 
could be safely used in pre-clinical and clinical research [113].

A frequent way of using dendriplexes in anticancer therapy is to provide them in conjunc-

tion with approved anticancer agents [114–116]. Researchers from Virginia Commonwealth 

University used nanoplexes of PAMAM dendrimer with polyethylene glycol and lactobionic 
acid complexed with AEG-1 siRNA against hepatocellular carcinoma (HCC), a fatal cancer 
with no effective therapy. Applied in the combination with all-trans retinoic acid (ATRA), 
the complex developed a profound and synergistic inhibition in tumor growth in human 

HCC xenografts model suggesting, that combinatorial approach might be an effective way to 
combat resistant types of cancer [117]. Liu et al. used PAPMAM dendrimers as a nanoparticle 
delivery platform for a MDR1 gene targeting siRNA to reverse multidrug resistance (MDR) in 

human breast cancer MCF-7/ADR cells. This PAMAM-siMDR1 complex decorated addition-

ally with phospholipid demonstrated high gene silencing efficiency and enhanced cellular 
uptake of siMDR1 resulting in rising of cellular accumulation of doxorubicin (DOX), inhibi-
tion of the tumor cell migration, and due to synergistic work with paclitaxel (PTX), increase 
of cell apoptosis, and cell phase regulation [118]. More complex system designed in order to 

achieve effective treatment to MDR breast cancer is PAMAM functionalized graphene oxide 
(GO-PAMAM) which can load DOX and MMP-9 shRNA plasmid at the same time [119].

It is still a challenging task to deliver the anticancer drugs to brain tumors and overcome the 

restriction of blood-brain barrier (BBB). He et al. [12] have proposed recently an interesting 

approach. G4.0 PAMAM dendrimers have been conjugated with two targeted ligands—
transferrin and wheat germ agglutinin. Such conjugates were used for crossing the BBB and 

incorporation drugs to brain tumor cells. That dual-targeting drug carrier system allowed 

to deliver successfully DOX inside the brain tumor and provided a potential therapy for 
brain cancer [12].

Dendrimers have been investigated for ophthalmic drug delivery since it offers a number of 
advantages as a carrier system. They may improve effective delivery of therapeutic agents to 
intraocular tissues, such as the retina or choroid, using non-invasive delivery methods. Eye can-

cers are not among the most common but also in this area, scientists have started to look for inspi-

ration in nanoparticles [120]. Kang et al. made a successful single injection of subconjunctival 
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G3.5 PAMAM dendrimer to transgenic murine retinoblastoma with no associated toxicity. The 
higher dose of nanoparticle even could reach and decrease the tumor burden in the untreated, 

contralateral eye [121].

Poly(propylene imine) (PPI) dendrimers are constructed from a 1,4-diaminobutane core and 
propylene imine branches [122]. Positively charged surface of PPI dendrimers provides an 
interaction with nucleic acids, enabling the dendritic scaffold to be used as a vector for gene 
transfection [123].

As in the case of the PAMAM dendrimers, the surface of PPI dendrimers can be freely modi-
fied to reduce their toxicity and increase their uptake by target cells. A small library of alkano-

ate-modified PPI G5 dendrimers was developed and tested for their ability to transfect DNA 
to neuroblastoma Neuro-2a cells. It was shown that a balanced hydrophobic surface modifi-

cation results in improved transfection, low cytotoxicity, and hemotoxicity [124]. Much larger 

modifications of PPI dendrimers in order to increase their efficiency as gene carriers have 
been made by a team of researchers from The State University of New Jersey [123–126]. In 

2009, Taratula et al. modified PPI G5-siRNA complex with dithiol-containing cross-linker 
molecules followed by PEG coating. To direct the complex specifically to the human ovarian 
and lungs cancer cells, an analog of luteinizing hormone-releasing hormone (LHRH) peptide 
was conjugated to the end of PEG. The modification and targeting approach confers the com-

plex stability in plasma and intracellular bioavailability, promoted its tumor-specific uptake 
and accumulation in the cells, and efficient gene silencing. Moreover, in vivo study confirmed 
high specificity of the proposed targeting delivery approach [125]. A year later, the same team 

developed a novel way to compact and deliver nucleic acids with lower, third-generation 

PPI dendrimers by using gold nanoparticles (AuNP) as a “labile catalytic” packaging agents. 
The AuNP helped dendrimers to compact siRNA but were not included in the final com-

plex. The efficiency of mRNA silencing by this approach was even higher than that with PPI 
G5 dendrimers [126]. To further improve the efficiency of investigated delivery systems, the 
authors developed siRNA vectors based on PPI G5 dendrimers and superparamagnetic iron 
oxide nanoparticles, together with incorporation of PEG coating and LHRH conjugation. This 
novel multifunctional siRNA delivery system improved selective internalization into cancer 

cells and increased the efficiency of targeted gene silencing in vitro and sufficiently enhanced 
in vivo activity of anticancer drug—cisplatin [127]. In further studies the team designed a 

drug delivery system (DDS) containing a PPI dendrimer as a carrier and a LHRH peptide as 
a tumor-targeting moiety, siRNA targeted to CD44 mRNA and anticancer drug—PTX. The 
proposed DDS was tested in vitro and in vivo using metastatic ovarian cancer cells. The treat-

ment resulted in suppression of CD44 mRNA and protein expression, induction of cell death 

and tumor melting, and moreover, it was free from adverse side effects [128]. The potential 

of PPI dendrimers as a core of delivery complexes was also investigated in the combination 
therapy against multidrug-resistant breast cancer cells (MCF-7/ADR). Copolymer consist-

ing of PPI dendrimer, Pluronic P123 and anti-CD44 monoclonal antibody (anti-CD44-P123-
PPI) loaded with pDNA-iMDR1-shRNA against MDR1 protein demonstrated high efficiency 
of transfection contributing to increased sensitivity of cancer cells to the DOX. The results 
demonstrated that the administration of anti-CD44-P123-PPI/pDNA-iMDR1-shRNA nano-

complexes combined with DOX inhibit tumor growth more efficiently than DOX alone [129]. 

Poly(propylene imine) (PPI) dendrimers with surface modification with maltose have been 
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tested as drug carriers for nucleoside analog (NA) 5′-triphosphates. The study showed the 
interactions between PPI dendrimers of 3rd (G3) or 4th (G4) generation and cytidine-5′-
triphosphate (CTP) measured by Isothermal Titration Calorimetry method. CTP was used 
as a good representative molecule of pyrimidine nucleoside analog (NA)—cytarabine (ara-

CTP) commonly used in leukemia treatment. Dendriplexes made of PPI dendrimers and NAs 
may help to improve NA limitations such as low solubility and stability or resistance in leu-

kemia cells. The study depicted that dendrimer generation is responsible for the efficiency 
of complex formation. Also a type of surface modification of dendrimer with maltose resi-
dues and a type of solvent used to prepare dendriplexes were evaluated. The results of PPI 
dendrimers creating complexes with CTP were highly efficient that makes them promising 
candidates for a drug delivery system [130]. As soon as we know that cationic nature of PPI 
dendrimers makes it possible to form complexes with nucleotide Ara-C triphosphate forms 

(Ara-CTP), the authors went further to test the concept of applying PPI glycodendrimers as 
a drug delivery system. They wanted to facilitate the delivery of cytarabine to cancer cells to 

overcome metabolic limitations of the drug. As a leukemic cell lines models they used 1301 

and HL-60 as well as peripheral blood mononuclear cells. The enhanced activity of Ara-C 
triphosphate forming (Ara-CTP) complexes with PPI-M dendrimers had been shown. An 
enhanced uptake and cytotoxicity of Ara-CTP-dendriplexes toward 1301 cells with blocked 
human equilibrative nucleoside transporter, hENT1, suggested that it might be a multipur-

pose candidate for resistant acute lymphoblastic leukemia chemotherapy with lower expres-

sion of hENT1 [131]. It has been also reported that PPI-Ma-DS did not impact THP-1 cells 
(monocytic cell line model of innate immunity effectors) viability and growth even at high 
concentrations (up to 100 μM). They also did not induce expression of genes for important 

signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. The high concentrations of 4th gen-

eration PPI-Mal-DS (25–100 μM) induced nuclear translocation of p65 NF-κB protein and 
its DNA-binding activity. It leads to NF-κB-dependent increased expression of mRNA for 
NF-κB targets: IGFBP3, TNFAIP3, and TNF. The 3rd generation of PPI-Mal-DS dendrimers 
did not exert the same effect. There was observed no increase in pro-inflammatory cytokine 
secretion which is a very promising result [132]. PPI-5G dendrimers, similar to PAMAM, also 
possessed the ability to deliver anticancer drugs to brain tumors. Gajbhije and Jain reported 

polysorbate-80-conjugated PPI dendrimers for targeted delivery of docetaxel (DTX) to the 
brain tumor [133]. This complex reduced the tumor volume more than 50% after 1 week of 

treatment. It is because this formulation owing the higher BBB permeability of polysorbate-

80-anchored dendrimers [134]. The other report showed that PPI-5G dendrimers conjugated 
with thiamine exhibited improved delivery of PTX across the BBB and the preferential brain 
uptake of PTX by the nanoconjugates might be attributed to the association with the thiamine 
transporters or increased passive diffusion secondary to an improved concentration gradient 
of the dendrimers located at the BBB interface [135].

Poly(l-lysine) (PLL) dendrimers, amino acid-based macromolecules characterized by high 
biocompatibility and low toxicity, have also been developed as non-viral vectors for gene 

delivery [136–139]. In example, in 2002 it was reported that dendritic PLL G5 and G6 trans-

fected DNA into several different cell lines with high efficiency and without any cytotoxic 
effects [139]. The results of more recent studies confirm previous reports. Newly synthesized 
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siRNA carriers containing amphiphilic PLL dendrons exhibited not only the siRNA binding 
properties but also the ability to inhibit the proliferation of glioblastoma cells while being 

non-toxic for cell types that share the anatomical space with tumor cells during the course of 

the disease [140]. Research on the use of PLL dendritic structures as gene carriers in combina-

tion with traditional anticancer drugs also yields promising results. PLL G3 dendrimers with 
a silsesquioxane cubic core were conjugated with a c(RGDfK) peptide through PEG spacer for 
codelivery of DOX and siRNA to glioblastoma U87 cells. The complex showed high transfec-

tion efficiency and gene silencing and was more toxic to U87 cells than free DOX [141].

7. Concluding remarks

Although conventional chemotherapy has been the cornerstone in the fight against cancer, is 
far from being totally satisfactory due to the problems related with their formulation, pharma-

cokinetics, and the last but not least, severe side effects of such a therapy. Last past decades the 
huge progress has been made in the understanding of the disease, its molecular background and 

development of newer targeted therapies. Unfortunately, an effective treatment of several forms 
of cancer still remains a major challenge. Recent advances in drugs based on dendrimer and gene 

delivery using dendrimers as a vector has appeared as a great option to overcome the limitations 

of conventional chemotherapy. Currently, more than 50% of the cancers are not curable and drug 

nanocarriers might help to decrease this percentage. Nanomedicine represents one of the fastest 

growing research areas and is regarded as one of the most promising tools for cancer treatment. 

Several solutions based on nanoparticles have been developed and many are used in clinical 

cancer care. Liposomes and polymer conjugates were the first nanocarriers to be approved by 
FDA; however, only five liposomal drugs, two polymer-protein conjugates, and two dendrimers 
are in the market up to date. Abraxane®, an albumin-bound paclitaxel nanoparticle, has been 

approved by FDA in 2005 for the treatment of metastatic breast cancer. In 2012 the same drug 

has been approved for the first-line treatment of advanced non-small lung cancer and in 2013 
for the metastatic pancreatic cancer. There was an absence of evidence and guidance, regula-

tory decisions on nanomedicine therapeutics. The FDA collaborates with the Nanotechnology 

Characterization Laboratory (NCL) to facilitate the regulatory review and in-depth characteriza-

tion of nanodrugs in medicine. The European Technology Platform on Nanomedicine (ETPN) 
set up a European Nano-Characterization Laboratory (EU-NCL) as the part of the Horizon2020 
project. The regulatory problems seem to be finally overcome since FDA published the Guidance 
for Industry (‘Drug Products, Including Biological Products, that Contain Nanomaterials’)  
in December 2017 (https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/
Guidances/default.htm). Looking into the future, the use of cancer theragnostics, combining 
anticancer targeted therapy and diagnosis by multifunctional nanoparticles, that combine the 

therapeutic and imaging agent, might be a revolution in the cancer treatment because they allow 

to diagnose, visualize, and kill the cancer cells simultaneously and both treatment and diagnos-

tic in the real time. This is a future of medicine, right now it still seems to be a science-fiction 
movie, but proudly we are coming closer every year to such an amazing progress in diagnostic 

and treatment thanks to the broad usage of nanoparticles and nanotechnology.
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