68 research outputs found

    Landmine detection using semi-supervised learning.

    Get PDF
    Landmine detection is imperative for the preservation of both military and civilian lives. While landmines are easy to place, they are relatively difficult to remove. The classic method of detecting landmines was by using metal-detectors. However, many present-day landmines are composed of little to no metal, necessitating the use of additional technologies. One of the most successful and widely employed technologies is Ground Penetrating Radar (GPR). In order to maximize efficiency of GPR-based landmine detection and minimize wasted effort caused by false alarms, intelligent detection methods such as machine learning are used. Many sophisticated algorithms are developed and employed to accomplish this. One such successful algorithm is K Nearest Neighbors (KNN) classification. Most of these algorithms, including KNN, are based on supervised learning, which requires labeling of known data. This process can be tedious. Semi-supervised learning leverages both labeled and unlabeled data in the training process, alleviating over-dependency on labeling. Semi-supervised learning has several advantages over supervised learning. For example, it applies well to large datasets because it uses the topology of unlabeled data to classify test data. Also, by allowing unlabeled data to influence classification, one set of training data can be adopted into varying test environments. In this thesis, we explore a graph-based learning method known as Label Propagation as an alternative classifier to KNN classification, and validate its use on vehicle-mounted and handheld GPR systems

    Clustering of multiple instance data.

    Get PDF
    An emergent area of research in machine learning that aims to develop tools to analyze data where objects have multiple representations is Multiple Instance Learning (MIL). In MIL, each object is represented by a bag that includes a collection of feature vectors called instances. A bag is positive if it contains at least one positive instance, and negative if no instances are positive. One of the main objectives in MIL is to identify a region in the instance feature space with high correlation to instances from positive bags and low correlation to instances from negative bags -- this region is referred to as a target concept (TC). Existing methods either only identify a single target concept, do not provide a mechanism for selecting the appropriate number of target concepts, or do not provide a flexible representation for target concept memberships. Thus, they are not suitable to handle data with large intra-class variation. In this dissertation we propose new algorithms that learn multiple target concepts simultaneously. The proposed algorithms combine concepts from data clustering and multiple instance learning. In particular, we propose crisp, fuzzy, and possibilistic variations of the Multi-target concept Diverse Density (MDD) metric, along with three algorithms to optimize them. Each algorithm relies on an alternating optimization strategy that iteratively refines concept assignments, locations, and scales until it converges to an optimal set of target concepts. We also demonstrate how the possibilistic MDD metric can be used to select the appropriate number of target concepts for a dataset. Lastly, we propose the construction of classifiers based on embedded feature space theory to use our target concepts to predict the label of prospective MIL data. The proposed algorithms are implemented, tested, and validated through the analysis of multiple synthetic and real-world data. We first demonstrate that our algorithms can detect multiple target concepts reliably, and are robust to many generative data parameters. We then demonstrate how our approach can be used in the application of Buried Explosive Object (BEO) detection to locate distinct target concepts corresponding to signatures of varying BEO types. We also demonstrate that our classifier strategies can perform competitively with other well-established embedded space approaches in classification of Benchmark MIL data

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods

    Context dependent spectral unmixing.

    Get PDF
    A hyperspectral unmixing algorithm that finds multiple sets of endmembers is proposed. The algorithm, called Context Dependent Spectral Unmixing (CDSU), is a local approach that adapts the unmixing to different regions of the spectral space. It is based on a novel function that combines context identification and unmixing. This joint objective function models contexts as compact clusters and uses the linear mixing model as the basis for unmixing. Several variations of the CDSU, that provide additional desirable features, are also proposed. First, the Context Dependent Spectral unmixing using the Mahalanobis Distance (CDSUM) offers the advantage of identifying non-spherical clusters in the high dimensional spectral space. Second, the Cluster and Proportion Constrained Multi-Model Unmixing (CC-MMU and PC-MMU) algorithms use partial supervision information, in the form of cluster or proportion constraints, to guide the search process and narrow the space of possible solutions. The supervision information could be provided by an expert, generated by analyzing the consensus of multiple unmixing algorithms, or extracted from co-located data from a different sensor. Third, the Robust Context Dependent Spectral Unmixing (RCDSU) introduces possibilistic memberships into the objective function to reduce the effect of noise and outliers in the data. Finally, the Unsupervised Robust Context Dependent Spectral Unmixing (U-RCDSU) algorithm learns the optimal number of contexts in an unsupervised way. The performance of each algorithm is evaluated using synthetic and real data. We show that the proposed methods can identify meaningful and coherent contexts, and appropriate endmembers within each context. The second main contribution of this thesis is consensus unmixing. This approach exploits the diversity and similarity of the large number of existing unmixing algorithms to identify an accurate and consistent set of endmembers in the data. We run multiple unmixing algorithms using different parameters, and combine the resulting unmixing ensemble using consensus analysis. The extracted endmembers will be the ones that have a consensus among the multiple runs. The third main contribution consists of developing subpixel target detectors that rely on the proposed CDSU algorithms to adapt target detection algorithms to different contexts. A local detection statistic is computed for each context and then all scores are combined to yield a final detection score. The context dependent unmixing provides a better background description and limits target leakage, which are two essential properties for target detection algorithms

    Early detection of health changes in the elderly using in-home multi-sensor data streams

    Get PDF
    The rapid aging of the population worldwide requires increased attention from health care providers and the entire society. For the elderly to live independently, many health issues related to old age, such as frailty and risk of falling, need increased attention and monitoring. When monitoring daily routines for older adults, it is desirable to detect the early signs of health changes before serious health events, such as hospitalizations, happen, so that timely and adequate preventive care may be provided. By deploying multi-sensor systems in homes of the elderly, we can track trajectories of daily behaviors in a feature space defined using the sensor data. In this work, we investigate a methodology for learning data distribution from streaming data and tracking the evolution of the behavior trajectories over long periods (years) using high dimensional streaming clustering and provide very early indicators of changes in health. If we assume that habitual behaviors correspond to clusters in feature space and diseases produce a change in behavior, albeit not highly specific, tracking trajectory deviations can provide hints of early illness. Retrospectively, we visualize the streaming clustering results and track how the behavior clusters evolve in feature space with the help of two dimension-reduction algorithms, Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). Moreover, our tracking algorithm in the original high dimensional feature space generates early health warning alerts if a negative trend is detected in the behavior trajectory. We validated our algorithm on synthetic data, real-world data and tested it on a pilot dataset of four TigerPlace residents monitored with a collection of motion, bed, and depth sensors over ten years. We used the TigerPlace electronic health records (EHR) to understand the residents' behavior patterns and to evaluate and explain the health warnings generated by our algorithm. The results obtained on the TigerPlace dataset show that most of the warnings produced by our algorithm can be linked to health events documented in the EHR, providing strong support for a prospective deployment of the approach.Includes bibliographical references

    Multiple instance fuzzy inference.

    Get PDF
    A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Fuzzy Inference Systems (MI-FIS). Fuzzy inference is a powerful modeling framework that can handle computing with knowledge uncertainty and measurement imprecision effectively. Fuzzy Inference performs a non-linear mapping from an input space to an output space by deriving conclusions from a set of fuzzy if-then rules and known facts. Rules can be identified from expert knowledge, or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. In this dissertation, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, different multiple instance fuzzy inference styles are proposed. The Multiple Instance Mamdani style fuzzy inference (MI-Mamdani) extends the standard Mamdani style inference to compute with multiple instances. The Multiple Instance Sugeno style fuzzy inference (MI-Sugeno) is an extension of the standard Sugeno style inference to handle reasoning with multiple instances. In addition to the MI-FIS inference styles, one of the main contributions of this work is an adaptive neuro-fuzzy architecture designed to handle bags of instances as input and capable of learning from ambiguously labeled data. The proposed architecture, called Multiple Instance-ANFIS (MI-ANFIS), extends the standard Adaptive Neuro Fuzzy Inference System (ANFIS). We also propose different methods to identify and learn fuzzy if-then rules in the context of MIL. In particular, a novel learning algorithm for MI-ANFIS is derived. The learning is achieved by using the backpropagation algorithm to identify the premise parameters and consequent parameters of the network. The proposed framework is tested and validated using synthetic and benchmark datasets suitable for MIL problems. Additionally, we apply the proposed Multiple Instance Inference to the problem of region-based image categorization as well as to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar

    Building environmentally-aware classifiers on streaming data

    Get PDF
    The three biggest challenges currently faced in machine learning, in our estimation, are the staggering quantity of data we wish to analyze, the incredibly small proportion of these data that are labeled, and the apparent lack of interest in creating algorithms that continually learn during inference. An unsupervised streaming approach addresses all three of these challenges, storing only a finite amount of information to model an unbounded dataset and adapting to new structures as they arise. Specifically, we are motivated by automated target recognition (ATR) in synthetic aperture sonar (SAS) imagery, the problem of finding explosive hazards on the sea oor. It has been shown that the performance of ATR can be improved by, instead of using a single classifier for the entire ATR task, creating several specialized classifers and fusing their predictions [44]. The prevailing opinion seems be that one should have different classifiers for varying complexity of sea oor [74], but we hypothesize that fusing classifiers based on sea bottom type will yield higher accuracy and better lend itself to making explainable classification decisions. The first step of building such a system is developing a robust framework for online texture classification, the topic of this research. xi In this work, we improve upon StreamSoNG [85], an existing algorithm for streaming data analysis (SDA) that models each structure in the data with a neural gas [69] and detects new structures by clustering an outlier list with the possibilistic 1-means [62] (P1M) algorithm. We call the modified algorithm StreamSoNGv2, denoting that it is the second version, or verse, if you will, of StreamSoNG. Notable improvements include detection of arbitrarily-shaped clusters by using DBSCAN [37] instead of P1M, using growing neural gas [43] to model each structure with an adaptive number of prototypes, and an automated approach to estimate the n parameters. Furthermore, we propose a novel algorithm called single-pass possibilistic clustering (SPC) for solving the same task. SPC maintains a fixed number of structures to model the data stream. These structures can be updated and merged based only on their "footprints", that is, summary statistics that contain all of the information from the stream needed by the algorithm without directly maintaining the entire stream. SPC is built on a damped window framework, allowing the user to balance the weight between old and new points in the stream with a decay factor parameter. We evaluate the two algorithms under consideration against four state of the art SDA algorithms from the literature on several synthetic datasets and two texture datasets: one real (KTH-TIPS2b [68]) and xii one simulated. The simulated dataset, a significant research effort in itself, is of our own construction in Unreal Engine and contains on the order of 6,000 images at 720 x 720 resolution from six different texture types. Our hope is that the methodology developed here will be effective texture classifiers for use not only in underwater scene understanding, but also in improving performance of ATR algorithms by providing a context in which the potential target is embedded.Includes bibliographical references

    Context-dependent fusion with application to landmine detection.

    Get PDF
    Traditional machine learning and pattern recognition systems use a feature descriptor to describe the sensor data and a particular classifier (also called expert or learner ) to determine the true class of a given pattern. However, for complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be viable alternative to using a single classifier. In this thesis we introduce a new Context-Dependent Fusion (CDF) approach, We use this method to fuse multiple algorithms which use different types of features and different classification methods on multiple sensor data. The proposed approach is motivated by the observation that there is no single algorithm that can consistently outperform all other algorithms. In fact, the relative performance of different algorithms can vary significantly depending on several factions such as extracted features, and characteristics of the target class. The CDF method is a local approach that adapts the fusion method to different regions of the feature space. The goal is to take advantages of the strengths of few algorithms in different regions of the feature space without being affected by the weaknesses of the other algorithms and also avoiding the loss of potentially valuable information provided by few weak classifiers by considering their output as well. The proposed fusion has three main interacting components. The first component, called Context Extraction, partitions the composite feature space into groups of similar signatures, or contexts. Then, the second component assigns an aggregation weight to each detector\u27s decision in each context based on its relative performance within the context. The third component combines the multiple decisions, using the learned weights, to make a final decision. For Context Extraction component, a novel algorithm that performs clustering and feature discrimination is used to cluster the composite feature space and identify the relevant features for each cluster. For the fusion component, six different methods were proposed and investigated. The proposed approached were applied to the problem of landmine detection. Detection and removal of landmines is a serious problem affecting civilians and soldiers worldwide. Several detection algorithms on landmine have been proposed. Extensive testing of these methods has shown that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth, etc. Therefore, multi-algorithm, and multi-sensor fusion is a critical component in land mine detection. Results on large and diverse real data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our experiments have also indicated that the context-dependent fusion outperforms all individual detectors and several global fusion methods
    corecore