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ABSTRACT 

CONTEXT-DEPENDENT FUSION 

WITH APPLICATION TO LANDMINE DETECTION 

Lijun Zhang 

August 18, 2009 

Traditional machine learning and pattern recognition systems use features to de­

scribe the sensor data and a classifier (also called "expert" or "learner") to determine the 

true class of a given pattern. However, for complex detection and classification problems, 

involving data with large intra-class variations and noisy inputs, no single source of infor­

mation can provide a satisfactory solution. As a result, combination of multiple classifiers 

is playing an increasing role in solving these complex pattern recognition problems, and 

has proven to be a viable alternative to using a single classifier. In this dissertation, we 

introduce a novel Context-Dependent Fusion (CDF) approach, and apply this method to 

fuse multiple algorithms which use different types of features and different classification 

methods on multiple sensor data. 

Our CDF approach is motivated by the observation that there is no single algorithm 

that can consistently outperform all other algorithms. In fact, the relative performance of 

different algorithms can vary significantly depending on several factors such as the ex­

tracted features and the characteristics of the target class. The CDF method is a local 

approach that adapts the fusion to different regions of the feature space. The goal is to 

take advantage of the strengths of few algorithms in different regions of the feature space 
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without being affected by the weaknesses of the other algorithms, and also avoid the loss of 

potentially valuable information provided by weak classifiers by considering their output 

as well. 

The proposed fusion has three main interactive components. The first one, Con­

text Extraction, partitions the composite feature space into groups of similar signatures or 

contexts. For this task, we explore a novel algorithm that performs clustering and feature 

discrimination to cluster' and identify the relevant features for each cluster. The second 

component assigns an aggregation weight to each detector's decision in each context based 

on its relative performance within the context. We have developed, implemented and com­

posed six different weight assignment methods which are embedded into this component. 

The third component of the COP combines the multiple decisions with the learned weights 

to make a final decision. 

The proposed approach was applied to the problem of landmine detection. Oetec­

tion and removal of landmines is a serious problem affecting civilians and soldiers world­

wide. Varieties of sensors and algorithms have been proposed or are under investigation 

for landmine detection. Extensive testing of these methods has shown that the relative 

performance of different detectors can vary significantly depending on the mine types, ge­

ographical sites, soil and weather conditions, burial depths, etc. Therefore, fusion methods 

that can take advantages of the strengths of different sensors and algorithms into account, 

overcome their weaknesses, adapt to the rapidly changing environmental conditions, and 

achieve a higher accuracy than any individual algorithm are needed. Thus, multi-sensor and 

multi-algorithm fusion which can adapt to different environments are critical components 

in land mine detection. 

The proposed methods were tested exhaustively with several reallandmine data sets 

collected on the field. Three different data sets were selected to be included in this disser­

tation to illustrate the performances of the proposed COP method. The first data set was 
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collected by a Ground Penetrating Radar (GPR) mounted on a vehicle. This data covered a 

ground area of over 40, 000m2• The second data set was collected by an Autonomous Mine 

Detection system that includes two different types of sensors: GPR and wideband Electro­

magnetic induction (WEMI). The third data set was collected by an Airborne Hyperspectral 

Imagery (AHI) data and covers approximately 145, 000m2 of terrain. The results showed 

that the proposed method can identify meaningful and coherent clusters and that differ­

ent expert algorithms can be identified under the different contexts. Our experiments have 

also indicated that our approach outperformed all individual detectors and several state of 

the art fusion methods significantly. More importantly, the results can be achieved with 

efficient computation, and can be interpreted. Consequently, the US Army is considering 

implementing these methods into current landmine detection system. 

vi 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 
ABSTRACT 
LIST OF TABLES 
LIST OF FIGURES 

CHAPTER 

I INTRODUCTION 

II RELATED WORK ON CLASSIFIERS FUSION 

A Combining probabilistic information 

Linear opinion pool . . . . 

2 Independent opinion pool. 

B Bayesian Fusion .... 

C Dempster-Shafer Fusion 

Basic belief assignment Function 

2 Belief function ... 

3 Plausibility function 

4 Combination rule . . 

5 Weighted Combination Rule for DST 

6 Combining several belief functions. 

D Borda Count Fusion ... 

General Approach 

2 Weighted Borda Count 

vii 

. . . . . . . . . 

Page 

iii 
iv 
xi 

xii 

1 

6 

9 

10 

10 

11 

14 

15 

16 

16 

17 

18 

18 

19 

20 

20 



III 

E Decision Template Method. . . . . . . . . . . 

General Model for DT Classifier Fusion 

2 Decision Templates (DT) . 

F Boosting ... 

G Random Forest 

BACKGROUND ON LANDMINE DETECTION 

A Ground Penetrating Radar (GPR) 

B Metal Detectors (MD) ..... . 

C Electromagnetic Induction (EMI) 

D Landmine Detection Data and Algorithms . 

2 

3 

4 

5 

6 

GPR Data ............. . 

Hidden Markov Model (HMM) Algorithm. 

Edge Histogram Descriptor (EHD) Algorithm . 

Geometric Feature FOWA ROCA (GEOM) Algorithm 

Spectral Feature (SPECT) Algorithm 

WEMI Data and Algorithm. 

IV CONTEXT-DEPENDENT FUSION 

A Motivations..... 

B Proposed Approach . 

Context Extraction 

2 The Coarse Simultaneous Clustering and Attribute Discrimi-

nation (BCADe) Algorithm 

3 Algorithm Fusion . 

4 Testing Step . . . . 

5 Computational Complexity . 

viii 

21 

22 

22 

24 

26 

28 

29 

32 

33 

34 

35 

36 

40 

44 

45 

45 

48 

48 

51 

53 

53 

56 

56 

57 



V LEARNING LOCAL WEIGHTS FOR CONTEXT~DEPENDENT FU~ 

SION . . . . . . . . . . . . . . . . . . . . . . . 58 

A Histograms and Cumulative Histograms . 58 

B Receiver Operating Characteristic (ROC) Curve. 59 

C Separation-Based Degree of Worthiness . 60 

D Overlap-Based Degree of Worthiness 61 

E ROC Area-Based Degree of Worthiness 62 

F Rank-Based Degree of Worthiness ... 63 

G Cumulative Separation-Based Method. 65 

H MCE/GPD Based Method ... 66 

I Application to Benchmark Data 70 

Experimental Setup . . 70 

2 Experimental Results . 71 

VI APPLICATIONS TO LANDMINE DETECTION ........... 76 

A Experiment 1: Land Mine Detection Using a Vehicle Mounted GPR 

System ....... . 

Data Collection 

76 

77 

2 Data Pre-processing 79 

3 Evaluation Methods 80 

4 Experimental Results . 83 

5 Scalability with Respect to the Number of Algorithms Fused 92 

B Land Mine Detection Using an Autonomous Mine Detection System 99 

2 

3 

4 

Data Statistics . 

Motivations . . 

Context Extraction 

Learning Detectors Aggregation Weights 

ix 

.100 

. 101 

102 

105 



c 
5 Analysis of the Testing Phase .............. . 

Land Mine Detection with Airborne Hyperspectral Imagery Data 

Data Statistics and Experimental Setup 

2 Experimental Results and Analysis. . . 

· 108 

· 109 

· 109 

· 110 

VII CONCLUSIONS ............................. 115 

REFERENCES 

APPENDIX 

119 

A LIST OF ABBREVIATIONS ...................... 129 

CURRICULUM VITAE 132 

x 



LIST OF TABLES 

TABLE Page 

Contingency Table ...... 59 

2 Statistics of the NTK4 dataset 78 

3 Number of Metal and Plastic Cased Mines and Mine Simulants and their 

4 

5 

burial depths in NTK4 dataset 

Statistics of the data collection 

Burial Depth of All Objects in the Data Collection. 

79 

101 

tol 

6 Distribution of the alarms among the 10 clusters for one cross validation set 103 

7 Samples of representative mine and clutter alarms from three different con-

texts ...................................... 104 

xi 



LIST OF FIGURES 

FIGURE 

2 

3 

4 

5 

Categorization of different classifier fusion methods [1] 

Linear Opinion Pool 

Independent Opinion Pool 

Architecture of the decision templates classifier fusion scheme 

WichmannINiitek vehicle-mounted GPR at a western U.S. test site 

6 Sample of GPR responses. The x-axis represents down-track scan number, 

y-axis represents time sample. Two anomalies are visible in this data slice, 

one is at approximately sample 90, and another is near sample 460. Also 

note the high energy of ground bounce visible in all down-track scans near 

time sample 150. This data has been clipped to enhance contrast 

Page 

8 

10 

11 

24 

30 

31 

7 A collection of few GPR scans . . . . . . . . . . . . . . . . . . 36 

8 NIITEK Radar down-track and cross-track B-scans pairs for 3 alarms 37 

9 HMM Feature of a mine signature . . . . . . . . . 38 

10 Illustration of the HMM -based model architecture . 39 

11 (a) (depth-downtrack), and (b) (depth-crosstrack) views of a sample mine 

signature models ............................... 41 

12 Diagonal, anti-diagonal, and horizontal edges superimposed on a typical 

mine signature. . . . . . . . . . . . . . . . . . 

13 Extraction of the EHD for a 3-D mine signature 

xii 

42 

43 



14 Response curves (sequences of dots) and their curve fits (smooth curves) 

from (a) blank, (b) non-metallic clutter item, (c) metallic clutter item, and 

(d) low-metal mine . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47 

15 Performance of 4 different detectors for different types of mines buried at 

different depths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 

16 Comparison of the EHD and WEMI outputs for several mine and clutter 

signatures . . . . . . . . . . . . . . . . . . . . . . . . . 50 

17 Architecture of the proposed Context-Dependent Fusion 52 

18 Cumulative Histogram Distribution of Individual Classifier. Shade area 

is Overlap; Separation is'defined as the distance between the two classes 

centroids; Red curve is one class confidence cumulative histogram, Blue 

curve is the other class inverse confidence cumulative histogram 

19 Area under the ROC for an interval of interest [a, b] . . . . . . . 

62 

63 

20 Cumulative Separation-based method. Red curve is one class confidence 

cumulative histogram, blue curve is another class inverse confidence cu­

mulative histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 66 

21 Comparison of the Context-Dependent Fusion with individual K-NN clas-

sifiers and global fusion methods . . . . . . . . . . . . . . . . . . . . . .. 72 

22 Global fusion and Context-Dependent Fusion (CDF) weighs on Phoneme 

data with KNN classifier on various feature sets . . . . . . . . . . . . . .. 73 

23 Comparison of the Context-Dependent Fusion with individual classifiers 

and global fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74 

24 Global fusion and Context-Dependent Fusion (CDF) weighs on Phoneme 

data with KNN classifier on various feature sets .. 

25 Niitek vehicle-mounted GPR system . 

26 Interface of the TUF evolution system 

xiii 

75 

77 

81 



27 Algorithm ROCs for All Sites 83 

28 Algorithm ROCs for Site A. 84 

29 Algorithm ROCs for Site B. 85 

30 HMM and EHD Confidence value scatter plot for NTK4, Red stars are 

Mine, and Blue dots are FA. (a) Site A, (b) Site B 85 

31 NTK4 data distribution in 20 clusters. . . . . . . 87 

32 Global fusion weights assigned to the five detections in CVI for the NTK4 

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 87 

33 Context-Dependent Fusion weights assigned to the five detections in 20 

clusters in CV1 for the NTK4 data . . . . . . . . . . . . . 88 

34 Distribution of the alarms included in CV 1 for NTK4 data 89 

35 Context-Dependent Fusion weights assigned to the five detections in Clus-

ter 1 in CV1 for NTK4 data. . . . . . . . . . . . . . . 89 

36 Local performance of Cluster 1 in CV1 for NTK4 data 89 

37 Context-Dependent Fusion weights assigned to the five detections in Clus-

ter 9 in CVI for the NTK4 data. . . . . . . . . . . . . 90 

38 Local performance of Cluster 9 in CVl for NTK4 data 90 

39 Performance of the Context-Dependent Fusion and the global fusion on the 

entire collection of the NTK4 data . . . . . . . . . . . . . . . . . . . . .. 91 

40 Performance of the 8 different detectors on the entire NTK4 data collection 95 

41 Performance of the 8 detectors on Site A only 95 

42 Performance of the 8 detectors on Site B only 96 

43 Comparison of 4 fusion methods when 6 discrimination algorithms (EHD, 

HMM, SPECT, Prescreener, GEOM, and TFCM) are combined. . . . . .. 96 

XIV 



44 Comparison of 4 fusion methods when 8 discrimination algorithms (EHD, 

HMM, SPECT, Pre screener, GEOM, TFCM, GFIT, and GMRF) are com-

bined ..................... 98 

45 NIITEK Autonomous Mine Detection System 99 

46 Individual algorithms ROC on all data sites . 102 

47 Context-Dependent Fusion weights of CVl in 10 clusters 105 

48 Global weighted average weights of CV 1 ........ 106 

49 Context-Dependent Fusion performance in Cluster 3. (a) ROC, (b) Sep-

aration and overlap, (c) Misclassification in MCE, (d) Context-dependent 

weighs for all methods in Cluster 3 . . . . . . . . . . . . . . . . . . . . . . 107 

50 Performance of the individual detectors and the global and local fusion on 

the entire collection with 6 folds cross validation .............. 108 

51 Context-Dependent Fusion weights assigned to three detections within 10 

clusters in CVl in the AHI data. . . . . . . . . . . . . . . 111 

52 Global weighted average weights of CV 1 on the AHI data 112 

53 Performance of the 3 individual algorithms in two different clusters 112 

54 Comparison of the ROCs obtained with the Context-Dependent Fusion and 

the global fusion ............................... 113 

xv 



CHAPTER I 

INTRODUCTION 

For complex detection and classification problems involving data with large intra­

class variations and noisy inputs. perfect solutions are difficult to achieve. and no single 

source of information can provide a satisfactory solution. As a result, combination of mul­

tiple classifiers (or multiple experts) is playing an increasing role in solving these complex 

pattern recognition problems, and has proved to be a viable alternative to using a single 

classifier. Classifier combination is mostly a heuristic approach and is based on the idea 

that classifiers with different methodologies or different features can have complementary 

information. Thus, if these classifiers cooperate. group decisions should be able to take 

advantages of the strengths of the individual classifiers. overcome their weaknesses, and 

achieve a higher accuracy than any individual's. 

Over the past few years, a variety of schemes have been proposed for combining 

multiple classifiers. Techniques for classifier fusion are drawn from a diverse set of more 

traditional disciplines including statistical estimation, digital signal processing, control the­

ory, artificial intelligence, and classic numerical methods. The characteristics of the com­

monly used techniques will be examined in more details in Chapter II. 

Methods for combining multiple classifiers can be classified into two main cate­

gories: classifier selection and classifier fusion. Classifier selection methods assume that 

the classifiers are complementary, and that their expertise varies according to the different 

areas of the feature space. For a given test sample, these methods attempt to predict which 

classifiers are more likely to be correct. Some of these methods consider the output of only 



one classifier to make the final decision [2]. Others, combine the output of multiple "local 

expert" classifiers [3]. On the other hand, classifier fusion methods assume that the classi­

fiers are competitive and are equally experienced over the entire feature space. For a given 

test sample, the individual classifiers are applied in parallel, and their outputs are combined 

in some manner to take a group decision. 

One approach for building multiple classifiers is based on bagging and boosting [4]. 

Each classifier is trained using a different subset of the training set. The different subsets 

are obtained from the original using sampling. The final output is obtained by voting. 

Bagging specifically refers to the process of generating training subsets by sampling with 

replacement multiple times. A classifier is trained on each subset. All classifiers are used 

to classify a test sample. The outputs are combined via voting. Boosting generally refers to 

a more sequential process of building multiple classifiers on a training set. The general idea 

is that an initial classifier is trained on the training set. Points for which the initial classifier 

performs "poorly" are weighted more strongly in training a different classifier. The process 

is repeated multiple times in order to try and build a multi-classifier system consisting of 

classifiers that perform well on subsets of the training set. Boosting can cause problems by 

over-fitting classifiers on subsets of the training data [5]. 

Another way to categorize classifier combination methods is based on the way they 

select or assign weights to the individual classifiers. Some methods are global and assign 

a degree of worthiness, that is averaged over the entire training data, to each classifier. 

Other methods are local and adapt the classifiers' worthiness to different data subspaces. 

Intuitively, the use of data-dependent weights, when learned properly, provides higher clas­

sification accuracy. This approach requires partitioning the input samples into regions dur­

ing the training phase. The partition can be defined from the space of individual classifier 

decisions, according to which classifiers agree with each other [6], or by features of the 

input space [7]. Then, the best classifier for each region is identified and is designated as 
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the expert for this region [2]. Conversely, the partitioning can be defined such that each 

classifier is an expert in one region [8]. This approach may be more efficient, however, its 

implementation is not trivial. In the classification phase, the region of an unknown sample 

is identified, and the output of the classifier responsible for this region is used to make the 

final decision. Data partition and classifier selection could also be made dynamic during 

the testing phase [9, 10]. In this case, the accuracy of each classifier (with respect to the 

training samples) is estimated in local regions of the feature space in the vicinity of the test 

sample. The most accurate classifier is selected to classify the test sample. This approach 

may be more efficient, however, entirely discarding other classifiers can be counterpro­

ductive since the potentially valuable information introduced in other classifiers may be 

ignored. 

In this dissertation, we propose a new approach, called Context-Dependent Fusion 

(CDF), which is a local method and focuses on the multi-algorithm fusion problem. A 

multi-algorithm classification system is more general than a multi-classifier system which 

consists of a set of algorithms, each of which operates on feature data to ultimately produce 

a set of class confidence values. The features extracted by each algorithm are generally 

different (in fact, each algorithm could be a multi-classifier system) and could in fact be 

extracted from data acquired from different sensors. Performance of different algorithms 

in a multi-algorithm classification system can vary due to factors other than local minima 

of objective functions. By combining multiple algorithms, we can take advantage of their 

strengthens and overcome their limitations. 

The proposed CDF approach has three main components. The first component, 

called Context Extraction, is completely unsupervised. In this component, the features 

extracted by the different algorithms (from different sensors) are combined. Then, a clus­

tering algorithm is used to partition the training signatures into groups of similar signatures, 

or contexts, and learn the relevant features within each context. Here, we are assuming that 
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signatures that have similar response to different algorithms share some common features, 

and should be assigned to the same cluster. The second component of the CDF, called 

Algorithm Fusion, assigns an aggregation weight to each algorithm's confidence value in 

each context based on its relative performance within the context. Training data from each 

identified context could be used to learn the optimal fusion parameters and identify "local 

experts" for that region of the feature space. We will investigate, test and compare various 

weight assignment methods in this part. The third component, i.e. Decision Making, uses 

the learned weights within each context to make a final decision on a test pattern. 

The proposed fusion methods are implemented and integrated within a complete 

landmine detection system. Detection and removal of landmines is a significant research 

problem [11, 12]. It is estimated that over tOO million landmines are buried in over 80 

countries and that 26,000 people a year are killed or maimed by a landmine [13]. The 

research problem for data analysis is to determine how reliably landmines can be detected 

and distinguished from other subterranean objects using sensor data. Difficulties arise from 

the variability of landmine types, soil and weather conditions, terrains, and so on. There­

fore, detection algorithms which can adopt to changing conditions are needed for detect­

ing buried landmineds. Thus, multi-classifier, multi-algorithm, and multi-sensor fusion is 

a critical component in landmine detection. In this dissertation, the proposed Context­

Dependent fusion methods are trained and tested with large landmine data sets collected 

from various regions under different conditions, including various mine types from differ­

ent sensors, and better results are reported and discussed. 

The organization of the next of this dissertation is as follows. Chapter I introduces 

the background, goals, and terminology of fusion methods. Chapter II discusses and ana­

lyzes several global fusion methods. These methods will be used for evaluation and com­

parison with the proposed local fusion method. Chapter III introduces the landmine detec­

tion problem and provides a literature review of different landmine detection sensors and 
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algorithms. The output of these algorithms will be fused using our proposed local fusion. 

Chapter IV introduces the proposed fusion methodology. We motivate the need for local 

fusion, outline the architecture of the proposed context-dependent fusion, and highlight its 

advantages over the global fusion. In Chapter V we propose six different methods for local 

weight assignment. Results of applying COP to fuse the output of multiple landmine de­

tection algorithms are compared on data from multiple sensors in Chapter VI. Chapter VII 

summarizes the contributions and outlines the potential future work. 
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CHAPTER II 

RELATED WORK ON CLASSIFIERS FUSION 

Fusion of data/information can be carried out at three levels of abstraction closely 

connected with the flow of the classification process: data level fusion, feature level fusion, 

and decision level fusion. Data level fusion, also called low level fusion, combines several 

sources of raw data to produce new raw data that is expected to be more informative and 

synthetic than the inputs. For example, in image processing, images presenting several 

spectral bands of the same scene are fused to produce a new image that ideally contains, 

in a single channel, all (or most) of the information available in the various spectral bands. 

Feature level fusion, also called intermediate level fusion, combines various features. These 

features may come from several raw data sources (e.g. several sensors) or from the same 

raw data. In the latter case, the objective is to find relevant features among available fea­

tures that might come from several feature extraction methods. The objective is to obtain a 

limited number of relevant features. Examples of feature level fusion include the Principal 

Component Analysis (PCA) [14], and Diabolo shaped Multi-layer Perceptrons (MLP) [15] 

for the non-linear counterpart. Decision level fusion, also called high level fusion, com­

bines decisions coming from several experts. By extension, one speaks of decision fusion 

even if the experts return a confidence (score) and not a decision. There are some theories 

about the first two levels of information fusion, for example, transforming the numerical, 

interval and linguistic data into a single space of symmetric trapezoidal fuzzy numbers 

[16, 17], and some heuristic methods have been successfully used for feature level fusion 

[17]. In this dissertation, we are interested in decision level fusion. Thus, the rest of this 
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chapter reviews existing work on decision level fusion. 

Over the past few years, a variety of schemes have been proposed for combining 

multiple classifiers. The most representative approaches include majority vote [18], Borda 

count [6], average [19], weighted average [20], Bayesian [21], probabilistic [22], polling 

methods [23], logistic regression [6], and combination by neural networks [24], and hier­

archical mixture of experts [25]. Most of the above approaches assume that the classifier 

decisions are independent. For instance, the Bayesian approach requires this independence 

assumption in order to compute the joint probabilities. However, in practice, the outputs of 

multiple classifiers are usually highly correlated. Therefore, in addition to assigning fusion 

weights to the individual classifiers, it is desirable to assign weights to subsets of classi­

fiers to take into account the interaction between them. Fusion methods based on the fuzzy 

integral [26, 27] and Dempster-Shafer theory [28] have this desirable property. 

Methods for combining multiple classifiers can be classified into two main cate­

gories: classifier selection and classifier fusion. Classifier selection methods put an em­

phasis on the development of the classifier structure. This approach assumes that the clas­

sifiers are complementary, and that their expertise vary according to the different areas of 

the feature space. For a given test sample, these methods attempt to predict which clas­

sifiers are more likely to be correct. Some of these methods consider the output of only 

a single classifier to make the final decision [8]. Others, combine the output of multiple 

"local expert" classifiers [3]. Classifier fusion methods, on the other hand, operate mainly 

on the classifiers outputs, and strive to combine the classifiers outputs effectively. This ap­

proach assumes that the classifiers are competitive and equally experienced over the entire 

feature space. For a given test sample, the individual classifiers are applied in parallel, and 

their outputs are combined in some manner to take a group decision. 

A diagrammatic representation of classifier fusion methods is shown in Figure I [1]. 

From the three possible types of outputs generated by individual classifiers the crisp labels 
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offer the minimum amount of input information for fusion methods, as no information 

about potential alternatives is available. Some additional useful information can be gained 

from classification methods generating outputs in the form of class rankings. However, 

fusion methods operating on classifiers with soft/fuzzy outputs can be expected to produce 

the greatest improvement in classification performance. 

Another way to categorize classifier combination methods is based on the way they 

select or assign weights to the individual classifiers. Some methods are global and assign a 

degree of worthiness, that is averaged over the entire training data, to each classifier. Other 

methods are local and adapt the classifiers' worthiness to different data subspaces. Intu-

.' itively, the use of data-dependent weights, when learned properly, provides higher classifi-

cation accuracy. This approach requires partitioning the input samples into regions during 
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the training phase. The partition can be defined from the space of individual classifier de­

cisions [29], according to which classifiers agree with each other [6], or by features of the 

input space [7]. Then, the best classifier for each region is identified and is designated as 

the expert for this region [2]. Conversely, the partitioning can be defined such that each 

classifier is an expert in one region [8]. This approach may be more efficient, however, its 

implementation is not trivial. In the classification phase, the region of an unknown sample 

is identified, and the output of the classifier responsible for this region is used to make the 

final decision. Data partition and classifier selection could also be made dynamic during 

the testing phase [9, 10]. In this case, the accuracy of each classifier (with respect to the 

training samples) is estimated in local regions of the feature space in the vicinity of the test 

sample. The most accurate classifier is selected to classify the test sample. 

In the following, we first outline the combining rules for multiple source or classi­

fiers. Then, we outline several classifier fusion methods that are related to our work. These 

methods include Bayesian Fusion, Dempster-Shafer Theory (DST), supervised Borda-Count, 

Decision Template, Boosting (AdaBoost), and Random Forest. 

A Combining probabilistic information 

Let V = {VI, V 2 , .•• ,Vd be a set of classifiers and let n = {n1,'" ,nc } de­

note a set of class labels. Each algorithm, Vi, extracts a set of features, Xi, and assigns 

a confidence value Yi to each of the C classes, i.e., Vi(Xi) = Yk, for i = 1,'" ,L, and 

k = 1"" ,C. 

For classifier fusion, we need to compute the global posterior probability distribu­

tion P(SlkIVl(Xt}, V 2(X2),'" ,Vdxd), k = 1"" ,C, given the information contributed 

by each source. This probability could be computed using a linear or non-linear methods 

as follows. 
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Figure 2. Linear Opinion Pool 

1 Linear opinion pool 

In tackling the problem of fusion, the questions of how relevant and how reliable is 

the information from each source should be considered. These questions can be addressed 

by attaching a measure of value, e.g. a weight, to the information provided by each source. 

Such a pool, based on the probabilistic representation of the information, was proposed by 

Stone [30]. The posteriors from each information source are combined linearly (see Figure 

2), i.e. 
L 

p(nkID1(X1), D2(X2),'" ,DL(xd)) = 2: AiP(nkIDi(xi)) (I) 
i=l 

where Ai is a weight such that, 0 ::;; Ai ::;; 1 and 2::7=1 Ai = 1. The weight Ai reflects the 

significance attached to the ith information source. It can be used to model the reliability 

or trustworthiness of an information source and to "weight out" faulty sensors. 

In the case of equal weights, the Linear Opinion Pool can give an erroneous result 

if one sensor is dissenting even if L is relatively large. This is because the Linear Opinion 

Pool gives undue credence to the opinion of the ith source. The need to redress this leads 

to the second approach. 

2 Independent opinion pool 

In the Independent Opinion Pool [31], it is assumed that the information obtained 

conditioned on the observation set is independent. More precisely, the Independent Opinion 
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Figure 3. Independent Opinion Pool 

Pool illustrated in Figure 3 is defined by the product: 

(2) 

In general, this is a difficult condition to satisfy, though in the realm of measurement 

the conditional independence can often be justified experimentally. 

B Bayesian Fusion 

Bayesian fusion [32] is based on Bayesian decision theory which is a fundamen­

tal statistical approach to the problem of pattern classification. This approach is based on 

quantifying the tradeoffs between various classification decisions using probability and the 

costs that accompany such decisions. Bayesian data fusion has been studied extensively 

in the literature (e.g. [32, 33]). This approach has the advantage of being able to incor­

porate a priori knowledge about the likelihood of the hypothesis being tested, and when 

empirical data are not available, it is possible to use subjective estimates of the prior prob­

abilities. Moreover, from a statistical point of view, the use of Bayes rule should provide 

the optimal decision. Unfortunately, the proper use of Bayes requires the joint probabil­

ity density functions to be known. This information is usually not available and may be 

difficult to estimate from the data. Other disadvantages of the Bayesian approach include 

complexities when dealing with multiple potential hypotheses and multiple conditionally 

dependent events, and the inability to account for general uncertainty [33]. Thus, Bayesian 

fusion is best suited to applications where prior parameters are available, there is no need 
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to represent ignorance, and where conditional dependency can be easily modeled through 

probabilistic representation. 

Bayesian fusion has been applied to target identification [34], image analysis [35], 

and many other applications [32]. It has also been applied to the problem of anti-personnel 

landmine detection [36, 37], and the results were compared to other fusion methods. In 

[36], only synthetic data were used, and in [37] a very small data set was used. Thus, the 

results were not conclusive. 

In conventional statistical pattern recognition methods, features are extracted from 

objects. The features are expressed in a form of feature vectors, and the probability density 

function of feature vectors is estimated for each category. An unknown input pattern is 

assigned to the category with the maximum probability [38]. In parametric density esti-

mati on, the forms for the density function is assumed to be known, and parameters of the 

function are estimated using the training sample vectors. 

Let v represent the output of all L algorithms to be fused, i.e., v = [Yl, Y2,··· ,YLJ. 

Within the Bayesian framework, v is considered a random variable with a distribution 

that depends on the state of nature. Using Bayes formula, we first compute the posterior 

probability using 

(3) 

Then, v is assigned to the class with maximum posterior probability, i.e., 

(4) 

In (3), p(ni ) is the prior probability of class i and p(vlni ) is the class conditional density. 

The prior p(ni ) is usually provided by an expert, or estimated using the relative proportions 

of training data from each class. Similarly, p(vlni ) can be estimated from the training data. 

The Gaussian distribution is usually used as the density function. This is because the 

Gaussian distribution is easy to handle, and in many cases, the distribution of the sample 
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vectors can be regarded as normal if there are enough samples. The mean vector and 

covariance matrix are calculated from the vectors. 

Let d be the dimension of feature vector. The probability density function of a 

d-dimensional normal distribution is given by: 

(5) 

where v is a d-component vector, /1i is the mean vector for class i, and Li is the d x d 

covariance matrix for class i. Then, the posterior probability P(Oilv) can be computed by 

Bayes formula using Eq. (3) as: 

p( vi Ok)P( Ok) 
p(v) 

p(nk)e-~(V-lLk)T Lk1
(v-lLk) 

(21r)d/21 ~k Il/2p(V) 
(6) 

If the training data can be modeled by a mixture of Gaussian distributions, the Ex-

pectation Maximization (EM) algorithm [39] can be used first to build the multiple Gaus-

sian model. Then this modeling can be used to make the final decision according to the 

above Bayes rule. The EM algorithm is an efficient iterative procedure to compute the 

Maximum Likelihood (ML) estimate in the presence of missing or hidden data. Each iter-

ation of the EM algorithm consists of two processes: The E-step, and the M-step. In the 

expectation, or E-step, the missing data are estimated given the observed data and current 

estimate of the model parameters. In the M-step, the likelihood function is maximized un-

der the assumption that the missing data are known. The estimate of the missing data from 

the E-step are used in lieu of the actual missing data. Convergence is assured since the 

algorithm is guaranteed to increase the likelihood at each iteration. For the fusion problem, 

we can first cluster the training data using the EM into M components. Then, the posterior 

probability can be computed by generalizing Bayes rule in Eq. (7) to assign a test point 
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into different component or class. 

(7) 

C Dempster-Shafer Fusion 

Dempster-Shafer Theory CDST) is a mathematical theory of evidence for represent­

ing uncertain knowledge [40,41]. In a finite discrete space, Dempster-Shafer theory can be 

interpreted as a generalization of probability theory where probabilities are assigned to sets 

as opposed to mutually exclusive singletons. In traditional probability theory, evidence is 

associated with only one possible event. In DST, evidence can be associated with multiple 

possible events, e.g., sets of events. As a result, evidence in DST can be meaningful at a 

higher level of abstraction without having to resort to assumptions about the events within 

the evidential set. The Dempster-Shafer model collapses to the traditional probabilistic for-

mulation when the evidence is sufficient enough to permit the assignment of probabilities 

to single events. 

DST fusion was applied to handwriting recognition [42], decision making [43], face 

detection [44], landmine detection [36, 37, 45], and more [32, 46]. One important feature 

of DST is its ability to cope with varying levels of precision regarding the information with 

no further assumptions needed to represent the information. It also allows for direct repre-

sentation of uncertainty of system responses where an imprecise input can be characterized 

by a set or an interval and the resulting output is a set or an interval. However, DST fails 

to give an acceptable solution to fusion problems with significant conflict [47, 48]. Con-

sequently, many researchers developed modified Dempster rules to represent the degree of 

conflict [46]. 

DST and Bayesian theories have been studied and compared extensively [49, 33, 
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50]. Both theories have initial requirements. DST theory requires masses to be assigned 

to alternatives in a meaningful way, including the unknown state; whereas Bayes theory 

requires prior probabilities. In general, the results of both methods may be comparable, but 

the implementations may require different amounts of effort and information. Thus, select-

ing one approach over the other usually depends on the extent to which prior information 

is available. 

Let 8 = {O l , ... ,OK} be a finite set of possible hypotheses. This set is referred to 

as the frame of discernment, and its power set is denoted by 2(J. There are three important 

functions in Dempster-Shafer theory: the basic belief assignment function (BBA or m), the 

Belieffunction (Bel), and the Plausibility function (Pl). 

1 Basic belief assignment Function 

The basic belief assignment (BBA) function is a primitive of evidence theory. Gen-

erallY speaking, the term basic belief assignment does not refer to probability in the classi­

cal sense. The basic belief assignment m assigns a value in [0, I] to every subset A of 8 

and satisfies the following condition: 

m(</J) = 0, and L m(A) = 1 (8) 
As;;:e 

It is worth mentioning here that, m( </J) could be positive when considering un normalized 

combination rule as will be explained later. While in probability theory a measure of prob­

ability is assigned to atomic hypotheses (}i, in DST, m(A) is the part of belief that supports 

A , but does not support anything more specific, i.e., the value of m(A) pertains only to 

the set A and makes no additional claims about any subsets of A. Any further evidence on 

the subsets of A would be represented by another BBA, i.e. B C A, m(B) would be the 

BBA for the subset B. For A#- Oi, m(A) reflects some ignorance because it is a belief that 

cannot subdivide into finer subsets. m(A) is a measure of support that will be assigned to a 

composite hypothesis A at the expense of support m( Od of atomic hypotheses Oi. A subset 
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A for which rn(A) > 0 is called afocal element. The partial ignorant associated with A 

leads to the following inequality: rn(A) + rn(A) :'::: 1, where A is the compliment of A. 

In other words, the Dempster-Shafer theory of evidence allows to represent only our actual 

knowledge without being forced to overcommit when it is ignorant. 

2 Belief function 

Intuitively, a portion of belief committed to a hypothesis A must also be committed 

to any hypothesis it implies. To obtain the total belief in A, one must therefore add to 

rn(A) the quantities rn(B) for all subsets B of A. Therefore, the belief function, BeJ(.), 

associated with the BBA m(.) assigns a value in [0, 1] to every nonempty subset A of 8. It 

is called "degree of belief in A" and is defined by: 

Bel(A) = L rn(B) (9) 
B~A 

Bel(A), also called the credibility of A, is interpreted as a measure of the total belief com-

mitted to A. We can consider a basic belief assignment as a generalization of a probability 

density function whereas a belief function is a generalization of a probability function. It 

can be easily verified that the belief in some hypothesis A and the belief in its negation A 

do not necessarily sum to I, which is a major difference with probability theory. 

3 Plausibility function 

Plausibility function (PI) is the sum of alI the basic belief assignments of the sets 

(8) that intersect the set of interest (A) (B n A =1= ¢) [51]. Formally, for all sets A that are 

elements of the power set (A E 8). 

PI(A) = 2: rn(B) (10) 
BnA#q, 

The two measures, Belief and Plausibility measures are nonadditive. This can be inter-

preted as it is not required for the sum of all the Belief measures to be 1 and similarly for 
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the sum of the Plausibility measures. It is possible to obtain the basic belief assignment 

from the Belief measure with the following inverse function: 

m(A) = L (-l)IA-BIBel(B) 
B<;;A 

In Eq. (11), IA - BI is the difference of the cardinality of the two sets. 

(11) 

In addition to deriving these measures from the basic belief assignment (m), these 

two measures can be derived from each other in the following way: 

PI(A) = 1 - Bel(A) 

Bel(A) = LB<;;:Am(B) = LBnA=cf>m(B) 

LBnA~cf> m(B) = 1- LBnA=cf> m(B) 

(12) 

In Eq. (12), A is the classical complement of A. This definition of Plausibility in terms of 

Belief comes from the fact that all basic assignments must sum to 1. 

A BBA can also be viewed as determining a set of probability distributions P over 

2° satisfying: 

Bel(A) :::; P(A) :::; PI(A), V A ~ 8 (13) 

For this reason, Bel and PI are also called lower and upper probabilities, respectively. This 

fundamental imprecision in the determination of the probabilities reflects the "weakness", 

or the incompleteness of the available information. The above inequalities reduce to equal-

ities in the case of a Bayesian belief function. 

4 Combination rule 

Consider two BBAs ml (.) and m2 (.) for belief functions bell (.) and beh (.) respec­

tively. Let Aj and Bk be focal elements of belt and bel2 respectively. Then ml (.) and m2(') 

can be combined to obtain the belief mass committed to C c 8 according to the following 
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combination or orthogonal sum formula [40], 

L ml(Aj )m2(Bk) 

m(C) = ml EB m2(C) = j,k,AjnBk=C ,C =f <P (14) 
1 - L ml(Aj )m2(Bk) 

j,k,AjnBk=<P 

The denominator is a normalizing factor, which intuitively measures how much ml (.) and 

m2(') are conflicting. 

5 Weighted Combination Rule for DST 

The measures of Belief and Plausibility are derived from the combined basic assign-

ments. Dempsters rule combines multiple belief functions through their basic probability 

assignments. These belief functions are defined on the same frame of discernment, but 

are based on independent arguments or bodies of evidence. The issue of independence is 

a critical factor when combining evidence and is an important research subject in DST. 

The denominator in Dempsters rule has the effect of completely ignoring conflict and at-

tributing any probability mass associated with conflict to the null set [47]. Consequently, 

this operation will yield counterintuitive results in the face of significant conflict in certain 

contexts. 

If we have prior knowledge about reliability of the sources, we can discount the 

source and assign them weights before combining their belief functions, reSUlting in a 

weighted Dempster-Shafer fusion rule: 

L wlml(Aj )w2m 2(Bk) 

j,k,AjnBk=C ,C =f <P 

1 - L wlml(Aj)w2m2(Bk) 
j,k,AjnBk=<i> 

6 Combining several belief functions 

(15) 

The combination rule can be easily extended to several belief functions by repeating 

the rule for new belief functions. Thus the pairwise orthogonal sum of n belief functions 
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bell, bel2, ... ,beln , can be formed as the belief function: 

n 

((Bell EEl Be12) EB Be13) ... EEl Beln = EB Be1i (16) 
i=l 

D Borda Count Fusion 

In 1770, lC. de Borda presented a new method of election to the French Royal 

Academy of Sciences [52]. His method involved having each voter rank all the candidates 

in an election. These ranks would be combined by summing, and the candidate with the 

best rank sum would be the winner. Soon after, the Marquis de Condorcet [53] presented 

an alternate method of using pairwise comparisons to generate ranked election results. 

Black [54], Arrow [55], and others [6] have analyzed the Borda, Condorcet, and other such 

methods for making communal ranking decisions. Each such ranking process involves a 

set of candidates and set of voters. The voters supply a schedule indicating their rankings 

(ei ther total or pairwise) of the candidates, i.e. voters rank candidates in order of preference. 

The Borda count determines the winner of an election by giving each candidate a certain 

number of points corresponding to the position in which he or she is ranked by each voter. 

Once all votes have been counted the candidate with the most points is the winner. 

The Borda count has been used for fusing the results of classifiers for the task of 

handwriting recognition [6, 27, 56]. In this setting, there are C classifiers and N classes. 

The classes correspond to words in a lexicon. Each classifier assigns a ranking of classes 

(possibly partial) to each object (a handwritten word). Ho, et al. [6], presented a weighted 

Borda count technique for this application that uses logistic regression to identify classifier 

weights by comparing the ranking results of each classifier with the best ranking derived 

by applying several different independent classification algorithms. Gader, et al. [27], 

employ a method in which the Borda weights are determined dynamically based on a match 

confidence between the object and a lexicon string. Van Erp and Schomaker [56] compared 

the performance of the Borda count, a variant of the Borda count, in which the median rank 
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(rather than sum or average) is used, and Nansons [57] election procedure (an iterative 

Borda scheme that deletes the candidate ranked lowest in each successive iteration). 

1 General Approach 

One approach [12] to implement fusion using rank weighings is to consider each 

discrimination algorithm to be a voter, and each observation in the training set to be a 

candidate. Formally, given a set of algorithms D I , ... D L and a set of training sample ob-

jects Xl,'" ,XN, each algorithm maps each object Xj to a confidence values Yj. Algorithm 

Di assigns rank rJYij) to candidate j if Yij = Di(Xj) has a confidence value greater than 

exactly ri (Yij) - 1 other candidate alarms. Thus, ri is a map from the confidence val-

ues assigned by algorithm Di into the set {I,· .. ,N}. Then, for a new candidate x; with 

Y/ = Di(xj), the rank can be computed using: 

c(i(Y/) = ri( V Yij) (17) 
Yij~Yj* 

The rank, f(y/) is the number of candidates in the training set having confidence value no 

greater than (y/). 

The un weighted Borda count fusion of all L algorithms on candidate X j * can be 

computed as R(x/) using: 
L 

R(xj *) = L~ I:ri(Yj *) 
i=l 

(18) 

Note that this result is normalized to yield a value in the range [0,1]. 

2 Weighted Borda Count 

If there is evidence that algorithms Di and D j have differing predictive capacities, 

say Di is more likely to be correct than Dj, then it makes sense to assign weights Wi and Wj 

to these algorithms, where Wi > Wj' In general, a weighted Borda scheme assigns to each 
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algorithm Vm. a weight Wm satisfying: 

L 

2:Wm = 1 (19) 
m=I 

Then, the weighted Borda Count assigns confidence R(x/) to new candidate alarm x/ as 

follows: 
L 

R(o*j) = L~ 2:Wmri(Yi/) 
m=l 

(20) 

The algorithm weight, W m , could be assigned using prior knowledge. They could also be 

learned using a set of labels samples by optimizing some criteria [58]. 

E Decision Template Method 

Decision Template (DT) [7] is a robust classifier fusion scheme that combines clas­

sifier outputs by comparing them to a characteristic template for each class. DT fusion uses 

all classifier outputs to calculate the final support for each class, which is in sharp contrast 

to most other fusion methods which use only the support for that particular class to make 

their decision. 

In many cases, the classifier output is a C -dimensional vector with support to the C 

classes, i.e., 

(21) 

where Xi is a set of feature for classifier Vi, V = {VI, V 2 ,'" ,Vd is a set of classifiers 

and ! ~ = {! ~I' ... ,nc } is a set of class labels. Without loss of generality, di,j (Xi) can be 

restricted to the interval [0,1], i = 1, ... ,L, j = 1, ... ,C. di,j(Xi) is the degree of support 

given by classifier i to the hypothesis that Xi comes from class nj (most often an estimate 

of the posterior probability P( Wj IXi))' Combining classifiers means to find a class label for 

X based on the V classifier outputs V1(xd,'" ,VL(XL), i.e.: 

(22) 
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1 General Model for DT Classifier Fusion 

DT treats the classifier outputs as the input to a second-level classifier in some in-

termediate feature space, and designs a new classifier for the second (combination) level. 

The classifier outputs can be organized in a decision profile (DP) [59] as a matrix: 

VP(x) = d l(X) ... d ·(x) ... d· ·(x) ~, t,) ~,) 
(23) 

The entries in VP(x) form the intermediate feature space. The DT approach builds a 

minimum-error classifier by replacing the problem of estimating P(Oilx) with one of es­

timating P(OiIVl(XI),'" ,Vdxd), or more compactly, P(OiIVP(x)). Thus, the initial 

feature space with n features, ~n, is transformed into a new space with L x c features. 

This treatment of the combination problem underpins the schemes in [6, 60, 61]. In a way, 

this idea is akin to support vector machines approach where the initial feature space is 

transformed in a new (generally higher dimensional) space and the classifier is built in that 

new space [62]. However, in the model here, the intermediate feature space has a special 

context-related structure [59]. 

2 Decision Templates (DT) 

Given L (trained) classifiers in V, C Decision Templates (DT) are calculated from 

the data, one per class. The decision template for class Oi, denoted DTi , is the centroid 

of class i in the intermediate feature space. D1i can be regarded as the expected value for 

class ni . The support for class ni offered by the combination of the L classifiers,/-li (x), is 

then found by measuring the similarity between the current DP(x) and D1i. DP(x) and 

DTi can be viewed as two fuzzy sets defined over the set of intermediate features and use 
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measures of similarity from fuzzy set theory. The following algorithm [7] describes the 

training and the testing procedures of the DT approach. 

Decision Template(Training) 

1.For i = 1,"', C, calculate the mean of the decision profiles 

DP(Zj) of all member of Oi from the data set Z. Call the mean a 

decision template DTi: 

where Ni is the number of elements of Z from Oi; 
2.Retum DT1,'" ,DTc. 

Decision Template(Testing) 

(24) 

1.Given the input x E Rn construct DP(x) as in Eq. (23); 
2.Calculate the distance between DP(x) and each DTi, 

i = 1",' ,c, 

c L 

d(VP(x), VIi) = 2: 2: (dk,j(x) ~ dti(k,j))2 (25) 
j=l k=l 

where dti (k, j) is the k, ph entry in decision template; 
3.Calculate the components of the soft label of x by: 

1 
Mi(X) = 1 ~ -L dE(DP(x), DTi) 

·c 
(26) 

If the classifier outputs are some estimates of the posterior probabilities P(Oklx), 

k = 1, ... ,C, the decision template is an unbiased estimate ofthe expectation ofthe Lx c 

dimensional random variable DP(x) given that the true class is Oi. Therefore, assessing 

the similarity between the actually occurred matrix of outputs D P( x) and the expected one 

for Oi is a reasonable classification strategy. 

Figure 4 illustrates how the DT scheme operates. The decision templates are calcu-

lated in advance using Eq. (24). 
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Figure 4. Architecture of the decision templates classifier fusion scheme 

F Boosting 

Boosting is an iterative procedure used to adaptively change the distribution of the 

training examples so that the base classifiers will focus on examples that are hard to clas-

sify. Boosting assigns a weight to each training sample and may adaptively change the 

weight at the end of the boosting round. Examples that are classified incorrectly will have 

their weights increased, while those that are classified correctly will have their weights 

decreased. This forces the classifier to focus on examples that are difficult to classify in 

subsequent iterations. 

Over the years, several implementations of boosting have been developed [63, 5]. 

These algorithms differ in terms of (1) how the weights of the training example are updated 

at the end of each boosting round, and (2) how the predictions made by each classifier 

are combined. The original ones, proposed by Robert Schapire (a recursive majority gate 

formulation [5]) and Yoav Freund (boost by majority [63,64]) were not adaptive and could 

not take full advantage of the weak learners. 
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While boosting is not algorithmically constrained, most boosting algorithms consist 

of iteratively learning weak classifiers with respect to a distribution and adding them to a 

final strong classifier. When they are added, they are typically weighted in some way that 

is usually related to the weak learner's accuracy. After a weak learner is added, the data 

is reweighed: examples that are misclassified gain weight and examples that are classified 

correctly loose weight (some boosting algorithms actually decrease the weight of repeat­

edly misclassified examples, e.g., boost by majority). Thus, future weak learners focus 

more on the examples that previous weak learners misclassified. 

AdaBoost is one of the most commonly used Boosting algorithms [65], and is sum­

marized as follows. 
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AdaBoost Algorithm 

I.w = {Wj = 11NIJ = 1,2" N}. Initialize the weights for all N 

examples; 
2.Let k be the number of booting samples; 
3.for i = 1 to k do, 
4. Created a training set Si by sampling (replacement) from S 

according to w; 

5. Train a base classifier Vi on the bootstrap sample Si; 
6. Apply Vi to all examples in the original training set V; 
7. 

Ci = CL wjiS(Vi(xj) 1= Yj)]/N 
j 

8. if Ci > 0.5 then 
9. W = {Wj = 11Nfj = 1,2" N}; 
10. Go back to Step 4. 
11. end if 
12. 

1 1- 0: 
O:i = - * In __ 2 

2 O:i 

13. Update the weight of each example according to 

14. end for 
15. 

j {exp-
aj 

'+1 W wJ = _2 X 
Z Z 

J expaj 

T 

(27) 

(28) 

(29) 

V*(x) = argmaxy L O:jiS(Vj(x) = y) (30) 
j=l 

is (.) = 1 if its argument is true and 0 otherwise. 

G Random Forest 

Random Forest is a tree-based ensemble classifier that uses bagging technique to 

create new training sets [4]. It includes two important methods: random feature subspace 
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and out-of-bag estimates. The former enables a much faster construction of trees and the 

latter the possibility of evaluating the relative importance of each input feature. The general 

Random Forest algorithm is summarized as follows. 

Random Forests 

1. Choose T number of trees to grow; 

2. Choose m number of variables used to split each node. m « M. 

where M is the number of input variables. m is hold constant while 

growing the forest; 

3. Grow T trees. When growing each tree do the following. 

(a) Construct a bootstrap sample of size n sampled from Sn 

with replacement and grow a tree from this bootstrap sample; 

(b) When growing a tree at each node select m variables at 

random and use them to find the best split; 

(c) Grow the tree to a maximal extent. There is no pruning; 

4. To classify point X collect votes from every tree in the forest and 

then use majority voting to decide on the class label. 
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CHAPTER III 

BACKGROUND ON LANDMINE DETECTION 

"Near the start oflast century, 90 percent of wartime casualties were soldiers. As the 

century waned, 90 percent were civilians" [13]. That stunning statistic is not attributable 

to the landmine crisis alone. But anti-personnel(AP) landmines have added greatly to the 

devastating impact of modern conflict on noncombatants. These hidden killers are cheap to 

buy, easy to use, hard to detect and difficult to remove. They cost as little as $3 to produce, 

but as much as $1000 to remove. The simple fact is that more landmines are deployed 

in armed conflict every year than are removed by mine clearance personnel. The world is 

now littered with an estimated 80-110 million landmines in 64 countries, which maim or 

kill an estimated 500 people every week, mostly innocent civilians.The majority of these 

mines were deployed during the last 15 years. The burden imposed by the proliferation and 

indiscriminate use of these weapons is beyond calculation [13, 66]. Thus, detection and 

removal of landmines is a serious problem affecting civilians and soldiers worldwide. 

Since the 1930s, many countries have worked on the solution to the problem of de­

tecting nonmetallic landmines. The research has encompassed an extremely wide range 

of technologies and hundreds of millions of dollars have been spent. Despite these ef­

forts. there is still no satisfactory operational detection solution. This lack of success is 

attributable to the extreme difficulty of the problem, such as: the large variety of land­

mine types, differing soil type and compaction, temperature, moisture, shadow. time of 

day. weather conditions, and varying terrain, to name a few. 

Among these researches, a variety of sensors have been proposed or are under in-
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vestigation for landmine detection. It is necessary to have a very high detection rate with 

a low false alarm rate. The research problem for sensor data analysis is to determine how 

well signatures of landmines can be characterized and distinguished from other objects 

under the ground using returns from one or more sensors. Metal detectors are used most 

frequently, unfortunately, many modern landmines are made of plastic and contain little 

or no metal. Ground Penetrating Radar (GPR) offers the promise of detecting landmines 

with little or no metal content. Unfortunately, landmine detection via GPR has been a 

difficult problem [67, 68]. Although systems can achieve high detection rates, they have 

done so at the expense of high false alarm rates. The detection problem is compounded by 

the large variety of explosive object types, differing soil conditions, temperature, weather 

conditions, and varying terrain. In particular, many systems can be significantly effected 

by rapidly changing environmental conditions. Therefore, detection algorithms which can 

adopt to changing conditions are needed for detecting buried landmines. 

Because our proposed fusion method will be validated mainly by landmine detection 

problem, in this chapter we will give a brief overview of several sensors that have been used 

to detect landmines and introduce the principle, application and limitations among them to 

build a basic understanding of the landmine detection problem. A more detailed description 

can be found [69]. Additionally, we will outline few detection algorithms that will be fused 

by our proposed methods. 

A Ground Penetrating Radar (GPR) 

GPR works by emitting an electromagnetic wave covering a large frequency band 

into the ground through a wideband antenna. Reflections from the soil caused by dielectric 

variations such as the presence of an object are measured. By moving the antenna, it is 

possible to reconstruct an image representing a vertical slice of the soil (refer to Figure 6). 

GPR is sensitive to discontinuities in the electrical properties of the interrogated 

29 



Figure 5. WichmannlNiitek vehicle-mounted GPR at a western U.S. test site 

medium, rather than to the presence of metal. Thus, GPR exploits a different phenomenol­

ogy than EM! sensors (refer to Chapter III.C). Consequently, nonmetallic objects, such as 

wood, plastic, stone, as well as metallic objects, can be detected by a radar. Therefore, 

GPR offers the promise of detecting landmines with little or no metal content. 

An example of a GPR system that has been developed to detect landmines include 

the WichmannlNiitek GPR System [70]. This radar is a very-wide bandwidth (200Mhz 

- 7Ghz) bi-static GPR with very low radar cross-section that implicitly solves many of 

the problems typically associated with shallow-buried object detection utilizing ground 

penetrating radar technology. 

This system, shown in Figure 5, consists of a vehicle-mounted wide-bandwidth im­

pulse radar integrated with a marking and a GPS system. The radar is a 1.2 m wide and 

contains 24 antennae or channels, spaced approximately 5. cm apart. As it can be seen 

in Figure 5, the actual GPR is mounted some distance in front of a wheeled vehicle. As 

the vehicle moves in the down-track direction all 24 of the radars' channels are sampled 

once every 5 cm and at each down-track position each channel measures one 416-element 
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Figure 6. Sample of GPR responses. The x -axis represents down-track scan number, y-axis 
represents time sample. Two anomalies are visible in this data slice, one is at approximately 
sample 90, and another is near sample 460. Also note the high energy of ground bounce 
visible in all down-track scans near time sample 150. This data has been clipped to enhance 
contrast 

time-domain vector, thus, yields a set of twenty-four 416-point time-domain vectors every 

Scm. 

Sample unprocessed data from an u .S. site is shown in Figure 6. This image shows 

600 down-track GPR responses from a central antenna channel. Clearly the largest source 

of GPR response energy is the dielectric discontinuity between the air and ground, seen 

near time sample 150 in all downtrack scans. Despite the ground response, one can still 

visually identify two subsurface anomalies at scans 90 and 460. 

There are two types of GPR systems currently under investigation. One is the down-

looking GPR system, which has its antennas placed near the surface of the earth. Though 

removing the strong signals reflected directly from the ground surface, referred to as the 

ground bounce removal, is a challenging problem [71, 72], this type of system shows a 

very promising detection capability. Its main drawback is that it is time consuming to use 

this type of system for large area interrogation, and short standoff distance is a problem as 

well. The other type of GPR is forward-looking system. This type has the GPR antennas 
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mounted on the front of a vehicle and captures radar signals at equally space positions 

as the vehicle moves forward, Synthetic Aperture Radar (SAR) images are formed from 

the received signals. The problem associated with this system, compared with the down­

looking system, is that most of the radar transmitted energies are reflected off the targets 

and only a very small fraction can be received by the radar receiver. The deeper the burial 

depth of the mine, the weaker the returned signals. Moreover, due to their nearly identical 

dielectric coefficients to the surrounding soil, plastic mines cannot be seen convincingly in 

the spatial domain (SAR images) in the presence of clutter [73]. Hence, detecting buried 

plastic mines is extremely challenging for the forward-looking system. 

B Metal Detectors (MD) 

Some interesting studies have been carried out to see if it is feasible to discrimi­

nate mines from metallic clutter with metal detectors, to reduce the false alarm rate. For 

example, in [74], the author reported the results on using an impulse MD looking for a char­

acteristic decay curve and comparing it to the ones stored in a library. Problems arise from 

the fact that the response curve depends on several factors, such as the orientation of the 

metallic object, and the exact metal type. Also, the matching is done only with objects that 

are known a priori. This approach could nevertheless be promising in specific situations. 

For instance in [75], the author studied the possibility of characterizing objects/mines by 

measuring the frequency response over a large frequency range. 

Another interesting and unconventional application is represented by the Meander­

ing Winding Magnetometer (MWM) described in [76]. The device has the characteristic 

of using a square wave winding conductor in order to generate a spatially periodic elec­

tromagnetic field, whose spatial wavelength depends only on the primary winding spatial 

periodicity. It can, in principle, detect several characteristics of a buried metallic object 

(size, shape, etc.), and its application to humanitarian demining is currently being investi-
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gated. 

The idea of using metal detectors to actually locate "cavities" in the soil, is also not 

new, as a (large) nonconducting target does indeed alter locally the natural ground con­

ductivity, and has led for example to the patent ("cavity detector") described in [77]. The 

system should probably work best for large objects in soils with high natural conductivity 

("background" signal). 

C Electromagnetic Induction (EMI) 

Another widely deployed metal detector (MD) for landmine detection is an electro­

magnetic induction (EMI) device that operates by sensing the metal present in land mines. 

The metal parts present in a landmine are detected by sensing the secondary magnetic field 

produced by eddy currents induced in the metal by a time-varying primary magnetic field. 

The frequency range employed is usually limited to a few tens of kHz. EMI sensors usu­

ally consist of a pair of coils, one of which is used to transmit either a broadband pulse 

or a continuous wideband electromagnetic waveform. The transmitted field induces a sec­

ondary current in the earth as well as in any buried conducting objects. In the case of pulsed 

excitation, the transmit waveform is quenched quickly and the receiving coil measures the 

decaying secondary field that has been induced in the earth and subsurface objects [78]. 

In the case of wideband excitation, the receiving coil is placed within the magnetic cav­

ity so that it senses only the weak secondary field radiated by the earth and buried objects 

[79]. Present research is investigating replacement of the receive coil with magnetoresistive 

devices. 

The most obvious and serious limitation of metal detectors used to detect landmines 

is the fact that they are metal detectors. A modern metal detector is very sensitive and can 

detect tiny metal fragments as small as a couple of millimeters in length and less than a 

gram in weight. An area to be demined is usually littered with a large number of such 
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metal fragments and other metallic debris of various sizes. This results in a high rate of 

nuisance alarms since a metal detector cannot currently distinguish between the metal in a 

1andmine and that in a harmless fragment. The more sensitive a detector is, the higher the 

number of nuisance alarms it is likely to produce in a given location. Operating a detector 

at a lower sensitivity to reduce the number of such nuisance alarms may render it useless 

for detecting the very targets it was designed to detect, that is, the minimum metal-content 

landmines buried up to a few centimeters. Electromagnetic properties of certain soils can 

also limit the performance of metal detectors. 

In addition to the above sensors, there exists several other promising techniques for 

landmine detection. Examples include Infrared Imaging (lR) [80, 8 t], neutron activation, 

X-ray backscatter [82], Nuclear Magnetic or Quadrupole Resonance (NMRlNQR) [83, 84, 

85], and Thermal Neutron Activation (TNA) [86]. 

D Landmine Detection Data and Algorithms 

Autonomous detection algorithms for 1andmine can generally be broken down into 

four phases: pre-processing, feature extraction, confidence assignment, and decision-making. 

Pre-processing algorithms perform tasks such as normalization of the data, corrections for 

variations in height and speed, removal of stationary effects due to the system response, 

etc. Methods that have been used to perform this task include wavelets and Kalman fil­

ters [87, 88], subspace methods and matching to polynomials [89], and subtracting opti­

mally shifted and scaled reference vectors. Feature extraction algorithms reduce the pre­

processed raw data to form a lower-dimensional, salient set of measures that represent 

the data. Principal component (PC) transforms are a common tool to achieve this task 

[90,91]. Confidence assignment algorithms can use methods such as hidden Markov Mod­

els [92,93], fuzzy logic [94], rules and order statistics [95], neural networks [96], or nearest 

neighbor classifiers [97] to assign a confidence that a mine is present at a point. Decision-
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making algorithms often post-process the data to remove spurious responses and use a set 

of confidence values produced by the confidence assignment algorithm to make a final 

mine/no-mine decision. 

In the following, we will outline four distinct feature-based algorithms on GPR data 

and one algorithm on WEMI data that have been applied to the landmine detection with 

promising results. 

1 GPRData 

We use data collected by a vehicle mounted mine detection system (VMMDS). In 

this system, the GPR sensor [98] collects 24 channels of data. Adjacent channels are spaced 

approximately 6 centimeters apart in the cross-track direction. and sequences (or scans) are 

taken at approximately 1 centimeter down-track intervals. The system uses a V-dipole an­

tenna that generates a wide-band pulse ranging from 200M Hz to 7GHz. Each A-scan. that 

is, the measured waveform that is collected in one channel at one down-track position, 

contains 416 time samples at which the GPR signal return is recorded. Each sample corre­

sponds to roughly 8 picoseconds. We often refer to the time index as depth although, since 

the radar wave is traveling through different media, this index does not represent a uniform 

sampling of depth. Thus. we model an entire collection of input data as a three-dimensional 

matrix of sample values. S(z, x, y), z = 1,··· ,416; x = 1,· .. ,24; y = 1, ... ,Ns• where 

N s is the total number of collected scans. and the indices z, x ,and y represent depth, cross­

track position, and down-track positions respectively. A collection of scans. forming a 

volume of data. is illustrated in Figure 7. 

Figure 8 displays several B-scans (sequences of A-scans) both down-track (formed 

from a time sequence of A-scans from a single sensor channel) and cross-track (formed 

from each channels response in a single sample). The objects scanned are (a) a high-metal 

content anti-tank (AT) mine, (b) a high-metal content anti-personnel (AP) mine, and (c) a 
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Figure 7. A collection of few GPR scans 

wood block. 

During data collection, the VMMDS is driven over the lanes with the GPR operat-

ing and saving data to disk. A global positioning system (GPS) on the VMMDS is used 

in conjunction with known locations of buried landmines to generate ground truth files 

that indicate the approximate locations of the landrnine signatures in the GPR data files. 

For scoring purposes, alarms within a certain radial distance (25cm) from the edge of a 

landmine are considered detections and alarms more than 25cm from landmine edges are 

considered false alarms. 

2 Hidden Markov Model (HMM) Algorithm 

An Hidden Markov Model (HMM) is a model of a doubly stochastic process that 

produces a sequence of random observation vectors at discrete times according to an un-

derlying Markov chain. At each observation time, the Markov chain may be in one of Ns 

states {81 ' ... , 8 N} and, given that the chain is in a certain state, there are probabilities of 

moving to other states. These probabilities are called the transition probabilities. An HMM 
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Figure 8. NIITEK Radar down-track and cross-track B-scans pairs for 3 alarms 

is characterized by three sets of probability density functions, the transition probabilities 

(A), the state probability density functions (B) , and the initial probabilities (1f ). Let T be 

the length of the observation sequence (i.e.,number of time steps), let 0 = {0 1 , .. . ,OT} 

be the observation sequence, and let Q = {q1 , ... ,qT} be the state sequence. The compact 

notation is generally used to indicate the complete parameter set of the HMM model. 

). = (A , B, 1f ) (31 ) 

In Eq. (31), A = [aij ] is the state transition probability matrix, where aij 

j lqt-1 = i) for i,j = 1" " , Ns ; 1f = {1fi } , where 1fi = Pr(ql = Si) are the initial state 

probabilities; and B = {bi(Ot ), i = 1"" ,N}, where bi(Ot) = Pr(Otlqt = i) is the set of 

observation probability distribution in state i . 

An HMM is called continuous if the observation probability density functions are 

continuous and discrete if the observation probability density functions are discrete. In the 
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Figure 9. HMM Feature of a mine signature 

case of the discrete HMM, the observation vectors are commonly vector quantized into 

a finite set of symbols, {VI , V2 , . . . , VM}, called the codebook. Each state is represented 

by a discrete probability density function and each symbol has a probability of occurring 

given that the system is in a given state. In other words, B becomes a simple set of fixed 

probabilities for each class, that is, bi( Ot ) = bi(k ) = Pr( vklqt = i), where Vk is the symbol 

of the nearest code book of Ot . In the continuous HMM, bi (Ot) are defined by a mixture 

of some parametric probability density functions. The most common parametric pdf used 

in continuous HMM is the mixture Gaussian density: 

Mi 

b - i ( Ot) = L Cimbim( Ot) (32) 
m=l 

where Mi is the number of components in state i , Cim is the mixture coefficient for the mth 

mixture component in state i, and satisfies the constraints Cim ~ 0, and l:~~1 Cim = 1, for 

i = 1,··· ,N , and bim(Ot) is a K-dimensional multivariate Gaussian density with mean 

j..tim and covariance matrix Cim. 

The HMM algorithm for landmine detection [92, 93] treats the down-track dimen-

sion as the time variable and produces a confidence that a mine is present at various posi-
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Figure 10. lllustration of the HMM-based model architecture 

tions, (x, y), on the surface being traversed. In particular, a sequence of observation vectors 

is produced for each point. These observation vectors encode the degree to which edges 

occur in the diagonal and anti-diagonal directions. In particular, for every point (xs, Ys), 

the strengths for the positive/negative diagonal/anti-diagonal edges is computed. Then, the 

observation vector at a point (xs, Ys) consists of a set of features that encode the maximum 

edge magnitude over multiple depth values around (x s , Ys). Figure 9 displays a hyperbolic 

curve superimposed on a preprocessed metal mine signature to illustrate the features of a 

typical mine signature. 

The HMM classifier for landmine detection consists of two HMM models, one for 

mine and one for background. Each model has three states and produces a probability value 

by backtracking through model states using the Viterbi algorithm [99]. The mine model , 

Am, is designed to capture the hyperbolic spatial distribution of the features. Am has 3 states 

which correspond to the rising edge, flat, and decreasing edge. Each state is represented by 

3 Gaussian components. The mine model is left to right model in that states are ordered and 

the transition probabilities for moving to a lower numbered state are zero. The background 

model is needed to capture the background characteristics and to reject false alarms. Each 

of the 24 channels is treated independently from the others, and has its own background 

model, Abc. In addition to allowing each channel to have a model that reflects its own 
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data, this decoupling allows the channels to be processed in parallel, and thus facilitating 

real-time operation. All ),bc (for c = 1,··· ,24) have 3 states and 3 Gaussian components 

per state. The probability value produced by the mine (background) model can be thought 

of as an estimate of the probability of the observation sequence given that there is a mine 

(background) present. The model architecture is illustrated in Figure 10. 

3 Edge Histogram Descriptor (EHD) Algorithm 

The Edge Histogram Descriptor (EHD) algorithm uses translation invariant features, 

that are based on the Edge Histogram Descriptor (EHD) of the 3D GPR signatures (refer 

to Figure 7), and a possibilistic K-Nearest Neighbors (K-NN) rule for confidence assign­

ment [97]. The EHD is an adaptation of the MPEG-7 EHD feature [100] which captures 

the signature's texture as feature for recognition. For a generic image, the EHD represents 

the frequency and the directionality of the brightness changes in the image. Simple edge 

detector operators are used to identify edges and group them into five categories: vertical, 

horizontal, 45 0 diagonal, 1350 diagonal, and isotropic (non-edges). The EHD would in­

clude five bins corresponding to the above categories. For the GPR data, we can adapt the 

EHD to capture the spatial distribution of the edges within a 3-D GPR data volume. To 

keep the computation simple, we still use 2-D edge operators, and we compute two types 

of edge histograms. The first one is obtained by fixing the cross-track dimension and ex­

tracting edges in the (depth, down-track) plane. The second edge histogram is obtained 

by fixing the down-track dimension and extracting edges in the (depth, cross-track) plane. 

Figure 11 displays a (depth,down-track) plane and a (depth,cross-track) plane of a sample 

mine signature with 60 depth values. As it can be seen, the edges in these planes and their 

spatial distribution constitute an important feature to characterize the mine signatures. 

To generate the histogram, local edges are categorized into five types: vertical, hor­

izontal, diagonal (45 0 rising), anti-diagonal (45 0 falling), and non-edges. These edges are 
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Figure 11. (a) (depth-downtrack), and (b) (depth-crosstrack) views of a sample mine sig­
nature models 

superimposed on a typical mine signature in Figure 12. As it can be seen these edges 

represent a good approximation of the mine signature. 

Let S~~) be the xth plane of the 3-D signature S(x, y, z). First, for each sW ' we 

compute four categories of edge strengths: vertical, horizontal, 450 diagonal, and 1350 

diagonal. If the maximum of the edge strengths exceeds a certain preset threshold, ea, the 

corresponding pixels is considered to be an edge pixel. Otherwise, it is considered a non 

edge pixel. Next, each S~~) image is vertically subdivided into 7 overlapping sub-images 

S~~~, i = 1, · ·· , 7. For each S~~~ , we compute a 5 bin edge histogram, H~~~ , where the 

bins correspond to the 7 edge categories, and the non-edge pixels (refer to Figure 11). The 

down-track component of the EHD, EH Dd is defined as the concatenation of 7 five-bin 

histograms in Eq. 33: 

(33) 

where H zyi' i = 1,· .. , 7, is the cross-track average of the edge histograms of sub-image 
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Figure 12. Diagonal, anti-diagonal, and horizontal edges superimposed on a typical mine 
signature 

s~~~ over Nc channels, i.e., 
Nc 

- __ 1 '"' (x) 
H ZYi - N. ~ HZYi 

C x=l 

(34) 

To compute the cross-track component of the EHD, EH DX, we fix the scans, and 

compute the 4 edge strengths on the S~Y} , y = 1, ·· · , N S (depth,cross-track) planes. Since 

these planes do not have enough columns (typically < 7), they are not divided into sub­

images, and only one global histogram per plane, H~Y}, is computed. Then, EH DX is 

computed as the down-track average of the edge histograms over Ns scans, in Eq. 35, 

(35) 

The EHD of each 3-D GPR alarm is a 40-D histogram that concatenates the down-

track and cross-track EHD components, i.e. , 

(36) 

The extraction of the EHD is illustrated in Figure 13. Each signature s consists of 

a 30 (depth values) by 15 (scans) by 7 (channels) volume extracted from 7 consecutive 

channels extracted from channel Xs ofthe aligned GPR data and centered at (Ys, zs). 
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Figure 13. Extraction of the EHD for a 3-D mine signature 

A set of alarms with known ground truth is used to train the decision-making pro­

cess. These labeled alarms are clustered to identify a sma]] number of representative proto-

types that capture signature variations due to differing soil conditions, mine types, weather 

conditions, and so forth. To reduce the size of the training samples and identify few repre-

sentatives that can capture these within-class variations, two self-organizing feature maps 

(SOFM) [101] are used to cluster the mine and false alarms signatures separately. We will 

refer to the clusters representatives ~ as prototypes. We use RfI to denote the prototypes 

of the mine signatures, and Rf to denote the prototypes of the clutter signatures. 

For a given test signature, ST , We slide a 30 x 15 x 7 window size along the depth 

axis with a 50% overlap between 2 consecutive signatures. A maximum of 10 signatures 

are extracted for each target. For each signature, we extract the EHD features as described 

above and compute its distance to all representative prototypes, then sort these distances, 

and identify the top K nearest neighbors Sf, ... ,S!j . The confidence value is then com-
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puted using Eq. (37): 

"K M(Sk) 1 
. L.."k=l U T x dist(ST,Sk) 

Con j (ST) = KIT 

l:k=l dist(ST,S}) 

(37) 

where uM is the label using Eq. (38): 

(38) 

Where Rf1, Rf are mine prototype and clutter prototype respectively. 

4 Geometric Feature FOWA ROCA (GEOM) Algorithm 

The geometric feature FOWA ROCA algorithm, GEOM. is based on a single hidden-

layer Feed-forward Order-Weighted-Average (FOWA) network [961, which is essentially a 

perceptron with a combination of scalar and order-weighted-average vector input features. 

The features presented to this network are the geometric features of the FROSAW landmine 

detection algorithm [95]. These features are captured in a depth-bin whitened version of 

the GPR data. The GPR data are segmented into a sequence of subimages that overlap in 

the depth dimension. To reduce noise, de-correlate time samples, and reduce computational 

burden, principal component analysis (PCA) is used to reduce the number of elements in 

depth bins on a channel-by-channel basis. 

It has been consistently observed that in many of the depth bins the whitened en-

ergy signal for mines has a compact, solid, circular shape (sometimes also accompanied 

with outer rings). One the other hand, whitened energy signals for non-minelike false 

alarms (Le., those alarms having raw GPR signatures that humans qualitatively label as 

non-manlike) tend to be irregular. Based on these observations, four features, i.e., compact-

ness, eccentricity, solidity, and area/filled area ratio, are computed from whitened energy 

signals for discriminating mines and non-mines. 

To improve the algorithm's accuracy, an iterative technique that maximizes the area 

under the ROC curve is used [102]. 
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5 Spectral Feature (SPECT) Algorithm 

In contrast to the geometric features and the edge histogram features, the spectral 

feature (SPECT) algorithm aims at capturing the characteristics of a target in the frequency 

domain. It extracts the alarm Spectral Correlation Feature (SCF), and formulates a confi­

dence value based on similarity to prototypes that characterize mine objects [103]. 

The spectral features are derived from the Energy Density Spectrum (EDS) of an 

alarm declared by the pre-screener. The estimation of EDS involves three main steps: pre­

processing, whitening, and averaging. Pre-processing estimates the ground level, aligns 

the data from each scan with respect to ground level, and removes the data above and near 

the ground surface. This step is needed to avoid an EDS that is dominated by the response 

of the ground bounce. The whitening step performs equalization on the spectrum from 

the background so that the estimated EDS reflects the actual spectral characteristics of an 

alarm. Averaging reduces the variance in the EDS. 

6 WEMI Data and Algorithm 

The Wide band Electro-Magnetic Induction (WEMI) sensor was developed by Scott 

[104]. This sensor measures the response of an object at 21 logarithmically spaced fre­

quencies over the range 330 Hz to 90 KHz. The goal is to obtain characteristic spectral 

shapes that can help discriminate objects of interest from false alarms. 

The response of the system can be modeled as 

S(w) = A[I(w) + iQ(w)], (39) 

where w is frequency, A is magnitude and I( w)+iQ( w) describes the shape of the response 

as a function of frequency. An input data point is composed of 21 complex responses at the 

following measured frequencies (in Hz.): 330,390,510,690,930, 1230, 1650,2190,2910, 

3930,5190,6930,9210, 12210, 16230,21630,28770, 38250, 50850,67650, and 90030. 
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Before feature extraction, the I and Q values are normalized between 0 and I. This 

eliminates variation in magnitude due several factors - such as the depth of the buried 

object to be detected as well as metal mass and content - that do not affect the shape of the 

response curve. The magnitude can always be measured separately. After normalization, 

the response models proposed by Miller et al. [58] are used to fit the curve. The 3-parameter 

model is given by 

. ( (iiuT)1/2 - 2) 
I + zQ = q s + (iWT)1/2 + 1 (40) 

where q, s, and T are the three parameters describing the shape of the response curve. The 

value q represents the magnitude of the response curve after normalization, s does the shift 

in the frequency axis, and T controls the rate of shape change. To fit the curve, we used 

a built-in Matlab function, lsqcurvefit that fits the functional form in (40) to the data. The 

parameters resulting from this curve fit plus the error in the fit provide 4 features. Figure 

14 displays the response curves and their curve fits of metallic and non-metallic objects. 

We note that other researchers, such as Fails [105] and Gader [106] have also used these 

model parameters as features. 

In addition to the 4 features provided by the model, 3 spread features [107] are 

used. These are defined by the following equations in which I and Q represent the In-

phase (Real) and Quadrature (Imaginary) values at each frequency and N is the number of 

frequencies. 

i=l 

Qspread (41 ) 
i=l j=i+l 

N-l N N-l N 

Tspread = L L IQi - Qjl + L L IIi - Jjl 
i=l j=i+l i=l j=i+l 

Together, these make up the 7 features used to describe a WEMI signal. Feature selection 

was performed using the well-known divergence measure. Four features were selected: T, 
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Figure 14. Response curves (sequences of dots) and their curve fits (smooth curves) from 
(a) blank, (b) non-metallic clutter item, (c) metallic clutter item, and (d) low-metal mine 

the fitting error, Q spread , and T spr·ead. A Multi-Layer Perceptron (MLP) classifier was built 

from these features. The MLP parameters were identified through 6-fold cross-validation. 

We will refer to this classifier as the WEMI detector. 
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CHAPTER IV 

CONTEXT-DEPENDENT FUSION 

A Motivations 

Our Context-Dependent Fusion (CDF) is motivated by the observation that there 

is no single algorithm that can consistently outperform all other algorithms. In fact, the 

relative performance of different algorithms can vary significantly depending on the algo­

rithms adaption, feature types, and sensor styles. The proposed CDF is a local approach 

that adapts the fusion to different regions of the feature space. It can take advantages of 

the strengths of several algorithms in different regions of the feature space without be­

ing affected by the weaknesses of the other algorithms, and also avoid loosing potentially 

valuable information introduced by other weak classifiers. 

For landmine detection, the relative performance of different detectors can vary sig­

nificantly depending on the mine type, geographical site, soil and weather conditions, and 

burial depth. To illustrate the above point, in Figure 15 we show the Receiver Operation 

Characteristic (ROC) of the four discrimination algorithms on various subsets of data col­

lected by the NIITEK robotic mine detection system. This data collection will be described 

in Chapter VI. The different ROC's display the performance of the algorithms when dif­

ferent types of mines are scored. For instance, in Figure 15(a), only anti-tank (AT) mines 

are considered. In this case, the HMM and EHD detectors have the best performance, and 

the WEMI has the worst. This is because AT mines are large enough to have good GPR 

signatures and many of them have low metal content. However, for AP mines, the WEMI 

detector has the best performance at high probability of detection as shown in Figure 15(b). 
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Figure 15. Performance of 4 different detectors for different types of mines buried at dif­
ferent depths. 
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Figure 16. Comparison of the EHD and WEMI outputs for several mine and clutter signa­
tures 

In this case, several AP mines have weak aPR signatures and cannot be easily detected by 

any of the aPR algorithms. The relative performance of the different algorithms depend 

on other factors besides the mine type. For instance, as shown in Figure 15(e) and (f), the 

WEMI detector has a poor performance for deeply buried mines, but a relatively better per­

formance for shallow mines. The poor performance of the aPR detectors in the latter case 

may be due to the difficulty in decoupling the mine signatures and the background signal 

around the ground bounce area. 

The relative performance ofthe different detectors is illustrated further in Figure 16 

where we display a scatter plot of the confidence values generated by the EHD and WEMI 

detectors for all alanns in the data collection. As it can be seen, the relative performance 

of the different algorithms can vary significantly. For instance, region (R1) highlights a 

group of mines with low metal content that are easily detected by the EHD (confidence 

close to 1) and not by the WEMI (confidence less than 0.25). On the other hand, region 
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(R2) highlights a different set of mine alarms (both HM and LM) that are easily detected by 

the WEMI and not the EHD. Most of these mines are buried at a depth less than 2 inches, 

and their GPR signatures are intertwined with the ground bounce. Region (R3) displays a 

group of metal clutter alarms that will be detected by the WEMI and rejected by the EHD. 

The above examples suggest using different algorithms and/or features to accom­

modate for the different mine types, burial depths, and other conditions. However, this task 

may not be as simple as it sounds since it is not possible to characterize the performance 

of each algorithm on all possible variations. Moreover, it may not be possible to know the 

characteristics of the test site. Thus, the selection of the optimal subset of algorithms is not 

a trivial task and need to be learned in an unsupervised way. 

B Proposed Approach 

Motivated by the previous examples, we propose a Context-Dependent Fusion (CDF) 

framework that can take advantages of the strengths of few algorithms in different regions 

of the feature space without being affected by the weaknesses of the other algorithms. Fig­

ure 17 shows the overall architecture of the proposed CDP scheme. Some algorithms are 

not feature-based and they simply assign a confidence value using the raw data. Other al­

gorithms extract their own sets of features and generate a confidence value. The different 

algorithms could operate on data from different sources. This figure also highlights the two 

main components of the training phase, namely, context extraction and algorithm fusion. In 

context extraction, the features extracted by the different algorithms from differen sources 

are combined. A clustering algorithm is used to partition the training data in the combined 

feature space into groups of similar signatures, or contexts. Here, we are assuming that 

signatures that have similar responses to different algorithms share some common charac­

teristics, and would be assigned to the same cluster by the clustering algorithm. Actually, 

this is the main objective of any clustering algorithm. 
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Figure 17. Architecture of the proposed Context-Dependent Fusion 

After partitioning the feature space, the initial feature space with the combined fea-

tures is transformed into a new space with e x L x K confidence/decision features, where 

C is the number of contexts, L is the number of algorithms and K is the number of classes. 

Then, the training data on the confidence feature space from each identified context will be 

used to learn the optimal fusion parameters and identify "local experts" for that region in 

the algorithm fusion component. 

To test a new signature using CDF, each algorithm would extract its set of features 

and assign a confidence value for the test pattern. The features are used to assign the test 

sample to the best/nearest context. The fusion parameters of this context are used to fuse 

the individual confidence values and obtain a final decision value. 

For each context, several methods, e.g. those mentioned in Chapter II, can be used 
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to learn the optimal fusion parameter [108, 109, 110, Ill, 112]. For instance, if we select 

only the best algorithm in each context, our CDF reduces to a dynamic classifier selection 

local accuracy (DCS-LA) [10]; while if we adapt decision temple (DT) in each context, 

our approach can be viewed as a generalized DT [7]. 

1 Context Extraction 

In context extraction, the features extracted by the different individual algorithms 

are combined. This step can be seen as feature fusion. We assume that we have L detectors, 

and that each detector extracts a set of different features. The objective is to cluster the 

L feature sets and identify regions that correspond to homogeneous alarm signatures in 

various subspaces of the original space. This task can be achieved using an algorithm that 

performs clustering and feature discrimination simultaneously. This algorithm is described 

in the following section. 

2 The Coarse Simultaneous Clustering and Attribute Discrimination (SCADJ Al­

gorithm 

Clustering in machine learning strives to partition a data set into groups (clusters), 

so that the data in each group share some common trait. A trait (feature) is defined as 

common through distance and similarity measures. The advantages to clustering are its 

unsupervised learning ability and capability to support many distance measures. However, 

when the features come from different algorithms, traditional algorithms such as FCM 

[113], Expectation-Maximization (EM) [39] are not appropriate. This is because different 

feature sets can vary in size, dynamic range, and should not be treated equally. Moreover, 

irrelevant features can adversely affect cluster definitions. Thus, it is recommended to 

identify cluster-dependent relevance weights for each feature subset [114, lIS, 116]. 

For high dimensional data, learning a relevance weight for each feature may result 
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in overfitting. To avoid this, a coarse feature weighting approach to called SCADc [117] 

was used. Instead of learning a weight for each feature, the set of features is divided into 

logical subsets, and a single weight is learned for each of these subsets. 

Let X = {Xj E RP Jj = 1, ... ,N} be a set of N feature vectors in an n-dimensional 

feature space. Let B = (f31' ... ,f3J represent a C-tuple of prototypes each of which char-

acterizes one of the C clusters. Each f3i consists of a set of parameters. Let Uij represent 

the membership ofxj in cluster f3i' The CxN fuzzy C-partition U=[Uij] satisfies [17]: 

Uij E [0,1]' Vi 

a < l..:f=1 Uij < N Vi, j (42) 

l..:~1 Uij = 1 Vj 

Assume that we have L algorithms and that each algorithm extracts a set of features 

F SS, 8 = 1,2, ... ,L, and that each subset F ss, includes kS features. Let dfj be the partial 

distance between Xj and cluster i using the 8 th feature subset. Let V = [Vis] be the relevance 

weight for FSS with respect to cluster i. The total distance, D ij , between Xj and cluster i 

is then computed by aggregating the partial distances and their weights, Le., 

L 

Dfj = L Vis (dfj)2 . (43) 
s=1 

SCADc [117] minimizes 

C N L C L 

J(B, U, V; X) = L L u7] L Vis (dfj)2 + L 6i L vfs, (44) 
i=1 j=1 s=1 i=1 s=1 

subject to Eq. (42) and 

L 

Vis E [0,1] Vi, 8; and L Vis = 1, Vi. (45) 
s=1 

Optimization of J with respect to V yields: 

(46) 
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The first term in Eq. (46), (1/ L), is the default value if all L feature subsets are 

treated equally, and no discrimination is performed. The second term is a bias that can be 

either positive or negative. It is positive for compact feature sets where the partial distance 

is, on the average, less than the total distance (normalized by the number of features). If a 

feature set is compact, compared to the other features, for most of the points that belong to 

a given cluster (high Uij), then it is very relevant for that cluster. 

Minimization of J with respect to U subject to the constraints in (42) yields: 

1 
Uij = c (47) 

L (D;j/ D~j) m~l 
k=1 

Minimization of J with respect to the prototype parameters depends on the choice 

of dfj. Since the partial distances are treated independent of each other (i.e., disjoint feature 

subsets), and since the second term in Eq. (44) does not depend on prototype parameters 

explicitly, the objective function in Eq. (44) can be decomposed into L independent prob-

lems: 
C N 

Js = LLu7]Vis (dfj)2, for s = 1,··· ,L. (48) 
i=1 j=1 

Each Js would be optimized with respect to a different set of prototype parameters. For 

instance, if dfj is an Euclidean distance, minimization of Js would yield the following 

update equation for the centers of subset s, 

(49) 

SCADc is an iterative algorithm that starts with an initial partition and alternates 

between the update equations of Uij, Vis, and cf. The SCADc algorithm is summarized 

below: 
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Coarse SCAD 

Fix the number of clusters C; 
Fix m, mE (1,00); 
Initialize the centers and fuzzy partition matrix U; 
Initialize the relevance weights to 1/ L; 
Repeat 

Compute (dfj)2 for 1 ::; i ::; C, 1 ::; j ::; N, and 1 ::; s ::; L; 
Update the relevance weights Vis using Eq. (46); 
Compute Drj using Eq. (43); 
Update the partition matrix U(k) using Eq. (47); 
Update the centers using Eq. (49); 

Until(centers stabilize) 

3 Algorithm Fusion 

Any of the fusion methods mentioned in Chapter II could be integrated within our 

context-dependent fusion. Training data from each identified context would be used to learn 

the optimal fusion parameters and identify "local experts" for that region of the feature 

space. In the next Chapter, we will propose six local method to calculate weights based on 

training performance. 

4 Testing Step 

To test a new signature (Xt) using CDF, each detector (Vi) would extract its set 

of features Fi and assigns a confidence values Yit. The L sets of descriptors are then 

used to identify the closest context. This is achieved by comparing the features of the 

test sample to the centroids of the clusters representing the different contexts. The partial 

distances, produced by the features of each algorithm, are combined using the cluster-

dependent feature relevance weights learned in the context extraction phase. Once context c 

has been identified as the closest context to the sample being tested, the confidence values of 

the individual algorithms would be aggregated using the optimal set of aggregation weights 

wi associated with context c. 
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5 Computational Complexity 

The proposed CDF approach is generic and does not require a specific set of features 

or classifiers. Thus, its overall computational complexity cannot be determined. However, 

we can compare it to the alternative solution with similar settings. The CDF has two addi­

tional steps over standard global fusion. The first one consists of partitioning the training 

data into clusters or contexts. This is an off-line step that needs to be done only once, 

and thus does not affect the computational complexity in the testing mode. The second 

step consists of identifying the closest context to a test sample. This step involves simple 

distance computation to identify the nearest cluster prototype. It requires O(Cxp) com­

putations, where C is the number of contexts and p is the dimensionality of the composite 

feature vector representing the alarm. Since the expected number of contexts, C, is typ­

ically small (less than 20), and the number of algorithms to be fused is less than 4, this 

additional computation is negligible when compared to the computation needed for feature 

extraction and classification. 
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CHAPTER V 

LEARNING LOCAL WEIGHTS FOR CONTEXT-DEPENDENT 

FUSION 

Any of the fusion methods mentioned in Chapter II could be integrated into our 

context-dependent fusion. Training data from each identified context would be used to 

learn the optimal fusion parameters and identify "local experts" for that region of the 

feature space. In this Chapter, we first define the histogram and the Receiver Operating 

Characteristic (ROC), and show how these measures can be used to optimize the fusion 

weights. Then, we propose six different methods to assign degrees of worthiness to each 

algorithm. These weights will be embedded into the proposed Context-Dependent Fusion 

(CDF) approach to perform local fusion. 

A Histograms and Cumulative Histograms 

A histogram is simply a mapping mi that counts the number of observations that fall 

into various disjoint categories (known as bins). If n is the total number of observations 

and k is the total number of bins, the histogram mi meets the following conditions: 

k 

n = 2:: mi 
i=l 

(50) 

The cumulative histogram is a mapping that counts the cumulative number of ob-

servations in all of the bins up to the specified bin. That is, the cumulative histogram Mi of 

a histogram mi is defined as: 
i 

Mi = 2:: m j) 

j=l 
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TABLE 1 

Contingency Table 

p n total 
p' True Positive False Positive P' 
n' False Negative True Negative N' 

total P N P+N 

B Receiver Operating Characteristic (ROC) Curve 

The ROC curve is a graphical plot of the sensitivity vs. specificity for a binary 

classifier system as its discrimination threshold is varied. The ROC can also be represented 

equivalently by plotting the fraction of true positives (TPR = true positive rate) vs. the 

fraction of false positives (FPR = false positive rate). 

Consider a two-class prediction problem (binary classification), in which the out-

comes are labeled either as positive (p) or negative (n) class. There are four possible out-

comes from a binary classifier. If the outcome from a prediction is p' and the actual value 

is also p, then it is called a true positive (TP); however if the actual value is n then it is said 

a false positive (FP). Conversely, a true negative occurs when both the prediction outcome 

and the actual value are n, and false negative is when the prediction outcome is n' while 

the actual value is p. 

Let us define an experiment from P positive instances and N negative instances. The 

four outcomes can be formulated in a 2 x 2 contingency table or a confusion matrix (refer 

to Table 1): 

To draw an ROC curve, only the true positive rate (TPR) and the false positive 

rate (FPR) are needed. TPR determines a classifier or a diagnostic test performance on 

classifying positive instances correctly among all positive samples available during the test. 

FPR, on the other hand, defines how many incorrect positive results while they are actually 
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negative among all negative samples available during the test. 

An ROC space is defined by FPR and TPR as x and y axes respectively, which 

depicts relative trade-offs between true positive (benefits) and false positive (costs). Since 

TPR is equivalent with sensitivity and FPR is equal to I-specificity, the ROC graph is 

sometimes called the sensitivity vs (I-specificity) plot. Each prediction result or instance 

of a confusion matrix represents one point in the ROC space. 

C Separation-Based Degree of Worthiness 

Usually, the essence of any classifier is to approximate the posterior probability 

to arbitrary decision. However, given the fact that training data is not infinite and noisy. 

the true a posteriori is hard to estimate. From probability theory, we know that when a 

random variable takes values in the set of real numbers, the probability distribution Ix (. ) 

can be completely described by the cumulative distribution function (or called probability 

distribution function) F x (.), whose value at each real x is the probability that the random 

variable is smaller than or equal to x, i.e., 

x ~ Fx(x) = P(X ::; x) (52) 

U sing a cumulative function, the decision space x can be transferred into mapped 

posterior probability (MPP). Here, we define the MPP function as p(nklx), and conditional 

MPP (cMPP) p(Oklxi) for each algorithm i in class Ok. Then the performance of each 

algorithm can be estimated based on their cMPP value on training data. 

Suppose that we have L algorithms, and K classes, let we8 = {wf', w~' , ... , wZ} 

be a vector of real numbers within each context Cs in CDF frame, such that: 

L 

I: wfs = 1 and 0 :::; Wf8 :::; 1 (53) 
i=l 

wherei = 1,2,···L. 
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Using a linear discriminant function, which has been mathematically analyzed for 

fusion [118], we can assign new confidence value for test pattern x = {Xl, X2, .•. ,xL} 

according to the individual confidence value Xi, i = 1,2, ... L, which come from different 

algorithms using: 
L 

g(x) = L Wf8 . Xf8 (54) 
i=l 

Since the discriminant functions are linear, the decision boundaries are hyperplane. 

The classifiers' weights could be determined based on the relative separation be-

tween the distribution of the classes confidence values. Intuitively, algorithms with larger 

separation are considered more "expert" since they can discriminate between the classes 

boundaries, and thus should be assigned larger weights. Because the data we are using is 

two-category case, for this case, we define the degree of separation between two classes 

using algorithm i in context Cs as: 

(55) 

indicators. 

Figure 18 illustrates the separation between distributions of confidence value in two 

classes. The red curve display the distribution in class I, and the blue curve displays the 

cumulative distribution in class 2 when subtracted from I. The centroid in the figure repre-

sents the average of the cMPP for one class within one context. 

To satisfy the constriction in Eq. 53, we normalize wf$ in Eq. (55) using: 

(56) 

D Overlap-Based Degree of Worthiness 

The Overlap-Based Degree of Worthiness Algorithm is similar to the Separation 

algorithm. It uses the overlap of confidence value between cumulative histogram distribu-
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Figure 18. Cumulative Histogram Distribution ofIndividual Classifier. Shade area is Over­
lap; Separation is defined as the distance between the two classes centroids; Red curve is 
one class confidence cumulative histogram, Blue curve is the other class inverse confidence 
cumulative histogram 

tions. Algorithms with smaller overlap are considered more "expert" for the cluster under 

consideration, and should be assigned larger weights. 

The shaded area in Figure 18 shows the overlap between the two cumulative his-

tograms. 

Let Ok denote the Overlap value of two classes' cumulative histogram distribution 

for algorithm k. The degree of worthiness of algorithm k in context i is then computed 

usmg 

(57) 

In Eg. (57), E is a very small value to make sure the overlap ot of: O. 

E ROC Area-Based Degree of Worthiness 

Recent work [58] has shown that the area under the Receiver Operating Character-

istic (ROC) curve (AUC) is an unbiased estimator of discrimination accuracy. Algorithms 
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Figure 19. Area under the ROC for an interval of interest [a, b] 

with larger area are considered more "expert" for the cluster under consideration, and will 

be assigned larger weights [110]. This area could be computed over the entire domain, or 

could be restricted to an interval [a, b] as shown in Figure 19. 

The AUe can be computed using: 

(58) 

Let Ak denote the area under the ROC for algorithm k. The degree of worthiness of algo-

rithm k in context i can then be computed using 

(59) 

F Rank-Based Degree of Worthiness 

Based on the cumulative distribution function, we can arrange the confidence values 

in a non-decreasing order, such that: 

(60) 
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The ith element X i :N is the ith value in this progression. Then, the cumulative distribution 

function for the first and last order can be obtained by noting [118]: 

FXN:N(X) P(XN:N :s; x) 

rr~l P(Xi:N :s; x) 

[Fx(X)]N (61 ) 

and: 

FX1:N(X) P(X1:N :s; x) 

1 - P(Xl:N ~ x) 

1- rr~lp(Xi:N ~ x) 

1- rr~l(1- P(Xi:N :s; x)) 

1 - [1 - Fx(x)t (62) 

For the ith element, the probability function of X i :N is given by [119]: 

fXi:N(X) = (i _ 1)~~ _ i)! [FX(X)]i-l[l - FX(X)]N-ifx(x) (63) 

However, obtaining the expected value of a function of x using Eq. (63) is not al­

ways possible. Rank-based method that can be derived from Borda Count [6] is a good 

alternative. The Borda count is a single-winner election method in which voters rank can­

didates according to candidates' preference. Usually, voters give each candidate a certain 

number of points corresponding to the position in which the candidate is ranked. Once all 

votes have been counted the candidate with the most points is the winner. Because it elects 

broadly acceptable candidates, the Borda count is often described as a consensus-based 

electoral system, rather than a majority one, then it can be used for fusing different clas­

sifiers. Borda Count method has been used for non-linear combiners successfully [6], but 

rather than treat each class as a candidate in [6], we can treat each classifier as a candidate, 

and training data as voters. 
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Let Xi = {XiI, Xi2, ... ,XiN } be a set of training data decision for algorithm i, with 

Borda Count method, we have: 

(64) 

The highest decision is ranked as 1, the lowest one equals to 1/ N and the kth is 

k / N. This ordering transforms the decision space into a non-decreasing ordered sequence. 

In our CDF which has L algorithms, and K classes, in each context cs , let W~8 be a 

vector of real numbers constrained as Eq. (53). The weight W~B can be estimated by Borda 

Count rank as: 
-Cs _ 2:;:1 R(x~j) . 1(.) 2:;:1 R(x'!j) . 1(.) 

w· - N - N (65) 
! 2: j =1 1(.) 2:j =11(.) 

where 1(.) and 1(.) are indicators defined in Chapter IV.C. Eq. (65) attempts to separate 

different classes as far as possible. This is similar to the Separation-Based method men-

tioned in Chapter IV.C. The algorithm with a higher degree of separation will be assigned 

a higher weight. 

For the linear combination, we can assign a overall confidence value to an unknown 

patter {Xl, X2,'" ,xd using: 

L 

g(x) = :L w~s RCs (Xi) (66) 
i=1 

G Cumulative Separation-Based Method 

The different between Separation-Based method and Cumulative Separation-based 

method is that, for the former, we only consider the cMPP to each class for each training 

data, while for the later, we consider the cMPP to all class for each training data (refer to 

Figure 20) [111]. 

Using the cumulative distribution of the two classes of an algorithm i, we define the 

cumulative separation as: 
N N 

W~B = a :L(p~j - p0)1(.) + i3:L(P0 - p~j)I(.) (67) 
j=1 j=1 
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Figure 20. Cumulative Separation-based method. Red curve is one class confidence cumu­
lative histogram, blue curve is another class inverse confidence cumulative histogram. 

where p(Oklxij) is abbreviated as pfj, and p(Om IXij) is abbreviated as pi], k =I- m, 1(.) = 

l (xij E CSnXij E Ok) and 1(.) = l (xij E CSnXij E Om) are indicators. 0: ,/3 can be 

computed using: 

(68) 

and 

/3 
- r:.f=1 (Xij E Cs)n(Xij E Om) 
- "N Dj=l Xij E Cs 

(69) 

To satisfy Eq. (53), we normalize the weight in Eq. (67) and obtain: 

(70) 

H MCFJGPD Based Method 

In the last two decades, the minimum classification error (MCE) wjth the general-

ized probabilistic descent (GPD) method has been successfully used in pattern recogrntion 

and speech recogrntion tasks. This method is constructed on a direct relation between the 

system performance measure and the model parameters, and can conduct effective training 
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model even without any prior knowledge of the data distributions. The MCE/GPD learning 

routine can be summarized by a four-step process [120, 112]: 

Step J). Define a discriminant function gk(X; A) to discriminate a data sample x of 

class nk from other classes; A is a set of classifier parameters which will be update in step 

4, and k is the given class label of x. 

Step 2). Specify the misclassification measure, dk(x); 

Step 3). Construct the minimum error objective function, or loss function lk(x; A); 

Step 4). Use a GPD method to estimate and update the model parameters A. 

The first step determines the formulation of the objective function and is the founda­

tion of the MCE framework. The second step evaluates all training samples, and enumer­

ates the decision rule. The third step defines a loss function which is typically a translated 

sigmoid function as it is smooth and suitable for gradient based optimization. The last step 

uses a GPD method to update the parameters used in step 1. This method converges, with 

probability equal to I, to A * which is at least a local minimum of I (A) , i.e.: 

A(t + 1) = A(t) + <5A(x, nk , A) 

<5A(x, nk , A) = -cV' f(A) 

where <5 and f are small positive real number. 

(71) 

(72) 

Within our CDF framework, suppose that we have C contexts, D algorithms, and 

K classes. Within each context, Cs, let gk(X; Ak) be a discriminant function, where x = 

(Xl, ... , XD) is D-dimensional confidence feature space, and Ak (k = 1, ... , K) denotes 

a set of parameters of the discriminant function. The discriminant function can be any 

reasonable type of measure, such as distance or similarity or probability function. 

In general, it is hard to estimate the true posterior probability for real data which 

lack a functional form. This is particularly true for our CDF since within each context, 

the training data is insufficient. Moreover, the context is constructed via the feature space, 

and we want to estimate the posterior probability in the decision space. Thus, it cannot be 
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assumed that the data have a Gaussian or a Uniform distribution, and a mapped posterior 

probability (MPP) function, gk(X; Ak) would be a good alternative. 

First, we define the misclassification measure, dk(x) which can be described as 

[112]: 

(73) 

where 1] is a positive number. A positive dk(x) implies misclassification while a negative 

dk(x) implies correct decision. Thus, the decision rule becomes a judgement on a scalar 

value. As 1] -+ 00, the term in the brackets reduces to maxi,i# gi(X; Ai), and: 

(74) 

Next, we define the loss function, lk(x; Ak) as a smooth function of the misclassifi­

cation measure dk(x). That is, 

(75) 

where I is a translated sigmoid function: 

(76) 

In (76), ~ is used to control the sensitivity in defining the decision boundary. As ~ increase, 

the sensitivity increases and fewer training patterns can dominate the shape and location of 

the boundary. The optimal value of ~ could be learned using a regularization method [121]. 

In our work, we derive the necessary condition when ~ is fixed to a positive value larger 

than 1. 

Using the loss function for a set of training samples X = {Xl, ... , XN}, we define 

the empirical average cost function as: 

1 N K 

L(AIX) = N L L l(dk(xj))l(x E Ok) (77) 
j=l k=l 
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where 1 (.) is the indicator function. Here, we use a batch search type which aims to mini-

mize the average empirical loss. An adaptive search that minimizes the individual loss for 

a set of samples can also be used. However, this can make the optimization more sensitive 

to the training samples. 

In order to ensure that the estimated weights satisfy the constraint in (53), we map 

these parameters using: 

(78) 

Then, the parameters are updated with GPD w.r.t to A in Step 4. After updating, the weights 

are mapped back using: 

exp(Wik) 
Wik = -"""""'::"""':""'---'--

2:::1 exp( Wik) 
(79) 

Using the update rules in (71) and (72), it can be shown that the weights need to be 

updated using: 

(80) 

where 
- N K D 

8L~A) = L L L 8
r

lk(xj; A) 8dm(~j) 89k(~j; A) 
8Wik j=l k=l i=l 8dm(xj) 8gk(xj, A) 8Wik 

(81) 

In the above, the partial derivatives are defined as: 

(82) 

ifm = k 
(83) 

ifm of k 

and 

(84) 

In the above, Xi C Xj, i.e. Xi is the ith scalar value in the ph training vector Xj' and 

i = 1, ... D, j = 1, ... N. 
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To test a new alann, first it is processed by each of the individual algorithms, and the 

extracted features are used to assign the alann to the closed context. Finally, the confidence 

value of the individual algorithms and their degree of worthiness in the cluster of assigned 

are aggregated to compute the final confidence value. Assuming that alann x is assigned to 

context c, its aggregated confidence value is computed using: 

L L 

Conf(x) = L wi~ * p(nMlxi) - L wi~) * p(OFlxi) (85) 
i=l i=l 

where p(OMlxi) is the cMPP confidence value assigned by algorithm k. 

I Application to Benchmark Data 

In order to illustrate the perfonnance of CDF, we set up two experiments on the 

Phoneme benchmark data. The first experiment uses the same classifier method, but differ-

ent subsets of features. The second one uses the same features but different classifiers. The 

Phoneme data is a benchmark data in the ELENA database [122] which was used in the 

European ROARS ESPRIT project aimed to the implementation of a real time analytical 

system for French speech recognition [123]. It consists of 5404 five-dimensional vectors 

(the amplitudes of the five first harmonics AHi , nonnalized by the total energy Ene (in­

tegrated on all the frequencies) AHd Ene, three observation moments) characterizing two 

classes of phonemes: 1) nasals (70.65%) and 2) orals (29.35%). 

1 Experimental Setup 

We perform a five-fold cross validation with randomly splitting the data into a train-

ing set and a testing set for each cross validation. The training set is used to train the 

individual classifiers and learn the aggregation weights for each one. The proposed CDF 

approach requires partitioning the feature space into clusters of similar training samples. 

To achieve this task, we use the SC ADc clustering algorithm [117]. We do not address the 

problem of finding the optimal number of clusters, and simply fix this number to 20. We 
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choose local fusion with ROC area based, Cumulative Separation based and MCE based 

methods to illustrate the performance of the proposed CDF. 

In the first experiment, we fix the type of classifiers to K-NN and vary the features. 

In particular, we train six K-NN classifiers using different subsets of features. Each subset 

includes 3 of the 5 original features (i.e. feature [1, 2, 3], [1,2,4], [1, 2, 5], [2,3,4], [2, 

3, 5], and [3, 4, 5]). The outputs of the six classifiers are combined using the proposed 

local fusion methods where different weight sets are learned for each cluster using six local 

weighting approaches. For comparison purposes, we also combine the output of the six 

classifiers globally using a weighted average fusion (i.e., without partitioning the training 

data into clusters), and additionally, we score one K-NN classifier using all 5 features. 

In the second experiment, we use all 5 features and vary the classification strat­

egy. We train classifiers using a K-NN (K = 20); a linear discriminant analysis (LDA); 

a quadratic discriminant analysis (QDA); and a multilayer linear perceptron (MLP) neu­

ral network with 1 hidden layer and 10 nodes. All of the above classifiers generate a soft 

confidence value. As in the previous experiment, we compare the results when these clas­

sifiers are combined globally and locally using the proposed CDF with six local weighting 

approaches. 

2 Experimental Results 

The results of the first experiment are shown in Figure 21 where we display the 

Receiver Operation Characteristic (ROC) curves. These curves display the probability of 

true positive versus the probability of false positive. As it can be seen, the performance 

of the K-NN with different subsets of features varies, implying that these subsets encode 

different information. Also, the global fusion of all six K-NN classifiers outperforms the 

K-NN classifier with all features. This behavior is consistent with the results reported in the 

literature [118], that the fusion of "weak" classifier usually outperforms a single classifier. 
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Figure 21. Comparison of the Context-Dependent Fusion with individual K-NN classifiers 
and global fusion methods 

More importantly, almost all the performances of the proposed six local fusions outperform 

the global fusion . In other words, better results could be achieved when the different classi-

fiers are combined in different ways according to the different contexts extracted from the 

training data. 

Figure 22 shows the global weights and local weights for CDF with the selected 

methods mentioned above. For better view, we chose the global weights range as [0, 0.2] , 

and local weights range according to the maximum value. From this figure, we can also find 

that for the local fusion methods, the weights vary significantly, and that makes the local 

fusion performance better than the global fusion. For CDF with MCE/GPD, the weights 

assigned to each class as shown in Figure 22 (d). 

The results of the second experiment are shown in Figure 23. As it can be seen, 

the performance of the different classifiers can vary significantly. We should point out here 

that no attempt was made to optimize the performance of any classifier. We simply used 

the default settings for each one. OUf goal is to compare the global and local fusion and 
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(a) Global average fusion (left) and ROC area based CDF (right) weights 
"r-- - . "r-----.--=-~---,---~--~-~--~--,-:~~---=~~___, 

(c) Global average fusion (left) and cumulative separation based CDF (right) weights 
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CDF wlih MCE FA weights for Class nasa ls 

(d) MCE/GPD based Context-Dependent Fusion weights 

Figure 22. Global fusion and Context-Dependent Fusion (CDF) weighs on Phoneme data 
with KNN classifier on various feature sets 

not the individual classifiers. The global fusion of all classifiers outperforms all individual 

classifiers, and the performance of the proposed local fusion has the best overall perfor-

mance. 

The global weights and local weights for CDF with selected methods are shown in 

Figure 24. From this figure, we can also note that in the MCE based local fusion method, 

the weights to the QDA and the LDA algorithm are smaller because the performances of 

this two algorithms are quite worse than the other algorithms. 

From Figure 21 and Figure 23, we observe that both local and global fusion methods 

do not improve the results significantly. This is because the different algorithms use the 

same source of information and the same features. This is not the case for the next chapter's 
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Figure 23. Comparison of the Context-Dependent Fusion with individual classifiers and 
global fusion 

experiments on the landmine detection which involve data from different sensors, and each 

classifier preprocesses the data differently, and each has its own set of features_ 
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(d) MCE/GPD based CDF weights 

Figure 24. Global fusion and Context-Dependent Fusion (CDF) weighs on Phoneme data 
with KNN classifier on various feature sets. 
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CHAPTER VI 

APPLICATIONS TO LANDMINE DETECTION 

In this Chapter, we apply the proposed Context-Dependent Fusion (CDF) method 

to the problem of land mine detection. We fuse the output of multiple detection algo­

rithms which have different preprocessing, different features, and different classification 

approaches. In these experiments, we apply the CDF method with six weighting methods 

to multiple data sets collected by Vehicle Mounted Ground Penetrating Radar (VMGPR), 

Autonomous Mine Detection Multi Sensors System with GPR and Wideband Electromag­

netic Induction (WEMI); and Airborne Hyperspectral Imagery (AHI) systems to illustrate 

the performance of our proposed fusion methods. Moreover, in the first experiment within 

the VMGPR, in addition to evaluate the performance of CDF with a set of fusion meth­

ods, we are also interested in their suitability and scalability with respect to the number 

of discrimination algorithms. Thus, we compare these fuison methods when 5, 6, and 8 

discrimination algorithms are considered. 

A Experiment 1: Land Mine Detection Using a Vehicle Mounted GPR System 

The GPR data (refer to Chapter III.D.l) used in this experiment consists of a se­

quence of raw GPR signatures collected using a NIITEK Vehicle Mount GPR landmine 

(VMGPR) system [98] as it travels forward. Figure 25 shows this VMGPR system. This 

system comprises a 24-channel GPR array which is put in front of the vehicle. Adjacent 

channels are spaced approximately 5 centimeters apart in the cross-track direction, and 

sequences (or scans) are taken at approximately 5 centimeter down-track intervals. 
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Figure 25. Niitek vehicle-mounted GPR system 

Since the set of potential false alarm locations is infinite (limited only by the pre­

cision of the marking system), we cannot consider typical receiver operating characteristic 

(ROC) curves comparing probability of detection (PD) vs. probability of false alarm (PFA) 

because the denominator in the PFA calculation is not well defined. For this reason, algo­

rithm scores are typically reported in PD vs. false alarm rate (FAR) where false alarm rates 

are measured in number of false alarms per meter squared. 

1 Data Collection 

The dataset used in this experiments was collected between November 2002 and 

July 2006 from 4 geographically distinct test sites. We will refer to this collection as NTK4. 

Sites A, B, and D are temperate climate test facilities with prepared soil and gravel lanes. 

Site C is an arid climate test facility with prepared soil lanes. Site B has the largest number 
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of collections and the largest number of alarms. The four sites have a total of 17 different 

lanes with known mine locations. Most lanes at these sites have both metal and non-metal 

non-emplaced clutter objects. All mines are Anti-Tank (AT) mines. Overall, there are 

19 distinct mine types that can be classified into 3 categories: anti-tank (ATM), anti-tank 

with low metal content (ATLM), and simulated mines (SIM). The targets were buried up 

to 6 inches deep. Multiple data collections were performed at each site at different dates, 

covering a ground area of 41,807.57 1m2, resulting in a large and diverse collection of mine 

and false alarm signatures. False alarms arise as a result of radar signals that present a mine-

like character. Such signals are generally said to be a result of clutter. In this experiment, 

clutter arises from two different processes. One type of clutter is emplaced and surveyed in 

an effort to test the robustness of the algorithms. Other clutter result from human activity 

unrelated to the data collection or as a result of natural processes. We refer to this second 

kind of clutter as non-emplaced. Non-emplaced clutter includes objects discarded or lost 

by humans, soil inconsistencies and voids, stones, roots and other vegetation, as well as 

remnants of animal activity. 

TABLE 2 

Statistics of the NTK4 dataset 

Site A Site B Site C Site D Total 
No. Collections 3 6 2 1 12 
No. Mine Types 9 15 9 5 19 
No. Mine Alarms 183 821 62 494 1560 
No. Clutter Encounters 0 15 0 196 211 
No. Clutter Alarms post prescreener 0 4 0 46 50 
AreaCm:l) 14813 15631 4054 7310 41808 

The statistics of this collection are shown in Table 2. The data collected from Sites 

Band D have emplaced buried clutter. Although the lanes at Sites A and C are prepared, 

they still contain non-emplaced clutter objects. Both metal and non-metal non-emplaced 
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TABLE 3 

Number of Metal and Plastic Cased Mines and Mine Simulants and their burial depths in 
NTK4 dataset 

Depth Total 
-I" 0" I" 2" 3" 4" 5" 6" 

Metal 12 37 124 68 151 34 119 77 777 
Low-Metal 6 92 90 204 122 134 47 76 616 
Simulants 48 0 20 47 23 29 0 0 167 

I Total I 66 I 129 I 234 I 319 I 296 I 197 I 166 I 153 II 1560 II 

clutter objects such as ploughshares, shell casings, and large rocks have been excavated 

from these sites. The emplaced clutter objects include steel scraps, bolts, soft-drink cans, 

concrete blocks, plastic bottles, wood blocks, and rocks. In all, there are 12 collections 

having 19 distinct mine types. Many of these mine types are present at several sites. The 

prescreener detected 1,560 of the 1,593 mines encountered in the data, yielding a 97.9% 

probability of detection. It rejected 161 of 211 emplaced clutter objects encountered, and 

yielded a total of 3,435 false alarms associated with non-emplaced clutter objects. The 

number, type, and burial depth of the mines are given in table 3. As it can be seen, the 

mines buried at 1 inch through 6 inches occupy 87.5% of the total targets encountered vs. 

12.5% surface-laid or flush-buried mines. 

2 Data Pre-processing 

Preprocessing is an important step to enhance the mine signatures for detection. In 

general, preprocessing includes ground-level alignment and signal and noise background 

removal. First, we identify the location of the ground bounce as the signal's peak and 

align the multiple signals with respect to their peaks. This alignment is necessary be-

cause the vehicle-mounted system cannot maintain the radar antenna at a fixed distance 

above the ground. The early time samples of each signal, up to few samples beyond the 
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ground bounce are discarded. The remaining signal samples are divided into N depth bins, 

and each bin would be processed independently. The reason for this segmentation is to 

compensate for the high contrast between the responses from deeply buried and shallow 

anomalies. 

Next, the adaptive least mean squares (LMS) pre-screener proposed by Torrione et 

al. [124] is used to focus attention and identify regions with subsurface anomalies. The 

goal of a pre-screener algorithm in the framework of vehicle-mounted real-time landmine 

detection is to flag locations of interest utilizing a computationally inexpensive'algorithm 

so that more advanced feature-processing approaches can be applied only on the small 

subsets of data flagged by the pre-screener. The LMS is applied to the energy at each 

depth bin and assigns a confidence value to each point in the cross-track, down-track plane 

based on its contrast with a neighboring region. The components that satisfy empirically 

pre-determined conditions are considered as potential targets. Their cross-track xs , and 

down-track Ys positions of the connected component center are reported as alarm positions 

for further processing by the feature-based discrimination algorithm to attempt to separate 

mine targets from naturally occurring clutter. 

3 Evaluation Methods 

To provide an objective and consistent evaluation of the different algorithms and 

their fusion, we use a Testing/training Unified Framework (TUF) system. This system 

supports creation of supervised learning algorithms that perform discrimination between 

targets and non-targets in data collected at a variety of different regions (mine or lanes) 

in a variety of different sites. The framework employs algorithms implemented in Matlab 

using a control flow that incorporates a user-programmed pre-screener which processes raw 

data files into Alarms with associated Universal Transverse Mercator (UTM) coordinates 

and confidence values. The alarms are then processed by extracting signatures. These 
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Figure 26. Interface of the TUF evolution system 

signatures are passed to a user-specified feature extractor. The features resulting from the 

feature extractor are presented along with the alarms to a discrimination algorithm, which 

produced a confidence for each alarm. TUF system performs n-way cross-validation testing 

using either lane-based cross-validation (in which each mine lane is in tum treated as a test 

set with the rest of the lanes used for training) or site-based cross-validation (in which each 

data collection site is treated in tum as a test set). A snapshot of the TUF GUI system is 

shown in Figure 26. 

The results of this process are scored using the Mine Detection Assessment and 
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Scoring (MIDAS) system developed by the Institute for Defense Analysis [125]. The scor­

ing is performed in terms of Probability of Detection (PD) vs. False Alarm Rate (FAR). 

Confidence values are threshold at different levels to produce ROC curve. For a given 

threshold, a mine is detected if there is an alarm within 0.25 meters from the edge of the 

mine with confidence value above the threshold. Given a threshold, the PD is defined to be 

the number of mines detected divided by the number of mines. The FAR is defined as the 

number of false alarms per square meter. 

It is often the case that a single dominating classifier (one producing statistically 

lower FAR at every PD value), does not exist. Furthermore, in many practical cases such 

as humanitarian demining, the best algorithm may be the one at which 100% detection is 

achieved with the lowest false alarm rate, no matter what other properties the ROC may 

display. For other time-critical demining applications where some level of missed mines 

is not considered as great a cost, the best ROC may be the one at which the probability of 

detection is highest at a giver constant false alarm rate. 

Our algorithm development efforts have been geared toward developing algorithms 

suitable for an autonomous vehicle-based mine detection system. In such system false 

alarms will delay the progress of the system. Knowing that any single property of the ROC 

may be inappropriate to evaluating the algorithms, we have chosen to consider a number of 

measurable properties of these ROCs. the metrics chosen for algorithm evaluation are the 

following: 

i) PD85: FAR at the threshold yielding PD .85. 

ii) PD90: FAR at the threshold yielding PD .90. 

iii)PD90: FAR at the threshold yielding PD .95. 
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Figure 27. Algorithm ROCs for All Sites 

4 Experimental Results 

In this first experiment, we utilized five detection algorithms (HMM, EHD, GEOM, 

SPECT and Prescreener) outlined in Chapter IILD which were implemented and tested 

within the TUF system. The GEOM and EHD algorithms are trained in this cross-validation 

manner.' The HMM was based on a model trained using a different radar system [93] and 

SPECT employs a single static mine model that does not require training. 

First, we compare the performance of the individual detectors and justify the need to 

fuse their results to improve the overall performance of the system. Figure 27 displays the 

ROC's obtained by applying these five detection algorithms to the entire NTK4 VMGPR 

data collection with lane-based cross validation. As it can be seen, the EHD detector has 

the best overall performance. However, this does not necessarily mean that the EHD is 

consistently the best algorithm. For instance, Figure 29 displays the results averaged over 

site B only of NTK4. For this subset, the HMM is the best algorithm and the EHD is the 
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Figure 28. Algorithm ROCs for Site A. 

second best one. Our evaluation also shows that the two edge-based algorithms, EHD 

and HMM provided the best overall performance in the range of detection probabilities 

of interest in our entire multi-site data collection. At a 90% probability of detection, the 

difference FAR GEOM (0.00536) is roughly double that of EHD (0.00268). The EHD 

algorithm was somewhat more consistent in achieving high rankings with respect to our 

evaluation criteria, however, the performance of the algorithms varied from site to site. 

In particular, the EHD algorithm outperformed HMM at Site A, while HMM performed 

better at Site B. Consulting Figure 29, we see that at Site B, the HMM algorithm has a 

large number of false alarms from lower PDs than EHD. 

Figure 30 shows a 2-D scatter plot of the EHD and HMM confidence values for the 

NTK4 data. Comparing Figure 30 (a) and (b), we observe that in (a), there are more mines 

(Red points) that have higher confidence value for the EHD than the HMM. On the other 

hand, in Figure 30 (b), there are more mines (Red points) that have higher confidence value 
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Figure 29. Algorithm ROCs for Site B. 
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Figure 30. HMM and EHD Confidence value scatter plot for NTK4, Red stars are Mine, 
and Blue dots are FA. (a) Site A, (b) Site B 
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for the HMM than the EHD. This means that even within a small subset of the same site, 

the relative performance can vary significantly. 

From the above analysis, we can conclude that when one algorithm performs bet­

ter on one site, that does not necessarily mean it will perform better on the other sites, 

and also there is no single algorithm that can consistently outperform all others detectors. 

This observation has motivated us to adopt the context dependent fusion algorithm to such 

problem. 

In our first experiment, the training data consists of a set of alarms reported by 

the LMS pre-screener. Each alarm is processed by these four algorithms (EHD, HMM, 

SPECT and GEOM) outlined in Chapter III.D. The features extracted from these alarms 

by the different algorithms are combined, and the SCADe (refer to Chapter IV) clustering 

algorithm is used to partition the training signature into groups of similar signatures, or 

contexts, and learn the relevant features within each context. In our experiment, the EHD 

algorithm has 40 features, the HMM has 20 features, the SPECT has 20 features, and the 

GEOM has 12 features. Thus, in total we have a 92 dimension feature space to be clustered 

by the SCADe algorithm into 20 clusters. Within each cluster, the five algorithms are 

scored and a degree of worthiness is assigned to each one based on its relative performance. 

Algorithms with better performance are considered more "expert" for the cluster under 

consideration, and will be assigned larger weights. The worthiness of all algorithms are 

constrained to sum to 1. 

Figure 31 displays the distribution of the NTK4 4 collection (A, B, C and D) data in 

20 clusters. The first figure is the mine distribution in 20 clusters, and the second is the Fa 

distribution, while the last figure is the summary of the alarms distribution. Theoretically, 

all Mines or Fa from the same collection should cluster together. From the first figure in 

Figure 31, we observe that Site C is clustered into Clusters 1, 2, and 8, and Site A is mainly 

clustered into Clusters 1, 2, 3 and 7, due to the consistent of the alarm. Site B has the 
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Figure 31. NTK4 data distribution in 20 clusters 
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Figure 32. Global fusion weights assigned to the five detections in CVl for the NTK4 data 

largest number of mines and mine types. Thus, it is reasonable for the alarms from this site 

to be scattered over multiple clusters. 

Figure 33 shows the CDF weights for each algorithms with different local weight 

methods in the first cross validation (CV). For comparison purposes, we also assign a global 

weight using the entire training collection (i.e. treat all data as one cluster). These weights 

are shown in Figure 32. As it can be seen, overall, the EHD has the best performance 

followed by the HMM and then the WEMI. However, the performance of the different 

algorithms can vary significantly from one context to another as shown in Figure 33. 

Figure 34 shows the distribution of all the alarms included in the first CV (CV1). 
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in CVl for the NTK4 data 
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Figure 34. Distribution of the alarms included in CVl for NTK4 data 
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Figure 36. Local performance of Cluster 1 in CVl for NTK4 data 
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Figure 37. Context-Dependent Fusion weights assigned to the five detections in Cluster 9 
in CV1 for the NTK4 data 
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Figure 38. Local performance of Cluster 9 in CV1 for NTK4 data 

As it can be seen, in this CV, alarms from Site A and C are distributed in cluster 1 and 2, 

and alarms from Site D are distributed in clusters 6-10, 13, 17-20. Figure 35 displays the 

weights assigned by CDF to each detection in Context 1. As it can be seen, the EHD is 

assigned the largest weight based on its performance. To justify the weights assigned by 

CDF to the algorithms, in Figure 36, we display the distribution and ROCs of the confidence 

values assigned by each algorithm. At it can be seen, the EHD has the best Separation 

(Sep = 0.1815), the best Overlap (0 = 1.487), and the best ROC area (Blue curve in 

Figure 36 (a)) in cluster I. Thus, the EHD should be considered more "expert" for Cluster 
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Figure 39. Perfonnance of the Context-Dependent Fusion and the global fusion on the 
entire collection of the NTK4 data 

1, and is assigned the largest weight. Figure 37 shows the CDF weights for Cluster 9, and 

Figure 38 compares the ROCs, separation, and overlap of the five algorithmsance in this 

clustet. As it can be seen, for Cluster 9, HMM has the best Separation (Sep = 1.988), the 

best overlap (0 = 1.097), and the best ROC area (Green curve in (c». Thus, the HMM is 

assigned has the highest degree of worth.iness in this cluster. 

Figure 39 displays the results of the CDF with all six weight assignment methods. 

We also compare the results with several state-of-the-art fusion methods including: Bayes-

based with QDA and EM, Dempster Shafer Theory (DST), Decision Template (DT), and 

global weighted average fusion based on ROC area. We also include the ROC of the EHD 

(best overall individual discrimination algorithm) as a reference. As it can be seen, the 

ROCs of all fusion methods are clustered together, and thus all methods have comparable 
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performances. All fusion methods improve the PD results over the best discrimination 

algorithm by an average of 10% for FAR around 0.0007. At low PD « 80%), the Bayes­

base with QDA fusion result is not as good as the other methods. This is due mainly to 

the fact that one single Gaussian component may not be sufficient to model the distribution 

of the confidence values of the individual discriminators in the 5-dimensional confidence 

space. The Bayes-based EM method, which is similar to the QDA based, does not exhibit 

this behavior because multiple Gaussian components (M was estimated to be 4) were used 

to model the distribution of each class. It is also interesting to note that the QDA based 

fusion outperforms EM at higher PD. This is because the former method is optimized to 

minimize the average FAR for PD E [92%; 96%]. 

The CDF has the best overall performance. This is due to the fact that this method 

is local and strives to take advantage of the different detectors in different contexts. For 

any cluster (or context) the detectors are ranked based on the overlap between the mine 

and clutter confidence distribution. This ranking can ignore (by assigning low aggregation 

weights) many of the discrimination algorithms. It could also assign a significant weight to 

discrimination algorithms that are good for the given context, but globally, are not as good 

as other algorithms. 

5 Scalability with Respect to the Number of Algorithms Fused 

This experiment is designed to evaluate the performance of various fusion methods, 

and test their scalability with respect to the number of discrimination algorithms. In this 

experiment, we use only one weighting method for CDF, ROC Area based CDF. In addition 

to the five discrimination algorithms used in the previous experiment (HMM, EHD, GEOM, 

SPECT and Pre screener), we also use the Texture Feature Classification Method (TFCM) 

detector [126], the Gaussian Fit (GFIT) detector [127] and the Gaussian Markov Random 

Field (GMRF) detector [128] highlighted below: 
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• TFCM Detector: The Texture Feature Classification Method (TFCM) detector [126] 

is a three-dimensional extension of the algorithm by Homg [129]. The algorithm 

transforms a block of GPR data into a block of integer codes. The code at each point 

in a block is generated by considering several differences in GPR intensity values 

over a 3 x 3 x 3 window centered at the point. The differences are thresholded pro­

ducing a string of zeros and ones, which are then mapped to the integer codes, the 

details of which are described in the references. Statistical textures features, such 

as entropy, variance, co-occurrence, etc., are then computed on the blocks of codes 

and transformed into feature vectors. Relevance Vector Machines use the features to 

produce a confidence that an alarm represents a landmine. 

• GMRF Detector: The Gaussian Markov Random Field (GMRF) detector [128] is 

based on a transmission line model of the time-domain GPR response to the subsur­

face. The model represents the GPR as a sequence of dielectric discontinuities. Each 

discontinuity is parameterized by a location and a gain parameter. These parameters 

are characterized statistically using a Gaussian-Markov Random Field. A general­

ized likelihood ratio test is then used to assign a confidence that an alarm represents 

an antitank landmine. 

• GFIT Detector: The Gaussian Fit (GFIT) detector [127] calculates the parameters 

of a Gaussian pulse which best fits the spatial energy distribution of target responses 

to GPR. The output features are the goodness of fit, the pulse width, and pulse gain. 

More specifically, the spatial shape of the summed energy from a cross-track scan is 

compared to the shape of a Gaussian pulse. If x represents position in down-track 

scans, and E represents the energy, we find the (J, xo, 0: to minimize the root mean 

square error between E (x) and f (x) =0: * exp( - (xo - x) / (J2). The output features 

are then J sumx(E(x) - f(x)), (J, Xo, and 0:. 
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The above discrimination algorithms were developed by researchers at the Univer­

sities of Missouri, Louisville, Florida, as well as Duke University. They are independently 

developed and have many differences in OPR Preprocessing and normalization, feature ex­

traction, and classification methodologies. For example, in feature extraction alone one 

can see many differences. The anomaly prescreener detector simply looks for locations 

that are different from the background. It uses masks oriented in the C-scan direction. The 

HMM detector looks at variable length sequences of edges. The EHD detector looks at 

fixed length representations of edges. All these three algorithms used the down-track and 

cross-track time domain OPR. The SPECT detector looks at features in the frequency do­

main. The GEOM detector calculates feature based on geometric shape in C-scans. The 

TFCM detector looks for texture features in three-dimensional blocks of time domain data, 

GMRF, and the GFIT detector looks at energy in the cross-track direction. Thus, in the 

feature extraction process alone, one can see that these algorithms vary widely in the focus 

and processing. Each of the eight detection algorithms (EHD, HMM, Prescreener, SPECT, 

GEOM, TFCM, GFIT, and GMRF) and the fusion methods (Context-dependent, Bayes, 

Decision Template, Dempster-Shafer, and Borda count) were implemented with the TUF 

system. 

First, we compare the performance of the individual detectors and justify the need to 

fuse their results to improve the overall performance of the system. Figure 40 displays the 

ROC's obtained by applying the 7 detection algorithms and the prescreener to the entire 

data collection. As it can be seen, the EHD detector has the best overall performance. 

However, this does not necessarily mean that the EHD is consistently the best algorithm. 

For instance, Figure 41 displays the results averaged over site A of the collection only. For 

this subset, the EHD is the best algorithm and the HMM is the second best one. However, 

in Figure 42, which displays the results averaged over site B only, the HMM is the best 

algorithm and EHD is the second best one. 
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Figure 40. Performance of the 8 different detectors on the entire NTK4 data collection 
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Figure 41 . Performance of the 8 detectors on Site A only 
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Figure 42. Performance of the 8 detectors on Site B only 
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Figure 43. Comparison of 4 fusion methods when 6 discrimination algorithms (EHD, 
HMM, SPECT, Prescreener, GEOM, and TFCM) are combined 
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Figure 43 displays the results of the 4 fusion algorithms (CDF, DT, DST, and Bayesian 

with 4 components EM) when only 6 discrimination algorithms (EHD, HMM, SPECT, Pre­

screener, GEOM, and TFCM) are fused. For comparison, we also put the best individual 

detecting algorithm EHD on the figure. First, we notice the addition of the TFCM algo­

rithms did not improve the results of any of the fusion methods. Two possible reasons 

may explain this behavior. First, the added TFCM algorithms is based on edge, texture, 

and statitics features that are already used (in a different way) by the other discrimination 

algorithms. Second, it is possible that for the data collection that was used is not possible 

to improve the results further. 

Comparing the results in Figure 43 to those in Figure 39, we observe that for some 

fusion methods, the performance has degraded. In particular, the performance of the DST 

and the DT methods have dropped significantly at low PD « 80%) and have become even 

worse than the EHD discriminator. Investigation of this problem has revealed that these 

two fusion methods generate confidence values that have a distribution close to binary. 

This behavior is due to the way the basic belief functions are aggregated (refer to Eq. (16) 

). In particular, adding more algorithms will require more multiplications. For the DT 

method, the dimension of the decision template matrix increases, and this may drive the 

distances in Eq. (25) to a bimodal distribution. Due to these nearly binary distributions, 

weak mines will be assigned confidence values close to zero, and this would explain the 

lower PD at low FAR. Also, strong false alarms will be assigned confidence values close to 

1, and this would explain the relatively lower PD at higher FAR. 

Figure 44 compares the results of the 4 fusion algorithms (CDF, DT, DST, and 

Bayesian with 4 components EM) when 8 discrimination algorithms (EHD, HMM, SPECT, 

Prescreener, GEOM, TFCM, GFIT, and GMRF) are fused. First, we note that the perfor­

mance of the DT and DS degraded further as the confidence values become closer to binary. 

Second, the performance of Bayesian fusion methods has degraded compared to the fusion 
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Figure 44. Comparison of 4 fusion methods when 8 discrimination algorithms (EHD, 
HMM, SPECT, Prescreener, GEOM, TFCM, GFIT, and GMRF) are combined 

of 5 algorithms only. This may be due to the fact that the 3 added algorithms have lower 

perfonnances (refer to Figure 40), and when all 8 algorithms are fused globally, the added 

algorithms have a negative impact. Third, we note that the dependency assumption does 

not seem to be an issue. In fact, the best fusion methods (CDF) assume that the eight 

discrimination algorithms are independent. 

The CDF has the best overall perfonnance. Moreover, the addition of discrimi-

nation algorithms did not degrade its perfonnance. In fact, for certain FAR values, its 

perfonnance has improved. Again, this is due to the fact that this method is local and 

strives to take advantage of the different detectors in different contexts. We have observed 

that on average, this fusion assigns significant aggregation weights to 3 to 5 discrimination 

algorithms. These algorithms differ from one cluster to another. 

These experimental results also show that although the fusion algorithms were an 

quite similar when a small number of algorithms were fused, the performance was more 
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Figure 45. NIITEK Autonomous Mine Detection System 

varied as the number of algorithms increased. Context dependent fusion appears to outper­

form the other methods. 

B Land Mine Detection Using an Autonomous Mine Detection System 

In this experiment, we use the data collected using NIITEK Inc. robotic mine detec­

tion system to illustrate and validate the proposed CDP fusion methods on multiple sensors. 

This system includes a GPR and a WEMI sensor and is shown in Figure 45. It was used to 

acquire large collections of co-located GPR and WEMI data from geographically distinct 

test sites. 

We use three distinct detection algorithms that were developed for GPR data (EHD, 

HMM, and SPCET described in Chapter III.D), and one algorithm for the EMI data [130, 

131] described in Chapter llLD6. 
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1 Data Statistics 

The data sets used in our experiment were collected in May 2007 from 2 geograph­

ically distinct test sites (site A and site B). These sites have several emplaced mines of 

various types including Anti-Person (AP) mines, Anti-Tank (AT) mines, High Metal (HM) 

mines, and Low Metal (LM) mines. The two sites are partitioned into grids with known 

mine locations. In all, there are 28 distinct mine types that can be classified into 4 cate­

gories: anti-tank metal (ATM), anti-tank with low metal content (ATLM), anti-personnel 

metal (APM), and anti-personnel with low metal content (APLM). These sites also include 

various clutter objects such as steel scraps, bolts, soft-drink cans, concrete blocks, and 

wood blocks. The clutter objects are emplaced and surveyed in an effort to test the robust­

ness of the detection algorithms. Mines and clutter objects were buried up to 5 inches deep. 

This data collection includes a total of 308 mine signatures and 556 False Alarm signatures. 

In our data collection, false alarms arise as a result of sensor signals that present 

a mine-like character. Such signals are generally said to be a result of clutter. Clutter 

arises from two different processes. One type of clutter is emplaced and surveyed. Objects 

used for this clutter can be classifier into 2 categories: High Metal Clutter (HMC) and 

Non-Metal Clutter (NMC). High metal clutter such as steel scraps, bolts, soft-drink cans, 

is emplaced and surveyed in an effort to test the robustness of the detection algorithms, 

and in particular the WEMI algorithm. Non-metal clutter such as concrete blocks and 

wood blocks is emplaced and surveyed in an effort to test the robustness of the GPR based 

detection algorithms. The other type of clutter, referred to as blank, is caused by disturbing 

the soil. 

Overall, the data collection includes a total of 311 mine signatures and 564 False 

Alarm (FA) signatures. The statistics of these collections are shown in Table 4. The depth 

distribution for all objects are shown in Table 5. 
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TABLE 4 

Statistics of the data collection 

Type Content Site A Site B Total/Category Total/type 

AP 
HM 16 40 56 

187 
LM 38 93 131 

AT 
HM 6 20 26 

124 
LM 28 70 98 

HMC 224 68 292 
FA NMC 72 68 140 564 

BLANK 52 80 132 

I Total I 436 439 II 875 II 875 

TABLES 

Burial Depth of All Objects in the Data Collection 

Mine Clutter 
Depth Site A Site B Total Site A Site B Total 

Surface 0 27 27 52 80 132 
(0 I"] 12 104 116 70 46 116 
(1 2"] 36 48 84 78 44 122 
(2 3"] 28 34 62 88 18 106 
(34"] 12 0 12 60 20 80 
(45"] 0 10 10 0 8 8 

Total 88 223 311 II 348 216 564 

2 Motivations 

The proposed CDF is motivated by the observation that there is no single detec-

tion algorithm that can consistently outperform all other detection algorithms for landmine 

detection. In fact, the relative performance of different algorithms can vary significantly 

depending on the algorithms adaption, feature types, and sensor styles. Figure 46 shows 

the individual detection algorithms on all data sites, it can be seen, EHD is the best algo-

rithm for the entire data, while Figure IS in Chapter IV.A show that the ROC of the four 
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Figure 46. Individual algorithms ROC on all data sites 

discrimination algorithms on various subsets of data collected by this NllTEK robotic mine 

detection system vary to different geographical site, soil type, mine type, bury deepth etc.), 

and that the CDF should work well on landmine detection because CDF will take advan-

tages of the strengths of few algorithms in different regions of the feature space without 

being affected by the weaknesses of the other algorithms. 

3 Context Extraction 

For each cross validation, the training data consists of a set of co-located GPR 

and WEMI alarms. Each alarm is processed by the four discrimination algorithms (EHD, 

HMM, SPECT, and WEMI) outlined in Chapter III.D. The features extracted from these 

alarms are then fed to SCADe to partition the aggregated feature space into C clusters. 

The choice of the number of clusters is not critical for this application. This number should 

be large enough so that most clusters contain only similar alarms. However, it should not 
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TABLE 6 

Distribution of the alarms among the 10 clusters for one cross validation set 

Cluster ATHM ATLM APHM APLM HMC NMC Blank Total 
1 0 18 0 0 0 20 0 38 
2 16 0 11 0 6 0 0 33 
3 0 0 12 1 28 0 0 41 
4 0 0 5 15 34 0 0 54 
5 0 0 0 16 39 0 0 55 
6 0 0 0 0 9 31 93 133 
7 4 4 24 20 54 0 0 106 
8 0 3 0 45 31 1 1 81 
9 2 27 0 0 0 I 0 30 
10 0 42 0 22 24 51 19 158 

Total 22 94 52 119 II 225 104 113 II 729 

be too large to avoid using too many small clusters that do not include enough samples to 

learn the optimal algorithm fusion weights. Here, we let C = 10. 

Table 6 displays the content of the 10 identified clusters. As it can be seen, most 

clusters include alarms of similar types, and thus may be considered as a homogeneous 

context. For instance, some clusters are dominated by high metal mines and high metal 

clutter. Others are dominated by AT mines or AP mines. Also, some clusters include 

mainly mine or clutter alarms. Others, include a mixture of both. Alarms that are grouped 

into the same context share common GPR and/or WEMI features. 

Table 7 displays few representative mine and clutter alarms from three contexts. For 

instance, context I includes only AT mines with low metal content and non-metal clutter 

(refer to Table 6). Alarms from both classes have strong GPR signatures, and the GPR 

sensor by itself may not be sufficient to discriminate between mines and clutter within 

this context. The WEMI sensor, on the other hand, can easily discriminate between these 

samples. For context 3, which includes mainly AP mines with high-metal content and high-

metal clutter, the GPR sensor is more reliable. For this context, the WEMI sensor cannot 
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TABLE 7 

Samples of representative mine and clutter alarms from three different contexts 

Context 1 

Mines 

Clutter 

Context 3 

Mines 

Clutter 

Context 7 

Mines 

Clutter 

discriminate between mines and clutter objects si nee both have high metal content. 

The different contexts do not always correspond to alarms of the same type. If this is 

the case, the ground truth could be used to partition the training data into contexts. Context 

7 is an example of one cluster that includes mine signatures from all 4 types. One alarm 

from each type is displayed in Table 7. In this case, other factors such as burial depth and 

soil properties can affect the signatures. For instance, for the GPR sensor, some shallowly 

buried AP mines can have signatures as strong as the deeply buried AT mines. 
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Figure 47. Context-Dependent Fusion weights ofCVI in 10 clusters 

4 Learning Detectors Aggregation Weights 

After the context extraction step, the performance of each detector is evaluated 

within each context based on the degree of worthiness proposed in Chapter V between 

the mine and clutter alarms assigned to it. Then, an aggregation weight is assigned to each 

detector in each context. These weights are shown in Figure 47. For comparison purposes, 
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we also assign a global weight using the entire training collection, i.e. we treat all data as 

one cluster, and weighted the algorithms according to the ROC area. These weights are 

shown in Figure 48. As it can be seen, overall, the ERD has the best performance followed 

by the RMM and then the WEMI. However, the performance of the different algorithms 

can vary significantly from one context to another. For instance, the WEMI detector has 

the least weight in context 1 for Rank-based, Cumulative Separation-based and MCE-based 

methods which consistent with Table 7. This is because this context includes mainly mines 

and non metal clutter, and the WEMI can discriminate between these objects easily. On the 

other hand, context 3 (refer to Table 6) includes mainly AP mines with high metal content 

and clutter with high metal content. From Figure 15(c) we know that the EHD and WEMI 

outperform the other detectors for HM mines. In particular, the WEMI does a better job 

at detecting strong mines, but the ERD is better at rejecting the high metal clutter. Thus, 

a combination of these two algorithms can provide a higher probability of detection at a 

lower false alarm rate. Context 9 is another interesting one where the SPECT detector was 

assigned the higher weight. This is despite the fact that, globally, the performance of this 

detector is not even close to the other detectors. Context 7 is also interesting one where the 

mines come from all 4 types (refer to Table 7). In this Context, all individual algorithms 
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Figure 49. Context-Dependent Fusion perfonnance in Cluster 3. (a) ROC, (b) Separation 
and overlap, (c) Misclassification in MCE, (d) Context-dependent weighs for all methods 
in Cluster 3 

give a nearly average weights because the mixture mines. Figure 49 attempts to further 

zoom in to Cluster 3 to check the perfonnance of worthiness of degree for all detection al-

gorithms, (a) displays the ROC for each algorithms in this cluster; (b) shows the separation 

and overlap, from (a) and (b), we can find that, in this cluster, EHD is the best algorithm 

which consistent with the analysis of above; (c) displays the change for MCE/GPD mis-

classification error, as expected, the error should degrade after each update; (d) is the CDF 

weighs on different perfonnance in this clusters, again, it shows all CDF methods under 

this cluster will assign a highest weight to EHD. 

The above cluster-based fusion weights are intuitive and expected to be helpful as 

outlined in our motivation example in Chapter IV.A. However, here we want to emphasize 

that these weights are learned from the training data without user supervision. 
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Figure 50. Performance of the individual detectors and the global and local fusion on the 
entire collection with 6 folds cross validation 

5 Analysis of the Testing Phase 

The performance (on the testing data) of the four individual detectors using cross-

validation within the TUF system is shown in Figure 46. As it can be seen, the EHD has the 

best overall ROC, followed by the HMM, the WEMI, and then the SPECT. This is consis-

tent with the performance on the training data and the global aggregation weights assigned 

to these algorithms shown in Figure 48. The ROC's resulting from the global fusion and 

the proposed context-dependent fusion are also shown in Figure 50_ We also include the 

ROC of the EHD (best overall discrimination algorithm) as a reference. First, we note that 

even with a simple global fusion (dot dash blue curve in Figure 50), we obtain results that 

outperform all individual detectors. This is because these detectors operate on different 

sensor data, use different preprocessing, feature extraction, and classification algorithms. 

This diversity allows the fusion to take advantages of the strengths of the individual de-
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tectors, overcome their weaknesses, and achieve a higher accuracy. Second, the proposed 

context dependent fusion outperforms all individual detectors and the global fusion signifi­

cantly. Although the performance of COF vary because the different worthiness of degree, 

the ROC's of all COF fusion methods are clustered together, and thus all methods have 

comparable performances. For instance, for a 90% PO, the COF method reduces the FAR 

by 63% when compared to the global fusion and by 70% when compared to the best indi­

vidual detector. Similarly, at a 95% PO, the COF method reduces the FAR by 57% when 

compared to the global fusion and by 69% when compared to the best individual detector. 

Third, all fusion methods improve the PO results over the best discrimination algorithm 

by an average of 10 - 20% for PO around 90%. Additionally, Bayes based fusion results 

are not as good as the other methods. This is due mainly to the fact that one Gaussian 

components may not be suitable to model the distribution of the confidence values of the 

individual discriminators in the 4-dimensional confidence space. 

C Land Mine Detection with Airborne Hyperspectral Imagery Data 

1 Data Statistics and Experimental Setup 

The proposed local fusion COF methods are also applied to Airborne Hyperspectral 

Imagery (AHI) data. AHI was flown over an arid site at various times in the years 2002, 

2003 and 2005. Data was collected at altitudes of 300m and 600m with spatial resolution of 

10 cm and 15 em respective to altitude. Eight AHI images sets were created which covered 

approximately 145, OOOm2 ofterrain. Each image contains 70 spectral bands after trimming 

and binning, ranging over long-wave infrared (LWIR) wavelengths 7 .88J'Lm-ll.02J'Lm. Each 

image contains millions of spatial pixels, where each pixel consists of 70 spectral signature. 

From each image, there are three different types of targets (buried mines) in the imagery 

[132]. 

Labeled data sets were constructed from the imagery. The well-known RX algo-
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rithm [133] was run by Winter et al. [132] on the imagery as a pre-screener (anomaly de­

tector) to reduce the size of imagery and collect Points of Interest (POls). The pre-screener 

returned a various number of POls per image. There are 4,490 POls and 654 actual targets 

(buried mines) in the entire data set. Groups of samples surrounding each POI in a 15x 15 

pixel window were collected to form data sets. 

Cross validation was performed on the image level. Each test set was compared to 

all labeled data sets except for the set that was constructed from the image from which the 

test set was constructed. This ensures that we do not include any of the test data in the 

training data during each experiment. 

Three individual detection algorithms (RX, Whitening-Dewhitening (WD), and Mix­

ture of Gaussians) were used for fusion. The RX algorithm is a prescreener and requires no 

training [133 J. The WD transform is a classifier which whitens a test image with respect 

to the statistics of a training image [134]. The mixture of Gaussians is simply a mixture 

of Gaussians trained on target and background samples, and the confidence for each POI 

is the likelihood of the target class. The last two detection algorithms were trained/tested, 

using the same cross validation at the image level. 

Features extracted from the POls are used to partition the data into 10 clusters using 

SCADc algorithm [117]. In each cluster/context, the CDF methods were used to assign 

worthiness to each algorithm. 

To test an alarm, its features, extracted from the POls, are used to assign it to the 

closed context. Then, the confidence value of the individual algorithms and their degree of 

worthiness in the cluster of interest are aggregated to compute the final confidence value. 

2 Experimental Results and Analysis 

After the context extraction, the performance of each detector is evaluated within 

each context based on the degree of worthiness proposed in Chapter V. Then, an aggre-
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Figure 51. Context-Dependent Fusion weights assigned to three detections within 10 clus­
ters in CV 1 in the AHI data 
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Figure 53. Performance of the 3 individual algorithms in two different clusters 

gation weight is assigned to each detector in each context. These weights are shown in 

Figure 51. For comparison purposes, we also assign a global weight using the entire train-

ing collection, i.e. we treat all data as one cluster, and weighted the algorithms according 

to the ROC area. These weights are shown in Figure 52. As it can be seen, overall, the 

Gaussian has the best performance followed by the WD and then the RX. However, the 

performance of the different algorithms can vary significantly from one context to another. 
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Figure 54. Comparison of the ROCs obtained with the Context-Dependent Fusion and the 
global fusion 

For instance, the Gaussian detector has the second weight in context 4 for ROC-based, Cu-

mulative Separation-based and MCE-based methods. On the other hand, context 9 always 

assign a highest worthiness to the Gaussian_ 

The ROC curves of the three algorithms on two typical clusters are shown in Figure 

53. These results show that the performance of the algorithms can vary significantly from 

one cluster to another_ For instance, the WD algorithm was the best performer for cluster 

4, and the Gaussian is the second one in the PD range [0,0.5], but in cluster 9, Gaussian is 

the best and WD and RX are very similar within this context_ 

The overall performance of the CDF with different local weighting methods on the 

entire data collection averaged over all cross validations is shown in Figure 54. We also 

explore the Dempster Shafer fusion [33] and average global fusion on this data for compar­

ison. As it can be seen, an of the CDF methods outperform an of the individual algorithms 

significantly. Moreover, most of the ROC with this local fusion are better than the ROC 

obtained with global fusion where the weights are learned in the same way, and also better 
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than Dempster Shafer fusion. We notice that not all CDF with local weights perform well 

on this data, for instance, CDF with Overlap and CDF with Separation are slight better than 

Gaussian detection algorithm. Investigation of this problem has revealed that these two fu­

sion methods generate confidence values that have a distribution close to binary. Due to 

these nearly binary distributions, weak mines will be assigned confidence values close to 

zero, and this would explain the lower PD at low FAR. Also, strong false alarms will be 

assigned confidence values close to 1, and this would explain the relatively lower PD at 

higher FAR. 
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CHAPTER VII 

CONCLUSIONS 

We have proposed a novel Context Dependent Fusion (CDF) method that fuses mul­

tiple classification algorithms for decision making. The proposed CDF is a local, dynamic, 

and feature dependent method that adapts the fusion to different regions of the feature 

spaces. It has three main components: context extraction, algorithm fusion, and decision 

making. 

The context extraction component explores the training data in the feature space. It 

combines the features extracted by the different algorithms from the different sensors and 

partitions the aggregate feature space into clusters or contexts. The feature combination 

step can also be regarded as feature-level fusion. For this step, we have experimented 

with simple raw features combination and combination after feature mapping and reduction 

using Principal Component Analysis (PCA). The latter case proved to be more effective. 

This is because the features extracted by the different algorithm can vary significantly in 

dimension, range, and type. The PCA provides an effective way to normalize and transform 

the number of possibly correlated variables into a smaller number of uncorrelated variables 

for each algorithm. This transformation can also be used to make the dimensionality of 

the different feature subsets comparable and avoid any bias that may be induced by the 

algorithms that extract a larger number of features. Another benefit of using the PCA is the 

reduction in time complexity for both the off-line training and on-line testing phases. 

After feature fusion, a clustering algorithm is used to partition the feature space 

into contexts. We have experimented with three different algorithms to perform this task, 
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namely the Fuzzy C-Means (FCM), The Self-Organizing Map (SOM), and the Simultane­

ous Clustering and Attribute Discrimination (SCADc). The FCM has the advantages of 

being simple and computationally efficient. However, it is not effective in clustering high­

dimensional data, cannot discriminate between the different feature sets, and is sensitive 

to the specified number of clusters. The SOM has the advantage of generating a map that 

preserves the spatial information. This map could be explored for visualization or to reduce 

the number of contexts. However, like the FCM, the SOM cannot discriminate between the 

different feature subsets. Moreover, because the SOM generates a crisp partition, it may 

not be possible to learn useful information from the small clusters. The SCADc algorithm 

has the advantages of generating a fuzzy partition, learning the relevant features for each 

context, and finding the optimal number of contexts. The fuzzy memberships and feature 

relevance weights are explored in the subsequent steps of the CDF. 

The second component of the CDF, algorithm fusion, explores the training data in 

the confidence space. In particular, the confidence values assigned by each algorithm are 

used to assign aggregation weights to each algorithm within each context and identify "lo­

cal experts". For this component, we have proposed, implemented, and tested six local 

weighting methods. Some of these methods are based on the performance of the individual 

algorithms. Here, performance can be measured by the degree of separation or overlap 

between the distributions of the confidence values in the different classes. It can also be 

measured by the area under the Receiver Operating Characteristic (ROC) curve. Another 

weighting method that we have proposed is based on discriminative learning. We have for­

mulated the problem and derived the necessary conditions to learn weights that minimize 

the classification error within each context. Extensive experiments were conducted to an­

alyze and compare the performance of the different weighting methods. The results have 

indicated that all of the above methods outperform the global fusion, however, the relative 

performance of the proposed local methods can vary from one data to another, and there is 
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no clear winner. 

The third component of the proposed CDF, decision making, utilizes the context­

dependent weights assigned to each algorithm to perform the final decision-making pro­

cess. In this step, we explore the fuzzy membership functions learned by SCADc during 

clustering to assign a fuzzy membership degrees to the test sample into multiple contexts. 

This multiple context assignment reduces the randomness of the test pattern assignment 

(when some contexts are similar), and makes the algorithm more robust and consistent. 

Another contribution of this thesis is the application of the proposed fusion method 

to the problem of landmine detection. For this application, it has been established that the 

performance of different detection algorithms and sensors is strongly dependent upon a 

variety of factors that are not well understood. It is typically the case that one algorithm 

(or sensor) may perform well in one setting and not so well in another. Thus, in order to 

achieve a reliable and robust detection system, several distinct detection algorithms need 

to be developed and fused. We have applied our CDF method to this problem. In particu­

lar, we have applied it to multiple data collected by Vehicle Mounted Ground Penetrating 

Radar (VMGPR), Autonomous Mine Detection Multi Sensors System with Ground Pen­

etrating Radar (GPR) and Wideband Electromagnetic Induction (WEMI), and Airborne 

Hyper-spectral Imagery (AHI) systems. Our extensive research and testing in this applica­

tion have revealed that the CDF can identify meaningful and coherent contexts consistently. 

Typically, the different contexts include signatures that have similar properties. Examples 

include alarms of the same type, alarms of targets buried at the same depth, and alarms 

collected from the same geographical site. Moreover, for each context, CDF identifies the 

most reliable algorithm/sensor. For instances, the GPR sensor can be more reliable for a 

context that includes mainly mines with low-metal content, while the WEMI sensor can be 

more reliable for anti-personnel mines. Similarly, a detector that uses frequency-domain 

features may be more reliable for one context, while an edge-based detector may be more 
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reliable for another context. 

Our extensive experiments in this application have shown that the CDF outperforms 

the global fusion and several state-of-the-art fusion techniques. Moreover, experimenta­

tion with various data sizes, multiple sensors and algorithms, clustering parameters, and 

weighting methods have indicated that our proposed fusion is stable and consistent. More 

importantly, the CDF produces contexts and results that can be interpreted. 

The proposed context-dependent fusion approach is a generic approach that parti­

tions the feature space into local contexts and identifies the optimal fusion within each 

context. In this work, we have developed only simple linear fusion methods. However, our 

approach can integrate any other fusion method and future research may include investigat­

ing fusion methods such as Bayesian, Dempster-Shafer, and fuzzy integral within the CDF 

framework. Another interesting future work may include the use of semi-supervised clus­

tering to partition the feature space into contexts. In several applications, partial supervision 

information may be available and may be explored in partitioning the high-dimensional 

feature space to obtain semantically meaningful contexts. Moreover, the quality of the ob­

tained clusters may need to be assessed and used in the fusion. For instance, a context with 

good validity measure should be more reliable than a context with worse validity. 
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AHI 

AP 

APHM 

APLM 

AT 

ATHM 

ATLM 

AVC 

BBA 

Bel 

CDF 

CV 

DST 

DT 

DP 

EDS 

EHD 

EM 

FAR 

FCM 

APPENDIX A 

LIST OF ABBREVIATIONS 

airborne hyperspectral imagery 

anti-person 

anti-person high metal 

anti-person low metal 

anti-tank 

anti-tank high metal 

anti-tank low metal 

area under receiver operating characteristic (ROC) curve 

basic belief assignment 

belief function 

context dependent fusion 

cross validation 

Dempster Shafer theory 

decision template 

decision profile 

energy density spectrum 

edge histogram descriptor 

expectation maximization 

false alarm rate 

fuzzy c-means 

129 



FOWA 

FPR 

GEOM 

GFIT 

GMRF 

GPO 

GPR 

HM 

HMC 

HMM 

LDA 

LM 

LMC 

LMS 

MCE 

MO 

ML 

MLP 

MPP 

MWM 

PCA 

PO 

PFA 

PI 

POI 

QDA 

feed-forward order-weighted-average 

false positive rate 

geometric feature 

Gaussian fit descriptor 

Gaussian Markov random field descriptor 

generalized probabilistic descent 

ground penetrating radar 

high metal 

high metal clutter 

hidden Markov model 

linear discriminant analysis 

low metal 

low metal clutter 

least mean squares 

minimum classification error 

metal detectors 

maximum likelihood 

multi-layer perceptron 

mapped posterior probability 

meandering winding magnetometer 

principal component analysis 

probability of detection 

probability of false alarm 

plausibility function 

points of interest 

quadratic discriminant analysis 
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ROC 

SAR 

SCADc 

SOM 

SPECT 

TFCM 

TPR 

TUF 

VMMDS 

WD 

WEMI 

receiver operation characteristic 

synthetic aperture radar 

coarse simultaneous clustering and attribute discrimination 

self-organizing map 

spectral feature 

texture feature classification method detector 

true positive rate 

testing/training unified framework 

vehicle mounted mine detection system 

whitening dewhitening 

wideband electromagnetic induction 
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