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Abstract

The three biggest challenges currently faced in machine learning, in

our estimation, are the staggering quantity of data we wish to analyze,

the incredibly small proportion of these data that are labeled, and the

apparent lack of interest in creating algorithms that continually learn

during inference. An unsupervised streaming approach addresses all

three of these challenges, storing only a finite amount of information to

model an unbounded dataset and adapting to new structures as they

arise.

Specifically, we are motivated by automated target recognition (ATR)

in synthetic aperture sonar (SAS) imagery, the problem of finding ex-

plosive hazards on the seafloor. It has been shown that the performance

of ATR can be improved by, instead of using a single classifier for the

entire ATR task, creating several specialized classifers and fusing their

predictions [44]. The prevailing opinion seems be that one should have

different classifiers for varying complexity of seafloor [74], but we hy-

pothesize that fusing classifiers based on sea bottom type will yield

higher accuracy and better lend itself to making explainable classifica-

tion decisions. The first step of building such a system is developing

a robust framework for online texture classification, the topic of this

research.
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In this work, we improve upon StreamSoNG [85], an existing algo-

rithm for streaming data analysis (SDA) that models each structure

in the data with a neural gas [69] and detects new structures by clus-

tering an outlier list with the possibilistic 1-means [62] (P1M) algo-

rithm. We call the modified algorithm StreamSoNGv2, denoting that

it is the second version, or verse, if you will, of StreamSoNG. Notable

improvements include detection of arbitrarily-shaped clusters by using

DBSCAN [37] instead of P1M, using growing neural gas [43] to model

each structure with an adaptive number of prototypes, and an auto-

mated approach to estimate the η parameters.

Furthermore, we propose a novel algorithm called single-pass possi-

bilistic clustering (SPC) for solving the same task. SPC maintains a

fixed number of structures to model the data stream. These structures

can be updated and merged based only on their “footprints”, that is,

summary statistics that contain all of the information from the stream

needed by the algorithm without directly maintaining the entire stream.

SPC is built on a damped window framework, allowing the user to bal-

ance the weight between old and new points in the stream with a decay

factor parameter.

We evaluate the two algorithms under consideration against four

state of the art SDA algorithms from the literature on several synthetic

datasets and two texture datasets: one real (KTH-TIPS2b [68]) and

xii



one simulated. The simulated dataset, a significant research effort in

itself, is of our own construction in Unreal Engine and contains on the

order of 6,000 images at 720× 720 resolution from six different texture

types.

Our hope is that the methodology developed here will be effective

texture classifiers for use not only in underwater scene understanding,

but also in improving performance of ATR algorithms by providing a

context in which the potential target is embedded.
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I. Problem Statement

Most modern machine learning approaches, both supervised (classifi-

cation) and unsupervised (clustering), make the assumption that the

test set contains only samples from classes present in the training set.

For example, when training a classifier to distinguish cats from dogs,

the assumption is often made that all samples fed to this classifier will

be of either a cat or a dog. As former Secretary of Defense Donald

Rumsfeld put it, this is a problem of known unknowns. We know that

there are cats and dogs that we haven’t seen before, and can develop

algorithms accordingly.

Although closed-world models like the example described here are

sufficient for certain tasks, many domains cannot rely on the assump-

tion that all unknowns are known unknowns. Unless the union of all

classes known to a classifier form the universe set under consideration,

there are always unknown unknowns to handle. Continuing with the

example of the cat vs. dog classifier, one would expect indeterminate

behavior to occur if the classifier is given a picture of a human. Perhaps

the classifier would assign the human some confidence in the cat and

dog classes, especially if a sum-to-one constraint such as a softmax is

imposed on the classifier output. More sophisticated classifiers might

assign little to no confidence in both classes, indicating that the in-
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put is neither a cat nor a dog. While such behavior is more desirable

than incorrectly forcing every sample into the cat or dog class, it still

does not provide a mechanism for recognizing future samples from the

human class.

A streaming framework is required to sufficiently model classification

problems in the presence of unknown unknowns in order for learning

to occur in the field. This entails developing a solution to the following

problems:

1. Offline initialization – given a finite set of training samples, which

may or may not be labeled, discover and model structure among

the samples.

2. Online classification – given an unlabeled sample, produce a mean-

ingful classification label vector with one element for each possible

class. Entries of this vector can be binary, indicating either full

or no membership of the sample in a class (i.e., crisp classifiers),

or real numbers in [0, 1] to indicate partial belonging. For fuzzy

and probabilistic classifiers, the entries of this vector sum to unity,

whereas possibilistic classifiers relax this constraint.

3. Outlier detection – determine whether an unlabeled sample should

be placed in an existing class or marked as anomalous. Anomalous

points do not conform to our existing understanding of structures

in the data, and may be either outliers or early samples from a

2



developing class — a distinction that algorithms operating in the

streaming domain must be able to make.

4. Online learning – given an unlabeled sample that is deemed an

inlier, update the classification model to better recognize samples

like it in the future. This is typically accomplished by updating

the model of one or more existing classes or by creating a new

class.

Each of these problems are thoroughly discussed in the subsections that

follow. Furthermore, the framework is subject to the constraints of:

1. Finite storage – when run for an infinite amount of time on an

unbounded input stream, the model can be contained in a finite

amount of space.

2. Arbitrarily-shaped structures – can model complex shapes in the

input stream, as opposed to, for example, solely Gaussian clusters

or hyperplane decision boundaries.

We study two models for streaming data analysis in this research:

StreamSoNGv2, and improvement to the streaming soft neural gas

(StreamSoNG) algorithm [85], and single-pass possibilistic clustering

(SPC), a novel footprint-based possibilistic clustering algorithm. These

models are applied in the domain of streaming texture classification.

Lastly, we would like to bring to attention the question by Bezdek

and Keller on whether the nomenclature “streaming clustering” is a

3



correct description of the task being performed by most of the algo-

rithms that proclaim themselves as such [24]. Throughout this work,

we refer to these algorithms, including those of our own design, by the

more general category of “streaming data analysis” algorithms, or SDA

algorithms for short.

A. Offline Initialization

The first step in building an algorithm for stream analysis, be it super-

vised or unsupervised, is to determine whether the algorithm will be

initialized using a set of static data, that is, data can be retained and

iterated over. It is exceedingly rare for machine learning algorithms

to function properly on very small sample sizes, as would be the case

if an algorithm were to immediately try and learn from scratch on a

data stream with no initialization. Most commonly, an initialization

set is provided a priori, though the algorithm could also have a so-

called burn-in period where data from the stream is accumulated for a

predetermined period of time to form an initialization set.

One must also decide whether the data used for initialization must

be labeled. This decision is more nuanced than simply using labels if

they are available. In our experience, training supervised classifiers on

subjectively labeled textures has led to worse performance than using

unsupervised methods. While research exists for learning with noisy

4



labels [56, 67], achieving high accuracy with unsupervised methods al-

lows the research to be applied to a wider swath of use cases, and hence

is preferred in our research.

During offline initialization, we are allowed to maintain the data

long enough to iterate over it as much as needed, subject to domain

and time constraints. Thus, performing the offline initialization can be

done using well-established and well-studied algorithms like k-means or

fuzzy C-means [23] in the unsupervised case, or, in the supervised case,

support vector machines or possibilistic K-nearest neighbors [42]. The

main requirement is that the knowledge gained during initialization

allows the algorithm to make intelligent decisions where it counts: as

samples stream in during inference.

B. Online Classification

After initialization, the model should be prepared to accept and classify

samples from the data stream. Upon receiving a new sample from the

stream, the model must provide a label for the sample, and preferably

a confidence associated with the classification. This label could poten-

tially be “outlier”, indicating that the sample doesn’t fit any known

class. Outlier detection is further discussed in the following section.

For soft classifiers, the principle of least commitment [59] is adhered

to and a vector of confidences in each known class is provided in lieu

5



of a single classification decision. The constraints applied to the vector

of confidences depend on the particular type of soft classifier. Proba-

bilistic and fuzzy classifiers require confidences in the range [0, 1] with

the sum of confidences over all classes to be unity, and possibilistic

classifiers require only the former constraint. Our focus is on possibilis-

tic classifiers for reasons that are made clear in Section IV-C.1 of this

document.

C. Outlier Detection

We argue that it is crucial not only for the model to produce accurate

labels for the stream, but also to have a robust mechanism of outlier

detection. This work’s application domain, streaming texture classi-

fication, all but guarantees the presence of outliers and the arrival of

new classes in the stream.

Outlier detection is a very well-studied field, however the problem

we encounter in streaming data analysis is that both the arrival of an

outlier and the beginning of a new class in the stream appear identical

until more data arrives. It is rarely possible to know if an incoming

point is truly an outlier that can be discarded until much further in the

stream. Thus, the ability to form new classes in an online setting ne-

cessitates finding a way to save all outliers as they arrive in some way,

which is inherently at odds with the streaming philosophy of maintain-

6



ing a constant amount of information to describe an unbounded data

stream.

Several of the existing algorithms for streaming data analysis, such as

CluStream [15], DenStream [32], and DBSTREAM [50], treat outliers

as “micro-clusters” containing a single point, and then have a separate

procedure for removing micro-clusters that do not contribute to the

clustering. Others, like StreamSoNG [85], maintain a list of outliers

and periodically search for clusters within that list.

The key challenge here is in deciding when an outlier can be safely

discarded, that is, when we believe the likelihood of encountering more

points like it from the stream is small enough. By a large margin, the

most common approach for solving this problem is some form of tempo-

ral windowing. Sliding window approaches simply discard points older

than a predefined threshold as outliers, whereas some more complicated

approaches like pyramidal windowing attempt to maintain information

about outliers in the whole stream, but in coarser and coarser detail

the further back in time one looks.

D. Online Learning

A useful SDA algorithm must be able to learn in an online setting.

Without online learning, SDA would be reduced to simply running

inference with any static classifier. The learning process for SDA boils

7



down to two primary tasks: updating existing class definitions and

forming new class definitions.

Updating existing class definitions usually entails updating cluster

footprints, that is, the set of summary statistics needed to fully define a

cluster, to reflect new information from the stream. The update can be

done stochastically, such as by moving a cluster centroid some amount

in the direction of a new point, or analytically, such as by deriving

update equations based on necessary conditions for convergence of the

algorithm.

When the outlier detection methodology within the SDA algorithm

identifies one or more samples that comprise a new class, the algorithm

must be able to compute the same cluster footprint as for existing

classes using only the known sample(s) in the new class. In many

cases, these cluster footprints consist of some summary statistics of the

data. BIRCH [89], for example, stores the summary statistics necessary

to compute the variance of each cluster, namely the number, sum, and

sum of squares of the data points which comprise it.

Both tasks must be solved when developing an algorithm for SDA,

as they are fundamental to the streaming phenomenology.

8



E. Simulated Datasets

As the video game industry pushes simulation to previously unfath-

omed levels of photorealism, machine learning researchers have found

that models can be trained solely on scenes created in game engines

and achieve impressive performance on real data. Moreover, manually

modeling a scene gives the researcher full control over the contents of

the scene, the placement of objects, the lighting, and much more. Per-

haps most alluring is the ability to create unbounded training sets with

pixel-perfect ground truth, circumventing the time and money bottle-

neck of hiring data labelers to segment thousands or millions of images.

These simulated datasets do not come for free, however. Game en-

gines, in our case Unreal Engine, have a steep learning curve and often

require skill sets aligned more with graphic design than computer sci-

ence. A substantial time investment is required before usable scenes are

available in simulation, but fortunately, the availability of ultra high

resolution scans of textures and objects for download online greatly

eases this barrier to entry.
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II. Literature Review

In this section, we provide a detailed survey of the relevant literature

for the proposed study. The structure of this literature review will

generally mimic that of Section I, but with offline initialization, on-

line classification, and online learning merged into a single section on

streaming data analysis (SDA) as a whole. This change is made to

avoid splitting SDA papers across multiple sections, as they typically

propose unique solutions to each of the three problems covered in Sec-

tion I. We briefly summarize how each of these SDA algorithms address

the problems of initialization, online classification, online learning, and

outlier detection in Table 1, with more detail to follow in this section.

A. Streaming Data Analysis

Carnein and Trautmann have recently produced a phenomenal sur-

vey on 51 SDA algorithms [31]. Thanks to their efforts, we were able

to quickly identify seven relevant algorithms for further examination

as exemplars of effective techniques in SDA. We chose to describe

three classical SDA algorithms (BIRCH [89], CluStream [15], and Den-

Stream [29]), two competitive learning algorithms (G-Stream [45] and

evoStream [30]), and two SDAs identified by Carnein and Trautmann

10



Offline
Initial-
ization

Online
Classifi-
cation

Online
Learning

Outlier
Detection

BIRCH N/A N/A
Insert into CF
Tree

Low density

CluStream K-means N/A
Update CF of
nearest
micro-cluster

Distance from
nearest
micro-cluster

DenStream DBSCAN N/A
Merge into nearest
micro-cluster

Distance from
nearest
micro-cluster

D-Stream N/A N/A
Update character-
istic vector of
grid

Delete sporadic
grid cells

DBSTREAM N/A N/A

Update weight,
center, and
time of nearest
micro-cluster

Number of
fixed-radius
nearest neighbor
micro-clusters

G-Stream N/A N/A
Growing neural
gas

Distance to best
matching unit

evoStream N/A N/A

Update weight,
center, and time
of nearest
micro-cluster

Distance to nearest
micro-cluster

StreamSoNG Neural Gas PKNN
Online extension
of NG

Low typicality

Table 1: Brief summary of how each SDA algorithm reviewed here addresses the main
challenges of the SDA problem.
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Figure 1: The taxonomy of distance-based SDA algorithms as interpreted by Carnein
and Trautmann. This figure is reproduced from Figure 5 of Carnein and Traut-
mann [31], with algorithms we study here circled in red.

to be state-of-the-art (D-Stream [32] and DBSTREAM [50]).

The taxonomy of the distance-based SDA algorithms we have chosen

to evaluate, based on that of Carnein and Trautmann [31], is shown in

Figure 1. We have circled the SDA algorithms under consideration here

in red, which include all except D-Stream (a density-based, rather than

distance-based, algorithm) and StreamSoNG [85] (more recent than

the survey). We provide a high level and intuitive overview of each

algorithm in this section, though for precise details on any algorithm,

we refer the reader to the original manuscript.
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Algorithm Year Parameters∗ Cluster Shape

BIRCH [89] 1996 3 Spherical

CluStream [15] 2003 4 Arbitrary

DenStream [29] 2006 8 Arbitrary

D-Stream [32] 2007 5 Arbitrary

DBSTREAM [50] 2016 7 Arbitrary

G-Stream [45] 2016 8 Arbitrary

evoStream [31] 2019 6 Spherical

StreamSoNG [85] 2020 6 + 5C† Arbitrary

∗ Parameters that do not affect execution, i.e., for visualization, are not counted.
† C is the number of classes in the data, as each class has a neural gas associated with it.

Table 2: Comparison of SDA algorithms.

1. Classical SDAs

The Balanced Iterative Reducing and Clustering using Hierarchies al-

gorithm [89] (BIRCH) was a pioneer in streaming data analysis, among

the first in both representing clusters using summary statistics that can

be updated incrementally and in performing clustering in a single pass

over the dataset. While the intent of BIRCH’s single pass requirement

was to improve upon the efficiency of existing clustering algorithms, it

was later found to be valuable for ephemeral datasets such as streams.

BIRCH fully describes a cluster with a three-tuple containing the

number of points in the cluster, the sum of the data points in the

cluster, and the sum of the (element-wise) squares of the points in the

cluster. This three-tuple, called the Clustering Feature (CF), contains
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all necessary information required to compute the centroid, radius, and

diameter of a cluster and contains only an integer and two vectors of

same dimensionality as the dataset. As points from the dataset arrive, a

tree of CF vectors is produced, leading to a hierarchy of clusters. When

requested, clusters are extracted from the CF tree using agglomerative

hierarchical clustering.

CluStream [15] introduces the concept of a micro-cluster, described

as “a temporal extension of the cluster feature vector” of BIRCH. The

micro-clusters of CluStream contain the same information as the CF of

BIRCH, but also include the sum of timestamps and sum of squared

timestamps from each point in the stream. A fixed and finite number of

micro-clusters are stored over a pyramidal time window as “snapshots”,

providing high granularity over recent evolution of the dataset and low

granularity far in the past. In order to keep the number of micro-

clusters constant, a maintenance procedure deletes micro-clusters that

are deemed outliers based on an estimation of the micro-cluster’s age.

At any time during the execution of CluStream, an offline clustering

procedure can be run to obtain the “macro-clusters” present in the

stream at the current time. The authors propose clustering the micro-

clusters with a slightly modified k-means to produce macro-clusters

over a time horizon [t1, t2], with t2 often being the current time.

A drawback of algorithms like BIRCH and CluStream that depend
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on the CF to summarize clusters is their inability to model non-Gaussian

clusters. DenStream [29] builds upon CluStream’s concept of the micro-

cluster, leveraging a modified version of DBSCAN [37] to model arbi-

trarily shaped clusters.

Further extending the idea of micro-clusters, DenStream maintains

core micro-clusters, potential micro-clusters, and outlier micro-clusters.

Core micro-clusters serve the same purpose as the micro-clusters of

CluStream and represent a subset of the stream that are sufficiently

dense in feature space. Potential micro-clusters describe smaller struc-

tures in the stream that are not dense enough to for a core micro-cluster.

Outlier micro-clusters are a set of outliers that are not dense enough to

become a potential micro-cluster.

The general process of DenStream is as follows. First, a preliminary

clustering is done by running DBSCAN on an initialization set. When

a new point from the stream arrives, attempt to merge it into an ex-

isting potential micro-cluster. If no potential micro-clusters describe

the new point well enough, either merge the new point into an outlier

micro-cluster by similar logic or create a new outlier micro-cluster con-

taining the new point. Periodically, a maintenance algorithm deletes

any potential or outlier micro-clusters that are either too old or not suf-

ficiently dense. When a clustering is requested, a variant of DBSCAN

is performed on the core and potential micro-clusters.
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2. Related SDAs

G-Stream [45] is an SDA that takes advantage of the growing neural gas

(GNG) algorithm [43] to represent arbitrary topologies in the dataset.

The key contribution of G-Stream in making GNG viable in a single

pass over the dataset is the introduction of a “reservoir” to hold outliers.

When a new sample is read from the stream, if it is further than a

prescribed threshold from its nearest GNG neuron, it is added to the

reservoir. After enough points have been added to the reservoir, all

points in it are removed and placed at the front of the stream as if they

are just arriving. The reservoir allows the learning component of GNG

to take another look at what were previously thought to be outliers,

but may now form a structure in the context of more data. Further,

outdated and isolated nodes are periodically removed from the GNG.

Combined with GNG’s mechanism for automatically detecting when

new nodes are needed to model the topology of the dataset, G-Stream

is one of the few SDAs that can truly represent any topology. A key dif-

ference between StreamSoNG and G-Stream is that, in G-Stream, each

node of the neural gas represents a cluster, whereas, in StreamSoNG,

each cluster is modeled by its own neural gas prototypes.

Evolutionary algorithms also lie in the domain of competitive learn-

ing along with neural gas, and so, we also consider evoStream [30] for
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comparison. The evoStream algorithm exhibits fairly standard behav-

ior when a new point arrives from the stream. If the new point is

close enough to an existing micro-cluster, that micro-cluster absorbs

the point. Otherwise, a new micro-cluster is created to hold the point.

Occasionally, a cleanup procedure is run that removes old micro-clusters

and merges micro-clusters that are too close together.

The hallmark of evoStream is its evolutionary step, which form

macro-clusters from the micro-clusters and is run while the stream

is idle. The authors indicate that this idle time typically occurs in

real-time applications where there is down time between the arrival of

sequential points from the stream.

During the evolution step, roulette wheel selection, binary crossover,

and mutation are applied to the population as is standard for evolu-

tionary algorithms, where mutation is accomplished by perturbing the

coordinates of selected individuals by a small random value. The pop-

ulation size P is maintained in a similar way to a (P + 2)–Evolution

Strategies [26, 73]. After the two newly generated offspring are added

to the population, the two least-fit members of the now (P + 2)-sized

population (potentially the newly generated offspring) are discarded.

The fitness function f used in evoStream is the inverse of the sum of

squared distances from each micro-cluster to its nearest macro-cluster,
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given by1

SSQ =
k∑
i=1

∑
mc∈Ci

d(mc[c], Ci)
2 (1)

f =
1

SSQ
(2)

where k is the number of macro-clusters, d is a distance function (Eu-

clidean in this case), mc[c] denotes the centroid of micro-cluster mc,

and Ci denotes macro-cluster i.

3. State-of-the-Art

D-Stream [32] is a grid-based SDA that is often reported to perform

well [31, 50]. The general idea of D-Stream is to maintain a sparse grid

over the input space, storing incoming points in their appropriate grid

cell and updating a summary statistic containing, among other clerical

items, a density measure of the cell. After a certain number of points

have arrived from the stream, an initial clustering is run. Furthermore,

“sporadic” grid cells, those deemed to contain only outliers, are peri-

odically removed from the grid list and existing clusters are updated to

reflect the change.

The initial clustering of D-Stream is agglomerative in that it starts

with every dense grid cell in its own cluster and iteratively merges

neighboring clusters. The periodic cluster adjustment procedure looks

1This equation is slightly modified in notation from Equation 2 in Carnein and Trautmann [30].
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at all grid cells and relabels them as sparse or dense, as appropriate,

in addition to handling tasks like removing certain sporadic grid cells

and splitting clusters of grid cells that have become disconnected.

As is typical with algorithms that attempt to maintain a grid over

the input space, D-Stream can be quickly rendered intractable when

given high dimensional data [18]. Maintaining a dense grid follows a

power law with the number of dimensions and, even when the grid

is sparse (as in D-Stream), the number of neighbors of a grid cell is

exponential in dimensionality. D-Stream addresses this problem by

aggressively removing sporadic grid cells to save memory.

Perhaps the most performant SDA algorithm as of this writing, DB-

STREAM [50] adapts concepts from DBSCAN [37] into a streaming

setting, similar to DenStream [29]. DBSTREAM maintains a shared

density graph over the pairs of micro-clusters in order to later produce

macro-clusters. The shared density concept is illustrated in Figure 2

of the original manuscript [50], which is also reproduced here as Fig-

ure 2 for convenience. The general idea of shared density between two

micro-clusters is novel to DBSTREAM and models the idea that two

micro-clusters should be in the same macro-cluster if they not only have

a large overlap region, but also have many points assigned to that over-

lap region. Producing macro-clusters is done offline and on demand in

a process involving finding connected components of a graph derived
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Figure 2: In DBSTREAM, each micro-cluster MCi has a weight wi, counting the
number of points assigned to it, in addition to a shared weight to each other micro-
cluster MCj denoted si,j that counts the number of points assigned to the overlap
region of the two micro-clusters. This figure is reproduced from Figure 2 in Hahsler
and Bolaños [50].

from the shared density graph.

When a new point arrives from the stream, DBSTREAM searches for

all neighboring micro-clusters of the point. If none exist, a new micro-

cluster is created around that point. Otherwise, all micro-clusters in the

neighborhood of the new point have their center, weight, recency, and

shared density updated. To prevent the problem of collapsing clusters,

if two micro-clusters have drifted too close to one another, they are

reverted to their previous positions.

B. Outlier Detection

Common to all SDA algorithms discussed in the previous section is

the need to detect whether incoming points belong to existing struc-
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tures. While not explicitly stated in some cases, this is a problem of

outlier detection, which has a rich and vast literature in itself. Wang

et al. [83] have recently published a comprehensive survey on the sub-

ject, dividing methods of outlier detection into six categories: distance-

based, density-based, clustering-based, graph-based, ensemble-based,

and learning-based. We will summarize some of the more relevant in-

formation from their survey to SDA, but direct the reader to the survey

if more breadth of information is desired, or the manuscript that pro-

posed the approach if more depth on a particular method is desired.

Distance-based outlier detection seems to be the most prevalent in

SDA. Numerous algorithms in SDA have logic along the lines of “if a

new point is close enough to a micro-cluster, include it in the micro-

cluster,” where the close enough concept means that the distance is

smaller than some threshold. Notably, DBSTREAM [50] uses distance-

based outlier detection (the ε-neighborhood of a point) to determine

whether a new sample is absorbed into an existing micro-cluster or

forms a new micro-cluster.

Specifically designed for the streaming domain, Angiulli and Fassetti

propose a suite (one exact and two approximate algorithms) of distance-

based outlier detectors called Stream Outlier Miners (STORM) that

operate on windows of the dataset [21]. They create a specialized data

structure called an indexed stream buffer that returns all objects in
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the window with distance less than or equal to a radius parameter.

Yang et al. [87] also propose several window-based stream outlier de-

tection algorithms called Abstract-C, Extra-N, and Exact-N. In short,

Abstract-C and Extra-N have CPU time roughly linear in window size

and Exact-N has linear memory usage in window size. Unfortunately,

all methods discussed here require storing all of the data points in the

window.

Density-based outlier detection is also common in SDA. Algorithms

like D-Stream [32] define outliers as regions in feature space in which

few to no previously seen samples reside. A number of density-based

heuristics have been developed for outlier detection and outlined by

Wang et al. [83]. The most popular seems to be local outlier factor

(LOF) [25], a method that identifies outliers as points with relatively

low reachability to their k-nearest neighbors, though LOF is not suit-

able for SDA.

Clustering-based outlier detection tends to take a contrarian ap-

proach, where small, sparse, or non-homogeneous clusters are consid-

ered outliers. One domain where such an approach has shown promise

is in gene expression data analysis [34], in which the authors identi-

fied genes related to the progression of a disease in grape plants based

on their inability to cluster. While in this particular example, node-

based resilience clustering [70] is used, any clustering algorithm capa-
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ble of modeling the cluster structure of the dataset is suitable for use

in clustering-based outlier detection. In SDA, one gets cluster-based

outlier detection almost for free having developed an online clustering

algorithm.
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III. StreamSoNGv2

Abstract — When dealing with unbounded streaming data, such as

network packets or frames from a continuous live video feed, it is not

feasible to retain all of the data, let alone to apply iterative algorithms

over the full dataset. The streaming soft neural gas (StreamSoNG) al-

gorithm proposed by Wu et al. is particularly appealing given its ability

to model arbitrary topologies in the data, however there some short-

comings that make it difficult to apply in a practical setting. In this

work, we identify these shortcomings, offer solutions to them, and com-

pare the improved algorithm to several similar algorithms in stream-

ing data analysis. Particularly, we offer, among other major enhance-

ments, an automated, data-driven approach to determining the value

of a parameter η to which the original algorithm is especially sensi-

tive. We demonstrate that StreamSoNGv2 is competitive with related

algorithms, shows improvement over the original, and that it provides

useful soft labels for each streaming data point, rather than assigning

it full membership in a single class.
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A. Introduction

The Streaming Soft Neural Gas (StreamSoNG) algorithm [85] shows

great promise in solving problems in the domain of SDA, and, after

using this algorithm extensively in our research, we have found and

addressed a number of shortcomings in StreamSoNG which has culmi-

nated in what we are calling StreamSoNGv2 (StreamSoNG Verse 2).

Modifications presented here significantly improve the performance of

the algorithm and make it both easier and more reliable to apply to new

datasets by addressing the difficulty of parameter selection, updating

some of the underlying models, and making the model more robust to

overlapping classes. In our experiments, StreamSoNGv2 outperforms

its predecessor and either beats or is comparable to several state of the

art algorithms when considering crisp class assignment, but with the

advantage of assigning soft class labels for confusing objects.

B. Background

1. Neural Gas (NG)

Neural gas [69] is a competitive learning algorithm that uses a fixed

number of prototypes (also called “neurons” or “weights”) to learn the

topology of a feature space. The general idea of the algorithm is to

repeatedly sample a point from the dataset and move each prototype
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toward this point by an amount inversely proportional to how close the

prototype is to the point relative to the other prototypes. For example,

the nearest prototype to a sampled point will move a large fraction of

the distance toward the point, whereas the furthest prototype from the

sampled point will have little to no movement. In addition, “connec-

tions” are dynamically formed between neurons, but they are only an

output of the algorithm and play no role in the placement of prototypes.

Algorithm 1 shows the full pseudocode for neural gas.

Two major limitations of neural gas for use in streaming data anal-

ysis (SDA) are that the number of prototypes is fixed and that it is,

by design, an iterative algorithm. In SDA, we only take one look at

the streaming data, making us unable to leverage multiple passes over

the dataset. Furthermore, we cannot know in advance how many pro-

totypes are required to effectively describe a structure in the data that

has not been seen yet.

2. Growing Neural Gas (GNG)

Growing neural gas [43] addresses the problem of neural gas having a

fixed number of prototypes. This is accomplished by tracking an er-

ror measurement for each prototype and periodically creating a new

prototype between the highest error prototype and its highest error

topological neighbor. Another change from the standard neural gas is
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Algorithm 1 Neural Gas [69]

procedure NeuralGas(X, n, ε, λ, T )
// X = {xj ∈ Rd, j = 1, 2, . . . , N}, N points in d dimensions
// n ∈ N, the number of neural gas prototypes to use
// ε ∈ R+, the learning rate parameter
// λ ∈ R+, the neighborhood parameter
// T ∈ N, the maximum age of connections between prototypes

// We initialize W by sampling n points from the dataset
Initialize W as n weights in Rd from the N data samples in X

repeat

Sample a point xj ∈ X
for i = 1, 2, . . . , n do

Let w(i) be the i-th closest prototype to xj
Update w(i) according to

w(i) ← w(i) + ε exp{−ki/λ}(xj − w(i))

Mark the two closest prototypes to xj, w
(1) and w(2), as connected

Set the age of the connection between w(1) and w(2) to zero
Increment the age of all connections to w(1) by one
Disconnect prototypes with connections older than T

// We define convergence to be a fixed number of iterations
until convergence

that connections between neurons are now utilized in moving proto-

types. Instead of moving all prototypes toward new input samples, the

best matching unit (BMU) is moved a large distance toward the new

point and its topological neighbors, that is, prototypes connected to

the BMU, are moved a smaller distance toward the new point. Proto-

types not connected to the BMU do not move. Algorithm 2 shows the

pseudocode for growing neural gas.

Growing neural gas is better suited to SDA than neural gas due

primarily to removing the requirement that the number of prototypes
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Algorithm 2 Growing Neural Gas [43]

// X = {xj ∈ Rd, j = 1, 2, . . . , N}, N points with d dimensions
// εbmu ∈ R+, the learning rate parameter for the best matching unit (BMU)
// εnbhd ∈ R+, the learning rate parameter for neighbors of the BMU
// λ ∈ N, growth interval
// α1 ∈ (0, 1), error scale factor of highest error neurons
// α2 ∈ (0, 1), error scale factor of all neurons
// T ∈ N, the maximum age of connections between prototypes

procedure TrainGNG(X, εbmu, εnbhd, λ, α1, α2, T )
Initialize W as two weights in Rd

repeat
Sample a point xj ∈ X
Call UpdateGNG(xj, εbmu, εnbhd, λ, α1, α2, T )

until convergence

procedure UpdateGNG(xj, εbmu, εnbhd, λ, α1, α2, T )
Let w(1) and w(2) be the closest and next closest prototype to xj
Increment the age of all connections to w(1) by one

Increase the error associated with w(1) by
∥∥w(1) − xj

∥∥2
Set w(1) ← w(1) + εbmu(xj − w(1))
for each i = 2, 3, . . . , |W | such that w(i) is connected to w(1) do

Set w(i) ← w(i) + εnbhd(xj − w(i))

Mark the two closest prototypes to xj, w
(1) and w(2), as connected

Set the age of the connection between w(1) and w(2) to zero
Disconnect prototypes with connections older than T
Remove all prototypes that have no connections
if the total number of iterations is kλ for some

k ∈ N then
Call ExpandGNG( )

Multiply all errors by α2

procedure ExpandGNG( )
Let wp be the prototype with largest error
Let wq be the prototype connected to wp with highest error
Create a new prototype w|W |+1 = 0.5(wp + wq)
Connect w|W |+1 to wp and wq; disconnect wp from wq

Multiply the error associated with wp and wq by α1

Set the error associated with w|W |+1 to the error associated with wp
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be specified a priori. It is still an iterative algorithm though, and was

published with the intent of looping over the data many times to de-

termine final prototype positions. We have found qualitatively that, by

choosing learning rate parameters more aggressively than when running

iteratively (i.e., larger εbmu and εnbhd), growing neural gas performs well

on a single pass over the data.

Figure 3 demonstrates why using a fixed number of prototypes, as

in NG, is problematic in certain situations. One could imagine that the

cluster in the center of this image is known from initialization data and

the outer ring arose from streaming data. Five prototypes are sufficient

to model the inner class, however more prototypes are clearly needed

for the outer class. Growing neural gas ameliorates the issue suffered by

neural gas in cases where different structures require different numbers

of prototypes.

3. Possibilistic K-nearest Neighbors (PKNN)

PKNN [42] is a possibilistic extension of the fuzzy K-nearest neighbors

algorithm [60], which is, in turn, an extension of the ubiquitous K-

nearest neighbors algorithm [39]. The first step of PKNN is to soften

the labels associated with the training data based on the labels of each
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(a) Neural gas

(b) Growing neural gas

Figure 3: Demonstration of a case where growing neural gas is preferable to the
standard neural gas. There are two structures in this toy dataset, both with similar
point density but one having substantially more points than the other.
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sample’s neighbors according to

µ̃i(y) =


0.51 + 0.49 ·

(
ni
K

)
, if i = j

0.49 ·
(
ni
K

)
, if i 6= j

(3)

where µ̃i(y) is the possibilistic label of y in class i, ni is the number

of neighbors of y in class i, and K is the number of neighbors under

consideration. Intuitively, the “0.51” term ensures that each prototype

has a majority membership in its assigned class, and the “0.49” term

takes into account the labels of the neighbors of the prototype, which

may disagree with the given class label. In the event that a prototype is

surrounded entirely by members of other classes, it will have member-

ship 0.51 in its assigned class and 0.49 in the surrounding class. Highly

separable datasets will have soft labels that are effectively one-hot en-

codings of the hard labels.

When given a new sample x, its typicality in each class i is computed

according to

µi(x) =
1

K

K∑
i=1

µ̃i(yk)wp(x, yk), (4)

where yk is the k-th nearest neighbor to x. The possibilistic weight

function wp is given by

wp(x, yk) =
1

1 + [max {0, ‖x− yk‖ − ξ}]
2

m−1
, (5)
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where m and ξ (renamed from η in the original manuscript to prevent

confusion) are parameters.

C. StreamSoNG Algorithm Description

Streaming soft neural gas (StreamSoNG) [85], explicitly referred to

as StreamSoNGv1 for clarity, is a recently developed algorithm that

leverages ideas from neural gas [69], possibilistic K-nearest neighbors

(PKNN) [42], sequential possibilistic 1-means (SP1M) [76], and possi-

bilistic C-means (PCM) [62] to model arbitrary topologies in feature

space. In this section, we provide a detailed description of the algo-

rithm, offering insights and criticism that are not present in the origi-

nal manuscript. We then explain some shortcomings of StreamSoNGv1

and how we address them, culminating in an improved StreamSoNGv2,

and evaluate its performance against the original StreamSoNGv1 and

several other SDA algorithms.

StreamSoNGv1 is initialized with labeled data. First, it runs neural

gas on each class to develop a set of per-class prototypes. When labels

are not available for the initialization set, one could instead use the

(hardened) cluster memberships obtained by running an offline clus-

tering algorithm such as PCM. Additionally, StreamSoNGv1 could be

adapted to skip initialization by simply putting all incoming points in

the outlier list until a cluster is found, though this has not been tested.
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The purpose of the initialization procedure is to seed the algorithm with

good examples from some of the classes from the dataset in the hopes

that new examples can be expressed by the degree to which they be-

long to these seed classes, which is not unlike the idea of hyperspectral

endmember extraction [58].

During the streaming phase, new points are sequentially presented

to the algorithm. First, the fuzzy memberships are computed for each

neural gas prototype according to 2

µi(p) =


0.51 + 0.49 ·

(
ni
K

)
, if i = j

0.49 ·
(
ni
K

)
, if i 6= j

, (6)

where µi(p) is defined as the membership of prototype p in class i, j is

the true class of p, ni is the number of neighbors of p in class i, and

K is the number of neighbors under consideration. We observe that

Equation 6 is identical to Equation 3, but with notation adjusted for

clarity in this context. The set of all µi(p) values are best understood as

a row-stochastic matrix-valued function U(pik) containing membership

values, with one row for each class and one column for each prototype.

The next step is to compute the typicality3 of the incoming point

xt in each class i with respect to each of its K-nearest prototypes,

2This equation was originally presented in the context of the fuzzy K-nearest neighbors algorithm
in Keller at al. [60].

3Memberships, like probabilities, are in [0, 1] and sum to unity, whereas typicalities relax the
latter constraint.
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resulting in a matrix with a row for each class and a column for each of

the K-nearest neighbors of xt. In the usual case of Euclidean distance,

typicality is computed as 4

tik(xt) =
1

1 +
(
‖xt−pik‖2

ηi

) 1
m−1

, (7)

where pik is the k-th closest prototype in class i to xt. The variable

m > 1 is known as the “fuzzifier” parameter and governs how quickly

typicalities fall off to zero as distance increases, with higher values of m

leading to slower transitions from regions of high typicality to regions of

low typicality. We discuss the η parameters in great detail in Section 6,

as it is notoriously difficult to estimate. Equation 7 replaces, but serves

the same purpose as Equation 5 in PKNN.

Next, we compute the typicality of the incoming point with respect

to each class i by taking a normalized dot product of the typicality of

the incoming point in its K-nearest prototypes with the membership

of those prototypes in their respective classes, given by

t̄i(xt) =
1

K

K∑
k=1

µi(pik)tik(xt). (8)

This step can be viewed as taking the average of an element-wise prod-

uct between the class memberships of the K-nearest prototypes to xt
4This equation was originally presented in the context of PCM as Equation 8 in Krishnapuram

and Keller [62]
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and the prototype typicalities of xt in its K-nearest neighbors. To arti-

ficially boost typicality values, a scaling function is applied to the result

of Equation 9,

Ti(xt) =



0 t̄i ≤ 0

2t̄i − t̄i2 0 < t̄i ≤ 1

1 t̄i > 1

. (9)

The scaling function is plotted in Figure 1 of the supplementary files,

along with the identity function f(t̄i) = t̄i. The scaling function accom-

plishes two things: typicalities not in the range [0, 1] are clipped into

that range and typicalities already in [0, 1] are increased. Our stance

is that a good choice of the η parameters render the scaling function

unneeded, as η plays a much larger role in the scale of resulting typi-

calities. The scaling function in Equation 9 is plotted in Figure 4.

Lastly, a classification decision is made by choosing the class with

the highest value of Ti(xt). At this stage, xt is marked either as an inlier

or outlier based on whether max
i

Ti(xt) is above or below, respectively,

a user-provided threshold we denote toutlier.

Outliers are added to an outlier list and then clustered using a lim-

iting case of the possibilistic one-means (P1M) algorithm (P1M as

m → 1) to search for emerging structures. If any are found, neural

gas is run on points in the structure and the new prototypes are added
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Figure 4: Plot of the scaling function used in StreamSoNG. The x-axis is t̄i and the
y-axis are values of Ti(t̄i) from Equation 9 (solid black line) and the identity function
f(t̄i) = t̄i (dotted red line).

to the existing prototypes. All outliers considered part of the new

structure are removed from the outlier list.

For inliers, all existing prototypes in the same class as xt are updated

according to

pt+1
ik = ptik + αTi(xt)e

−k/λ(xt − ptik). (10)

We observe this to be identical to the update equation for neural gas

(Equation 2 in Martinetz and Schulten [69]) with corresponding learn-

ing rate taken to be StreamSoNG’s learning rate multiplied by the

scaled typicality of xt in the neuron’s class.

Examples of how StreamSoNG performs on a synthetic two-dimensional

dataset, as well as descriptions of key parameters and their effect on

the algorithm, are shown in Appendix A.
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D. StreamSoNGv2

At its core, StreamSoNGv2 operates in the same way as StreamSoNGv1.

In this section, we present the adjustments that were made to Stream-

SoNGv1 to form StreamSoNGv2. The different initialization methods

for StreamSoNGv2 are shown in Algorithm 3 and the update procedure

is shown in Algorithm 4 Each component of the algorithm described in

further detail later in this section.

1. Growing Neural Gas

Replacing the neural gas in StreamSoNGv1 with a growing neural gas

is desireable for a number of reasons, including, but not limited to

removing the need to specify the number of prototypes a priori, the

ability for different classes to use only as many prototypes as needed,

and GNG’s propensity to make use of connections when moving proto-

types. Modifying GNG to fit within the StreamSoNGv1 framework is

straightforward and only requires scaling the learning rate of each pro-

totype update by the typicality of a point in the class that the GNG

is modeling. Algorithm 5 explicitly illustrates this adjustment, which,

as the reader will notice, is almost identical to the standard GNG in

Algorithm 2.
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Algorithm 3 StreamSoNGv2 Initialization

procedure EmptyInitialization( )
// Minimal initialization with no data
Let SSv2.Structures = {}
Let SSv2.Outliers = {}
Let SSv2.η = {}

procedure SupervisedInitialization(X, Y )
// X = {xj ∈ Rd, j = 1, 2, . . . , N}, N points with

d dimensions
// Y = {yj ∈ [0, 1]C , j = 1, 2, . . . , N}, soft label yj in

C classes for each xj
// If Y is given as hard labels, they can first be softened

by Equation 6
Call EmptyInitialization( )
for i = 1, 2, . . . , C do

Let Ui = {yji, j = 1, 2, . . . , N}
Call TrainGNG in Algorithm 5 on X and Ui

Store the trained GNG in SSv2.Structures[i]
Estimate ηi for this class by minimizing the

objective function in Algorithm 6
Store ηi in SSv2.η[i]

procedure UnsupervisedInitialization(X)
// X = {xj ∈ Rd, j = 1, 2, . . . , N}, N points with

d dimensions
Let Y be the cluster labels obtained by running a

clustering algorithm on X
Call SupervisedInitialization(X, Y )

2. DBSCAN

Each class in StreamSoNGv1 is modeled using a neural gas, and thus

arbitrarily-shaped classes can be modeled in StreamSoNGv1. However,

the outlier list is clustered using P1M, which only finds hyper-spherical

clusters. Arbitrarily-shaped classes can only be successfully discovered

by StreamSoNGv1 if they are labeled and in the initialization set, or
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Algorithm 4 StreamSoNGv2 Update

// x ∈ Rd, a new point to process
// min pts, the minimum number of points required to form a new class
// toutlier, typicality that, below which, a new point is considered an outlier
// εbmu, εnbhd, λ, α1, α2, and T as in Algorithm 2
// εDBSCAN and min samples, parameters for DBSCAN

procedure UpdateStreamSoNGv2(x)
Compute the soft labels µi(p) of each prototype p in each i ∈ SSv2.Structures

according to Equation 6
Set typicalities = {}
for each i ∈ SSv2.Structures do

Compute t̄i(x) in Equation 7 using SSv2.η[i] and store it in typicalities[i]

if max(typicalities) < toutlier then
Set Label = −1
SSv2.Outliers = SSv2.Outliers ∪ x
if |SSv2.Outliers| > min pts then

Cluster SSv2.Outliers using DBSCAN with parameters εDBSCAN

and min samples
if there are at least min pts points in the majority cluster then

Call TrainGNG(εbmu, εnbhd, λ, α1, α2, T ) in Algorithm 5 on all
outliers in the majority cluster

Append the trained GNG to SSv2.Structures
Estimate ηy for this class by minimizing the objective function

in Algorithm 6
Append ηy to SSv2.η
Remove all outliers in the majority cluster from SSv2.Outliers
Set Label = |SSv2.Outliers|

else
Set î = argmax

i
t̄i(x)

Set Label = î
for each i ∈ SSv2.Structures do

Call UpdateGNG(x, t̄i(x)·εbmu, t̄i(x)·εnbhd, λ, α1, α2, T ) in Algorithm 5
// Check if best fit GNG should be expanded
if i = î and enough time has elapsed since growth of the i-th GNG then

Call ExpandGNG() in Algorithm 2 on the i-th GNG

return Label, typicalities

if they start out as spherical so P1M can detect them and then evolve

over time into a more complex shape. Using P1M to discover new
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Algorithm 5 Modified Growing Neural Gas

// U = {uj ∈ [0, 1], j = 1, 2, . . . , N}, typicality of xj
in this GNG

// Other parameters and methods as in Algorithm 2

procedure TrainGNG(X, U , εbmu, εnbhd, λ, α1, α2, T )
Initialize W as two weights in Rd

repeat
Sample a point xj ∈ X
UpdateGNG(xj, ujεbmu, ujεnbhd, λ, α1, α2, T )

until convergence

classes belies the claim that StreamSoNGv1 can find arbitrarily-shaped

clusters, and thus we find it important to replace P1M with a clustering

algorithm that is aligned with the arbitrary shape claim.

We chose to use DBSCAN [37] as a drop-in replacement for P1M due

both to its high regard within the unsupervised learning community and

its support for arbitrary cluster shape. In terms of parameter selection,

we now specify ε and min samples parameters instead of the m and η

required for P1M. The neighborhood size parameter ε determines the

radius of an ε-ball around each point, and, if this ε-ball contains more

than min samples points, it is considered a core point. The union of

overlapping core points then form clusters.

Both P1M (in the way that it is used in StreamSoNGv1) and DB-

SCAN make the assumption that clusters have similar density; P1M in

the sense of finding min pts points within radius η of a centroid and

DBSCAN in the sense of finding a chain of ε-balls with min samples in

them. The ε and η parameters of DBSCAN and P1M, respectively, are
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related. Since we employ a procedure to infer η in PKNN (Section 6),

which effectively serves the same purpose, we believe that good values

for ε for DBSCAN can be discovered automatically as well.

Figure 2 in the supplementary material demonstrates a simple ex-

ample of why the switch from P1M to DBSCAN is needed.

3. Reprocessing Outliers

In StreamSoNGv1, the only way for outliers to leave the outlier list is if

they become part of a new class. However, definitions for known classes

are always changing or expanding, meaning that what was thought to

be an outlier early in the stream may in fact fit within an existing class

once the class is further modeled by future points in the stream. Such

a phenomenon can cause a point that was labeled an outlier in the

past to remain an outlier forever because existing class definitions have

encompassed that region of feature space to the degree that new points

in that area will be marked as inliers, and hence not be added to the

outlier list, preventing this outlier from being part of a cluster in the

outlier list.

Taking inspiration from the work of Ghesmoune et al. in G-Stream [45],

we periodically return the outlier list to the front of the stream in or-

der to allow StreamSoNGv2 to determine whether points previously

thought to be outliers now conform to a known structure. Our imple-
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(a) StreamSoNGv1 is unable to detect new structures that are non-spherical, marking all
points in the outer circle as outliers. The only class StreamSoNGv1 found is the center
cluster, modeled with blue NG prototypes.

(b) Replacing P1M with DBSCAN allows StreamSoNGv2 to detect and model non-spherical
structures without issue, indicated by the orange GNG prototypes in the annulus surround-
ing the middle cluster.

Figure 5: Synthetic dataset with a spherical initialization set centered at (0, 0) and
an outer circle that arises during the stream. The “x” marks are points in the dataset
with blue indicating inliers and red indicating outliers. The purpose of this dataset is
to demonstrate a simple example where the modifications we have made to Stream-
SoNGv1 allow it to detect structures it previously could not.
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mentation of the “reservoir” idea of Ghesmoune et al. differs slightly

from theirs in that they wait for the reservoir to become full before

returning it to the front of the stream, whereas we perform this main-

tenance step every fixed number of iterations to keep the outlier list as

clean as possible, easing the task of DBSCAN in clustering the outlier

list.

Anecdotally, we have observed in synthetic datasets that periodic

outlier resubstitution drastically improves the quality of the GNG pro-

totypes when the data stream is randomly permuted. As the order of

the stream commonly plays a large role in whether an SDA algorithm

performs well, relative invariance to stream ordering is a very desirable

property in an SDA algorithm.

4. Updating All Classes

After computing Ti(xt) for each class i in StreamSoNGv1, all except

the maximum value are immediately discarded. This crisp decision

is against the spirit of the principle of least commitment [59]. Ideally,

fuzzy or possibilistic systems refrain from making crisp decisions in this

way, which we implement here.

This could be accomplished in StreamSoNGv1 by simply applying

Equation 10 over all classes i instead of just the one that best fits the

sample point. In StreamSoNGv2, since we use GNG instead of NG, we
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instead run one iteration of GNG with

εbmu ← Ti(xt)εbmu and (11)

εnbhd ← Ti(xt)εnbhd. (12)

This way, classes that are deemed highly dissimilar to the input will

only move infinitesimally (or not move at all, given floating point preci-

sion), and classes that lay a non-negligible claim to the area of feature

space containing the input point will move some prototypes to better

accommodate the point.

Performing an update for all classes, instead of just the nearest, is

desireable when class labels are not assumed to be mutually exclusive.

If we had a “dog” class and a “brown” class, it would make sense that

a brown dog should induce an update in both the “dog” prototypes

and the “brown” prototypes. In fact, it would be reasonable to want

two coincident prototypes in this situation that both model brown dogs:

one in the “dog” class and one in the “brown” class. Future work in the

domain of StreamSoNGv1 might explore the idea of shared prototypes

between classes.

5. Bounded Outlier List

The outlier list in StreamSoNGv1 is unbounded and can potentially

store the entire stream. For example, if η for P1M and toutlier are both

44



very small, all points would be outliers and no outliers would cluster,

hence remaining outliers forever. As a result, the entire stream would

be permanently stored in the outlier list. Instead, the outlier list should

be finite.

Even though modern computers have memory capacity larger than

most people twenty years ago could dream of, there are still important

reasons to bound the outlier list. First, the SDA model is intended

to run ad infinitum. Repeatedly adding even a single bit of informa-

tion that never gets deleted can be thought of as a memory leak and

will eventually exhaust the memory of any device if run long enough,

though, practically speaking, most use cases would not encounter this

problem.

More importantly, a continuously growing outlier list will cause the

time it takes to process new points to grow, as P1M is linear in the

size of the outlier list n and DBSCAN is O(n log n). If the outlier list

is clustered each time a new point arrives, the system would eventually

take far too long to process incoming points. Alternatively, the outlier

list could be clustered asynchronously to the rest of the algorithm, in

which case excessively large outlier lists would lead to very long delays

between when new structures are encountered in the data and when

they are found by StreamSoNG.

A number of windowing approaches exist in the literature for limit-
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ing the amount of data that is maintained in SDA algorithms, such

as damped windows [65], pyramidal windows [15], and sliding win-

dows [90]. The latter, which entails only maintaining the omax most

recent outliers, is the most straightforward to employ and is imple-

mented in StreamSoNGv2.

The choice of omax is not especially critical in the convergence of

StreamSoNGv2, and our rule of thumb is to make it as large as one

feels comfortable. Setting omax too small is the biggest issue that could

arise from this change in StreamSoNGv1 as it would cause outliers to be

discarded before enough context has arrived for them to be consider a

new structure. Setting omax too high could lead to the time and mem-

ory problems discussed earlier in this section, which we believe to be a

comparatively smaller problem. Thus, for realtime applications where

classification speed or embedded systems where memory is precious,

one may see benefit from tuning omax as low as possible. In general,

and for the experiments in this research, we fixed omax = 10, 000 so

that outliers are never discarded.

6. Estimating the η Parameters

In Krishnapuram and Keller [62], the η parameters in Equation 7 are

simply referred to as “suitable positive numbers” and control the re-

gion of influence around each prototype. Choosing a good value of the
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η parameters is crucial to achieving meaningful decision regions and,

unfortunately, there is no known optimal way to choose them. In the

limiting case where η → ∞, all PCM centroids will converge to the

grand mean of the data. On the other end of the spectrum, where

η → 0, the update equations in PCM will not move the centroids; they

will remain where they started indefinitely. It is unclear and likely

situation-dependent whether there should be one η parameter for the

whole algorithm or one per class, whether the η parameters should be

constant and, if not, of what their variability should be a function.

Choosing η manually in a streaming setting is even more difficult, as

making decisions about structures in the data that don’t exist yet is

problematic. As the choice of η is the biggest drawback in PCM and

related algorithms, with the possible exception of initialization, many

heuristics have been devised in the literature to select values for η [63,

75, 84, 88].

Perhaps the largest improvement of StreamSoNGv2 over its prede-

cessor is our approach to inferring a good value of η for each class in

an unsupervised setting. When choosing η parameters manually, we

found the most effective approach was to vary η until the typicalities

were spread out “nicely” over the interval [0, 1]. That is, we want the

meaning of a typicality of, say, 0.5, to be the same, regardless of the

model. This would translate to typicality values that can be thresh-
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Figure 6: Target distribution used for η estimation in StreamSoNGv2, Beta(2, 10).
Since we want typicality of points in the currently examined class to be large, we want
1 − t for some typicality t to follow this distribution, which is equivalent to flipping
this PDF over the line x = 0.5. Any distribution with the desired shape can be used
here.

olded in the same was as p-values in statistics, independent of the model

that produced the measurement.

First, we identify a statistical distribution ϕ whose PDF has the

shape we want typicalities to take on. This can be any distribution,

but we chose ϕ = Beta(2, 10) reflected over the line x = 0.5 for our

experiments, shown in Figure 6. We then define an objective function

to minimize of the form

f(η;X,α, β, γ, ϕ) = αTw(Xη;ϕ) + βU(Xη) +G(η; γ) (13)

where Tw is a weighted Cramér-von Mises score, U is a measurement of

the how much typicality is allocated to prototypes in other classes, and
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G is a regularization function. Each of these three functions are de-

scribed in the following paragraphs. We use the notation Xη to denote

typicalities generated from Equation 4 using a set of points X with

a particular choice of η. In addition, α and β are hyperparameters

that balance the contribution of the Tw and U terms in the objective

function.

The Cramér-von Mises criterion [35] measures the goodness of fit

between a set of samples and a statistical distribution and is given by

T (X;ϕ) =
1

12n
+

n∑
i=1

[
2i− 1

2n
− Φ

(
x(i)
)]2

, (14)

where xi is the i-th sample in X, n is the number of samples, x(i) is

the i-th smallest sample, and Φ is the CDF of the distribution being

tested. We generalize this measure for use in our objective function by

introducing weights that allow us to control how much of an impact

each sample has on the overall function value. The weighted extension

of the Cramér-von Mises criterion is

Tw(X;ϕ) =
1

12
∑n

j=1wj
+

n∑
i=1

wi

[
wi + 2

∑i−1
j=1wj

2
∑n

j=1wj
− Φ

(
x(i)
)]2

(15)

where wi is the weight given to x(i), the i-th smallest sample in X.

Simply put, we have only made the natural generalization that n be

replaced with the total weight, the sum index i be replaced with the
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total weight “so far”, and each term of the summation be scaled by the

weight of the sample under consideration. Additionally, we define the

first term of the summation in the numerator of Equation 15 to be zero

when i = 1. Notice that when all wi = 1 for i = 1, . . . , n, we obtain the

original Cramér-von Mises criterion.

A low value of the Cramér-von Mises criterion is a strong indicator

that the samples are from the distribution under examination. The

samples X, in this case, are typicalities produced by PKNN, and are

thus a function of m, K, and, most importantly, η. We fix m = 2 and

K = 5 for our experiments here and perform a numerical minimization

procedure on Tw over η.

The second term of the objective function is a measure of how much

typicality is allocated to other classes for a particular choice of η. We

wish to apply some penalty to the optimizer for picking very large values

of η as a means of improving the consistency of convergence. One way

to do this, which we employ here, is to penalize high typicality in other

classes besides the one we are examining, denoted ĉ. We use the average

to aggregate typicality of all points in all classes other than ĉ,

U(Xη) =
1

N(C − 1)

N∑
j=1

C∑
i=1
i 6=ĉ

µi(Xη(j)). (16)

The last term of the objective function is simply to ensure that there
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always is a gradient guiding the optimizer toward reasonable magni-

tudes of η, given by

G(η; γ) = eγη, (17)

where in our experiments, γ = 0.01. We have noticed anecdotally that

sometimes, especially when using very small sample sizes, the optimizer

sometimes diverged to very large η due to the numerical instability of

very small gradients. This term has little to no effect on the optimiza-

tion procedure until η gets quite large, allowing the other terms of the

objective function to easily overpower it, but when the gradient of the

other two terms is effectively zero or when η is extremely large, this

regularization term keeps η from diverging toward infinity.

The pseudocode for evaluating the full objective function on an η

proposed by the optimizer is shown in Algorithm 6. We use the L-

BFGS-B algorithm for optimization, which is a bounded [28] limited

memory [66] variant of the BFGS [27, 40, 47, 78] algorithm. In partic-

ular, we employ the SciPy [82] implementation of L-BFGS-B.

7. Miscellaneous Changes

Remove Scaling Function. The scaling function in Equation 9 is not

necessary with good parameter choices. Well-chosen η and m parame-

ters are capable of yielding typicalities on the order of magnitude that

one might desire. As future work, we may be able to employ a strat-
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Algorithm 6 Objective Function for η

// η̂, candidate value for η proposed by the optimizer
// X = {xj ∈ Rd, j = 1, 2, . . . , N}, N points with d dimensions
// W = {Wi ∈ Rni×d}, i = 1, 2, . . . , C, the set of all GNG prototypes in each
// of C classes
// ĉ, the label of the class for which we want to find η
// K, the number of neighbors to use in PKNN
// m, the fuzzifier parameter to use in PKNN
// α, balance terms in objective function
// ϕ, the target distribution to use

procedure EtaObjective(η̂; X, W , ĉ, K, m, α, β, ϕ)
Use Equation 3 to compute soft labels µ̃i(y) for all GNG prototypes y

in all classes i.
Use Equation 4 to compute typicality ~µi = {µi(x)} for each x ∈ X in all

classes i using m and η̂.
Compute the weighted Cramér-von Mises criterion t = Tw(~µĉ, ϕ) using

Equation 15 with w = sort(~µĉ).
Compute u, the amount of typicality allocated to other classes according

to Equation 16.
Compute g, the penalty term for large η according to Equation 17.
return αt+ βu+ g

egy similar to batch normalization in neural networks [55] to coerce

typicalities into better filling the interval [0, 1] without necessitating a

hard-coded scaling function.

Start in Streaming Phase. As is, StreamSoNGv1 requires an ini-

tialization set that, ideally, has labels associated with it. The algorithm

would have more utility if it could also start directly in the streaming

mode. To accomplish this, we label all stream points as outliers until

a structure is found, after which time StreamSoNGv2 operates in the

usual way. StreamSoNGv2 can still utilize an initialization set, just as

StreamSoNGv1, but it is no longer mandatory.
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Soft Label Initialization. Initialization for StreamSoNGv1 is done

using hard labels, and thus requires the acquisition of hard labels for

each initialization point, either by having them given a priori or by

computing them using a clustering algorithm. Even when soft labels,

i.e., fuzzy or possibilistic labels, are known, they must be hardened into

a crisp partition so that NG can be run on each class.

In StreamSoNGv2, we train a GNG for each class, but train each

GNG on the whole dataset and scale the learning rate by the typicality

of the currently considered point in the class associated with the GNG.

Specifically, the update in the GNG for class i, when considering the

j-th sample xj whose soft label in class i is given by µij, is carried out

with a learning rate of

εbmu ← µijεbmu and (18)

εnbhd ← µijεnbhd, (19)

where εbmu and εnbhd are hyperparameters for the base learning rates

for GNG.

When soft labels are not known, or only hard labels are given for

initialization, we soften the labels using Equation 6 before carrying out

the previously described procedure.
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E. Experiments

Based on the Carnein and Trautmann survey [31] described in Sec-

tion II-A, we have identified five prime candidates for comparison with

StreamSoNGv1 [85] and StreamSoNGv2. We chose two classical SDA

algorithms (CluStream [15] and DenStream [29]), one competitive learn-

ing algorithm called evoStream [30]), and two SDAs identified by Carnein

and Trautmann to be state-of-the-art (D-Stream [32] and DBSTREAM [50]).

All comparison algorithms are run using implementations from the

stream [49] and streamMOA [48] packages in the R language. Algo-

rithms are evaluated based on the purity [61] and normalized mutual

information (NMI) [64] measures.

It should be noted that the purity and NMI measures evaluate these

algorithms based only upon crisp labels, and were chosen over soft met-

rics so as not to handicap the methods that StreamSoNGv2 is compared

against. The reader should be aware that, in addition to crisp labels,

StreamSoNGv2 also produces valuable soft labels.

G-Stream [45], a related algorithm to StreamSoNGv1 and Stream-

SoNGv2 that also uses growing neural gas in the domain of SDA, is

not considered for comparison here because its purpose is only to sum-

marize the dataset in a single pass, rather than classify each incoming

point. However, G-Stream brings some very useful ideas to the SDA
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Figure 7: Synthetic dataset published by Gionis et al. [46] and presented sequentially
as a stream. Points in the dataset are colored by arrival time.

domain, namely its concept of a reservoir which was the inspiration

behind StreamSoNGv2’s outlier resubstitution procedure.

1. Synthetic Dataset

We begin with an evaluation of StreamSoNGv2 on synthetic dataset

originally published by Gionis et al. [46]. A visualization of this dataset

can be seen in Figure 7. We performed three experiments on this

dataset, varying the order of the stream in each but keeping all pa-

rameters to each algorithm fixed.

In all experiments, the first 200 samples in the stream are used as

initialization with labels in all algorithms and the rest of the stream
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is presented one at a time. The first experiment presents the stream

in the order it was originally published, with each cluster arriving in

order. The initial state and final state of StreamSoNGv2 is visualized

in Figure 8a along with performance metrics of all algorithms consid-

ered. We observe fairly similar performance among most algorithms,

with DBSTREAM achieving the highest score among these metrics and

evoStream the lowest (evoStream only found two clusters). The reason

StreamSoNGv1 and StreamSoNGv2 do not perform as well in this ex-

periment as they do in the others is because the highly non-stationary

nature of this stream ordering causes the algorithms to be very sen-

sitive to both learning rate and η. In the interest of fair comparison,

we did not do significant parameter tuning on any of the algorithms

here, and thus our choice of the key parameters in StreamSoNGv1 and

StreamSoNGv2 were not optimal for this dataset.

In Figure 8b, we show the result of completely shuffling the stream.

This leads to all classes being present in initialization, but the classes

becoming more dense as the stream progresses. Other algorithms in

the domain of SDA usually degrade severely in performance when the

order of the stream is permuted, but seeing all classes in initialization

puts StreamSoNGv1 and StreamSoNGv2 at a large advantage.

Finally, in Figure 8c, we ensure that two classes are not in the initial-

ization set in order to evaluate whether each algorithm detects the ar-
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(a) Original stream order

(b) Shuffled stream
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(c) Shuffled stream, ensuring that two classes do not appear in
initialization

Figure 8: Performance metrics and comparison with other algorithms on the synthetic
dataset of Gionis et al. [46] with varied stream permutation methods.

rival of the new classes. We observe similar trends as in the previous two

experiments on this dataset with StreamSoNGv1 and StreamSoNGv2

outperforming the other methods. Beyond achieving higher scores rel-

ative to the crisp purity and NMI metrics, the soft classification labels

produced by StreamSoNGv1 and StreamSoNGv2 are valuable, espe-

cially in regions of feature space where points in close proximity may

be have discrepancy in their ground truth labels.

2. KTH-TIPS2B

We also consider is a real texture dataset, the KTH-TIPS2b database [68]

of eleven texture classes at varying illumination, pose, and scale. KTH-

TIPS2b is valuable in that some classes are quite homogeneous, such
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as the “aluminum foil” class, and other are not, such as the “wool”

class. This provides the opportunity to evaluate SDA algorithms on

their ability to model highly disjoint classes.

We prepare this dataset for use in SDA as follows. First, we convert

all images to grayscale, considering only the 4,319 images that are 200×

200 pixels in resolution (some are a few pixels smaller in one or both

dimensions). Then, we quantize each image to have only four distinct

pixel values based on whether original grayscale intensities fall into the

range [0, 64), [64, 128), [128, 192), or [192, 256). Lastly, we extract six

features based on the gray-level co-occurrence matrix of the quantized

image (contrast, dissimilarity, homogeneity, energy, correlation, and

angular second moment) at four angles, kπ2 for k = 0, 1, 2, 3, as described

by Hall-Beyer [51] using scikit-image [81].

The images are sequenced by taking a random walk over the classes

in the dataset according to the transition matrix P = {pij} with entries

pii = 0.99, pij =
0.01

C − 1
, (20)

where pii is the probability of sampling (without repetition) an image

from the same class i as before, and pij is the probability of switching

from class i to class j. With pii = 0.99, we have, on average, 100

consecutive samples from each class before switching.

A t-SNE plot of these features along with their labels is shown in
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Figure 9. We can clearly see that the two-dimensional embedding pro-

duced by t-SNE indicates highly overlapping classes in the data. This

observation is supported by much lower performance metrics across the

board in Figure 10.

While StreamSoNGv2 does exhibit slightly higher performance met-

rics than other algorithms on this dataset, we do not believe that is the

most important take-away from this experiment. These performance

metrics rely on the assumption that the production of classification de-

cisions that agree with the crisp labels of this dataset is the only objec-

tive. Figure 11 demonstrates the first time StreamSoNGv2 encounters

a sample from the “cotton” class. Having no context to classify this

sample as “cotton”, it instead assigns this sample a typicality of around

0.6 in the known “linen” class. Examination of the initialization set for

this dataset shows that there are indeed “linen” samples that closely

resemble the “cotton” sample. Cases like this count against the algo-

rithm in terms of performance metrics, but from a qualitative point of

view, it is reassurance that StreamSoNGv2 has both learned and main-

tained useful knowledge from earlier in the stream despite no longer

being able to examine older data points.
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F. Conclusion

Based on StreamSoNG (v1) algorithm, we created a new verse that sig-

nificantly extends it in a number of ways. Most significantly, automat-

ing the selection of η through an optimization procedure has made the

Figure 9: t-SNE embedding of 24-dimensional features extracted from the KTH-
TIPS2b dataset.

Figure 10: Performance metrics of each algorithm on the KTH-TIPS2b dataset.

61



(a) Sample from the “linen” class in the
initialization set for StreamSoNGv2.

(b) First appearance of “cotton” class dur-
ing the streaming phase (not seen in initial-
ization).

Figure 11: Example of how StreamSoNGv2 makes explainable decisions, even if they
don’t agree with ground truth labels. StreamSoNGv2 assigned this cotton sample a
typicality of 0.6 in the known “linen” class and a typicality of zero in other classes,
and, even though this is not the correct crisp label, most humans would agree is a
reasonable behavior.

most difficult part of applying StreamSoNGv1 to new datasets, pa-

rameter selection, substantially easier. Beyond that, using DBSCAN

instead of P1M to cluster the outlier list has enabled the detection of

arbitrarily shaped classes arising in the data stream, and the upgrade

from neural gas to growing neural gas has ameliorated the need to spec-

ify the number of neurons used to model each class. We have also made

a number of smaller modifications to StreamSoNGv1 to address what

we believe to be shortcomings in the original design.

On synthetic data, we demonstrated that StreamSoNGv2 exhibits

a higher invariance to permuting the stream than other related algo-
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rithms. Furthermore, StreamSoNGv2 performs marginally better than

the competition on the KTH-TIPS2b dataset, though not to such a

degree that one would be justified in saying that it is a generally su-

perior algorithm for this task. Instead, we draw the following conclu-

sions based on our experiments: (1) StreamSoNGv2 clearly shows im-

provement to StreamSoNGv1, (2) StreamSoNGv2 is competitive with

state-of-the-art SDA algorithms, and (3) StreamSoNGv2 provides more

detailed information about classification decisions than the other algo-

rithms.
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IV. Single-pass Possibilistic Clustering

Abstract — Streaming clustering is a domain that has become extremely

relevant in the age of big data, such as in network traffic analysis or in

processing continuously-running sensor data. Furthermore, possibilistic

models offer unique benefits over approaches from the literature, espe-

cially with the introduction of a “fuzzifier” parameter that controls

how quickly typicality degrades as one gets further from cluster cen-

ters. We propose a single-pass possibilistic clustering (SPC) algorithm

that is effective and easy to apply to new datasets. Key contributions

of SPC include the ability to model non-spherical clusters, closed-form

footprint updates over arbitrarily sized damped windows, and the em-

ployment of covariance union from the multiple hypothesis tracking

literature to merge two cluster mean and covariance estimates. SPC is

validated against five other streaming clustering algorithm on the basis

of cluster purity and normalized mutual information.
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A. Introduction

The formulation of the streaming clustering problem varies depending

on the source. In general, there is agreement that points from a data

stream cannot be retained, they must be processed and then discarded.

While this requirement may seem arbitrary in a time where buying more

hardware is cheaper than improving methodology, certain data sources

(e.g., network traffic) simply provide so much information at such a

high rate that the time and memory resources needed to iterate over

the data are astronomical. Thus, there is high demand for streaming

data analysis (SDA) algorithms, that is, algorithms that only make a

single pass over the data.

We have observed a lack of possibilistic approaches to streaming clus-

tering in the literature, which we believe (and will show) to have numer-

ous desireable properties to offer. In this paper, we propose a single-pass

possibilistic clustering (SPC) algorithm for the task of streaming clus-

tering. As the name suggests, SPC adopts a possibilistic model, but

with modifications that enable it to detect arbitrarily-shaped clusters.

SPC maintains a set of n structures that are intelligently placed in

feature space so as to best describe the data stream. When a new point

arrives, it is given its own structure and then, to keep the number of

structures constant, the two most compatible structures are merged
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with respect to a Mahalanobis distance-based typicality measure. The

priority given to recent points can be adjusted with decay factor pa-

rameters γ and β. To obtain a clustering of the stream, DBSCAN [38]

is employed using a distance measure derived from SPC’s typicality

measure.

We evaluate the proposed SPC on stationary and non-stationary

datasets of varying dimensionality and show that SPC achieves very

high performance metrics in all cases, consistently either outperforming

or staying competitive with related algorithms. As a qualitative evalu-

ation, we also show that the decision region induced by SPC structures

on two dimensional data is accurate to what human intuition would

suggest.

The rest of the paper is organized as follows. Section B identifies

related algorithms to SPC in the literature and details their similarities

to and differences from SPC. Next, the SPC algorithm is described in

detail in Section C, with the full algorithm presented in Algorithm 7.

SPC is then evaluated against five state of the art streaming clustering

algorithms on several datasets in Section D and conclusions about SPC

are drawn in Section E.

66



B. Related Work

Few approaches in the past have sought to obtain a meaningful possi-

bilistic clustering from data streams, though notable methods include

Hu et al. with an evolutionary approach [52] and Wu et al. with a

neural gas-based approach [86]. Additionally, Škrjanc et al. study the

use of various norm-inducing matrices for evolving possibilistic cluster-

ing in data streams [80], including the inverse covariance matrix (i.e.,

Mahalanobis distance) which we employ in this work.

It is common for algorithms that operate on streaming data to em-

ploy some kind of windowing model to allow the algorithm to focus on

newer and potentially more relevant data points. The most used win-

dowing models in the literature are sliding windows, damped windows,

and pyramidal windows. The general idea of sliding windows is to only

consider a fixed number of recent data points, whereas all points in the

stream have an impact in damped and pyramidal window approaches.

Pyramidal windows attempt to summarize the entire stream with a fi-

nite amount of information by maintaining coarser detail based on how

far back points are in the stream. As damped windowing is employed

in this work, we describe it in greater detail in this section.

The idea of damping has been studied for centuries in the form

of damped motion in physics. The first use of damped windows in
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streaming clustering seems to be with DenStream [29] as a mechanism

to determine when micro-clusters should be discarded. Since then,

as Zubaroğlu et al. [90] point out, a number of algorithms have used

damped windowing [19, 20, 22, 50, 53] in some capacity.

Many streaming clustering algorithms (e.g., [19, 20, 22, 29, 50, 53]),

including SPC, use the idea of damped windows to assign a weight

to previously seen points in the stream, usually as a means to deter-

mine when to discard information about these points. Less commonly,

damped window mean estimates are used, and applying a damped win-

dow model to covariance estimation is novel to streaming clustering.

From the crisp streaming clustering literature, DBSTREAM [50]

has the most overlap with SPC, primarily due to both algorithms’ de-

pendence on DBSCAN [38] and damped windows. Key differences are

that DBSTREAM bases its streaming updates on ideas from DBSCAN,

whereas SPC uses DBSCAN directly for offline clustering, albeit with

a specialized distance function. As for damped windows, DBSTREAM

is one of many algorithms to use them in determining cluster weights.

Bechini et al. have proposed TSF-DBSCAN [22] which also shares

some ideas with SPC. Both algorithms use DBSCAN, however TSF-

DBSCAN uses a fuzzy extension of DBSCAN as an offline clustering

procedure and SPC uses DBSCAN with a typicality-aware distance

function. Again, both algorithms, like many others, use damped win-
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dows for measuring the weight of a structure. The most notable, and

fundamental, difference is that TSF-DBSCAN is built on a fuzzy frame-

work and SPC is built on a possibilistic framework.

Finally, SPC bears some resemblance to Gaussian mixture models

(GMMs) in the sense that both models use estimates of the mean and

covariance to find hyperellipsoidal clusters in data. Some key distinc-

tions, however, are that GMMs require repeated iteration over the data,

a fixed and pre-specified number of clusters (mixture components), and

cluster memberships that sum to one. SPC, respectively, summarizes

the dataset over a single pass, uses a fixed number of structures to

model an arbitrary number of clusters, and uses a possibilistic measure

of cluster belonging.

C. Methodology

We have divided the methodology of SPC into three sections. In Sec-

tion 1, we motivate the need for a possibilistic model as opposed to

probabilistic model for streaming clustering, and then describe the pro-

posed possibilistic model. In Section 2, we explain how the structures

used in SPC can be represented with fixed-size footprints and how to

perform relevant operations using these footprints. Then, in Section 3,

we outline the method of covariance union [57] from the domain of

multiple hypothesis tracking and how it is valuable in streaming clus-
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tering. Finally, Section 4 contains an intuitive description of the SPC

algorithm with the full pseudocode provided in Algorithm 7.

1. Typicality with Mahalanobis Distance

When using a mean and covariance matrix to model a structure, the

natural method of determining the degree to which an arbitrary point

belongs to the structure is to treat it as a Gaussian distribution and use

the PDF to compute the probability that the point may have come from

it. However, a possibilistic approach introduces a valuable “fuzzifier”

parameter that controls how quickly typicality degrades when getting

further from a structure. To compute the typicality of a point x within a

structure s, the general equation, originally presented by Krishnapuram

and Keller [62], is given by

um(s, x) =
1

1 +
(
d(s,x)2

η

) 1
m−1

(21)

where m > 1 is a fuzzifier parameter, d(s, x) is a distance measure

between the structure s and a point x, and η is a “suitable positive

number” that acts as a scale parameter governing the (squared) dis-

tance at which typicality reaches 1/2.

In the possibilistic C-means algorithm (PCM) [62] where Equa-

tion 21 was presented, the distance was defined to be Euclidean, thus

70



constraining PCM to only find hyperspherical clusters. Replacing Eu-

clidean distance with Mahalanobis distance leads to a class of typicality

measures on m given by

um(x, µ,Σ) =
1

1 + [(x− µ)TΣ−1(x− µ)]
1

m−1
. (22)

where µ is a structure mean, Σ is a measure of structure covariance,

and m is the fuzzifier parameter as before. When Σ = ηI, Equation 22

reduces to Equation 21. Generalizing η to be a covariance matrix al-

lows for the detection of hyperellipsoidal clusters as in the possibilistic

Gustafson-Kessel (PGK) algorithm [62].

It should be noted that Equation 22 no longer satisfies the neces-

sary conditions for convergence of the optimization procedure presented

by Krishnapuram and Keller [62], but, in this work, we are using an

entirely different method for finding structure in the data stream.

The introduction of the fuzzifier parameter in possibilistic models

is especially useful when clusters in the data are very close together,

but not overlapping. A synthetic dataset that illustrates this scenario

is shown in Figure 12. Choosing the fuzzifier parameter m to be small

allows the possibilistic model to tightly cover the left circle without

allowing points in the right circle to have high typicality in it. A Gaus-

sian model, for example, cannot cover the left circle without assigning

high probability to points in the right circle as well.
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(a) A Gaussian model assigns high probability in some points in the right circle.

(b) The fuzzifier parameter m in the possibilistic model allows fine control over typicality
falloff, effectively separating the two circles. Here, we set m = 1.1.

Figure 12: Motivation for using a possibilistic model over a probabilistic model in
SPC demonstrated on a synthetic dataset of two near-overlapping circles.

A key measure that is utilized in SPC is the distance between two

structures s1 and s2. This distance must take into account the mean and

covariance of both structures, and we would be discarding important

information to simply compute the Euclidean distance between their

means. We instead utilize the typicality measure of Equation 22 and
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transform it into a distance measure according to

D(s1, s2) = 1− um(µ2, µ1,Σ1)um(µ1, µ2,Σ2). (23)

The product of the typicality of µ2 in s1 and µ1 in s2 is used to make

the measure symmetric, and the subtraction from one turns it from a

measure of similarity to dissimilarity. The utilization of typicalities in

the distance measure of Equation 23 is crucial to the performance of

SPC, as it determines when structures are merged, deleted, and which

structure are clustered together with DBSCAN. Thus, even though

outputs of SPC are crisp, the algorithm relies heavily on concepts from

possibility theory, especially those proposed in PCM.

It is also valuable to transform typicalities from Equation 22 into

a logarithmic scale for the purpose of specifying parameter values in

more intuitive ranges. To this end, we define the negative log typicality

(NLT) as

NLT (x, µ,Σ) = − log um(x, µ,Σ), (24)

where, in this work, log refers to the natural logarithm. Like the neg-

ative log likelihood (NLL) in statistics, NLT takes on the range [0,∞)

with higher values reflecting lower typicalities. For our experiments, we

use an NLT threshold of 3 (see Table 3), corresponding to a typicality
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of around 0.05.

2. Structure Footprints

Each structure at time T is represented by its mean µ(T ) and a sym-

metric positive-definite (SPD) measure of spread Σ(T ) that behaves like

a covariance matrix. These measures are computed according to a

damped window approach with decay factor γ ≥ 0 that assigns expo-

nentially decaying weight to older observations.

In general, damped window approaches apply an exponential coeffi-

cient such as 2−γ(T−t) to the “importance” at the current time T of a

point that arrived at time t. The parameter γ here serves as a damp-

ing factor that models how long it takes for points to be discounted.

While, in theory, every point in an infinitely long stream would have

some contribution in this model, this contribution very quickly becomes

zero when working with fixed-precision numerical representations. For

this reason, the damping factor γ is usually picked to be very small,

e.g., 10−3.

In addition to tracking a mean and covariance for each structure,

the structure footprint includes a measure of the average weight w(T )

in this structure which determines how much typicality recent points

in the stream have had in this structure, much like the idea of micro-

cluster weights in DenStream and DBSTREAM. Since it is sometimes
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useful to apply a larger window to structure weights than for mean and

covariance updates, the structure weight uses a separate decay factor

β ≥ 0 the behaves exactly as γ.

The footprint for a structure, consisting of mean µ(T ), spread Σ(T ),

and weight w(T ) at time T , is computed according to

µ(T ) =
1

Γ(T )

T∑
t=1

e−γ(T−t)x(t) (25)

Σ(T ) =
1

Γ(T )

T∑
t=1

e−γ(T−t)(x(t) − µ(t))(x(t) − µ(t))T (26)

w(T ) =
1

B(T )

T∑
t=1

e−β(T−t)um(x(t), µ(T ),Σ(T )) (27)

Γ(T ) =
T∑
t=1

e−γ(T−t) =


eγ−eγ(1−T )

eγ−1 , γ > 0

T, γ = 0

(28)

B(T ) =
T∑
t=1

e−β(T−t) =


eβ−eβ(1−T )

eβ−1
, β > 0

T, β = 0

(29)

where x(t) represents the t-th observation in the stream, um is as in

Equation 22, and Γ(T ) and B(T ) are normalizing coefficients, differing

only in their decay factor. We notice that when γ = 0, µ(T ) reduces to

the mean of the first T elements of the stream and Γ(T ) = T . Thus,

the damped window mean is a generalization of the usual arithmetic

mean. Similarly, when γ = 0, the damped window covariance reduces
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to (biased) sample covariance.

We can merge two structures with footprints (µ
(T1)
1 ,Σ

(T1)
1 , w(T1)) and

(µ
(T2)
2 ,Σ

(T2)
2 , w(T2)) quite easily with the following equations:

µ(T ) =
1

Γ(T1+T2)

(
e−γT2Γ(T1)µ

(T1)
1 + Γ(T2)µ

(T2)
2

)
(30)

Σ(T ) =
1

Γ(T1+T2)

(
e−γT2Γ(T1)Σ

(T1)
1 + Γ(T2)Σ

(T2)
2

)
(31)

w(T ) =
1

B(T1+T2)

(
e−βT2B(T1)w

(T1)
1 +B(T2)w

(T2)
2

)
(32)

where T = T1 + T2. The multiplication of µ(T1) by Γ(T1) in Equation 30

inverts the normalization done in the computation of µ(T1) and the mul-

tiplication by e−γT2 effectively shifts the weight of each x(t) involved in

computing µ(T1) back T2 units of time. By the same logic, inverting the

normalization done in computing µ
(T2)
2 is done by multiplication with

Γ(T2). Then, the two terms can be added together and re-normalized by

Γ(T ), which one will find is equivalent to Equation 25. The intuition be-

hind the incremental updates for Σ(T ) and w(T ) is identical. Note that,

while Γ(T ) and B(T ) can also be updated incrementally, they can more

easily be computed in closed form as shown in Equations 28 and 29.

We also make use of the ability to update structure weight incre-

mentally given a new point x according to

w(T+1) =
1

B(T+1)

(
e−βB(T )w(T ) + um(x, µ(T ),Σ(T ))

)
. (33)
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We observe Equation 33 to again follow the same general form as the

other damped window updates.

All methods of computing structure footprints (µ(T ),Σ(T )) are equiv-

alent in theory, however for numerical stability, one may be concerned

that repeated multiplication by Γ(T−1) and division by Γ(T ) will lead

to floating point errors that propagates indefinitely over time. If one

was so inclined, they could instead maintain un-normalized estimates

of µ(T ) and Σ(T ) and only normalize by Γ(T ) when needed. This is much

akin to the summary statistics of the sum of data points and the sum of

squared data points that are commonly used in incremental estimates

of mean and covariance, but generalized to conform to the damped

window model.

3. Covariance Union

The method of fusing the covariance of two structures presented in

Equation 31 is only valid when we are considering two structures with

the same mean. When the means of two structures s1 and s2 are differ-

ent, we want a new covariance matrix that is large enough to encompass

the region of feature space influenced by both constituent structures,

which, in the event that the means of s1 and s2 are far apart, can

be much larger than either of the individual covariances. Figure 13

demonstrates why this is the case.
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(a) Two example structures with small
covariances that we want to merge.

(b) Result of merging two structures us-
ing Equation 31.

(c) Result of merging two structures us-
ing covariance union.

Figure 13: Illustration of why covariance union is needed to combined covariance
matrices of two structures with unequal means.

The problem of fusing two or more unique mean and covariance

pairs has been studied extensively in the filtering literature, specifically

in the domain of multiple hypothesis tracking. In this work, we employ

covariance union (CU) [57] for obtaining the fused covariance of two

merged structures. It should be noted that CU was developed in the

context of ensuring fused covariances are conservative estimators of
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the true state of the object(s) being tracked, but here, as we are not

tracking anything per se, the method is used due simply to its observed

effectiveness at producing high quality fused covariance estimates in

our experiments.

Suppose again that we have two structures s1 and s2 with footprints

(µ
(T1)
1 ,Σ

(T1)
1 , w(T1)) and (µ

(T2)
2 ,Σ

(T2)
2 , w(T2)) that we wish to fuse. The first

step of CU is to determine a candidate mean µ(T ), where T = T1 + T2,

of the fused state of the system, which we have established can be

done with Equation 30. We then define two matrices U1 and U2 to

be covariances Σ1 and Σ2 of s1 and s2 padded by the outer product

of the difference between the structure mean and the candidate mean

according to

U1 = Σ1 +
(
µ(T ) − µ(T1)

)(
µ(T ) − µ(T1)

)T
(34)

U2 = Σ2 +
(
µ(T ) − µ(T2)

)(
µ(T ) − µ(T2)

)T
. (35)

Then, let U2 = LLT be the Cholesky decomposition of U2, where L

is lower triangular, and compute the eigendecomposition L−TU1L
−1 =

QΛQT , where the columns of Q are orthonormal eigenvectors and Λ is

a diagonal matrix of eigenvalues of L−TU1L
−1. The fused covariance

estimate Σ(T ) is thus given by

Σ(T ) = LQmax {Λ, I}QTLT (36)
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where max is taken elementwise between its arguments. Proof that

the covariance matrix resulting from Equation 36 is conservative is

provided in the original manuscript [57], though, to reiterate, our inputs

to Equation 36 do not, in general, satisfy the assumptions required for

that result to hold.

4. Algorithm Description

There is no initialization for SPC, the algorithm starts directly process-

ing points from the stream. There is, however, a burn-in phase during

the first n points, where n is the maximum number of structures param-

eter, during which no structure merging occurs. Each incoming point

xi, i ≤ n, during this phase is modeled by its own structure with mean

µi = x and identity covariance (i.e., Euclidean distance used in typical-

ity computation). One can still cluster the structures using DBSCAN

as specified in Algorithm 7, but examining the structures directly would

not yet yield any useful information about the stream.

Even after n structures have been created, the first step of processing

a new point xj, j > n, from the stream is to create a new structure

with mean xj and identity covariance. At this point, there are n + 1

structures, so one must be removed. This can happen in one of two

ways. If the weight of this structure is too small, the structure will

either be simply deleted or merged into the best fit existing structure,
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Algorithm 7 Single-pass Possibilistic Clustering

// Let µi be the mean of the i-th structure
// Let Σi be the covariance of the i-th structure
// Let wi be the weight of the i-th structure
// Let Ti be the number of timesteps elapsed since the i-th structure was created
// Let S = {(µi,Σi, wi, Ti)} be the set of n structures, initially empty
// Let N be the maximum number of structures to track

procedure UpdateSPC(x, m, γ, β)

// Create a new structure to accommodate this point.
S ← S ∪ {(x, I, 1, 1)}

// If there are too many structures, prune and merge.
if |S| > N then

for i = 1, 2, . . . , |S| do
Update wi using Equation 33.
if wi < wmin then

Let ĵ = argmin
j=1,...,|S|, j 6=i

NLT (µi, µjΣj).

if NLT (µi, µĵΣĵ) < NLTmax then

Call Merge(ĵ, i).

Delete si from S.

// Merge two closest structures using Equation 23.
Let (̂i, ĵ) = argmin

i,j∈1,...,|S|, i6=j

D(i, j).

Call Merge(̂i, ĵ).

procedure Merge(i, j)
Let sk be a new structure with:

µk from µi and µj using Equation 30
Σk from Σi and Σj using Equation 36
wk from wi and wj using Equation 33
Tk = Ti + Tj

Replace si and sj in S with sk

procedure GetClustering(ε, min pts)
Run DBSCAN(ε, min pts) on S using the distance function in Equation 23.
return Cluster labels from DBSCAN.
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depending on whether there exists another structure in which the NLT

of the to-be-removed cluster is high enough. If there are too many

structures and all structures have too much weight to be deleted, the

two structures that are deemed most similar according to Equation 23

are merged.

D. Experiments

In this section, we evaluate SPC both qualitatively on synthetic datasets

and quantitatively on real datasets against other state-of-the-art stream-

ing clustering algorithms (CluStream [16], DenStream [29], D-Stream [33],

DBSTREAM [50], and StreamSoNG [86].). All parameters used in all

experiments in this manuscript are documented in Table 3. For plot-

ting decision regions, we use the nearest neighbors algorithm and the

distance function

d(si, xj) = 1−

(
1

1 +
[
(xj − µi)TΣ−1

i (xj − µi)
] 1
m−1

)2

(37)

where si is the i-th structure tracked by SPC with mean µi and covari-

ance Σi, and xj is an arbitrary point.

1. Synthetic Dataset

We first evaluate SPC on a two-dimensional synthetic dataset with

seven clusters, originally published by Gionis et al. [46]. Key challenges
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Figure 14 - Aggregation Dataset
Parameter n γ β m ε wmin NLTmax

Value 30 0.0 0.0 1.5 0.95 0.01 3

Figure 15 - Sine Dataset
Parameter n γ β m ε wmin NLTmax

Value 30 0.1 0.05 1.4 0.95 0.01 3

Figure 16 - High Dimensionality Gaussians
Parameter n γ β m ε wmin NLTmax

Value 50 0.0 0.00 1.5 0.95 0.01 3

Figure 17 - Overlapping Dataset
Parameter n γ β m ε wmin NLTmax

Value 30 0.0 0.0 1.5 0.95 0.01 3

Table 3: Parameter values used for SPC experiments in this manuscript.

with this dataset include the non-Gaussian cluster in the upper left and

the two sets of two clusters that bleed into each other. SPC handled

both challenges well and produced a very good clustering. The decision

region, shown in Figure 14c, leaves nothing to be desired and arguably

looks as if it was drawn by a human.

For this dataset, the forgetting factors γ and β were both set to zero

so the algorithm weights the whole dataset equally, rather than placing

more weight on recently observed points. From the final position of

the structures tracked by SPC (Figure 14b), it is clear that the entire

dataset was effectively summarized. Despite being computed over a

single pass of the dataset, the final clustering is indistinguishable from

iterative methods that are allowed to make as many passes over the

dataset as required.
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(a) Dataset of seven clusters in two dimensions, colored by arrival time from blue (upper
left cluster) to yellow (small lower left cluster).

(b) Final configuration of SPC with 30 structures. The final mean µ(T ) of each structure is
plotted as a filled in circle along with the typicality induced by its covariance matrix. The
color of each circle represents the cluster label assigned with DBSCAN, which we observe
to be consistent with the true labels.
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(c) Decision region induced by running the nearest neighbor algorithm on a fine grid over
the plot area.

(d) Comparison of streaming clustering algorithms on the synthetic dataset of Gionis et
al. [46] with respect to cluster purity and normalized mutual information (NMI).

Figure 14: SPC performance on the synthetic clustering dataset of Gionis et al. [46].
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As expected from its high qualitative performance, SPC achieve a

near-optimal value in both purity and NMI on this dataset, shown in

Figure 14d. DBSTREAM also performed very well on this dataset,

followed by StreamSoNG, D-Stream, and DenStream.

2. Nonstationary Dataset

Datasets that have nonstationary clusters that continually evolve over

time inevitably require clustering algorithms to either forget older points,

create an unbounded number of clusters, or increase the number of

points modeled by a single cluster. SPC chooses the latter, as the

first option is undesirable and the second violates the “finite storage to

model infinite data” philosophy of streaming clustering.

In Figure 15, we demonstrate a case where running SPC with a

high forgetting factor is valuable. This dataset has three highly non-

Gaussian clusters, each modeled by a sine wave with different frequency

and amplitude. SPC was given a maximum of 30 structures to use in

modeling this dataset, and allocated most of them to finely detail the

most recently encountered points, appealing to the principle of spa-

tiotemporal locality (new points in a stream are lie in close proximity

to recently seen points). One structure with a very large region of in-

fluence is used to model the early points in the stream from each sine

wave.
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(a) Dataset of three sine waves arriving simultaneously and moving unilaterally toward +∞
on the x-axis, colored by arrival time from blue to yellow. Points in the stream are sampled
in a round-robin pattern from each class.

(b) Final configuration of SPC on the sine wave dataset with 30 structures. The final mean
µ(T ) of each structure is plotted as a filled in circle along with the typicality induced by
its covariance matrix. The color of each circle represents the cluster label assigned with
DBSCAN, which we observe to be consistent with the true labels.
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(c) Decision region induced by running the nearest neighbors algorithm on a fine grid over
the plot area.

(d) Comparison of streaming clustering algorithms on nonstationary sine dataset with re-
spect to cluster purity and normalized mutual information (NMI).

Figure 15: Nonstationary synthetic dataset of three sine waves illustrating the utility
of SPC’s forgetting factor in modeling newer data with finer detail. Old points are
still modeled, but with less granularity. Here, SPC was run with a high forgetting
factor of γ = 0.1.
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We compare SPC against several other streaming clustering algo-

rithms in Figure 14d. Clearly, the nonstationary, non-Gaussian nature

of this dataset was problematic for some algorithms. SPC, D-Stream,

and DBSTREAM achieved a perfect clustering, whereas CluStream,

DenStream, and StreamSoNG struggled to either separate the three

clusters or remember the whole stream.

When using DBSCAN to assemble structures into clusters, we use a

specialized distance metric that leverages the covariance matrix of each

structure. We see that the very large structures modeling older points

in the stream are given the same cluster label as the small structures

modeling newer points in the stream, but that no two structures from

different sine waves are given the same cluster label. This is reflected

in the perfect purity and NMI scores of Figure 15d.

3. High Dimensionality Dataset

Lastly, we evaluate SPC on a very high dimensional dataset consisting

of 1024 points from 16 well-separated Gaussians in 1024-dimensional

space [41]. The results of running SPC and other comparison algo-

rithms on this dataset are shown in Figure 16. We see that SPC,

DBSTREAM, and StreamSoNG produce good sets of clusters on this

dataset, with DenStream and CluStream attaining slightly lower per-

formance. We were not able to find a parameter set for D-Stream that
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produced a non-trivial clustering result. It is well known that D-Stream

does not scale to high dimensionality due to its need to produce a grid

over the entire feature space, which, for 1024-dimensional data, is highly

intractable.

Notable drawbacks of covariance-based methods, like SPC, on high

dimensional data are the difficulty in capturing the correlations between

all pairs of variables and the quadratic (in dimensionality) storage re-

quirement to retain full covariance matrices. When covariance is not

constrained in some way (i.e., spherical, diagonal, tied) to favor spar-

sity, there are O(d2) pairs of correlations in d-dimensional space, which

can easily and overwhelmingly exceed the number of data points when

d is large. The 1024-dimensional Gaussian data, for example, requires

SPC to estimate over 1 million entries in each structure’s covariance

matrix, despite the stream only containing 1024 points.

In general, a stream in d dimensions would need to have O(n(1+d))

elements for the memory consumption of SPC to be less than that of

storing the entire stream. With n = 50 structures in 1024-dimensional

space, this would correspond to the stream containing on the order of

50,000 points. In cases like this dataset, where it it doesn’t hold that

n � d, it is hard to motivate using SPC, or essentially any stream-

ing clustering algorithm, over static clustering algorithms that simply

retain the stream and iterate over it repeatedly.
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Figure 16: Comparison of streaming clustering algorithms on a high dimensional
dataset [41] of 1024 points from 16 Gaussian clusters in R1024 with respect to cluster
purity and normalized mutual information (NMI).

The purpose of this experiment is to show that, despite SPC’s in-

herent incompatibility with high dimensional data, it can still perform

well when clusters are sufficiently compact and well-separated. As fu-

ture work, we wish to extend SPC to maintain sparse, constrained

estimates of the covariance in each structure so as to make it more

practical in high dimensional use cases. Generally, we would recom-

mend employing some form of dimensionality reduction when applying

SPC to such high dimensional streams.

4. Overlapping Dataset

Datasets with overlapping clusters present a challenge for most stream-

ing clustering algorithms, SPC included. To evaluate SPC and related
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(a) Dataset of three clusters in two dimensions, colored by arrival time. Clusters arrive
sequentially, but within each cluster, points arrive in a random order.

(b) Final configuration of SPC with 30 structures. The final mean µ(T ) of each structure is
plotted as a filled in circle along with the typicality induced by its covariance matrix. The
color of each circle represents the cluster label assigned with DBSCAN, which we observe
to be mostly consistent with the true labels.
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(c) Decision region induced by running the nearest neighbor algorithm on a fine grid over
the plot area.

(d) Comparison of streaming clustering algorithms on an overlapping cluster dataset with
respect to cluster purity and normalized mutual information (NMI).

Figure 17: SPC performance on an overlapping cluster dataset.
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algorithms on overlapping data, we created a synthetic dataset of three

highly correlated Gaussians in the shape of a triangle. This dataset,

shown in Figure 17, tests the ability of algorithms to separate clusters

that are connected by low-density regions of points. The most common

pitfall when running streaming clustering algorithms on this dataset is

grouping the entire dataset into a single cluster, making many algo-

rithms sensitive to parameter choice.

As observed in Table 3, we use the same SPC parameters for this

dataset as we do for the dataset in Figure 14, though we did have to

adjust the parameters for the other algorithms. Clearly, this dataset

was challenging across the board, evidenced by universally lower metrics

in Figure 17d. SPC still had the highest performance5, but in looking

at the decision region shown in Figure 17c, we see that the leftmost

cluster was split into three sizeable clusters and that there are several

remaining structures placed on outlier points.

This dataset is also valuable in illustrating the complex decision

regions that can be induced by the typicality function in Equation 22

(Figure 17c). As we get far away all of the points in the dataset, we

see that the nearest neighbor structure is actually the structure with

largest covariance rather than the structure whose mean is closest in

5SPC achieved a perfect purity of 1.0 in Figure 17d despite clearly having a cluster partition that
is not identical to the ground truth partition because the clusters in SPC are all homogeneous with
respect to ground truth labels, which is why we also evaluate based on NMI.
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terms of Euclidean distance, although typicality is extremely low in all

structures.

E. Conclusion

We have proposed a single-pass possibilistic clustering algorithm, coined

SPC, that demonstrates strong performance when applied to a wide ar-

ray of clustering datasets. Key contributions of SPC include the use

Mahalanobis distance to compute typicality, merging of structures over

a damped window, and the transfer of covariance union from the do-

main of multiple hypothesis tracking to that of streaming clustering.

A key design choice in SPC is its ease of application to new datasets;

the only data-dependent parameter is the fuzzifier m, which, in most

cases, can remain around m = 1.5. The decay factors γ and β allow

the user to balance long term memory of the stream with prioritization

of recently seen points, enabling SPC to function effectively on both

stationary streams (γ = β = 0) and nonstationary streams (γ, β > 0),

all while maintaining a constant memory footprint.

SPC either exceeds the performance of, or is competitive with, five

other streaming clustering algorithms from the literature. Qualitatively

speaking, SPC produces extremely high quality decision regions on two

dimensional data, and, quantitatively speaking, achieves high purity

and NMI on a compact and well-separated dataset in 1024 dimen-
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sions.
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V. Simulated Texture Dataset

Abstract — With the recent announcement of Unreal Engine 5 (UE5)

(see Figure 18), machine learning research communities have been abuzz

with talk of creating realistic datasets in simulation. The image in Fig-

ure 18, undoubtedly created by a team of industry experts, shows the

absolute pinnacle of what simulation can achieve. This example ren-

der is so sophisticated, we are confident that it could be passed off as

an actual photograph. Although we, as computer science researchers,

can’t reasonably expect (yet) to create full datasets to such a high

degree of realism, we show in this work that we can create effective

datasets for use in machine learning applications, specifically for use

in streaming data analysis (SDA) problems. We show that the created

texture dataset readily lends itself to SDA, evidenced by the perfor-

mance of several SDA algorithms from the literature, but still presents

a significant challenge.
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Image source: https://www.unrealengine.com/en-US/unreal-engine-5

Figure 18: Demonstration of photorealism in Unreal Engine 5.

A. Literature Review

The idea of using simulated datasets for computer vision tasks is still

very new, and the state of the art is rapidly evolving as we discover

new ways to construct and leverage these datasets. The barrier to

entry is still relatively high, there are no standard simulated datasets

for benchmarking, and it takes substantial effort to produce usable

datasets for machine learning applications. In this section, we briefly

survey two relevant works that leverage simulated data.

Simulation has been used recently in the domain of explosive hazard

detection to augment the training set when real ground truth is sparse.

Alvey et al. show that a large dataset of simulated imagery modeled
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Figure 19: Simulated scenes for explosive hazard detection produced by Alvey et
al. [17].

in Unreal Engine can outperform a small dataset of real imagery, and

provided evidence that training on the union of real and simulated data

can yield higher accuracy than either by itself [17]. A few example

scenes from their work are shown in Figure 19 (taken from Figure 4 in

their paper).

The state of the art in simulation, however, is nearly a perfect rep-

resentation of reality. Tesla, Inc., armed with millions of dollars in

computing resources and thousands of full-time employees, has pro-

duced an enormous simulated dataset for the purposes of training the

neural networks behind their self-driving cars. A few screenshots from

Tesla’s 2021 AI Day presentation [54] are provided in Figure 20 to

demonstrate the quality of their simulated dataset. Unfortunately, nei-

ther their methods nor implementation appear to be public, making
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reproducibility impossible.

B. Materials

The first step to creating environments in Unreal Engine is to acquire

textures for each type of terrain we want to create. In the past, textures

were created by artists in graphic design software, however technology

now allows for extremely high resolution 3D scanning of real objects

for use in game engines. Most of the textures we use in this work are

from the Megascans database by Quixel [72], which are freely available

for use in Unreal Engine.

Next, a material must be made for each environment. Textures from

the Megascans database generally have albedo (base color), roughness,

and normal maps associated with them. Albedo provides the color,

independent of lighting, at each pixel of the texture and the roughness

and normal maps are both used for the engine to compute lighting and

shadows. Thanks to the roughness and normal maps, two dimensional

textures can be given the illusion of depth in simulation, which is a

strong argument for why rendering the textures through a game engine

like UE5 is desireable over simply writing a script to sequence these

textures together.

As these textures are much smaller than the landscape on which

they are painted, texture repetition is a significant issue hampering the
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(a) Daytime scene, retrieved from https://youtu.be/j0z4FweCy4M?t=5736

(b) Nighttime scene, retrieved from https://youtu.be/j0z4FweCy4M?t=5914

Figure 20: Selection from Tesla’s 2021 AI Day demonstration, found at https://

youtu.be/j0z4FweCy4M.

101

https://youtu.be/j0z4FweCy4M?t=5736
https://youtu.be/j0z4FweCy4M?t=5914
https://youtu.be/j0z4FweCy4M
https://youtu.be/j0z4FweCy4M


Figure 21: Example of texture repetition, a behavior we wish to suppress.

realism of the environment and potentially opening an avenue for ma-

chine learning algorithms to memorize the training data rather than

generalizing. An example is shown in Figure 21. To reduce texture

repetition, two common techniques in video game level design are em-

ployed: macrovariation, that is, blending a texture with a scaled version

of itself, and blending multiple unique texture samples of the same envi-

ronment type. Employing these techniques has led to realistic looking

pure textures, which we call “primitives”, shown in Figure 22. The

material diagram in Unreal Engine that produced the sand ripple ex-

ample in Figure 22 is shown in Figure 23, with other environment types

created in a similar way.

To aid with object detection tasks, we also randomly place a number

of freely available 3D objects found online [1–14] in the scene, shown in

102



(a) Flat sand texture (b) Sand ripple texture

(c) Leaves texture (d) Plant texture

(e) Roots texture (f) Stone texture

Figure 22: Each pure texture, or “primitive”, used in this dataset, rendered as
720×720 image chips. The dataset contains 6,297 images of each primitive, total-
ing 37,782 pure texture images.
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Figure 23: Material diagram of sand ripple texture in Unreal Engine.

Figure 24. The method we use to place these objects is quite simple,

shown in Algorithm 8.

C. Ground Truth

As previously mentioned, the ability to produce pixel-perfect ground

truth in this simulated data is extremely lucrative. For objects, we

accomplish this using postprocess materials and custom depth stencils.

Custom depth stenciling is an engine feature that allows a user-specified

integer to be associated with objects in the scene, which can then be

queried in the postprocess. By assigning class labels to the custom sten-

cil of objects we wish to see in the segmentation view, we can overwrite

the color of pixels on the object based on their class label. This process
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Algorithm 8 Target placement in UE5

procedure PlaceTargets(object array, n)

for i = 1, 2, . . . , n do
Choose a random position (x, y) on the landscape
Cast a ray from (x, y, zmax) to (x, y, zmin) to find the height z of the

landscape at (x, y)
Choose a random object from object array
Apply a random rotation to object
Instantiate the object at (x, y, z)
Assign a custom depth stencil value to the object for use in

producing segmentation labels

return

is shown in Figure 25 and a before/after example is shown in Figure 26.

In Figure 26, note that each target type has a different grayscale inten-

sity, making some targets difficult to see in the segmentation as their

label is represented by an intensity near, but not equal to zero.

For the sake of providing as much information about the dataset as

possible, we can also export ground truth lighting information. Know-

ing the amount of lighting applied at each pixel can be useful for a

number of applications, but currently, we have only used it to know

where shadows are. Lighting can be computed by dividing scene color

by albedo, which is easily done in a postprocess material as demon-

strated in Figure 27.
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Figure 24: Objects placed in the scene are selected from these models found online
under Creative Commons licenses [1–14].

Figure 25: Postprocess material diagram demonstrating how to color pixels on screen
based on object stencil values.
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(a) Scene (b) Segmentation

Figure 26: Result of applying the custom stencil postprocess material to scene. Each
class of target is mapped to a unique grayscale pixel intensity and the background is
mapped to a grayscale value of zero.

Figure 27: Postprocess material to extract lighting information at each pixel.
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D. Data Collection

Throughout this research, we have used two approaches for collecting

imagery from the simulated texture dataset. The first uses a drone sim-

ulation software suite developed by Microsoft called AirSim [77], avail-

able as a plugin for Unreal Engine 4. AirSim provides drone classes with

complex functionality like physics simulation, noise, pathing, and ac-

cepting commands from a physical controller. For our purposes, we use

AirSim in computer vision mode, meaning drones essentially amount

to a scriptable floating camera.

AirSim drones can be controlled from Python scripts that commu-

nicate with Unreal Engine through the remote procedure call (RPC)

protocol. To collect the dataset, we wrote a Python script that moves

the drone along a series of strips across the landscape, illustrated in

Figure 28. The drone makes nine strips of length 400 meters with 50

meters between each strip.

We have modified the AirSim drone to capture five types of imagery

from five co-located cameras. First, the original scene is captured as

seen in Unreal Engine. Then, the scene is captured by a second cam-

era that has all objects and foliage hidden, giving us a view of only

the terrain. The remaining three cameras have postprocess materials

applied to capture various scene segmentations: one capturing target
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Figure 28: Scripted pattern of the drone over a top-down view of the landscape. Solid
lines indicate smooth movement along a path, dotted lines indicate instantaneous
movement between two points.
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segmentation, one capturing the texture blend weights at each pixel,

and the last computing the lighting information.

As we have migrated to Unreal Engine 5, we removed our depen-

dency on AirSim in favor of a native waypoint-based approach to drone

navigation, primarily because, as of writing, AirSim is not UE5 com-

patible. Our “drone” in this case is a camera whose position is updated

each game tick by the level blueprint. For brevity, we do not include

all of the code involved with moving the camera, but the bulk of the

logic in the level blueprint is shown in Figure 29.

There are pros and cons to both data collection methods. Perhaps

the most important factor in choosing AirSim or our blueprint-based

approach is the engine version the user wishes to use. As of writing,

AirSim does not appear to have made public any plans to upgrade to

UE5, which means that using AirSim will lock the user into UE4 for the

foreseeable future. AirSim is also much slower to capture imagery than

the blueprint-based approach, which uses UE5’s movie render queue.

While this may not be a huge factor when exporting a one-and-done

dataset, the difference in speed is drastic; AirSim captured at around 2

frames per second and the movie render queue is faster than real-time,

upward of 30 frames per second.

On the other hand, AirSim is far more feature rich than what we

wrote in blueprint. With AirSim, one can simulate the effect of wind
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and turbulence on the drone, sensor noise, have multiple sensing modal-

ities (e.g., lidar and infrared), control the drone in real time with a con-

troller, and much more. For collecting this texture dataset, however,

we did not need any of these features and thus opted for the blueprint

method so we could use UE5.

E. Collected Dataset

In total, we have collected 6,297 images collected at 720×720 resolution

for each of the six texture primitives shown in Figure 22. To create a

single stream with samples from each of the primitives, we employ a

Markov chain-like model for choosing which primitive should appear

in each from of the combined video. We start by selecting a random

primitive for the first frame of the dataset. Then, we take a frame from

that primitive and, with probability p, switch to a different primitive for

the next frame, chosen uniformly at random. This process is repeated

until we have reached the end of the collected imagery. For our choice

of p = 0.01, we have, on average, runs of 100 examples from the same

primitive before switching. The resulting labels for the stream are

shown in Figure 30. One can think of this collection process as having

six camera angles for a scene and stochastically cutting between them.
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Figure 30: Plot showing the label of each image in the stream.

F. Experiments

The natural follow-up to creating a new dataset for SDA is to evaluate

the performance of prominent SDA algorithms on it. We would like

to emphasize that the goal of these experiments is less so to rank the

algorithms that are run on the dataset and more to gain understanding

about how how well the dataset lends itself to the problem of SDA. For

detailed analysis on relative performance of SDA algorithms, including

the two proposed in this overarching work, we refer the reader to the

sections dedicated to this matter (Section III-E and Section IV-D).

1. Feature Extraction

None of the SDA algorithms we use in this work can operate directly

on images and instead rely on a feature extractor to reduce the dimen-

sionality from 720 × 720 to a more manageable size. We have found

pre-trained deep convolutional neural networks are excellent at extract-
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Table 4: VGG network architecture, reproduced from Table 1 in Simonyan and Zis-
serman [79]. We use VGG-16, corresponding to column D of the table.

ing features from texture images, and in this experiment, we use the

VGG-16 architecture [79] (Table 4), pre-trained on ImageNet [36]. By

discarding the FC-1000 and subsequent layers, we are able to extract

very descriptive and discriminative 4096-dimensional features from im-

ages. When applied to images from the UE5 dataset, we observe in

Figure 31 that each class in the dataset appears to be grouped together

in feature space and are reasonably well-separated.

Though the 4096-dimensional VGG-16 features are indicated by t-

SNE to be separable, the dimensionality is still too high for most SDA

algorithms to handle. For further dimensionality reduction, we apply
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Figure 31: t-SNE plot of 4096-dimensional output of the VGG-16 feature extractor
when run on the UE5 dataset.

PCA to the dataset to produce features of varying dimension. However,

PCA requires the whole dataset to be present at runtime, and thus we

cannot justify using the entire streaming dataset to compute the PCA

projection. Instead, we use the KTH-TIPS2b dataset to define the

PCA projection and then apply this projection to the UE5 dataset.

t-SNE embeddings for some lower dimensional PCA projections using

this strategy are shown in Figure 32, and appear to maintain a large

amount of the separability between the classes in the dataset.

2. Dataset Evaluation

In Figure 33, we run several SDA algorithms on the UE5 dataset after

reducing its dimensionality to 36, 24, 16, and 12 with PCA, respectively.
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(a) t-SNE plot of 36-dimensional PCA projection.

(b) t-SNE plot of 24-dimensional PCA projection.
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(c) t-SNE plot of 16-dimensional PCA projection.

(d) t-SNE plot of 12-dimensional PCA projection.

Figure 32: Projection from 4096-dimensional VGG-16 features on UE5 dataset to
various lower dimensions using PCA, visualized in two-dimensions using t-SNE.
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(a) SDA algorithm performance on 36-dimensional PCA projection of 4096-dimensional
VGG-16 features.

(b) SDA algorithm performance on 24-dimensional PCA projection of 4096-dimensional
VGG-16 features.
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(c) SDA algorithm performance on 16-dimensional PCA projection of 4096-dimensional
VGG-16 features.

(d) SDA algorithm performance on 12-dimensional PCA projection of 4096-dimensional
VGG-16 features.

Figure 33: Evaluation of UE5 dataset based on SDA algorithm performance.
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We observe that the performance of each algorithm is relatively consis-

tent across dimensionality, and, as a whole, much higher than that of

the KTH-TIPS2b dataset experiment performed in Section III-E.

The consistency across dimensionality suggests that the important

features for texture recognition are either strongly correlated or lie on

a low-dimensional manifold, and hence, the same information that is

powerful for texture classification in the full 4096-dimensional VGG-

16 features can mostly be conveyed in much lower dimensional spaces.

This property of separability being largely independent of dimension-

ality is advantageous in using the UE5 dataset for benchmarking SDA

algorithms in how well they scale with dimensionality.

G. Conclusion

Unreal Engine 5 opens new doors to creating realistic simulated datasets

with an unprecedented degree of control over factors that, when col-

lecting real-world data, must simply be accepted as uncontrollable.

Namely, for simulated aerial image datasets like the one proposed here,

the time of day, shadow intensity, camera properties, drone speed, drone

height, and much more are at the full discretion of the user. Further-

more, since all of the collected imagery comes from a world of our own

design, we truly have a dataset that satisfies the closed-world assump-

tion.
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Beyond producing a dataset of six unique texture primitives suited

for SDA, we explored the use of deep convolutional neural networks in

tandem with PCA for low-dimensional feature extraction from these

images. We found, based both on perceived separability in t-SNE

plots and on SDA algorithm performance, that the imagery in this

dataset remains separable with respect to these features across vary-

ing degrees of dimensionality reduction. These properties make the

UE5 texture dataset valuable as a benchmark dataset for unsupervised

learning problems, both in the context of SDA and otherwise. Given

the ease of generating more additional imagery from existing texture

classes and the ability to add more classes to the dataset, one could

generate orders of magnitude more labeled data and use this dataset

in supervised learning as well, perhaps in pre-training a deep learning

model prior to training on a smaller, real dataset.
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VI. Conclusion

This work has focused on the problem of streaming data analysis (SDA)

with an emphasis on application to the domain of streaming texture

recognition. We have proposed two algorithms: StreamSoNGv2, an

improvement to StreamSoNG, and single-pass possibilistic clustering

(SPC), a novel approach to streaming clustering that leverages possi-

bilistic memberships. These two algorithms are both part of the general

category of SDA, but are designed for different tasks.

StreamSoNGv2’s specialization is in online classification, that is, for

problems where the goal is to produce a soft classification decision after

seeing each sample that measures how much typicality the sample has

in each known class. Paired with the ability to detect and model new

classes as they emerge, StreamSoNGv2 is most useful when one is more

interested in obtaining information about specific samples in the stream

than in obtaining information about the stream as a whole.

Conversely, the goal of SPC is to produce a high quality summary

of the stream using a fixed amount of memory. The structures in SPC

are dynamically created, merged, and deleted to reflect the information

gained from each point in the stream, resulting in a configuration of

structures that, at any given time, summarize points from the stream.

Older points in the stream can be given an exponentially decaying
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weight by SPC in the form of decay factor parameters that govern the

length of a damped window used in updating the mean and covariance

of each structure. By setting the decay factor parameters to zero, the

entire stream is summarized with equal weight, independent of recency,

whereas higher decay factor parameters cause older points in the stream

to be forgotten more quickly.

Of course, both algorithms can perform both tasks. StreamSoNGv2

produces summary information about the entire stream in the form of

its growing neural gas prototypes and SPC can perform online classi-

fication of points in the stream by considering nearby structures and

their cluster label. By bringing to light the diverse use cases of the two

algorithms, we hope that users can choose the algorithm best suited

to the task at hand to obtain high quality information about the data

stream under consideration.

Furthermore, we have developed a synthetic texture dataset through

simulation in Unreal Engine 5 (UE5) to provide a medium for con-

structing streams of texture imagery. Using engine features as well as

external scripts, we have created a stream of over 6000 images paired

with pixel-perfect ground truth texture memberships. Though not di-

rectly used in this work, objects can also be randomly placed in the

scene and associated with pixelwise segmentation labels for object de-

tection tasks. The automated nature of this “data collect” provides us
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with the potential of creating even more data in the same way, limited

only by disk space.
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Appendix

We include extra results that are either not the primary focus of this

work, too lengthy, or that may not be of interest to most readers in

this section.

A. StreamSoNG Parameters

In this series of experiments, we use a two dimensional toy dataset

originally published by Gionis et al. [46] and retrieved from http://cs.

joensuu.fi/sipu/datasets/ to illustrate the effect of key parameters

on the ability of StreamSoNG to function. Points from the dataset are

plotted as an × and are colored blue if StreamSoNG considered them

an inlier at the current timestep or red if considered an outlier. The

filled in circles in each plot represent neural gas prototypes and are

color-coded according to which class they belong. Only the neural gas

prototypes and outlier points are maintained by StreamSoNG at any

given time, the rest are only kept for the purposes of visualization in

these experiments.

1. Varying η in PKNN

Comparison of nine choices of η in the PKNN component of Stream-

SoNG. For each of the 3×3 grid of plots that follow, in row-major order,

the parameter values are η = 1, 2, . . . , 9. We observe that when η is too

140

http://cs.joensuu.fi/sipu/datasets/
http://cs.joensuu.fi/sipu/datasets/


small, e.g., η = 1, incoming points must be very close to a neural gas

prototype to be considered in inlier. As a result, most points from the

stream are marked as outliers and are then clustered by SP1M in the

outlier list to form new classes in the model. Inversely, when η is too

large, e.g., η = 9, nearly all points in the stream are marked as inliers

and it is very difficult to form a new class. For this dataset, somewhere

in between η = 5 and η = 6 seems to be a good choice.

All other parameters are fixed at predetermined reasonable values

for this dataset. An animated version of this figure can be viewed at

https://youtu.be/BuGs-9aUcYk.
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(a) Initialization set
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(b) After first cluster
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(c) After second cluster
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(d) After third cluster
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(e) After fourth cluster
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(f) After fifth cluster
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2. Varying η in SP1M

Similarly to the previous experiment, we are now varying the η used in

SP1M to cluster the outlier list in StreamSoNG. There is an important

distinction between these two η parameters (that of PKNN and that of

SP1M), and it is not always the case that they should be equal. In this

experiment, we vary the SP1M η from η = 1, 2, . . . , 9 as we did before

with the PKNN eta.

When the SP1M η is too small, no clusters will be found in the

outlier list, and thus points that are initially flagged as outliers will stay

outliers indefinitely. This also highlights a problem with StreamSoNG

– choosing SP1M η sufficiently small will cause it to retain the entire

data stream, which goes against the spirit of streaming data analysis.

For this dataset, any η > 5 produces almost identical final proto-

types, though it should be noted that this phenomenon generally occurs

only in datasets where the clusters are presented sequentially. In other

datasets, having SP1M η too high would cause the entire outlier list

to form a new class every time SP1M is run, regardless of the spatial

proximity between the points in the outlier list.

All other parameters are fixed at predetermined reasonable values

for this dataset. An animated version of this figure can be viewed at

https://youtu.be/MUhITo0up_s.
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(a) Initialization set
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(b) After first cluster
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(c) After second cluster
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(d) After third cluster
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(e) After fourth cluster
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(f) After fifth cluster
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3. Varying λ in StreamSoNG

The λ parameter in StreamSoNG determines how many of its neural gas

prototypes are updated, and by how much. In neural gas, the amount

the k-th closest prototype to an input moves toward it is scaled by the

term exp{−k/λ}. Thus, large values of λ make this term non-negligible

for higher values of k as well as making the term larger for all values

of k.

We vary λ from λ = 1, 2, . . . , 9 as we did the other parameters, and

observe that λ = 2 seems to produce the best final prototypes. When

λ is too small, the prototypes don’t move fast enough to keep up with

the data and new classes are created when the are not necessary. When

λ is too large, all of the prototypes move toward new inputs, causing

older points in the stream to be forgotten very quickly.

All other parameters are fixed at predetermined reasonable values

for this dataset. An animated version of this figure can be viewed at

https://youtu.be/HlkScpt5YgQ.
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(a) Initialization set
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(b) After first cluster
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(c) After second cluster
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(d) After third cluster
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(e) After fourth cluster
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(f) After fifth cluster

161



B. Realistic Texture Blending

Ongoing work by Galusha et al. seeks to blend these texture primitives

of Section V-B in a realistic way using unique masks for each primitive.

Preliminary results of their process, which we hope to use for future

iterations of the UE5 dataset, are demonstrated in Figure 37.

We want to be able to segment the environments produced by Galusha’s

blending method for use in texture recognition experiments, which is

much easier said than done in UE5. Unlike when creating target seg-

mentation labels, postprocess materials do not immediately lend them-

selves to the task of material segmentation. We have identified three

methods for extracting pixelwise texture labels at runtime, all of which

have strengths and weaknesses depending on the situation. These meth-

ods are described in the following sections.

1. Perlin Noise

Our first method for blending textures is done using procedurally gen-

erated Perlin noise [71] inside of the material. As there doesn’t seem to

be an intentional mechanism in Unreal Engine for sending this infor-

mation to the postprocess, we instead commandeer the unused metallic

channel of the material. The output of the noise generation is multi-

plied by 0.1 before being sent to the “metallic” channel to decrease its

effect on the landscape, and then recovered in the postprocess by di-
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(a) Stone mask (b) Plant mask

(c) Sand ripple mask (d) Leaves mask

(e) Roots mask (f) Rendered scene

Figure 37: (a)-(e): The weight of each texture primitive in Figure 22, with the
exception of flat sand. The weight of flat sand at a pixel is given by one minus the
sum of the other texture weights, set equal to zero if negative. (f): The scene with
texture painted according to the masks.
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(a) Noise generation process for blending textures. Output of clamp node is multiplied by
a small number (0.1 in this case) and sent to “Metallic” output node of material.

(b) Extracting blending information in the postprocess.

Figure 38: Method to send texture blending information to the postprocess in order
to create segmentation maps.

viding the input metallic channel by the same value of 0.1 before using

the information. While the act of multiplying and dividing by 0.1 are

mathematically inverses of one another, this doesn’t necessary hold in

floating point arithmetic. As future work, we wish to find a cleaner

and more numerically stable way to acquire the texture segmentation

in the postprocess.
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2. Changing Landscape Materials

A big limitation of the Perlin noise is its two-class nature, which makes

it unusable for our purposes. There is no straightforward way to blend

more than two textures together with Perlin noise, which is why great

effort was put forth by Galusha et al. to create soft, realistic partition

labels. Galusha’s method overcomes the limitations of Perlin noise,

but at a cost of being very difficult to use as a postprocess material

for ground truth labeling. To obtain texture labels with their method

directly in UE5, the most effective approach we found was to simply

replace the material on each landscape with the corresponding primitive

mask, disable all lighting in UE5, and re-run th data collect. This is not

perfect, however, as a number of routines in UE5 such as static lighting,

dynamic lighting, ambient lighting, camera exposure, and more can

play a role in distorting segmentation masks. Unfortunately, due to an

engine limitation in UE5, we cannot cast shadows onto these landscapes

because they use translucency.

3. Manual Blending

The third method we have used for producing texture labels, which has

been the most useful to our research, is performing the texture blending

entirely outside of UE5. In UE5, we run the exact same data collection

once for each texture primitive, producing a large sequence of images
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containing only one unique texture in them. Doing so, we ensure that

the simulated drone is in the exact same position on the n-th frame of

each primitive’s sequence of N images, n = 1, 2, . . . , N .

Then, in a script outside of UE5, we read the sequence of exported

images from each texture primitive simultaneously and manually de-

termine where the camera’s field of view would land within the high

resolution texture blending masks (Algorithm 9). After extracting the

correct region of the masks, we create a blended image by simply mul-

tiplying the pixel intensities in each texture primitive by the weights of

that primitive from the mask.

4. Collected Dataset

A preliminary render of this blended dataset has yielded 6,297 images

collected at 720×720 resolution. The size of this dataset on disk is

around 4.77 GB. Examining the total membership in each texture class

among all pixels in all images, we find that roughly 15% of the total

membership in the dataset belongs to each non-background texture

(plants, sand ripple, leafy, roots, stone) and the remaining 25% belongs

to the background texture (flat sand).

A video showing each frame from the full dataset, with pixelwise

segmentation labels, can be viewed on YouTube6. Selected frames from

6https://www.youtube.com/watch?v=5jC9C2DQcbc
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Algorithm 9 Locating the camera’s field of view within a texture blending mask.

procedure GetMask(index, L, W, stride)
// index, number of frames since start of collect
// (L, W), number of frames in length/width of route
// stride, number of pixels moved by drone per frame

// See how many loops were completed
loop ix = floor(index / (2 * (L + W)))

// See how far we are into the current loop
loop offset = mod(index, (2 * (L + W)))

// Forward phase
if loop offset < L then

rotate amount = 0◦

bottom left x = 2 * loop ix * W

bottom left y = loop offset

// First right phase
else if loop offset < L + W then

rotate amount = 90◦

bottom left x = 2 * loop ix * W + (loop offset - L)

bottom left y = L

// Backward phase
else if loop offset < 2*L + W then

rotate amount = 180◦

bottom left x = (2 * loop ix + 1) * W

bottom left y = L - (loop offset - L - W)

// Second right phase
else

rotate amount = 270◦

bottom left x = (2*loop ix + 1) * W + (loop offset - (2*L + W))

bottom left y = 0

bottom left x = bottom left x * stride

bottom left y = bottom left y * stride

return (bottom left x, bottom left y, rotation amount)
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this video are shown in Figure 39. The large leftmost image is the image

from the dataset and the 2×3 grid of grayscale images on the right are

the memberships of each pixel of the image in each of the six texture

primitives. For the purpose of visualization, the frame number in the

video is drawn to the upper left corner of the image and the name of

the primitive is drawn on the upper left of each segmentation image.

To be clear, this text is not present in the actual dataset.

5. Analysis

After computing features on the blended UE5 dataset using VGG-16

as discussed in Section V-F, we have produced the t-SNE plot in Fig-

ure 40. We observe that each class in the dataset appears to be grouped

together in feature space, though classes tend to bleed together through

a series of points in the background class (“Flat Sand”). For compar-

ison, the VGG-16 features of the KTH-TIPS2b dataset [68] shown in

Figure 41 appear to be very separable. This makes sense, as one of the

primary objectives in constructing the UE5 dataset was to model real-

istic and gradual changes from one texture to another. As a result, this

dataset presents a challenge for algorithms that rely on density-based

clustering.
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(a) Transition between stone and plant primitives

(b) Transition between leafy and roots primitives

(c) Mostly pure example of stone primitive

Figure 39: Example frames from dataset with segmentation.
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Figure 40: t-SNE plot of 4096-dimensional output of the VGG-16 feature extractor
when run on the UE5 dataset.
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Figure 41: t-SNE plot of 4096-dimensional features from VGG-16 on the KTH-TIPS2b
dataset.
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C. Clustering Evaluation Metrics

Throughout these experiments, we use two external cluster validation

indices to evaluate the performance of SDA algorithms: purity [61] and

normalized mutual information (NMI) [64]. In this section, we will

describe these metrics in more detail.

1. Cluster Purity

Purity [61], as the name suggests, reflects the degree to which each

discovered cluster in the data is “pure” with respect to a ground truth

partition. When each discovered cluster contains only points from a

single ground truth cluster, purity attains its optimal value of one. To

compute purity, one uses the following equation:

Purity(C, Y ) =
1

N

|C|∑
k=1

max
j=1,...,|Y |

|Ck ∩ Yj| (38)

where C is the set of discovered clusters and Y is the set of ground truth

clusters. We observe that purity can be optimal in some cases where

the partitions C and Y are different, for example, when every point

is assigned to its own cluster. For this reason, we include additional

metrics on which to base our performance evaluation.

172



2. Normalized Mutual Information

Normalized mutual information (NMI) [64] is another external cluster

validity index used in experiments throughout this work. Unlike purity,

NMI is only optimized when the two partitions C and Y are identical.

NMI is computed according to

NMI(C, Y ) =
2 · I(C, Y )

H(C) +H(Y )
(39)

=
2(H(C)−H(C|Y ))

H(C) +H(Y )
(40)

where H is the entropy of the clustering, given by

H(X) = −
|X|∑
k=1

P (Xk) logP (Xk). (41)

To compute P (Xk), one simply divides the number of points in cluster

Xk by the number of points in the dataset. From Equation 40, we see

that when C = Y , the value of NMI is one since H(C|Y ) = 0 in this

case. Similarly, when the mutual information of C and Y is zero, NMI

is zero.
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