43 research outputs found

    Determinacy and rewriting of functional top–down and MSO tree transformations

    Get PDF
    A query is determined by a view, if the result of the query can be reconstructed from the result of the view. We consider the problem of deciding for two given (functional) tree transformations, whether one is determined by the other. If the view transformation is induced by a tree transducer that may copy, then determinacy is undecidable. For a large class of noncopying views, namely compositions of extended linear top–down tree transducers, we show that determinacy is decidable, where queries are either deterministic top–down tree transducers (with regular look-ahead) or deterministic MSO tree transducers. We also show that if a query is determined by a view, then it can be rewritten into a query that works over the view and is in the same class of transducers as the query. The proof relies on the decidability of equivalence for the considered classes of queries, and on their composition closure

    Node Query Preservation for Deterministic Linear Top-Down Tree Transducers

    Full text link
    This paper discusses the decidability of node query preservation problems for XML document transformations. We assume a transformation given by a deterministic linear top-down data tree transducer (abbreviated as DLT^V) and an n-ary query based on runs of a tree automaton. We say that a DLT^V Tr strongly preserves a query Q if there is a query Q' such that for every document t, the answer set of Q' for Tr(t) is equal to the answer set of Q for t. Also we say that Tr weakly preserves Q if there is a query Q' such that for every t_d in the range of Tr, the answer set of Q' for t_d is equal to the union of the answer set of Q for t such that t_d = Tr(t). We show that the weak preservation problem is coNP-complete and the strong preservation problem is in 2-EXPTIME.Comment: In Proceedings TTATT 2013, arXiv:1311.505

    Tree Transducers and Formal Methods (Dagstuhl Seminar 13192)

    Get PDF
    The aim of this Dagstuhl Seminar was to bring together researchers from various research areas related to the theory and application of tree transducers. Recently, interest in tree transducers has been revived due to surprising new applications in areas such as XML databases, security verification, programming language theory, and linguistics. This seminar therefore aimed to inspire the exchange of theoretical results and information regarding the practical requirements related to tree transducers

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Playing with Trees and Logic

    Get PDF
    This document proposes an overview of my research sinc

    Equivalence Problems for Tree Transducers: A Brief Survey

    Get PDF
    The decidability of equivalence for three important classes of tree transducers is discussed. Each class can be obtained as a natural restriction of deterministic macro tree transducers (MTTs): (1) no context parameters, i.e., top-down tree transducers, (2) linear size increase, i.e., MSO definable tree transducers, and (3) monadic input and output ranked alphabets. For the full class of MTTs, decidability of equivalence remains a long-standing open problem.Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore