

Edinburgh Research Explorer

Determinacy and rewriting of functional top–down and MSO tree
transformations

Citation for published version:
Benedikt, M, Engelfriet, J & Maneth, S 2017, 'Determinacy and rewriting of functional top–down and MSO
tree transformations' Journal of Computer and System Sciences, vol 85, pp. 57-73. DOI:
10.1016/j.jcss.2016.11.001

Digital Object Identifier (DOI):
10.1016/j.jcss.2016.11.001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Computer and System Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. Mar. 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/151190063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jcss.2016.11.001
https://www.research.ed.ac.uk/portal/en/publications/determinacy-and-rewriting-of-functional-topdown-and-mso-tree-transformations(24fbb40c-d581-476f-961a-820b912f7109).html

Determinacy and Rewriting of Functional
Top-Down and MSO Tree TransformationsI

M. Benedikta, J. Engelfrietb, S. Manethc,∗

aDepartment of Computer Science, University of Oxford, United Kingdom
bLeiden Institute of Advanced Computer Science, Leiden University, The Netherlands

cSchool of Informatics, University of Edinburgh, United Kingdom

Abstract

A query is determined by a view, if the result of the query can be reconstructed
from the result of the view. We consider the problem of deciding for two given
(functional) tree transformations, whether one is determined by the other. If the
view transformation is induced by a tree transducer that may copy, then determi-
nacy is undecidable. For a large class of noncopying views, namely compositions
of extended linear top-down tree transducers, we show that determinacy is decid-
able, where queries are either deterministic top-down tree transducers (with regular
look-ahead) or deterministic MSO tree transducers. We show that if a query is de-
termined by a view, then it can be rewritten into a query working over the view
which is in the same class of transducers as the query. The proof relies on the de-
cidability of equivalence for the considered classes of queries, and on their closure
under composition.

Keywords: view-query determinacy, top-down tree transducers, MSO definable
tree transducers

1. Introduction

Given a transformation between data structures, i.e., a function from data struc-
tures to data structures, a basic question is what sort of information it preserves. In
some contexts, one desires a transformation that is “fully information-preserving”:
one can recover the input structure from the output structure. In other cases it may
be acceptable, or even important, to hide certain pieces of information in the in-
put; but necessarily there is some important information in the input that must be
recoverable from the output. This notion has been studied in the database commu-
nity [1, 2]: a query q is determined by another query v if there exists a function f

IBenedikt and Maneth were supported by the Engineering and Physical Sciences Research Coun-
cil project “Enforcement of Constraints on XML streams” (EPSRC EP/G004021/1).

∗Corresponding author
Email addresses: michael.benedikt@cs.ox.ac.uk (M. Benedikt),

j.engelfriet@liacs.leidenuniv.nl (J. Engelfriet), smaneth@inf.ed.ac.uk (S. Maneth)

Preprint submitted to Elsevier November 18, 2016

such that q = v ◦ f , where ◦ denotes sequential composition, i.e., q(s) = f (v(s)) for
every input s. The query v is referred to as “view”. Note that nothing is said about
how efficiently f can be computed (or if it can be computed at all). We can then
strengthen determinacy by requiring the function f to lie within a certain class R;
then f is a “rewriting in R”. These notions have received considerable attention in
the database setting [1, 2, 3, 4, 5].

In this paper we study determinacy and rewriting for classes of tree transforma-
tions (or, tree translations), as in [6, 7]. Injectivity is undecidable for deterministic
top-down tree transducers [8, 9]; hence, one cannot decide if the identity query
is determined by such a transducer. This even holds for transducers that copy the
input tree only once. Therefore, as in [6, 7], we restrict our attention to views in-
duced by linear tree transducers, i.e., noncopying tree transducers. For the same
reason we restrict to a single view (while in database research, normally multiple
views are considered). Our main result is that determinacy is decidable for views
that are compositions of extended linear top-down tree transducers (with regular
look-ahead) and for queries that are either deterministic top-down tree transducers
(with regular look-ahead) or deterministic mso tree transducers (where mso means
“definable in Monadic Second-Order logic”). Extended transducers generalize the
left-hand sides of conventional finite-state tree transducers, from one input symbol
to an arbitrary “pattern tree”. They were introduced in [10] and have recently been
studied in [11, 12, 13, 14]. Extended linear transducers are convenient because (1)
they are more powerful than ordinary linear top-down or bottom-up transducers
and (2) they allow to elegantly capture the inverses of translations.

As an example of determinacy, consider the transformation v taking binary
trees as input, with internal nodes labeled a, b, c, and leaves labeled l. It relabels
the b nodes as a nodes, and otherwise copies the tree as is. A linear top-down
tree transducer realizing this translation v has a single state p and these translation
rules:

p(a(x, y)) → a(p(x), p(y)) p(b(x, y)) → a(p(x), p(y))
p(c(x, y)) → c(p(x), p(y)) p(l) → l

Let q0 be the identity query, i.e., q0(s) = s for every input tree s. Since information
about the (labels of) b nodes and a nodes is lost in the view v, from the output v(s)
we cannot determine the answer s to the query q0. In contrast, information about
the l nodes and their relationship to c nodes is maintained. Consider, for example,
the following query q1 that removes a and b nodes (and their second subtrees),
realized by the top-down tree transducer with the following translation rules:

p(a(x, y)) → p(x) p(b(x, y)) → p(x)
p(c(x, y)) → c(p(x), p(y)) p(l) → l

Clearly, q1 is determined by v. In fact, q1 = v ◦ f where f is realized by the same
translation rules as q1, minus the rule p(b(x, y))→ p(x). Our algorithm can decide
that q0 is not determined by v and that q1 is.

2

Our decision procedure for determinacy establishes several results that are in-
teresting on their own. For a view v realized by an extended linear top-down tree
transducer, its inverse v−1 is a binary relation on trees. Our approach converts
v−1 into a composition of two nondeterministic translations, a translation τ1 of a
very simple form and a translation τ2 in the same class as v. We then construct
uniformizers u1, u2 of τ1, τ2 and compose them to form a uniformizer u of v−1. A
uniformizer of a binary relation R is a function u such that u ⊆ R and u has the same
domain as R; thus u selects one of the possibly several elements that R associates
with an element of its domain. It is easy to see that a query q is determined by v if
and only if q = v ◦ u ◦ q, where u is any uniformizer of v−1. We show that if q is a
deterministic top-down or mso tree translation, then so is v ◦ u ◦ q. This is achieved
by proving that u1, u2, and v are deterministic top-down and mso tree translations.
Since our two query classes are closed under composition and u = u1 ◦ u2, this
shows that v ◦ u ◦ q is in the same class as q. We then decide q = v ◦ u ◦ q, and
hence determinacy, making use of the decidability of equivalence for deterministic
top-down or mso tree translations ([15, 16] or [17]). The same proof also shows
that if q is determined by v, then u ◦ q is a rewriting belonging to the same class as
the query q.

The results of this paper were first presented at MFCS 2013 (see [18]).

Related Work. The notion of view-query determinacy was introduced by
Segoufin and Vianu in [1]. They focus on relational queries definable in first-order
logic and show that if such queries are determined over arbitrary structures, then
they can be rewritten in first-order logic, but that if they are determined over fi-
nite structures, they may require a much more powerful type of relational query to
be rewritten. Nash, Segoufin, and Vianu [2] summarize a number of other results
on the relational case. Due to the differing data models and notions of equality
used in relational queries and tree transducers, results on determinacy for queries
in the relational case do not (directly) apply to tree transducers, and vice versa. In
the context of unranked trees, determinacy is considered in Groz’s thesis [19] for
XML views and queries, see also [20]. Two notions of determinacy are consid-
ered, depending on whether or not the output trees preserve provenance informa-
tion (i.e., node identities) from the input document. It is shown that both notions of
determinacy are undecidable for views and queries defined using a transformation
language that can select subtrees using regular XPath filters. On the positive side,
it is shown that if the views are “interval-bounded” – there is a bound on the num-
ber of consecutive nodes skipped along a path – then determinacy can be tested
effectively.

The most related work is that of Hashimoto et al. [6, 7], who consider the
determinacy problem (and rewriting) explicitly for tree transducers, in particular
bottom-up tree transducers. They solve the problem for views that are realized by
extended linear bottom-up tree transducers and queries that are realized by bottom-
up tree transducers. Their approach is to decide determinacy by testing functional-
ity of the inverse of the view composed with the query. To this end they generalize

3

the functionality test for bottom-up tree transducers in [21] to extended bottom-up
tree transducers with “grafting” (needed for the inverse of the view). Our main
result generalizes the above result of [6, 7], and provides an alternative proof of
it. In fact, the classes of views and queries for which we can decide determinacy
are larger than those of [6, 7]. In particular, our class of queries is much larger
than their class, as top-down tree transducers and MSO tree transducers are much
more powerful than bottom-up tree transducers (for defining partial functions). As
explained above, for a given view v and query q, rather than testing functionality
of v−1 ◦ q, our approach is to test the equivalence q = v ◦ u ◦ q, where u is a uni-
formizer of v−1. This implies that, for the fixed class of views, our approach is
in fact applicable to any class of queries that has a decidable equivalence problem
and is closed under left-composition with every v and u. This is discussed in more
detail in Section 7.2 and in the Conclusion.

2. Preliminaries

For k ∈ N = {0, 1, . . .} let [k] denote the set {1, . . . , k}. For a binary relation R
we denote by R−1 its inverse {(y, x) | (x, y) ∈ R}. For a set A, R(A) = {y | ∃x ∈ A :
(x, y) ∈ R}, and for an element x, R(x) = R({x}). If R ⊆ B × C for sets B and C,
then the range of R is ran(R) = R(B) and the domain of R is dom(R) = R−1(C). For
two relations R and S we denote their composition “R followed by S ” by R ◦ S ,
i.e., for every element x, (R ◦ S)(x) = S (R(x)). Note that this is in contrast to
the conventional use of ◦. If R,S are classes of binary relations and n ≥ 1, then
R ◦ S = {R ◦ S | R ∈ R, S ∈ S}, Rn = {R1 ◦ · · · ◦ Rn | Ri ∈ R for i ∈ [n]},
R∗ =

⋃
m≥1 R

m, and R−1 = {R−1 | R ∈ R}. A relation R is functional if it is a partial
function, i.e., if R(x) is either empty or a singleton, for every element x. If R is
a class of relations, then fu-R denotes the class of all partial functions in R. The
identity on a set A is the function idA = {(x, x) | x ∈ A}. For a relation R and a set
A, the domain restriction of R to A is idA ◦ R = {(x, y) ∈ R | x ∈ A}, and the range
restriction of R to A is R ◦ idA = {(x, y) ∈ R | y ∈ A}.

Determinacy. We define determinacy and rewritability, following [2]. Let
Q,V be classes of partial functions and let q ∈ Q and v ∈ V. We say that q is
determined by v, if there exists a partial function f such that q = v ◦ f . Note that
the latter means that the domains of q and v ◦ f coincide, and that q(s) = f (v(s))
for each s in that domain. Determinacy for Q under V is the problem that takes
as input q ∈ Q and v ∈ V and outputs “yes” if q is determined by v, and “no”
otherwise. Determinacy says that there is a functional dependency of q on v, with
no limit on how complex it is to reconstruct the answer to q from the answer to
v. A finer notion requires that the reconstruction be in a given class: a class R of
partial functions is complete for V-to-Q rewritings, if for every q ∈ Q and v ∈ V
such that q is determined by v, there is an f ∈ R with q = v ◦ f .

Trees, tree homomorphisms, and tree automata. A ranked alphabet consists
of a finite set Σ together with a mapping rankΣ : Σ → N. We write a(k) to denote

4

that rankΣ(a) = k and define Σ(k) as the set {a ∈ Σ | rankΣ(a) = k}. The set
of (ranked, ordered, node-labeled, finite) trees over Σ, denoted by TΣ, is the set
of strings defined recursively as the smallest set T such that a(s1, . . . , sk) ∈ T if
a ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ T . For a tree a() we simply write a. For a set T ′

of trees, we denote by TΣ(T ′) the smallest set of trees T containing T ′ such that
a(s1, . . . , sk) ∈ T if a ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ T . Thus, TΣ = TΣ(∅). A subset
of TΣ is called a tree language over Σ.

We represent the nodes of a tree as usual by Dewey notation, i.e., by strings
of positive natural numbers. The empty string ε represents the root node and, for
i ∈ N+ = {1, 2, . . . }, vi represents the ith child of the node v. Every node v of a tree
s has a label in Σ, denoted lab(s, v). Formally, the set V(s) ⊆ N∗+ of nodes of the tree
s is inductively defined as: V(s) = {ε} ∪ {iv | i ∈ [k], v ∈ V(si)} if s = a(s1, . . . , sk),
a ∈ Σ(k), and s1, . . . , sk ∈ TΣ; moreover, lab(s, ε) = a and lab(s, iv) = lab(si, v).
The subtree of s rooted at v ∈ V(s) is denoted by s/v; formally, s/ε = s and if
s = a(s1, . . . , sk) then s/iv = si/v. The size of a tree is the number of its nodes.

Let T1, . . . ,Tn be sets of trees. For trees s1, . . . , sn that are not subtrees of each
other, and a tree s, we denote by s[si ← Ti | i ∈ [n]] the set of trees obtained from s
by replacing each occurrence of a subtree si of s by a tree from Ti (where different
occurrences of si need not be replaced by the same tree). If every Ti is a singleton
{ti}, then we write s[si ← ti | i ∈ [n]].

We fix a countably infinite set X = {x1, x2, . . . } of variables, which are assumed
to have rank 0. For k ∈ N, let Xk = {x1, . . . , xk}. A tree s ∈ TΣ(X) is linear if each
variable xi occurs at most once in s. For k ∈ N, an Xk-context (over Σ) is a tree
C in TΣ(Xk) such that each variable xi ∈ Xk occurs exactly once in C. For such a
context C and trees s1, . . . , sk, C[s1, . . . , sk] denotes the tree C[xi ← si | i ∈ [k]].
For a ranked alphabet Q with Q(1) = Q we denote by Q(Xk) the set of trees {q(xi) |
q ∈ Q, i ∈ [k]}.

Let Σ and ∆ be ranked alphabets. A tree homomorphism f from TΣ to T∆ is
given by a mapping that assigns a tree fa ∈ T∆(Xk) to every a ∈ Σ(k), k ≥ 0. The
mapping f is then defined by f (a(s1, . . . , sk)) = fa[xi ← f (si) | i ∈ [k]] for every
a ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ TΣ. The tree homomorphism f is linear if fa
is linear, i.e., each variable xi occurs at most once in fa, nondeleting if every xi,
i ∈ [k], occurs at least once in fa, and nonerasing if fa < Xk, for all a ∈ Σ(k) with
k ≥ 0.

A (deterministic bottom-up) finite tree automaton (fta, for short) over Σ is a
tuple A = (P,Σ, F, δ) where P is a finite set of states, Σ is a ranked alphabet, F ⊆ P
is the set of final states, and δ is the transition function. For every a ∈ Σ(k), k ≥ 0,
and p1, . . . , pk ∈ P, δ(a, p1, . . . , pk) is an element of P. The transition function
δ gives rise to a mapping δ∗ from TΣ to P. It is defined by δ∗(a(s1, . . . , sk)) =

δ(a, δ∗(s1), . . . , δ∗(sk)) for a ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ TΣ. For convenience,
we denote the function δ∗ as well by δ. Thus, for a node v of an input tree s, δ(s/v)
is the state reached by A at node v, when A processes s. The language accepted by
A is L(A) = {s ∈ TΣ | δ(s) ∈ F}. A tree language is regular if it can be accepted by
an fta.

5

We will use the following elementary and well-known fact.

Lemma 1. Let A1, . . . , An be ftas over Σ, n ≥ 1. There exist ftas A′1, . . . , A
′
n over Σ

such that

(1) A′1, . . . , A
′
n have the same set of states and the same transition function, and

(2) L(A′i) = L(Ai) for every i ∈ [n].

Proof. Let Ai = (Pi,Σ, Fi, δi) for every i ∈ [n]. We now define A′i = (P′,Σ, F′i , δ
′)

to be the usual product of Ai and all automata (P j,Σ, P j, δ j) for j , i. That means
that P′ = P1 × · · · ×Pn, F′i = P1 × · · · ×Pi−1 ×Fi ×Pi+1 × · · · ×Pn, and, for a ∈ Σ(k),

δ′(a, (p1,1, . . . , pn,1), . . . , (p1,k, . . . , pn,k)) =

(δ1(a, p1,1, . . . , p1,k), . . . , δn(a, pn,1, . . . , pn,k)).

Thus, A′i ignores all components of a state except the ith. It should therefore be
clear that L(A′i) = L(Ai). �

For an fta A = (P,Σ, F, δ) we extend the transition function δ to trees in TΣ(Xk),
in particular to Xk-contexts, as follows. Let p1, . . . , pk ∈ P. For i ∈ [k], we define
δ(xi, p1, . . . , pk) = pi. For a ∈ Σ(n), n ≥ 0, and s1, . . . , sn ∈ TΣ(Xk), we define
δ(a(s1, . . . , sn), p1, . . . , pk) = δ(a, δ(s1, p1, . . . , pk), . . . , δ(sn, p1, . . . , pk)). Clearly,
for an Xk-context C and trees s1, . . . , sk ∈ TΣ, δ(C[s1, . . . , sk]) = δ(C, p1, . . . , pk)
where δ(si) = pi for i ∈ [k].

Convention: All lemmas, propositions, theorems, etc., stated in this paper
(except in Section 5) are effective.

3. Extended Top-Down Tree Transducers

In this section we define extended top-down tree transducers (with regular look-
ahead), prove a normal form for them, and discuss a number of their properties.
Extended top-down tree transducers are studied in, e.g., [10, 11, 12, 13, 14].

3.1. Definition
An extended top-down tree transducer with regular look-ahead (etR trans-

ducer, for short) is a tuple M = (Q,Σ,∆, I,R, A) where Q is a ranked alphabet
of states all of rank 1, Σ and ∆ are ranked alphabets of input and output symbols,
respectively, I ⊆ Q is the set of initial states, A = (P,Σ, F, δ) is an fta called the
look-ahead automaton, and R is a finite set of rules of the form

q(C)→ ζ 〈p1, . . . , pk〉

where q ∈ Q, k ≥ 0, C , x1 is an Xk-context over Σ, ζ ∈ T∆(Q(Xk)), and
p1, . . . , pk ∈ P. For every state q ∈ Q we define the q-translation [[q]]M ⊆ TΣ × T∆

as follows. For an input tree s ∈ TΣ, the q-translation [[q]]M(s) of s is the small-
est set of trees T ⊆ T∆ such that for every rule q(C) → ζ 〈p1, . . . , pk〉 and all

6

s1, . . . , sk ∈ TΣ, if s = C[s1, . . . , sk] and δ(si) = pi for every i ∈ [k], then T contains
the set of trees

ζ[q′(xi)← [[q′]]M(si) | q′ ∈ Q, i ∈ [k]].

The translation [[M]] realized by M is the binary relation

{(s, t) ∈ TΣ × T∆ | s ∈ L(A), t ∈ ∪q∈I[[q]]M(s)}.

The class of all translations realized by etR transducers is denoted etR (and simi-
larly for other types of transducers). Two etR transducers M1 and M2 are equiva-
lent if [[M1]] = [[M2]].

Since we do not allow the left-hand side of a rule to be of the form q(x1) with
q ∈ Q, the application of a rule always consumes part of the input tree, i.e., our etR

transducers are “epsilon-free” (cf. [11, 12, 14]).
The etR transducer M is linear (or noncopying), if the right-hand side ζ of

each rule is linear, i.e., each variable xi occurs at most once in ζ. We use “l” to
abbreviate “linear”, i.e., an eltR transducer is a linear etR transducer, and so eltR

is the class of translations realized by linear etR transducers.
Transducers without look-ahead are defined by transducers with a trivial one-

state look-ahead automaton (accepting TΣ); this is indicated by omitting the super-
script “r” for transducers and classes. In the notation for such transducers we omit
the look-ahead automaton and we omit the sequence of look-ahead states at the end
of each rule.

The etR transducer M is an (ordinary, not extended) top-down tree transducer
with regular look-ahead (tR transducer) if the left-hand side context C of each of
its rules contains exactly one symbol in Σ, more precisely, each rule is of the form
q(a(x1, . . . , xk))→ ζ 〈p1, . . . , pk〉 with a ∈ Σ(k) and k ≥ 0.

A tR transducer M is finite-copying (a tRfc transducer) if each input node is
translated only a bounded number of times. Formally this means there exists a
number K such that for every p ∈ P, s ∈ TΣ({�}), and t ∈ [[Mp]](s), if � occurs
exactly once in s, then � occurs ≤ K times in t; here we assume that � is a new
input and output symbol of rank 0, and that Mp is M extended with the look-ahead
transition δ(�) = p and the rules q(�)→ � for every state q.

A tR transducer is deterministic if it has exactly one initial state and for each
q, a, and 〈p1, . . . , pk〉 it has at most one rule as above. Determinism is denoted by
the letter “d”, thus we have dtR and dtRfc transducers. Note that their translations
are functional.

Example 2. Let Σ = ∆ = {a(3), b(2), e(0)}. We will define an eltR transducer M =

(Q,Σ,∆, I,R, A) such that

[[M]] = {(a(b(s1, s2), b(s3, s4), e) , a(s1, s2, s3)) | s1, s2, s3, s4 ∈ T{b,e}}.

This translation cannot be realized by an ltR transducer (as can easily be shown
using the proof of [12, Lemma 4.7] and the fact that ltR is closed under com-
position [22, Theorem 2.11]). We first define the look-ahead automaton of M.

7

Let A = (P,Σ, F, δ) with P = F = {p, p} and with δ(e) = p, δ(b, p, p) = p and
δ(. . .) = p in all remaining cases. Thus, for s ∈ TΣ, δ(s) = p if s ∈ T{b,e}, and
δ(s) = p otherwise. The set of states of M is Q = {q0, q}, where q0 is the unique
initial state, i.e., I = {q0}. The rules of M are defined as follows. First, R contains
the rule

q0(a(b(x1, x2), b(x3, x4), e))→ a(q(x1), q(x2), q(x3)) 〈p, p, p, p〉.

Second, R contains the rules q(b(x1, x2))→ b(q(x1), q(x2)) 〈p′, p′′〉 for all p′, p′′ ∈
{p, p}, and the rule q(e) → e. Clearly, [[q]]M is the identity on T{b,e}, and [[M]] =

[[q0]]M is the required translation. �

3.2. Dead Ends

In this subsection we prove a simple normal form for etR transducers, to be
used in the proofs of Lemmas 25 and 34. We will need the following elemen-
tary fact, that allows us to add as much regular look-ahead information to an etR

transducer as we wish. It is an obvious extension of Lemma 1.

Lemma 3. Let M = (Q,Σ,∆, I,R, A1) be an etR transducer, and let A2, . . . , An be
ftas over Σ, n ≥ 2. There exist an etR transducer M′ = (Q,Σ,∆, I,R′, A′1) and ftas
A′2, . . . , A

′
n over Σ such that

(1) A′1, A
′
2, . . . , A

′
n have the same set of states and the same transition function,

(2) L(A′i) = L(Ai) for every i ∈ [n],
(3) [[q]]M′ = [[q]]M for every q ∈ Q, and [[M′]] = [[M]], and
(4) if M is an eltR transducer, a tR transducer, or a tRfc transducer, then so is M′.

Proof. Let Ai = (Pi,Σ, Fi, δi) for every i ∈ [n]. We define A′i = (P′,Σ, F′i , δ
′) as in

the proof of Lemma 1 (with P′ = P1 × · · · × Pn).
Moreover, if q(C) → ζ 〈p1, . . . , pk〉 is a rule of M, then the set R′ of rules of

M′ contains all rules q(C) → ζ 〈p′1, . . . , p′k〉 such that the first component of p′i is
pi for every i ∈ [k]. Thus, M′ ignores all components of a look-ahead state except
the first.

It should be clear that M′ and A′2, . . . , A
′
n as defined above, satisfy the require-

ments. For the finite-copying property, note that [[M′(p1,...,pn)]](s) = [[Mp1]](s) for all
pi ∈ Pi and s ∈ TΣ({�}). �

An etR transducer M is without dead ends if the following holds for every rule
q(C) → ζ 〈p1, . . . , pk〉, every q(xi) that occurs in ζ (with q ∈ Q and i ∈ [k]), and
every s ∈ TΣ: if δ(s) = pi, then s ∈ dom([[q]]M). Intuitively this means that M does
not have unsuccessful computations.

Lemma 4. For every etR transducer M there is an equivalent etR transducer M′

without dead ends. If M is an eltR, tR, or tRfc transducer, then so is M′. Moreover,
if M has exactly one initial state, then so does M′.

8

Proof. Let M = (Q,Σ,∆, I,R, A) with A = (P,Σ, F, δ). Since dom([[q]]M) is a
regular tree language for every q ∈ Q (because etR = tR by Lemma 11 and the
domain of a tR translation is regular by [22, Corollary 2.7]), it is easy to transform
M into M′ by adding appropriate look-ahead information, as follows.

For every q ∈ Q, let Aq = (P,Σ, Fq, δ) be an fta such that L(Aq) = dom([[q]]M).
Note that by Lemma 3 we can assume that these automata and the automaton A
have the same set of states and the same transition function. We let M′ be the etR

transducer (Q,Σ,∆, I,R′, A), where R′ is the set of rules q(C) → ζ 〈p1, . . . , pk〉 in
R such that if q(xi) occurs in ζ then pi ∈ Fq.

It should be clear that [[M′]] = [[M]]. Obviously, if M is an eltR, tR, or tRfc
transducer, then so is M′. For the finite-copying property, note that [[M′p]](s) ⊆
[[Mp]](s) for every p ∈ P and s ∈ TΣ({�}). �

Example 5. Let Σ = ∆ = {a(1), b(0), c(0)}. Let A = (P,Σ, F, δ) be the fta with
P = {pe, po} and F = {pe} such that, for s ∈ TΣ, δ(s) = pe if and only if the number
of a’s in s is even. We define an ltR transducer M = (Q,Σ,∆, I,R, A) such that

[[M]] = {(a2nb, a2nb) | n ≥ 0} ∪ {(a2nc, c) | n ≥ 0}.

Let Q = I = {qb, qc}, and let R contain the rules qb(b) → b and qc(c) → c, and for
every p ∈ {pe, po} the rules qb(a(x1))→ a(qb(x1)) 〈p〉 and qc(a(x1))→ qc(x1) 〈p〉.
Clearly dom([[qb]]M) = T{a,b} and dom([[qc]]M) = T{a,c}. So, M is not without dead
ends; for instance, the computation of M with input tree a(a(c)) that starts in initial
state qb is unsuccessful.

Now let B be the fta with two states pb and pc, both final, such that δB(anb) = pb

and δB(anc) = pc for every n ≥ 0 (where δB is the transition function of B), and
let A′ be the usual product of A and B (see the proof of Lemma 1). Moreover,
let M′ = (Q,Σ,∆, I,R′, A′) be the ltR transducer with the rules qb(b) → b and
qc(c) → c, and for every p ∈ {pe, po} the rules qb(a(x1)) → a(qb(x1)) 〈(p, pb)〉 and
qc(a(x1)) → qc(x1) 〈(p, pc)〉. It is easy to see that M′ is equivalent to M and that
M′ is without dead ends. �

3.3. Properties
One of the two classes of queries that we are interested in, is dtR. We will need

the following two basic results. The first is from [22, Theorem 2.11], the second is
proved in [15] (see also [16]).

Proposition 6. dtR is closed under composition.

Proposition 7. It is decidable for two dtR transducers whether they are equivalent.

As we will show in Section 5, determinacy is undecidable if the view transduc-
ers copy. Therefore, when we prove determinacy results in Section 7, we define
views using linear transducers. To be precise,

the class of views that we are interested in, is fu-(eltR)∗,

9

i.e., the class of all partial functions that are compositions of translations in eltR.
This class properly contains fu-eltR by the proof of Theorem 5.2 of [12] (see also
the proof of Theorem 34 of [14]). It will follow from Proposition 6 and Corol-
lary 33 (in Section 6.3) that the class of views fu-(eltR)∗ is properly contained in
the class of queries dtR.

From [11, Theorem 17] we recall a useful characterization of eltR as a class
of so-called bimorphisms. We note that in [11] the class eltR is denoted l-xtopRef,
where “ef” stands for “epsilon-free”.

Proposition 8. eltR is the class of all tree translations {(f (r), g(r)) | r ∈ R} where
f is a linear nondeleting nonerasing tree homomorphism, g is a linear tree homo-
morphism, and R is a regular tree language.

From this proposition we obtain some basic properties of eltR. They are imme-
diate from the fact that the class of regular tree languages is closed under inverse
tree homomorphisms, intersection, and linear tree homomorphisms (noting that
{(f (r), g(r)) | r ∈ R} = f −1 ◦ idR ◦ g).

Corollary 9. If τ ∈ eltR and R is a regular tree language, then τ(R) and τ−1(R) are
regular tree languages. In particular, dom(τ) and ran(τ) are regular tree languages.

For the next corollary we observe that if τ = {(f (r), g(r)) | r ∈ Rτ}, then its
domain restriction to the set R is

idR ◦ τ = {(f (r), g(r)) | r ∈ Rτ ∩ f −1(R)},

and its range restriction to R is

τ ◦ idR = {(f (r), g(r)) | r ∈ Rτ ∩ g−1(R)}.

Corollary 10. If τ ∈ eltR and R is a regular tree language, then idR ◦ τ and τ ◦ idR

are in eltR.

It is shown in [12, Theorem 4.8] that etR = tR. The importance of extended
top-down tree transducers is that in the linear case they are more powerful than
ordinary top-down tree transducers, i.e., ltR (eltR, see Lemmas 4.6 and 4.7 of
[12] (and Example 2). Here we show, using the construction in the proof of [12,
Theorem 4.8] that eltR is included in tRfc (as already observed before [11, Theo-
rem 19]). The inclusion is proper by Corollary 9 because tRfc contains translations
that do not preserve regularity.

Lemma 11. etR = tR and eltR (tRfc.

Proof. We use the construction in the proof of [12, Theorem 4.8], in our termi-
nology, for an etR transducer M = (Q,Σ,∆, I,R, A) with A = (P,Σ, F, δ). Let
C ⊆ TΣ(X) be the finite set of contexts in the left-hand sides of the rules in R, and

10

let V be the set of all nodes of subtrees of those contexts, i.e., the union of all
V(C/v) with C ∈ C and v ∈ V(C). For an Xk-context C ∈ C and p1, . . . , pk ∈ P, let
AC,p1,...,pk be an fta over Σ such that

L(AC,p1,...,pk) = {C[s1, . . . , sk] | si ∈ TΣ, δ(si) = pi for i ∈ [k]}.

Since C and P are finite, Lemma 1 shows that there exist ftas A′ = (P′,Σ, F′, δ′)
and A′C,p1,...,pk

= (P′,Σ, FC,p1,...,pk , δ
′) such that L(A′) = L(A) and L(A′C,p1,...,pk

) =

L(AC,p1,...,pk). Note that these automata have the same set of states P′ and the same
transition function δ′.

We now construct the tR transducer M′ = (Q×V,Σ,∆, I × {ε},R′, A′) with the
following rules.

(i) If q(C)→ ζ 〈p1, . . . , pk〉 is a rule in R and C = a(C1, . . . ,Cm) with a ∈ Σ(m),
m ≥ 0, and C1, . . . ,Cm ∈ TΣ(Xk), then R′ contains all rules

〈q, ε〉(a(x1, . . . , xm))→ ζ′ 〈p′1, . . . , p′m〉

such that δ′(a, p′1, . . . , p′m) ∈ FC,p1,...,pk and

ζ′ = ζ[q′(xi)← 〈q′, v〉(x j) | q′ ∈ Q, i ∈ [k], j ∈ [m], v ∈ V(C j), lab(C j, v) = xi].

Note that since C is an Xk-context, j and v are uniquely determined by i.
(ii) If a ∈ Σ(m), m ≥ 0, and 〈q, iv〉 ∈ Q × V with i ∈ [m] and v ∈ N∗+, then R′

contains all rules

〈q, iv〉(a(x1, . . . , xm))→ 〈q, v〉(xi) 〈p′1, . . . , p′m〉

with p′1, . . . , p′m ∈ P′. Thus, the look-ahead is irrelevant for these rules.
It should be intuitively clear that M′ is equivalent to M. In fact, it is straight-

forward to show by induction on the structure of s ∈ TΣ that [[〈q, v〉]]M′(s) =

[[q]]M(s/v) if v ∈ V(s) and [[〈q, v〉]]M′(s) = ∅ otherwise. Hence [[〈q, ε〉]]M′(s) =

[[q]]M(s) for every q ∈ I; since L(A′) = L(A), this shows that [[M′]] = [[M]].
It remains to prove that M′ is finite-copying if M is linear. Let K ∈ N+ be such

that if q(C) → ζ 〈p1, . . . , pk〉 is a rule of M, then k ≤ K. Consider 〈q, v〉 ∈ Q ×V,
p ∈ P′, s ∈ TΣ({�}) with one occurrence of �, and t ∈ [[〈q, v〉]]M′p(s). We claim
that the number of occurrences of � in t is

(1) ≤ K if v ∈ V(s) and � occurs in s/v
(2) = 0 if v ∈ V(s) and � does not occur in s/v, and
(3) = 1 if v < V(s) and v has a prefix w such that lab(s,w) = �.

Note that if v < V(s) and v has no prefix w with lab(s,w) = �, then [[〈q, v〉]]M′p(s) =

∅ (by the rules of M′ of type (ii)). Note also that (again by the rules of M′ of
type (ii)) if v ∈ V(s), then t ∈ [[〈q, ε〉]]M′p(s/v). That proves Claim (2). We prove
Claims (1) and (3) by induction on the structure of s. If s = � then t = �, and so
the claims are true. Now let s = a(s1, . . . , sm) with a ∈ Σ(m), m ≥ 0.

11

We first consider the case that v , ε, i.e., v = iv′ with i ∈ [m] and v′ ∈ N∗+. By
a rule of type (ii), t ∈ [[〈q, v′〉]]M′p(si). Clearly, if v and s satisfy the conditions of
Claim (1), then so do v′ and si, and hence Claim (1) is true by induction. The same
holds for Claim (3).

It remains to consider the case that v = ε, for which we only have to prove
Claim (1). Let 〈q, ε〉(a(x1, . . . , xm))→ ζ′ 〈p′1, . . . , p′m〉 be the rule of M′ of type (i)
that is applied to s to obtain t, constructed from a rule q(C) → ζ 〈p1, . . . , pk〉

of M. Let 〈q′1, v1〉(x j1), . . . , 〈q′n, vn〉(x jn) be all occurrences of subtrees of ζ′ in
(Q × V)(Xm). Note that since M is linear, n ≤ k ≤ K. We also observe that all
sequences jrvr, r ∈ [n], are different and, in fact, no such sequence is a prefix of
another one, because they are different leaves of C (with label in Xk). So, there are
t1, . . . , tn such that t = ζ′[〈q′r, vr〉(x jr) ← tr | r ∈ [n]] and tr ∈ [[〈q′r, vr〉]]M′p(s jr) for
every r ∈ [n]. We now consider two subcases.

Case 1: There is no r ∈ [n] such that vr ∈ V(s jr) and � occurs in s jr/vr. Then,
by induction, the number of occurrences of � in tr is ≤ 1 by Claims (2) and (3),
and so the number of occurrences of � in t is ≤ n ≤ K.

Case 2: There exists r0 ∈ [n] such that vr0 ∈ V(s jr0
) and � occurs in s jr0

/vr0 .
Then � occurs in s/ jr0vr0 and so we obtain by the above observation, for every
r , r0, that � does not occur in s jr/vr (if vr ∈ V(s jr)) and vr has no prefix w such
that lab(s jr ,w) = � (if vr < V(s jr)); hence, by induction, � does not occur in tr by
Claim (2). By induction and Claim (1), tr0 has at most K occurrences of �, and
hence so has t. �

Example 12. Consider the eltR transducer M = (Q,Σ,∆, I,R, A) of Example 2.
Let B be the fta with states pa, pb, pe, all final, such that, for all s1, s2, s3 ∈ TΣ,
δB(a(s1, s2, s3)) = pa, δB(b(s1, s2)) = pb, and δB(e) = pe. Let A′ be the usual
product of A and B, with set of states P′. Then an equivalent tRfc transducer M′ =

(Q′,Σ,∆, I′,R′, A′) has set of states Q′ = {q0, q, q1, q2}, with I′ = I = {q0}, where
q0 and q stand for 〈q0, ε〉 and 〈q, ε〉, and qi stands for 〈q, i〉. Moreover, M′ has the
rule

q0(a(x1, x2, x3))→ a(q1(x1), q2(x1), q1(x2)) 〈(p, pb), (p, pb), (p, pe)〉,

for all p′, p′′ ∈ P′ the rules

q1(b(x1, x2)) → q(x1) 〈p′, p′′〉,
q2(b(x1, x2)) → q(x2) 〈p′, p′′〉,
q(b(x1, x2)) → b(q(x1), q(x2)) 〈p′, p′′〉,

and the rule q(e)→ e. �

Since our views are taken from the class fu-(eltR)∗, the next proposition is
relevant.

Proposition 13. For an eltR transducer M it is decidable whether [[M]] is func-
tional.

12

Proof. By Lemma 11, etR = tR. The result follows because functionality is de-
cidable for tR transducers by [15] (see the sentence after Theorem 8 of [15]).
�

However, we do not know whether functionality is decidable for the composi-
tion of the translations realized by a given sequence of eltR transducers. On the
other hand, we will show in Corollary 36 (in Section 6.3) that our class fu-(eltR)∗ is
in fact equal to the class (fu-eltR)∗ of compositions of functional eltR translations.
Thus, sequences of functional eltR transducers form an effective representation of
the class of views fu-(eltR)∗. We observe also that three such transducers suffice:
it is shown in [14] that (eltR)∗ = (eltR)3.

We finally note that, by [14, Lemma 15], (eltR)∗ = elt∗ and hence our class
fu-(eltR)∗ of views equals fu-elt∗.

4. MSO Definable Tree Translations

A deterministic mso graph transducer is a device that transforms graphs by us-
ing formulas from monadic second-order logic to define the output graph in terms
of a finite number of copies of the input graph. For a formal definition see, e.g.,
[23, Chapter 7] where it is called a parameterless monadic second-order definition
scheme. We say that it is a deterministic mso tree transducer (dmsot transducer) if
it transforms trees into trees, see, e.g., [23, Chapter 8]. We note that the translation
realized by a dmsot transducer is functional. The class dmsot of these transla-
tions is the second of the two classes of queries that we are interested in. It is
investigated, e.g., in [24, 25, 26, 27].1 It is incomparable with the class of queries
dtR.

We will only need the following three results on dmsot. The first result is easy
to prove, but also follows from [25, Theorem 7.1]. The second result is well known,
see, e.g., [23, Theorem 7.14]. The third result is from [17, Corollary 10].

Proposition 14. dtRfc ⊆ dmsot.

It is proved in [26, Theorem 7.4] that, in fact, dtRfc is the intersection of our two
classes of queries, i.e., dtRfc = dtR ∩ dmsot.

Proposition 15. dmsot is closed under composition.

It will follow from Propositions 14, 15 and Corollary 33 (in Section 6.3) that
our class of views fu-(eltR)∗ is properly contained in the class of queries dmsot.

Proposition 16. It is decidable for two dmsot transducers whether they are equiv-
alent.

1In [24, 25, 26] the class contains total functions only, and is denoted mso-tt or msott.

13

5. Undecidability Results

The simplest kind of query is the identity on the set of inputs. Let id denote
the class of translations that are the identity on TΣ, for any ranked alphabet Σ. As
observed in [6], a function v is injective if and only if q is determined by v, where
q is the identity on dom(v). Since the injectivity problem for tree homomorphisms
is undecidable by [9], one obtains (as stated in [6, Theorem 17]) undecidability of
the determinacy problem for id under hom, where hom ⊆ dt is the class of tree
homomorphisms.

The tree homomorphisms used in the proof of [9] are not linear, and hence they
are not even finite-copying. Here we show that determinacy is already undecidable
for identity queries if the view makes at most one copy of the input tree. To be pre-
cise, we show that determinacy is undecidable for id under views that are realized
by what we will here call “total copy-once” dt transducers (t-dtco transducers).
A dt transducer M is total if for each state q ∈ Q and input symbol a ∈ Σ(k),
k ≥ 0, it has a rule with left-hand side q(a(x1, . . . , xk)). For such a transducer,
dom([[M]]) = TΣ. It is copy-once if for every rule q(a(x1, . . . , xk))→ ζ,

• the initial state q0 of M does not occur in ζ,
• if q = q0 then each variable xi occurs at most twice in ζ, and
• if q , q0 then ζ is linear.

Thus the transducer copies at most once, at the root of the input tree. The undecid-
ability of injectivity for nontotal dtco transducers was proved by Ésik in [8], and
in his PhD thesis (in Hungarian). Our proof for total dtco transducers is a slight
variation of Ésik’s proof.

Theorem 17. Determinacy for id under t-dtco is undecidable.

Proof. We use an encoding of the Modified Post Correspondence Problem (mpcp).
An instance of this problem consists of two sequences of strings (α1, . . . , αn) and
(β1, . . . , βn), n ≥ 1, and it has a solution if there exist numbers i1, . . . , ik ∈ [n], k ≥ 0,
such that the strings α1αi1 · · ·αik and β1βi1 · · · βik are equal. It is well known to be
undecidable whether an mpcp instance has a solution. Let Ω be the ranked alphabet
consisting of all symbols that appear in the strings αi and βi, where each symbol
has rank one. For a string α = a1 · · · am and a tree t, we write α(t) to mean the tree
a1(a2(· · · am(t) · · ·)). We define the t-dtco transducer M = (Q,Σ,∆, {q0},R) where
Q = {q0, qa, qb, qid}, Σ = {i(1) | i ∈ [n]} ∪ {a(1), b(1), e(0)}, and ∆ = Σ ∪ Ω ∪ { f (2)}.
The state qid realizes the identity on TΣ; for every σ ∈ Σ(k), k ≥ 0, it has the
rule qid(σ(x1, . . . , xk)) → σ(qid(x1), . . . , qid(xk)) in R. For i ∈ [n] we define the
following rules in R.

q0(i(x1)) → i(qid(x1)) qa(i(x1)) → αi(qa(x1))
q0(e) → e qb(i(x1)) → βi(qb(x1))
q0(a(x1)) → f (qid(x1), α1(qa(x1))) qu(v(x1)) → e for all u, v ∈ {a, b}
q0(b(x1)) → f (qid(x1), β1(qb(x1))) qu(e) → e for all u ∈ {a, b}

14

The transducer M translates every input tree of which the root is not labeled by a
or by b into itself. It translates every input tree ai1 · · · ik(s) where the root of s ∈ TΣ

is not a number, into f (i1 · · · ik(s), α1αi1 · · ·αik (e)), and similarly for b and βi j . This
implies that the given mpcp instance has no solution if and only if [[M]] is injective
if and only if the identity idTΣ

is determined by [[M]], and hence it is undecidable
whether idTΣ

is determined by [[M]]. �

Since, obviously, every dtco transducer is a dtfc transducer, and dtfc is (ef-
fectively) included in dmsot by Proposition 14, Theorem 17 immediately gives
undecidability of determinacy for id under dmsot, which slightly strengthens The-
orem 19 of [6] (where the identities on all regular tree languages are allowed as
query).

One often considers that a query q is determined by a finite tuple of views
F = (v1, . . . , vn). The extended definition states that q is determined by F if it
is determined by the single view v̄, where v̄(s) = (v1(s), . . . , vn(s)) for every input
s. In this case one has undecidability even when the views are total deterministic
finite-state string transformations. In fact, for a pair of views F = (v1, v2) consist-
ing of two total deterministic finite-state string transducers v1 and v2, the proof is
the same as for Theorem 17, but producing the ith branch of the output tree by the
view vi. Thus, in what follows we consider only a single noncopying view.

6. Inverses and Uniformizers of Linear Transducers

As Theorem 17 shows, determinacy cannot be decided under view transducers
that copy, not even for a single initial copy at the root of the input tree. We therefore
restrict our attention to linear view transducers. In the first two subsections of this
section we consider arbitrary linear transducers. In the third subsection, and in
Section 7, we restrict attention to functional linear translations.

Let τ and u be translations (i.e., binary relations). We say that u is a uniformizer
of τ if u ⊆ τ and dom(u) = dom(τ). Note that, for technical reasons, in this
definition we do not require u to be a function (as we did in the Introduction).
We will, however, be mainly interested in functional uniformizers. The notion of
uniformizer is relevant for deciding whether a query q is determined by a view v.

Lemma 18. Let q, v, u be partial functions such that u is a uniformizer of v−1.
Then, q is determined by v if and only if q = v ◦ u ◦ q.

Proof. If q = v ◦ u ◦ q, then q = v ◦ f where f is the partial function u ◦ q.
So, q is determined by v. Vice versa, if q = v ◦ f for a partial function f , then
v ◦ u ◦ q = v ◦ u ◦ v ◦ f = v ◦ f = q because u ◦ v is the identity on ran(v).2 �

2We know that u ⊆ v−1 and dom(u) = dom(v−1). Since ran(u) ⊆ ran(v−1) = dom(v), we have
that dom(u ◦ v) = dom(u) = dom(v−1) = ran(v). Also, if (x, y) ∈ u ◦ v, then (x, y) ∈ v−1 ◦ v and so
x = y because v is functional. Hence u ◦ v is the identity on ran(v).

15

Example 19. Consider the view v = [[M]] where M is the eltR transducer of Ex-
ample 2, i.e.,

v = {(a(b(s1, s2), b(s3, s4), e) , a(s1, s2, s3)) | s1, s2, s3, s4 ∈ T{b,e}}.

Let q be the query

q = {(a(b(s1, s2), b(s3, s4), e) , b(s1, s1)) | s1, s2, s3, s4 ∈ T{b,e}}.

Using the construction in the proof of Lemma 11 it is easy to see that q ∈ dtRfc
and hence q is in both dtR and dmsot. Clearly, q is determined by v; for example,
q = v ◦ f where

f = {(a(s1, s2, s3) , b(s1, s1)) | s1, s2, s3 ∈ TΣ}.

A functional uniformizer of v−1 is

u = {(a(s1, s2, s3) , a(b(s1, s2), b(s3, e), e)) | s1, s2, s3 ∈ T{b,e}}.

Note that u ∈ lt, as can easily be verified. Note also that u ◦ v = idran(v) where
ran(v) = {a(s1, s2, s3) | s1, s2, s3 ∈ T{b,e}}. Obviously,

u ◦ q = {(a(s1, s2, s3) , b(s1, s1)) | s1, s2, s3 ∈ T{b,e}}

and q = v ◦ (u ◦ q). �

6.1. Inverses

Because of Lemma 18, we are interested in uniformizers of inverse views.
Thus, given an eltR transducer M, we would like to construct a transducer real-
izing its inverse [[M]]−1. Since M can translate the set of all input trees in TΣ to a
single output tree, a transducer realizing [[M]]−1 may need to translate a tree back
to any tree in TΣ. This is not possible by our extended top-down tree transduc-
ers because the height of an output tree is linearly bounded by the height of the
input tree. The next, easy lemma “factors out” this problem by decomposing an
eltR transducer into a component that can be inverted as an elt transducer, and a
component of a very simple form: a “projection”.

Let n-elt denote the class of nondeleting nonerasing elt transducers: those in
which every rule is of the form q(C) → ζ such that each variable in Xk occurs in
ζ and ζ < Q({x1}). The phrase “nondeleting” indicates that we do not drop any
input xi, thus “deleting” an entire subtree from the input. The phrase “nonerasing”
indicates that we do not have a rule such as q(a(x1, b)) → q′(x1), which “erases”
the symbols a and b.

Let ∆ be a ranked alphabet and let H be a ranked alphabet disjoint from ∆ with
H(0) = ∅, i.e., each symbol of H has rank at least 1. The projection from ∆ ∪ H to
∆ is the tree homomorphism π∆,H = π : T∆∪H → T∆ such that πh = x1 for every

16

h ∈ H and πd = d(x1, . . . , xk) for every d ∈ ∆(k).3 We denote by proj the class of
all projections.

Lemma 20. eltR ⊆ n-elt ◦ proj.

Proof. It is proved in [10] (where n-elt is denoted tid) that Proposition 8 holds for
n-elt when g is also required to be nondeleting and nonerasing. Thus, it suffices
to prove that every linear tree homomorphism g can be decomposed into g′ ◦ π,
where g′ is a linear nondeleting nonerasing tree homomorphism and π ∈ proj. As
shown in Lemma I-2-1-3-5 of [28] we can take the ranked alphabet H = {#(n)

n |

1 ≤ n ≤ m + 1}, where m is the maximal rank of the symbols in Σ, and we can
define g′a = #n+1(ga, xi1 , . . . , xin) for every a ∈ Σ(k), k ≥ 0, where xi1 , . . . , xin are the
variables from Xk that do not occur in ga. It should be clear that g = g′ ◦ π∆,H . �

It is easy to see that n-elt is closed under inverse. In fact, as shown in [10],
one just “inverts” the rules of the given transducer.

Lemma 21. n-elt−1 ⊆ n-elt.

Proof. A rule of an n-elt transducer M is of the form

q(C)→ C′[q1(x1), . . . , qk(xk)]

where C and C′ are Xk-contexts , x1 (and q, q1, . . . , qk ∈ Q). An n-elt trans-
ducer realizing [[M]]−1 is obtained from M by changing each such rule into the rule
q(C′)→ C[q1(x1), . . . , qk(xk)]. �

The previous two lemmas give us the next corollary.

Corollary 22. (eltR)−1 ⊆ proj−1 ◦ elt.

Example 23. Let M be the eltR transducer of Example 2. Then [[M]] = [[M′]] ◦
π∆,H where H = {#(2)

2 } and M′ is the elt transducer with the rule

q0(a(b(x1, x2), b(x3, x4), e))→ #2(a(q(x1), q(x2), q(x3)), q(x4))

and the rules q(b(x1, x2)) → b(q(x1), q(x2)) and q(e) → e. Then we obtain that
[[M]]−1 = π−1

∆,H ◦ [[M′′]] where M′′ is the elt transducer with the rule

q0(#2(a(x1, x2, x3), x4))→ a(b(q(x1), q(x2)), b(q(x3), q(x4)), e)

and the same rules q(b(x1, x2))→ b(q(x1), q(x2)) and q(e)→ e. �

3Thus, π(h(s1, . . . , sk)) = π(s1) for h ∈ H(k) and π(d(s1, . . . , sk)) = d(π(s1), . . . , π(sk)) for d ∈ ∆(k),
for all k ≥ 0 and s1, . . . , sk ∈ T∆∪H .

17

6.2. Uniformizers

We say that the sequence τ1, . . . , τn of translations is compatible if ran(τi) ⊆
dom(τi+1) for every i ∈ [n − 1].

Lemma 24. If u1, . . . , un are uniformizers of τ1, . . . , τn, respectively, and the se-
quence τ1, . . . , τn is compatible, then u1 ◦ · · · ◦ un is a uniformizer of τ1 ◦ · · · ◦ τn.

Proof. Obviously u1 ◦ · · · ◦ un ⊆ τ1 ◦ · · · ◦ τn. Since the sequence τ1, . . . , τn is
compatible, dom(τ1 ◦ · · · ◦ τn) = dom(τ1). Since ran(ui) ⊆ ran(τi) ⊆ dom(τi+1) =

dom(ui+1), the sequence u1, . . . , un is also compatible and so dom(u1 ◦ · · · ◦ un) =

dom(u1). This shows that dom(u1 ◦ · · · ◦ un) = dom(τ1 ◦ · · · ◦ τn). �

For classes T ,U of translations we say that T has uniformizers in U if for
every τ ∈ T we can construct a uniformizer u of τ such that u ∈ U.

Our goal in this subsection is to show that (eltR)∗ and ((eltR)∗)−1 have uni-
formizers in (dtRfc)∗. We do this by decomposing into compatible translations, con-
structing uniformizers in dtRfc for them, and then obtaining a uniformizer in (dtRfc)∗

by Lemma 24. A similar idea was used in [29] to obtain uniformizers in dtR for
compositions of top-down and bottom-up tree translations. Note that dtR is closed
under composition by Proposition 6; in fact, dtRfc is also closed under composition
(see, e.g., [30, Theorem 5.4]), but this fact will not be needed in this paper.

We start with a slight generalization of the Lemma in [29] (which says that t
has uniformizers in dtR).

Lemma 25. tR has uniformizers in dtR, and tRfc has uniformizers in dtRfc.

Proof. Let M = (Q,Σ,∆, I,R, A) be a tR transducer. Obviously, we may assume
that I is a singleton (as required for determinism).4 By Lemma 4 we may also
assume that M is without dead ends. Suppose that M has two rules

q(a(x1, . . . , xk))→ ζi 〈p1, . . . , pk〉,

for i = 1, 2 with ζ1 , ζ2, and let M′ be obtained from M by removing one of these
rules. Since M is without dead ends, [[q]]M′ is a uniformizer of [[q]]M for every
q ∈ Q.5 Hence [[M′]] is a uniformizer of [[M]], and M′ is still without dead ends.
Repeating this process, one finally obtains a dtR transducer M′′ such that [[M′′]]
is a uniformizer of [[M]]. The construction obviously preserves the finite-copying
property. �

The next result is immediate from Lemmas 11 and 25.

4Introduce a new state q0 (which is the unique new initial state), and for every rule q(C) →
ζ 〈p1, . . . , pk〉 where q is an old initial state, add the rule q0(C)→ ζ 〈p1, . . . , pk〉.

5Recall that, by definition, a uniformizer need not be functional.

18

Corollary 26. eltR has uniformizers in dtRfc.

Theorem 27. (eltR)∗ has uniformizers in (dtRfc)∗.

Proof. Let τ1, . . . , τn be eltR translations. We define eltR translations ρ1, . . . , ρn

such that ρ1 ◦ · · · ◦ ρn = τ1 ◦ · · · ◦ τn and the sequence ρ1, . . . , ρn is compatible.
We let ρn = τn, and for i ∈ [n − 1] we let ρi be the range restriction τi ◦ idR of τi

to R = dom(ρi+1). The language R is regular by Corollary 9, and τi ◦ idR is in eltR

by Corollary 10. We obtain uniformizers in dtRfc for the ρi by Corollary 26, and a
uniformizer for ρ1 ◦ · · · ◦ ρn in (dtRfc)∗ by Lemma 24. �

We now turn to the inverses of the translations in (eltR)∗. Since the relation “is
a uniformizer of” is transitive, it suffices to show that ((eltR)∗)−1 has uniformizers
in (eltR)∗.

An fta transducer is an fta A, seen as a tree transducer realizing the translation
[[A]] = idL(A), which is the identity on L(A); composing a tree translation τ with
[[A]] amounts to restricting the range of τ to L(A): τ ◦ [[A]] = {(s, t) ∈ τ | t ∈ L(A)}.

Lemma 28. proj−1 ◦ fta has uniformizers in lt.

Proof. Let τ = π−1 ◦ [[A]] where π ∈ proj and A is an fta transducer. Thus,
π = πΣ,H for disjoint ranked alphabets Σ and H such that H(0) = ∅, and A is
an fta (Q,Σ ∪ H, F, δ). Let C be the set of all X1-contexts C over Σ ∪ H such
that the left-most leaf of C has label x1 and all the ancestors of this leaf have
labels in H. Note that π(C[t]) = π(t) for every C ∈ C and t ∈ TΣ∪H . For every
a ∈ Σ(k) and q, q1, . . . , qk ∈ Q, let C(a, q, q1, . . . , qk) be the set of all C ∈ C such
that δ(C[a(x1, . . . , xk)], q1, . . . , qk) = q.6 Let C0(a, q, q1, . . . , qk) be one (fixed) such
C – since the set C(a, q, q1, . . . , qk) is effectively regular,7 one can always compute
such an element C if the set is nonempty. If there does not exist such a C then
C0(a, q, q1, . . . , qk) is undefined.

We now construct an lt transducer M such that [[M]] is a uniformizer of τ. We
define M = (Q,Σ,Σ ∪ H, F,R′) where R′ consists of all rules

q(a(x1, . . . , xk))→ C0(a, q, q1, . . . , qk)[a(q1(x1), . . . , qk(xk))]

such that C0(a, q, q1, . . . , qk) is defined. Intuitively, for s ∈ TΣ, M simulates top-
down the state behavior of A on some tree t in π−1(s) and, at each node of s, outputs
a context in C on which A has the same state behavior as on the context in C that is
“above” the corresponding node in t. Formally, the correctness of the construction
follows from the following two claims, in which q ∈ Q, s ∈ TΣ, and t ∈ TΣ∪H .
Claim 1. If t ∈ [[q]]M(s), then π(t) = s and δ(t) = q.

6Recall again that the transition function δ was extended to contexts at the end of Section 2.
7It is the intersection of the regular tree language C with the tree language accepted by the fta

(Q,Σ ∪ H ∪ {x1}, {q}, δ′) where δ′ extends δ with δ′(x1) = δ(a, q1, . . . , qk).

19

The proof is by structural induction on s. If s = a(s1, . . . , sk), then, by the above
rule, t = C[a(t1, . . . , tk)] where C = C0(a, q, q1, . . . , qk) and ti ∈ [[qi]]M(si) for every
i ∈ [k]. By induction, π(ti) = si and δ(ti) = qi. Then π(t) = π(a(t1, . . . , tk)) =

a(π(t1), . . . , π(tk)) = s and δ(t) = δ(C[a(x1, . . . , xk)], q1, . . . , qk) = q.
Claim 2. If δ(t) = q, then π(t) ∈ dom([[q]]M).
The proof is by induction on the size of t. Clearly, t is of the form C[a(t1, . . . , tk)] for
(unique) C ∈ C, k ≥ 0, a ∈ Σ(k) and t1, . . . , tk ∈ TΣ∪H . Let qi = δ(ti) and si = π(ti)
for i ∈ [k]. By induction, si ∈ dom([[qi]]M), i.e., there exists t′i ∈ [[qi]]M(si). Let s =

a(s1, . . . , sk), so π(t) = s. Then, by the above rule, C0(a, q, q1, . . . , qk)[a(t′1, . . . , t
′
k)]

is in [[q]]M(s), and so s ∈ dom([[q]]M). Note that C0(a, q, q1, . . . , qk) is defined
because C ∈ C(a, q, q1, . . . , qk): δ(C[a(x1, . . . , xk)], q1, . . . , qk) = δ(t) = q.

Taking q ∈ F, Claim 1 shows that [[M]] ⊆ τ, and Claim 2 shows that dom([[M]])
equals dom(τ) (in fact, if s ∈ dom(τ) then there exists t such that s = π(t) and
δ(t) = q ∈ F, and so s ∈ dom([[q]]M) ⊆ dom([[M]])). Hence [[M]] is a uniformizer
of τ. �

Lemma 29. (eltR)−1 has uniformizers in elt2.

Proof. Let τ ∈ (eltR)−1. By Corollary 22, τ = τ1 ◦ τ2 with τ1 ∈ proj
−1 and

τ2 ∈ elt. By Corollary 9 we can construct an fta A such that L(A) = dom(τ2). Then
τ = τ1 ◦ [[A]] ◦ τ2 and the translations τ1 ◦ [[A]], τ2 are compatible (by definition of
A). For τ1 ◦ [[A]] ∈ proj−1 ◦ fta we obtain, by Lemma 28, a uniformizer u1 in elt.
Then u1 ◦ τ2 is a uniformizer in elt2 for τ by Lemma 24. �

Theorem 30. ((eltR)∗)−1 has uniformizers in (eltR)∗.

Proof. The proof is analogous to the one of Theorem 27. Let τ1, . . . , τn be eltR

translations. We define eltR translations ρi such that ρ−1
1 ◦ · · · ◦ρ

−1
n = τ−1

1 ◦ · · · ◦τ
−1
n

and the sequence ρ−1
1 , . . . , ρ−1

n is compatible, i.e., ran(ρ−1
i) ⊆ dom(ρ−1

i+1). We let
ρn = τn, and for i ∈ [n − 1] we let ρi be the domain restriction idR ◦ τi of τi to
R = ran(ρi+1). The language R is regular by Corollary 9, and idR ◦ τi is in eltR

by Corollary 10. We obtain uniformizers in elt2 for the ρ−1
i by Lemma 29, and a

uniformizer in (eltR)∗ for ρ−1
1 ◦ · · · ◦ ρ

−1
n by Lemma 24. �

The next corollary is immediate from Theorems 27 and 30.

Corollary 31. ((eltR)∗)−1 has uniformizers in (dtRfc)∗.

Example 32. We continue Example 23. Recall that M′′ is the elt transducer with
the rule

q0(#2(a(x1, x2, x3), x4))→ a(b(q(x1), q(x2)), b(q(x3), q(x4)), e)

and the rules q(b(x1, x2))→ b(q(x1), q(x2)) and q(e)→ e. The domain of [[M′′]] is

dom([[M′′]]) = {#2(a(s1, s2, s3), s4) | s1, s2, s3, s4 ∈ T{b,e}}.

20

Clearly, dom([[M′′]]) = L(A) where A = (Q,∆ ∪ H, F, δ) with Q = {q, qa, q f , q},
F = {q f }, and δ(e) = q, δ(b, q, q) = q, δ(a, q, q, q) = qa, δ(#2, qa, q) = q f and
δ(. . .) = q in the remaining cases. With the terminology of the proof of Lemma 28,
it is easy to see that C(a, q f , q, q, q) = {#2(x1, s) | s ∈ T{b,e}} and so we can take
C0(a, q f , q, q, q) = #2(x1, e). Also, C0(b, q, q, q) = C0(e, q) = x1. From this we
obtain that a uniformizer u1 of π−1

∆,H ◦ [[A]] is realized by the (deterministic) lt
transducer with the rule

q f (a(x1, x2, x3))→ #2(a(q(x1), q(x2), q(x3)), e)

and the rules q(b(x1, x2)) → b(q(x1), q(x2)) and q(e) → e. Then a (functional)
uniformizer u of [[M]]−1 = π−1

∆,H ◦ [[M′′]] in elt2 is u = u1 ◦ [[M′′]]. Composing the
translations of the two transducers, it is clear that

u = {(a(s1, s2, s3) , a(b(s1, s2), b(s3, e), e)) | s1, s2, s3 ∈ T{b,e}}.

Thus, for the view v = [[M]], u is a uniformizer of v−1, as already observed in
Example 19. �

6.3. The Class of Views
As observed before, our class of views is fu-(eltR)∗. It is immediate from

Theorem 27 that every such view is in (dtRfc)∗, as stated in the next corollary.8

Corollary 33. fu-(eltR)∗ ((dtRfc)∗.

In view of Theorem 27 and Corollary 31, a natural question to ask now is
whether (eltR)∗ and ((eltR)∗)−1 have uniformizers in fu-(eltR)∗. We prove a
slightly stronger statement. We first strengthen Corollary 26.

Lemma 34. eltR has uniformizers in fu-eltR.

Proof. Let M = (Q,Σ,∆, I,R, A) be an eltR transducer, with A = (P,Σ, F, δ). The
proof is similar to the one of Lemma 25, but more complicated. As in that proof,
we may assume that I is a singleton and, by Lemma 4, that M is without dead ends.

We will construct an eltR transducer M′ that simulates M and, at each moment
of a computation, applies exactly one of the applicable rules of M. Since M is
without dead ends, this ensures that [[M′]] is a functional uniformizer of [[M]]. We
fix an arbitrary linear order on the rules of M. The transducer M′ will always pick
the first applicable rule of M, in this order.

Let C ⊆ TΣ(X) be the finite set of contexts in the left-hand sides of the rules of
M. As in the proof of Lemma 11, for an Xk-context C ∈ C and p1, . . . , pk ∈ P, let
AC,p1,...,pk be an fta over Σ such that

L(AC,p1,...,pk) = {C[s1, . . . , sk] | si ∈ TΣ, δ(si) = pi for i ∈ [k]}.

8The inclusion is proper by Corollary 9, because dtR
fc contains translations that do not preserve

regularity.

21

It follows from Lemma 1 that there exist ftas A′ = (P′,Σ, F′, δ′) and A′C,p1,...,pk
=

(P′,Σ, FC,p1,...,pk , δ
′) such that L(A′) = L(A) and L(A′C,p1,...,pk

) = L(AC,p1,...,pk).
These automata have the same set of states P′ and the same transition function
δ′.

We now define the eltR transducer M′ = (Q,Σ,∆, I,R′, A′) with the following
set of rules R′. A rule q(C) → ζ 〈p′1, . . . , p′k〉 is in R′ if and only if there is a rule
q(C)→ ζ 〈p1, . . . , pk〉 in R such that

• δ′(C, p′1, . . . , p′k) ∈ FC,p1,...,pk ,
9 and

• there is no smaller (in the given order) rule q(C)→ ζ 〈p1, . . . , pm〉 in R such
that q = q and δ′(C, p′1, . . . , p′k) ∈ FC,p1,...,pm

.

It should be clear that M′ satisfies the requirements. Formally, it is straightforward
to show for every q ∈ Q and s ∈ TΣ that [[q]]M′(s) ⊆ [[q]]M(s) and that [[q]]M′(s) is a
singleton if [[q]]M(s) , ∅ (by induction on the size of s). Since I is a singleton, this
shows that [[M′]] is a functional uniformizer of [[M]]. �

The next corollary strengthens Theorem 27. Its proof is the same as the one of
Theorem 27, using Lemma 34 instead of Corollary 26.

Corollary 35. (eltR)∗ has uniformizers in (fu-eltR)∗.

As a direct consequence of Corollary 35 we obtain that our class of views
equals (fu-eltR)∗, as already observed in Section 3.

Corollary 36. fu-(eltR)∗ = (fu-eltR)∗.

Note that, since (eltR)∗ = (eltR)3 by [14] and, clearly, (eltR)3 has uniformizers
in (fu-eltR)3, we have that fu-(eltR)∗ = (fu-eltR)3.

Similarly to Corollary 35, we strengthen Corollary 31 in the next corollary. It
follows immediately from Theorem 30 and Corollary 35.

Corollary 37. ((eltR)∗)−1 has uniformizers in (fu-eltR)∗.

7. Decidability of Determinacy and Rewriting

Consider a query q, a view v, and a uniformizer u of v−1, each of them being a
partial function. By Lemma 18, q is determined by v if and only if q = v◦u◦q. For
queries in dtR or dmsot, equivalence is decidable and they are effectively closed
under left composition with dtRfc. Thus, if v and u are in (dtRfc)∗, then we can decide
determinacy. This holds for the views in the class (eltR)∗. In fact, if v is in this
class, then v−1 has a uniformizer u in (dtRfc)∗ by Corollary 31, and v itself is in
(dtRfc)∗ by Corollary 33.

The main results of this paper are presented in the next three theorems.

9Recall again that the transition function was extended to contexts at the end of Section 2.

22

Theorem 38. Determinacy is decidable for dtR and for dmsot under fu-(eltR)∗.

Proof. Let v ∈ fu-(eltR)∗. By Corollary 33, v is in (dtRfc)∗, effectively.10 By Corol-
lary 31, one can construct (transducers for) a uniformizer u ∈ (dtRfc)∗ of v−1. If a
query q is a dtR (dmsot) translation, then so are u◦q and v◦u◦q, by Propositions 6,
14 and 15, effectively. We can decide if q = v ◦ u ◦ q (i.e., if q is determined by v
by Lemma 18) because equivalence is decidable for dtR and dmsot transducers by
Propositions 7 and 16. �

The proof of Theorem 38 also proves the next theorem (taking f = u ◦ q).

Theorem 39. Let V = fu-(eltR)∗, v ∈ V, and let q be a dtR (dmsot) translation
such that q is determined by v. A dtR (dmsot) translation f can be constructed such
that q = v ◦ f . That is, dtR and dmsot are complete forV-to-dtR andV-to-dmsot
rewritings, respectively.

As defined in [3], a classQ of queries (and views) admits view-based rewritings
if Q is complete for Q-to-Q rewritings, i.e., for every q ∈ Q and v ∈ Q such that q
is determined by v, there is an f ∈ Q with q = v ◦ f . Intuitively this means that
the query language Q has the nice property that it need not be extended to allow
rewriting of queries with respect to views.11 In the next theorem we show that,
considered as a class of (linear) queries, the class fu-(eltR)∗ admits view-based
rewritings. Recall that fu-(eltR)∗ is a subclass of both classes of queries dtR and
dmsot (effectively), by Corollary 33 and Propositions 6, 14, and 15.

Theorem 40. Let V = fu-(eltR)∗. Determinacy is decidable for V under V.
Moreover,V is complete forV-to-V rewritings.

Proof. The first statement is a special case of Theorem 38. To prove the second
statement, let q, v ∈ V such that q is determined by v. By Corollary 37, v−1 has a
uniformizer u ∈ V. Then, by Lemma 18, q = v ◦ f with f = u ◦ q ∈ V. �

7.1. Weakly Determined Queries

A query q is determined by a view v if there exists a partial function f such
that q = v ◦ f . For practical purposes, this could be weakened to q ⊆ v ◦ f . For
a given input s, one first checks if s ∈ dom(q), and if so, obtains q(s) as f (v(s)).
We say that q is weakly determined by v if there exists a partial function f such
that q ⊆ v ◦ f . As an example consider q = {(1, 1)} and v = {(1, 1), (2, 1)}. Then
q is not determined by v, but is weakly determined by v. Let Q,V,R be classes

10This means that if v = [[M1]] ◦ · · · ◦ [[Mk]] for given eltR transducers M1, . . . ,Mk, then one can
construct dtR

fc transducers M′
1, . . . ,M

′
n such that v = [[M′

1]] ◦ · · · ◦ [[M′
n]].

11Similarly, in the other direction, it is nice when Q is closed under composition: for every view
v ∈ Q and every query q ∈ Q “on that view”, the “viewless” query v◦q is in Q. In this case one could
say that Q admits removal of views. This holds for dtR, dmsot and fu-(eltR)∗.

23

of partial functions. We say that R is complete for weak V-to-Q rewritings, if for
every q ∈ Q and v ∈ V such that q is weakly determined by v, there is an f ∈ R
with q ⊆ v ◦ f .

We now show that our main results also hold for weak determinacy and weak
rewritings. Clearly, q is weakly determined by v if and only if q is determined by
the domain restriction idR◦v of v to R = dom(q), with the same functions f involved.
For q ∈ dtR, dom(q) is effectively regular by [22, Corollary 2.7]; the same holds
for q ∈ dmsot because dom(q) is mso definable by definition, and hence regular
by [31, 32]. And if v ∈ fu-(eltR)∗, then idR ◦ v is in fu-(eltR)∗ for every regular
tree language R, by Corollary 10. This shows that Theorems 38 and 39 also hold
for weak determinacy.

Corollary 41. LetV = fu-(eltR)∗. Weak determinacy is decidable for dtR and for
dmsot underV. The classes dtR, dmsot, andV are complete for weakV-to-dtR,
weakV-to-dmsot, and weakV-to-V rewritings, respectively.

7.2. Extended Bottom-Up Tree Transducers

Finally, we compare our results with those in [6, 7]. The views in that paper
are (partial functions) realized by extended linear bottom-up tree transducers, and
the queries are realized by (ordinary) bottom-up tree transducers.

An extended bottom-up tree transducer (eb transducer, for short) is a tuple
M = (Q,Σ,∆, F,R) where Q is a ranked alphabet of states all of rank 1, Σ and ∆

are ranked alphabets of input and output symbols, respectively, F ⊆ Q is a set of
final states, and R is a finite set of rules of the form

C[q1(x1), . . . , qk(xk)]→ q(ζ)

where k ≥ 0, C , x1 is an Xk-context over Σ, q1, . . . , qk, q ∈ Q, and ζ ∈ T∆(Xk). For
every state q ∈ Q we define the q-translation [[q]]M ⊆ TΣ × T∆ as follows. For an
input tree s ∈ TΣ, the q-translation [[q]]M(s) of s is the smallest set of trees T ⊆ T∆

such that for every rule C[q1(x1), . . . , qk(xk)] → q(ζ) and all s1, . . . , sk ∈ TΣ, if
s = C[s1, . . . , sk] and ti ∈ [[qi]]M(si) for every i ∈ [k], then T contains the tree
ζ[xi ← ti | i ∈ [k]]. The translation realized by M is [[M]] = ∪q∈F[[q]]M.

The transducer M is linear (an elb transducer), if the right-hand side q(ζ) of
each rule is linear, i.e., each variable xi occurs at most once in ζ.

The transducer M is an (ordinary, not extended) bottom-up tree transducer (b
transducer) if the left-hand side context C of each of its rules contains exactly one
symbol in Σ, i.e., each rule is of the form a(q1(x1), . . . , qk(xk))→ q(ζ) with a ∈ Σ(k)

and k ≥ 0.
Extended bottom-up tree transducers are studied in, e.g., [10, 13, 6]. In [13, 6,

7], the left-hand side of a rule is allowed to be of the form q1(x1) with q1 ∈ Q, and
the corresponding (larger) class of translations is denoted xbot. It is easy to show
that such rules can effectively be removed from a transducer M when it is known

24

that [[M]] is a partial function (as is the case for views and queries), in such a way
that linearity of M is preserved.12

In the next proposition we show that for linear extended transducers, top-down
(with look-ahead) gives the same translations as bottom-up, just as for nonextended
transducers (see [22, Theorem 2.8]). This result was already pointed out below
Proposition 5 in [13] (see also [33, Theorem 3.1]). Based on Proposition 8, its
proof is a standard one, relating bimorphisms to finite-state transducers (see [34]
and [10]).

Proposition 42. eltR = elb.

Proof. Let bim denote the class of all tree translations {(f (r), g(r)) | r ∈ R} where
f is a linear nondeleting nonerasing tree homomorphism, g is a linear tree homo-
morphism, and R is a regular tree language. In accordance with Proposition 8, we
show that bim = elb.
bim ⊆ elb: Let τ = {(f (r), g(r)) | r ∈ Rτ} be a bim translation, where f : TΩ →

TΣ, g : TΩ → T∆, and Rτ ⊆ TΩ. Let A = (Q,Ω, F, δ) be an fta accepting Rτ.
We construct the elb transducer M = (Q,Σ,∆, F,R) with the following rules. Let
ω ∈ Ω(k), k ≥ 0, and let q, q1, . . . , qk ∈ Q such that δ(ω, q1, . . . , qk) = q. Then R
contains the rule C[q1(x1), . . . , qk(xk)] → q(ζ), where C = fω and ζ = gω. Note
that since f is linear and nondeleting, C is an Xk-context, and since f is nonerasing,
C , x1. Also, ζ is linear because g is.

It should be clear that [[M]] = τ. Formally, it is straightforward to show, for
every q ∈ Q, s ∈ TΣ and t ∈ T∆, that t ∈ [[q]]M(s) if and only if there exists r ∈ TΩ

such that δ(r) = q, f (r) = s and g(r) = t. The proof in the if direction is by
induction on the structure of r, and the one in the only-if direction by induction on
the size of s.
elb ⊆ bim: This inclusion holds by the proof of Lemma 6 of [13]. For com-

pleteness’ sake we also prove it here. Let M = (Q,Σ,∆, F,R) be an elb transducer.
We turn the set of rules R into a ranked alphabet Ω by defining the rank of a rule
ω : C[q1(x1), . . . , qk(xk)] → q(ζ) to be k. We define the regular tree language
D = L(A) where A = (Q ∪ {⊥},Ω, F, δ) is the fta such that, for the rule ω above,
δ(ω, q1, . . . , qk) = q and δ(ω, q′1, . . . , q

′
k) = ⊥ for all q′1, . . . , q

′
k ∈ Q ∪ {⊥} with

(q′1, . . . , q
′
k) , (q1, . . . , qk). Intuitively, D can be viewed as the set of derivation

trees of M. Finally we define the tree homomorphisms f and g such that, for the
rule ω above, fω = C and gω = ζ.

Let τ be the bim translation {(f (r), g(r)) | r ∈ D}, and let the elb transducer
M′ = (Q ∪ {⊥},Σ,∆, F,R′) be associated with τ as in the proof of bim ⊆ elb above
(with Rτ = D). So, [[M′]] = τ. Since R ⊆ R′ and the rules in R′ − R all lead to the
nonfinal state ⊥, it is obvious that [[M′]] = [[M]], and hence τ = [[M]]. �

12First, repeatedly add rules as follows: if C[q1(x1), . . . , qk(xk)] → q(ζ) and q(x1) → q′(ζ′) are
rules, then add the rule C[q1(x1), . . . , qk(xk)] → q′(ζ′[x1 ← ζ]). Second, remove all rules with
left-hand side in Q(X).

25

Since the class fu-b of functional bottom-up tree translations is included in dtR

by [29], it is immediate from Theorem 38 and Proposition 42 that determinacy
is decidable for fu-b under fu-elb, as proved in Theorem 16 of [6] (Theorem 2
of [7]). In Theorem 21 of [6] (Theorem 3 of [7]) it is shown to be decidable
for q ∈ fu-b and v ∈ fu-elb whether there exists f ∈ fu-b such that q = v ◦
f . Theorem 39 shows that such an f can always be found in dtR. Note that
Theorem 38 extends [6, Theorem 16] in two ways: fu-b (dtR (see [22, Section 3])
and fu-elb = fu-eltR (fu-(eltR)∗ (see the discussion after Proposition 7). In
particular, the class of queries dtR is much larger than fu-b because (as observed
in [22, Section 3]) a dtR transducer has the ability to copy an input subtree and to
continue the translation of these copies in different states, whereas a b transducer
can only put identical copies in the output tree (see also [35, Example 2.2]). Of
course, the class of queries dtR∪dmsot is even far larger, because dmsot contains
tree translations that do not preserve the ancestor relation between nodes (such as
taking the yield of the input tree, viewing that yield as a tree with symbols of rank
1 and 0 only).

8. Conclusion

We have shown that it is decidable whether a query q is determined by a view v
when v is in fu-(eltR)∗ and q is in dtR or dmsot. And if so, then q can be rewritten
into a query f in the same class as q such that q = v ◦ f . The main aim of this
paper was to show that the proof of this result is quite straightforward, as it can be
based on theoretical results that are either well known or easy to understand. Thus,
we do not know whether the result has any practical relevance. In fact, we did not
even investigate the complexity of our determinacy algorithm. A rough estimation
shows that it works in 5-fold exponential time for the case of a fu-eltR view v and
a dtR query q. A double exponential blow-up is due to Lemmas 28 and 29 that
construct two dtRfc transducers for the uniformizer u of v−1, because the involved
fta transducer can be of exponential size. Another exponential blow-up is due to
Proposition 6: the composed transducer for v ◦ u ◦ q may need exponentially many
look-ahead states. Finally, the equivalence algorithm of Proposition 7 takes double
exponential time (see [16]). It would be interesting to find special cases of lower
complexity. As shown in [7], the determinacy algorithm of [6, 7] for a fu-elb view
v and a fu-b query q works in coNEXPTIME.

A tree transducer that is more expressive than both the dtR transducer and the
dmsot transducer is the deterministic macro tree transducer (dmt transducer), see
[25, Theorem 7.1]. Can our results be extended to the class of queries dmt? As
should be clear from the beginning of Section 7, determinacy is decidable for Q
under fu-(eltR)∗, whenever Q is a class of deterministic transducers such that

• dtRfc ◦ Q ⊆ Q, effectively, and
• it is decidable for two Q transducers whether they are equivalent.

26

It follows from Theorems 6.15 and 7.6 of [36], that the first statement holds for
Q = dmt. However, decidability of equivalence of dmt transducers is a long-
standing open problem, see [37]. It was recently shown in [38] that equivalence of
ydtR transducers is decidable. These are dtR transducers that output the yield of
the output tree instead of the output tree itself. They can be viewed as a special case
of dmt transducers. It follows from Proposition 6 that the first statement holds for
Q = ydtR. Hence determinacy is decidable for ydtR under fu-(eltR)∗. This shows
the robustness of our approach.

We finally note that it is interesting and practically important (for XML) to
study determinacy for unranked tree transducers, e.g., those of [39].

Acknowledgements
We thank the reviewers for their critical comments which helped to improve the

quality of the paper, and in particular one of the reviewers for suggesting a shorter
proof of Lemma 20.

References

[1] L. Segoufin, V. Vianu, Views and queries: determinacy and rewriting, in:
C. Li (Ed.), Proc. PODS 2005, ACM Press, 2005, pp. 49–60.

[2] A. Nash, L. Segoufin, V. Vianu, Views and queries: Determinacy and rewrit-
ing, ACM Trans. Database Syst. 35 (3), article 21.

[3] M. Marx, Queries determined by views: pack your views, in: L. Libkin (Ed.),
Proc. PODS 2007, ACM Press, 2007, pp. 23–30.

[4] F. N. Afrati, Determinacy and query rewriting for conjunctive queries and
views, Theor. Comput. Sci. 412 (11) (2011) 1005–1021.

[5] D. Pasailă, Conjunctive queries determinacy and rewriting, in: T. Milo (Ed.),
Proc. ICDT 2011, ACM Press, 2011, pp. 220–231.

[6] K. Hashimoto, R. Sawada, Y. Ishihara, H. Seki, T. Fujiwara, Determinacy and
subsumption for single-valued bottom-up tree transducers, in: A.-H. Dediu,
C. Martin-Vide, B. Truthe (Eds.), Proc. LATA 2013, Vol. 7810 of Lecture
Notes in Computer Science, Springer-Verlag, 2013, pp. 335–346.

[7] K. Hashimoto, R. Sawada, Y. Ishihara, H. Seki, T. Fujiwara, Determinacy
and subsumption of single-valued bottom-up tree transducers, IEICE Trans-
actions 99-D (3) (2016) 575–587.

[8] Z. Ésik, On decidability of injectivity of tree transformations, in: Les arbres
en algèbre et en programmation, Lille, 1978, pp. 107–133.

[9] Z. Fülöp, P. Gyenizse, On injectivity of deterministic top-down tree transduc-
ers, Inf. Proc. Lett. 48 (4) (1993) 183–188.

27

[10] A. Arnold, M. Dauchet, Bi-transductions de forêts, in: S. Michaelson, R. Mil-
ner (Eds.), Proc. ICALP 1976, Edinburgh University Press, 1976, pp. 74–86.

[11] A. Maletti, Compositions of extended top-down tree transducers, Inf. Com-
put. 206 (9-10) (2008) 1187–1196.

[12] A. Maletti, J. Graehl, M. Hopkins, K. Knight, The power of extended top-
down tree transducers, SIAM J. Comput. 39 (2) (2009) 410–430.

[13] J. Engelfriet, E. Lilin, A. Maletti, Extended multi bottom-up tree transducers,
Acta Inf. 46 (8) (2009) 561–590.

[14] J. Engelfriet, Z. Fülöp, A. Maletti, Composition closure of linear extended
top-down tree transducers, Theory Comput. Syst. Doi:10.1007/s00224-015-
9660-2.

[15] Z. Ésik, Decidability results concerning tree transducers I, Acta Cybern. 5
(1980) 1–20.

[16] J. Engelfriet, S. Maneth, H. Seidl, Deciding equivalence of top-down XML
transformations in polynomial time, J. Comput. Syst. Sci. 75 (5) (2009) 271–
286.

[17] J. Engelfriet, S. Maneth, The equivalence problem for deterministic MSO tree
transducers is decidable, Inf. Proc. Lett. 100 (5) (2006) 206–212.

[18] M. Benedikt, J. Engelfriet, S. Maneth, Determinacy and rewriting of top-
down and MSO tree transformations, in: K. Chatterjee, J. Sgall (Eds.), Proc.
MFCS 2013, Vol. 8087 of Lecture Notes in Computer Science, Springer-
Verlag, 2013, pp. 146–158.

[19] B. Groz, XML security views: Queries, updates, and schemas, Ph.D. thesis,
Université Lille 1 (2012).

[20] B. Groz, S. Staworko, A. Caron, Y. Roos, S. Tison, Static analysis of XML
security views and query rewriting, Inf. Comput. 238 (2014) 2–29.

[21] H. Seidl, Equivalence of finite-valued tree transducers is decidable, Math.
Systems Theory 27 (4) (1994) 285–346.

[22] J. Engelfriet, Top-down tree transducers with regular look-ahead, Math. Sys-
tems Theory 10 (1977) 289–303.

[23] B. Courcelle, J. Engelfriet, Graph Structure and Monadic Second-Order
Logic – a Language-Theoretic Approach, Cambridge University Press, 2012.

[24] R. Bloem, J. Engelfriet, A comparison of tree transductions defined by
monadic second order logic and by attribute grammars, J. Comput. Syst. Sci.
61 (1) (2000) 1–50.

28

[25] J. Engelfriet, S. Maneth, Macro tree transducers, attribute grammars, and
MSO definable tree translations, Inf. Comput. 154 (1) (1999) 34–91.

[26] J. Engelfriet, S. Maneth, Macro tree translations of linear size increase are
MSO definable, SIAM J. Comput. 32 (4) (2003) 950–1006.

[27] R. Alur, L. D’Antoni, Streaming tree transducers, in: A. Czumaj, K. Mehl-
horn, A. Pitts, R. Wattenhofer (Eds.), Proc. ICALP 2012, Part II, Vol. 7392
of Lecture Notes in Computer Science, Springer-Verlag, 2012, pp. 42–53.

[28] M. Dauchet, Transductions de forêts, bimorphismes de magmoı̈des, Ph.D.
thesis, Université de Lille 1 (1977).

[29] J. Engelfriet, On tree transducers for partial functions, Inf. Proc. Lett. 7 (4)
(1978) 170–172.

[30] J. Engelfriet, G. Rozenberg, G. Slutzki, Tree transducers, L systems, and two-
way machines, J. Comput. Syst. Sci. 20 (2) (1980) 150–202.

[31] J. Doner, Tree acceptors and some of their applications, J. Comput. Syst. Sci.
4 (5) (1970) 406–451.

[32] J. W. Thatcher, J. B. Wright, Generalized finite automata theory with an ap-
plication to a decision problem of second-order logic, Math. Systems Theory
2 (1) (1968) 57–81.

[33] Z. Fülöp, A. Maletti, H. Vogler, Weighted extended tree transducers, Fundam.
Inform. 111 (2) (2011) 163–202.

[34] M. Nivat, Transduction des langages de Chomsky, Annales de l’Institut
Fourier 18 (1968) 339–456.

[35] J. Engelfriet, Bottom-up and top-down tree transformations - a comparison,
Math. Systems Theory 9 (3) (1975) 198–231.

[36] J. Engelfriet, H. Vogler, Macro tree transducers, J. Comput. Syst. Sci. 31 (1)
(1985) 71–146.

[37] S. Maneth, Equivalence problems for tree transducers: a brief survey, in:
Z. Ésik, Z. Fülöp (Eds.), Proc. AFL 2014, Vol. 151 of EPTCS, 2014, pp.
74–93.

[38] H. Seidl, S. Maneth, G. Kemper, Equivalence of deterministic top-down tree-
to-string transducers is decidable, in: V. Guruswami (Ed.), Proc. FOCS 2015,
IEEE Computer Society, 2015, pp. 943–962.

[39] T. Perst, H. Seidl, Macro forest transducers, Inf. Proc. Lett. 89 (3) (2004)
141–149.

29

