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1. Introduction     
 

Two main humanitarian mine action types may benefit from multi-sensor data fusion 
techniques: 1) close range antipersonnel (AP) mine detection and 2) mined area reduction. 
Data fusion for these two applications is presented here. Close range detection consists of 
detection of (sub-)surface anomalies that may be related to the presence of mines (e.g., 
detection of metals using a metal detector, or detection of temperature differences using an 
infrared camera) and/or detection of explosive materials. Area reduction consists in 
identifying the mine-free areas out of the mine-suspected areas. 
For both close range detection and area reduction, efficient modeling and fusion of extracted 
features can improve the reliability and quality of single-sensor based processing (Acheroy, 
2003). However, due to a huge variety of scenarios and conditions within a minefield 
(specific moisture, depth, burial angles) and between different minefields (types of mines, 
types of soil, minefield structure), a satisfactory performance of humanitarian mine action 
tools can only be obtained using multi-sensor and data fusion approaches (Keller et al., 2002; 
Milisavljević & Bloch, 2005). Furthermore, as the sensors used are typically detectors of 
different anomalies, combinations of these complementary pieces of information may 
improve the detection and classification results. Finally, in order to take into account the 
inter- and intra-minefield variability, uncertainty, ambiguity and partial knowledge, fuzzy 
set or possibility theory (Dubois & Prade, 1980) as well as belief functions (Smets, 1990b) 
within the framework of the Dempster-Shafer theory (Shafer, 1976) prove to be useful.  
In case of close range detection, a detailed analysis of modeling and fusion of extracted 
features is presented and two fusion methods are discussed, one based on the belief 
functions and the other based on the possibility theory. They are illustrated using real data 
coming from three complementary sensors (metal detector, ground-penetrating radar and 
infrared camera), gathered within the Dutch project HOM-2000 (de Yong et al., 1999).  These 
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results are obtained within two Belgian humanitarian demining projects, HUDEM and 
BEMAT. For mined area reduction, three approaches are shown, two of them based on the 
belief functions and one based on the fuzzy logic. They are also illustrated using real data of 
synthetic-aperture radar and multi-spectral sensors, collected within the EU project on space 
and airborne mined area reduction tools (SMART). In all cases, importance of collateral 
information (knowledge about types of mines, mine records, etc.) is demonstrated. 

 
2. About Mine Detection and Mined Area Reduction 
 

2.1 Close Range AP Mine Detection 
Due to the high variety of types of mines and of conditions in which mines can be found, 
there is no single sensor used for humanitarian mine detection that can reach the necessarily 
high detection rate in all possible scenarios. Therefore, a way towards finding a solution is 
in taking the best from several complementary sensors. One of the most promising sensor 
combinations consists in an infrared camera (IR), an imaging metal detector (MD) and a 
ground-penetrating radar (GPR). We present here two approaches for combining these 
sensors, which can be easily adapted for other sensors and their combinations. These 
approaches are based on the belief function theory and on the possibility theory. 
Most of the work done in the field of fusion of dissimilar mine detection sensors is based on 
statistical approaches (Cremer et al., 2001; Yee, 2001). Examples of alternative approaches 
are (Stanley et al., 2002) (neural networks) and (Auephanwiriyakul et al., 2002) (fuzzy fusion 
of classifiers). The statistical approaches lead to good results for a particular scenario, but 
they ignore or just briefly mention that several important problems have to be faced in this 
domain of application (Milisavljević & Acheroy, 1999), once more general solutions are 
looked for. Namely, the data are highly variable depending on the context and conditions. 
Besides, the data are not numerous enough to allow for a reliable statistical learning, and 
they do not give precise information on the type of mine (ambiguity between several types). 
Finally, it is not possible to model every object (neither mines nor objects that could be 
confused with them). In addition, a number of the fusion attempts in this domain of 
application, e.g. (den Breejen et al., 1999; Perrin, 2001), treat every alarm as a mine, and not 
as an object that could be a mine, but a false alarm as well.  
In a previous work (Milisavljević & Bloch, 2003), a method based on the belief functions 
(Shafer, 1976; Smets & Kennes, 1994; Smets, 1994) has been proposed. In this chapter, we 
compare it with an alternative approach, based on the possibility theory, in order to take 
advantage of the flexibility in the choice of combination operators (Dubois & Prade, 1985). 
This is exploited here to account for the different characteristics of the sensors to be 
combined. To our knowledge, in the domain of humanitarian mine detection, there is no 
attempt to apply the two fusion theories in parallel or to compare them. In other domains, 
there are some works that compare the two approaches, such as (Dubois et al., 2001), where 
the belief function theory is opposed to the qualitative possibility theory and illustrated on a 
fictitious example of the assessment of the value of a candidate. On the contrary to that 
paper, we apply the quantitative possibility theory here.  

 
2.2 Remote Sensing for Mined Area Reduction 

AP mines affect at least 84 countries and 8 areas not internationally recognized as 
independent states (ICBL, 2005). Thanks to the Mine Ban Treaty, mine clearing operations 
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have been organized in a more controlled and effective way, yet mine clearance remains a 
slow and resource demanding process. It is estimated that, on average, a deminer clears 10 
m2 during a working day using conventional tools such as metal detectors and prodders. 
Thus, humanitarian mine clearance operations must be understood and designed correctly, 
providing efficient aid to innocent people who may be severely injured by this dreadful 
pollution. The recommendations made during the Standing Committee on Mine Clearance, 
Mine Risk Education and Mine Action Technologies state that: 1) technologists should avoid 
building technologies based on assumed needs and should work interactively with end-
users, 2) appropriate technologies could save human lives and increase mine action 
efficiency, and 3) nothing is more important than understanding the working environment 
(Acheroy, 2003; JMU). Besides the very long time needed to clear polluted terrain, actual 
demining campaigns show that the false alarm rate is very large, the threat of plastic mines 
(which cannot be detected by metal detectors) is not negligible and the variety of mine 
clearance scenarios is high, depending on the country, the region, the climate etc. These facts 
prove that the humanitarian mine detection is a very complex problem. In addition, the 
experience shows that it will be a long process to achieve a mine-free world, so the concept 
of a mine-free world is evolving softly toward the concept of a mine impact-free world, 
although a mine-free world remains the final goal of the Mine Ban Treaty. By this, the first 
priority of mine action becomes in allowing affected regions to reach their level of socio-
economic standards. This new vision increases the importance of tools that facilitate 
prioritization and contribute to a rational and efficient distribution of the available 
resources. Several information management systems are developed and used. An example is 
the Information Management System for Mine Action – IMSMA (IMSMA, 1999), developed 
thanks to the Geneva International Centre for Humanitarian Demining (GICHD) and in use 
in more than 40 affected countries. Other examples are systems completing IMSMA, such as 
the EODIS system (Askelin, 1999) developed by SWEDEC in Sweden and the PARADIS 
system (Delhay et al., 2005) developed by the Royal Military Academy (RMA) in Belgium. 
Possible entries of such management systems are danger and risk assessment maps 
provided by the Space and airborne Mined Area Reduction Tools (SMART) project (SMART 
consortium, 2004; Acheroy, 2005), funded by the European Commission. The maps, 
obtained using data fusion, synthesize the knowledge gathered from the existing data. In 
the framework of SMART, the fusion module, detailed in this chapter, is a very important 
step, since it allows for taking the best from all available data, and of the large efforts made 
in the scientific community to design detectors and classifiers adapted to these data. It has 
proven to be a required step before constructing risk maps. This is an improvement in 
comparison to existing information management systems in this area. In particular, the 
proposed approach exploits all available data and knowledge and automatically adapts to 
the quality of the detectors and classifier outputs. 

 
3. Belief Functions and Possibility Theory for Numerical Information Fusion 
 

3.1 Belief Function Fusion – Overview 

Belief function theory or Dempster-Shafer evidence theory (DS) (Shafer, 1976; Smets, 1990b) 
allows representing both imprecision and uncertainty, using plausibility and belief 
functions derived from a mass function. The mass of a proposition A is a part of the initial 
unitary amount of belief that supports that the solution is exactly in A. It is defined as a 
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function m from 2Θ into [0, 1], where Θ is the decision space, also called frame of 
discernment or full set. Usually the following constraints are imposed: 

    m(∅) = 0,                        (1) 

1)( =∑
Θ⊆A

Am .                       (2) 

In this formalism, any combination of possible decisions from the decision space can be 

quantified rather than considering only the singletons of Θ. This is one of the main 
advantages of the DS approach. Indeed, it leads to a very flexible and rich modeling, able to 
fit a very large class of situations, occurring in image fusion in particular. Examples of 
situations where DS theory may be successfully used include ignorance or partial ignorance, 
confusion between classes (in one or several sources of information), partial reliability, etc 
(van Cleynenbreugel et al., 1991; Mascle et al., 1997; Le Hégarat-Mascle et al., 1998; Tupin et 
al., 1999; Milisavljević & Bloch, 2003; Milisavljević & Bloch, 2005). 
In the DS framework, masses assigned by different sources (e.g., classifiers) are combined by 
the orthogonal rule of Dempster (Shafer, 1976): 

∑ ⋅=

=∩ SlBkA

lk
ljkiij BmAmSm

,
)()()(                      (3) 

where S is any subset of the full set, while mi and mj are masses assigned by measures i and 
j, and their focal elements are A1, A2,…, Ap and B1, B2,…, Bq, respectively.                   
Dempster’s rule is commutative and associative, meaning that it can be applied repeatedly, 
until all measures are combined, and that the result does not depend on the order used in 
the combination. After the combination in this unnormalized form (Smets, 1993), the mass 
that is assigned to the empty set:  

∑ ⋅=∅

∅=∩ lBkA

lk
ljkiij BmAmm

,
)()()(                        (4) 

can be interpreted as a measure of conflict between the sources. It can be directly taken into 
account in the combination as a normalization factor. It is very important to consider this 
value for evaluating the quality of the combination: when it is high (in case of strong 
conflict), the normalized combination may not make sense and can lead to questionable 
decisions (Dubois & Prade, 1988). Several authors suggest not normalizing the combination 
result (e.g., Smets, 1993), which corresponds to Eq. 3. 
This fusion operator has a conjunctive behavior. This means that all imprecision on the data 
has to be introduced explicitly at the modeling level, in particular in the choice of the focal 
elements. For instance, ambiguity between two classes in one source of information has to 
be modeled using a disjunction of hypotheses, so that conflict with other sources can be 
limited and ambiguity can be possibly solved during the combination. 
From a mass function, we can derive a belief function: 

∑=∈∀
∅≠⊆

Θ

BAB
BmABelA

,
)()(,2                       (5) 

as well as a plausibility function: 

∑=∈∀
∅≠∩

Θ

AB
BmAPlsA )()(,2 .                     (6) 

After the combination, the final decision is usually taken in favor of a simple hypothesis 
using one of several rules (Denœux, 1995): e.g. the maximum of plausibility (generally over 
simple hypotheses), the maximum of belief, the pignistic decision rule (Smets, 1990a), etc.  
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For some applications, such as humanitarian demining, it may be necessary to give more 
importance to some classes (e.g., mines, since they must not be missed) at the decision level. 
Then maximum of plausibility can be used for the classes that should not be missed, and 
maximum of belief for the others (Milisavljević & Bloch, 2001), as shown in Subsection 4.4. 

 
3.2 Fuzzy and Possibilistic Fusion – Overview 

In the framework of fuzzy sets and possibility theory (Zadeh, 1965, Dubois & Prade, 1980), 
the modeling step consists in defining a membership function to each class or hypothesis in 
each source, or a possibility distribution over the set of hypotheses in each source. 
Such models explicitly represent imprecision in the information, as well as possible 
ambiguity between classes or decisions. 
For the combination step in the fusion process, the advantages of fuzzy sets and possibilities 
rely in the variety of combination operators, which may deal with heterogeneous 
information (Dubois & Prade, 1985; Yager, 1991). Among the main operators, we find t-
norms, t-conorms , mean operators, symmetrical sums, and operators taking into account 
conflict between sources or reliability of the sources. We do not detail all operators in this 
chapter, but they can be easily found in the literature, with a synthesis in (Bloch, 1996). 
We classify these operators with respect to their behavior (in terms of conjunctive, 
disjunctive, compromise (Dubois & Prade, 1985)), the possible control of this behavior, their 
properties and their decisiveness, which proved to be useful for several applications (Bloch, 
1996). It should be noted that, unlike other data fusion theories (e.g., Bayesian or Dempster-
Shafer combination), fuzzy sets provide a great flexibility in the choice of the operator, that 
can be adapted to any situation at hand. In particular nothing prevents using different 
operators for different hypotheses or different sources of information. 
An advantage of this approach is that it is able to combine heterogeneous information, 
which is usually the case in multi-source fusion (as in both examples developed in the next 
sections), and to avoid to define a more or less arbitrary and questionable metric between 
pieces of information issued from these images, since each piece of information is converted 
in membership functions or possibility distributions over the same decision space. 
Decision is usually taken from the maximum of membership or possibility values after the 
combination step. Constraints can be added to this decision, typically for checking for the 
reliability of the decision (is the obtained value high enough?) or for the discrimination 
power of the fusion (is the difference between the two highest values high enough?). Local 
spatial context can be used to reinforce or modify decisions (see the example in Section 5). 

 
4. Close-range Mine Detection 
 

4.1 Measures 

From the data gathered by the sensors, a number of measures are extracted (Milisavljević & 
Bloch, 2003) and modeled using the two approaches. These measures concern: 

• the area and the shape (elongation and ellipse fitting) of the object observed using 
the IR sensor,  

• the size of the metallic area in MD data,  

• the propagation velocity (thus the type of material), the burial depth of the object 
observed using GPR, and the ratio between object size and its scattering function.  
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Although the semantics are different, similar information can be modeled in both 

possibilistic and belief function models. The idea here is to design the possibility and mass 

functions as similarly as possible and to concentrate on the comparison at the combination 

step.  

The main difference relies in the modeling of ambiguity. The semantics of possibility leads 
to model ambiguity between two hypotheses with the same degrees of possibilities for these 
two hypotheses (e.g., Eq. 7 and Eq. 12). On the contrary, the reasoning on the power set of 
hypotheses in the belief function theory leads to assigning a mass to the union of these two 
hypotheses (e.g., Eq. 9 and Eq. 14).  
Another distinction concerns the ignorance. It is explicitly modeled in the belief function 

theory, through a mass on the whole set (to guarantee the normalization of the mass 

function over the power set), while it is only expressed implicitly in the possibilistic model, 

through the absence of normalization constraint. 

IR measures: The possibility degrees derived from elongation and ellipse fitting measures 

are represented by π1I and π2I, respectively. Being related to shape regularity, they are 

defined for a regular-shaped mine (MR), an irregular-shaped mine (MI), a regular-shaped 

non-dangerous (i.e., friendly) object (FR) and an irregularly shaped friendly object (FI).   

In the belief function framework, the full set is: Θ = {MR, MI, FR, FI}. As elongation and 
ellipse fitting aim at distinguishing regular and irregular shapes, masses assigned by these 

two measures, m1I and m2I, are split between MR ∪ FR, MI ∪ FI and Θ.  
Regarding elongation, we calculate r1 as the ratio between minimum and maximum distance 
of bordering pixels from the center of gravity (we work on thresholded images) and r2 as the 
ratio of minor and major axis obtained from second moment calculation. Using these two 
ratios, the following possibility degrees are derived:  

 ),min()()( 2111 rrFRMR II == ππ ,     (7) 

 )(1)()( 111 MRFIMI III πππ −== .     (8) 

In the framework of belief functions, for this measure, masses are defined as follows:  

       ),min()( 211 rrFRMRm I =∪ ,       (9) 

              211 )( rrFIMIm I −=∪ ,                   (10) 

and the full set takes the rest: 

                           ),max(1)( 211 rrm I −=Θ .                   (11) 

In case of ellipse fitting, let Aoe be the part of object area that belongs to the fitted ellipse as 
well, Ao the object area, and Ae the ellipse area. Then we define: 

  ⎟
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Masses for this measure are the following ones:  
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           )()(1)( 222 FIMImFRMRmm III ∪−∪−=Θ .                 (16) 

Note that in cases where it is sure that all mines have a regular shape, the possibility degrees 

of MR can be reassigned to mines of any shape (M = MR∪MI) while the possibility degrees 

of MI can be reassigned to friendly objects of any shape (F = FR∪FI). Similarly, masses given 

to MR∪FR can be reassigned to M, while masses given to MI∪FI can be reassigned to F.  

The area directly provides a degree π 3I (M) of being a mine. Namely, since the range of 
possible AP mine sizes is approximately known, the degree of possibility of being a mine is 
derived as a function of the measured size: 

  [ ]
2

ImIm

2
ImIm

Im
3

)(5.0

)(5.0
exp

1.0
)(

inax

axinI

inI

I
I

aa

aaa

aa

a
M

−⋅

+⋅−−
⋅

⋅+
=π ,                                 (17) 

where aI is the actual object area on the IR image, while the approximate range of expectable 
mine areas is between aImin and aImax (for AP mines, it is reasonable to set aImin = 15 cm2 and 
aImax = 225 cm2). On the contrary, friendly objects can be of any size, so the possibility degree 
is set to one whatever the value of the size: 

    1)(3 =FIπ .                   (18) 

The area/size mass assignment based on the above reasoning is given by: 

[ ]
2

ImIm

2
ImIm

Im
3

)(5.0

)(5.0
exp

1.0
)(

inax

axinI

inI

I
I

aa
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−⋅
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⋅

⋅+
=Θ  ,                                 (19) 

   )(1)( 33 Θ−=∪ II mFIFRm .                                  (20) 

 

MD measures: In reality, MD data are usually saturated and data gathering resolution in 

the cross-scanning direction is typically very poor, so the MD information used consists of 

only one measure, which is the width of the region in the scanning direction, w [cm]. As 

friendly objects can contain metal of any size, we define: 

    1)( =FMDπ .                   (21) 

If there is some knowledge on the expected sizes of metal in mines (for AP mines, this range 
is typically between 5 cm and 15 cm), we can assign possibilities to mines as, e.g.: 

        [ ] ⎟
⎠
⎞

⎜
⎝
⎛

−⋅⋅−−⋅=
20

1exp)2.0exp(1
20

)(
w

w
w

MMDπ .                 (22) 

The corresponding mass functions are: 

       [ ] ⎟
⎠
⎞

⎜
⎝
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−⋅⋅−−⋅=Θ
20

1exp)2.0exp(1
20

)(
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   )(1)( Θ−=∪ MDMD mFIFRm .                  (24) 

GPR measures: All three GPR measures provide information about mines.  
In case of burial depth information (D), friendly objects can be found at any depth, while it 
is known that there is some maximum depth up to which AP mines can be expected, mainly 
due to their activation principles. However, due to soil perturbations, erosions etc., mines 
can, by time, go deeper or shallower than the depth at which they were initially buried. In 
any case, they can rarely be found buried below 25 cm (Dmax). Thus, for this GPR measure, 

possibility distributions π1G for mines and friendly object can be modeled as follows: 

   
2

max
1

)/cosh(

1
)(

DD
MG =π ,                  (25) 

    1)(1 =FGπ .                   (26) 

www.intechopen.com



Humanitarian Demining: Innovative Solutions and the Challenges of Technology 

 

102 

In terms of belief functions, the masses for this measure are: 

   
2

max
1

)/cosh(

1
)(

DD
m G =Θ ,                  (27) 

   )(1)( 11 Θ−=∪ GG mFIFRm .                   (28) 

Another GPR measure exploited here is the ratio between object size and its scattering 
function, d/k. Again, friendly objects can have any value of this measure, while for mines, 
there is a range of values that mines can have, and outside that range, the object is quite 
certainly not a mine: 

                
[ ]
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    1)(2 =FGπ ,                   (30) 

where md  is the d/k value at which the possibility distribution reaches its maximum value 
(here, md = 700, chosen based on prior information), and p is the width of the exponential 
function (here, p = 400).  
Similarly, the mass assignments for this measure are: 
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      )(1)( 22 Θ−=∪ GG mFIFRm .                  (32) 

Finally, propagation velocity, v, can provide information about object identity. Here, we 
extract depth information on a different way than in the case of the burial depth measure 
(Milisavljević et al., 2003) and we preserve the sign of the extracted depth. This information 
indicates whether a potential object is above the surface. If that is the case, the extracted v  

should be close to c = 3⋅108 m/s, the propagation velocity in vacuum. Otherwise, if the sign 
indicates that the object is below the soil surface, the value of v should be around the values 

for the corresponding medium, e.g., from 5.5⋅107 m/s to 1.73⋅108 m/s in case of sand: 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
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3
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exp)(
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where vmax is the value of velocity which is the most typical for the medium (here, for sand, 

it is 0.5⋅ (5.5⋅107 +1.73⋅108) = 1.14⋅108 m/s,  and for air, it is equal to c), and h is the width of 

the exponential function (here, h = 6⋅107 m/s). Once again, friendly objects can have any 
value of the velocity: 

    1)(3 =FGπ .                   (34) 

The corresponding mass functions are: 
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       )(1)( 33 Θ−=∪ GG mFIFRm .                   (36)  

 
4.2. Combination 
The combination of possibility degrees, as well as of masses, is performed in two steps. The 
first one applies to all measures derived from one sensor. The second one combines results 
obtained in the first step for all three sensors.  
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In case of possibilities, only the combination rules related to mines are considered. The issue 
of combination rules for friendly objects is discussed in Subsection 4.4.  
Let us first detail the first step for each sensor. For IR, since mines can be regular or 
irregular, the information about regularity on the level of each shape measure is combined 
using a disjunctive operator (here the max): 

   ( ))(),(max 111 MIMR IIIM πππ = ,                   (37) 

   ( ))(),(max 222 MIMR IIIM πππ = .                   (38) 

The choice of the maximum (smallest disjunction and idempotent operator) as a t-conorm is 
related to the fact that the measures cannot be considered as completely independent from 
each other. Thus, there is no reason to reinforce the measures by using a larger t-conorm, 
and the idempotent one is preferable in such situations. These two shape constraints should 
be both satisfied to have a high degree of possibility of being a mine, so they are combined 
in a conjunctive way (using a product). Finally, the object is possibly a mine if it has a size in 
the expected range or if it satisfies the shape constraint, hence the final combination for IR is: 

        [ ] IMIMIII MMM 2133 )(1)()( πππππ ⋅⋅−+= .                                 (39) 

The conjunction in the second term guarantees that πI(M) is in [0,1]. 
In case of GPR, it is possible to have a mine if the object is at shallow depths and its 
dimensions resemble a mine and the extracted propagation velocity is appropriate for the 
medium. Thus, the combination of the obtained possibilities for mines is performed using a 
t-norm, expressing the conjunction of all criteria. Here the product t-norm is used: 

   )()()()( 321 MMMM GGGG ππππ ⋅⋅= .                                  (40) 

For MD, as there is just one measure used, there is no first combination step and the 
possibility degrees obtained using Eqs. 21 and 22 are directly used.  
In case of possibilities, the second combination step is performed using the algebraic sum: 

)()()()()(

)()()()()()()()(

MMMMM

MMMMMMMM

GMDIGMD

GIMDIGMDI

πππππ

ππππππππ

⋅⋅+⋅−

−⋅−⋅−++=
 ,                (41) 

leading to a strong disjunction (Dubois & Prade, 1985; Bloch, 1996), as the final possibility 
should be high if at least one sensor provides a high possibility, reflecting the fact that it is 
better to assign a friendly object to the mine class than to miss a mine. 
In the belief function framework, for IR and GPR, masses assigned by the measures of each 
of the two sensors are combined by Dempster’s rule in unnormalized form (Eq. 3). A general 
idea for using the unnormalized form of this rule instead of more usual, normalized form is 
to preserve conflict (Milisavljević & Bloch, 2001), i.e., mass assigned to the empty set, Eq. 4. 
Here, a high degree of conflict would indicate that either there are several objects and the 
sensors, as detectors of different physical phenomena, do not provide information on the 
same object, or some sources of information are not completely reliable. Our main interest is 
in the possibility that sensors do not refer to the same object, as the unreliability can be 
modeled and resolved through discounting factors (Milisavljević & Bloch, 2005). After 
combining masses per sensor, the fusion of sensors is performed, using Eq. 3 again. If the 
mass of the empty set after combination of sensors is high, they should be clustered as they 
do not sense the same object.  
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4.3 Comparison of the Combination Equations 
For IR, based on Eqs. 6-20 and 39, it can be shown that  

              )()( MMPl II π≤ .                    (42) 

This is in accordance with the least commitment principle used in the possibilistic model, as 
usually done in this framework. 
As far as MD is concerned, there is no difference since it provides only one measure. 
In case of GPR, based on the comparison of Eqs. 25 and 27, Eqs. 29 and 31, as well as Eqs. 33 
and 35, we can conclude that Eq. 40 can be rewritten as:  

            )()()()( 321 ΘΘ⋅Θ= GGGG mmmMπ .                   (43) 

Furthermore, the application of the Dempster’s rule (Eq. 3) to the mass assignments of the 
three GPR measures results in the fused mass of the full set for this sensor:  

          )()()()( 321 ΘΘ⋅Θ=Θ GGGG mmmm                    (44) 

which leads to:  

         )()( Θ= GG mMπ .                    (45) 

This means that the ignorance is modeled as a mass on Θ in the belief function framework, 
while it privileges the class that should not be missed (M) in the possibilistic framework (i.e., 
the ignorance will lead to safely decide in favor of mines). 

 
4.4 Decision  

As the final decision about the identity of the object should be left to the deminer not only 
because his life is in danger but also because of his experience, the fusion output is a 
suggested decision together with confidence degrees.  
In case of possibilities, the final decision is obtained by thresholding the fusion result for M 
and providing the corresponding possibility degree as the confidence degree. As almost all 
possibility degrees obtained at the fusion output are either very low or very high, the 

selected regions having very low values of π(M) (below 0.1) are classified as F, and the ones 
with very high values (above 0.7) are classified as M. Only a few regions exist at which the 
resulting possibility degree for M has an intermediary value and there, as mines must not be 
missed, the decision is M.  In the following, this decision approach is referred to as dec1. 
An alternative (dec2) for the final decision making is to derive the combination rule for F as 
well, compare the final values for M and F and derive an adequate decision rule. Due to 
operation principles of GPR and MD, the measures of these two sensors can only give 
information where mines are possibly not. As they are non-informative with respect to 
friendly objects, it is not useful to combine their possibility degrees for F. Thus, for deriving 

the final combination rule for F, π (F), we can rely only on IR, i.e.: 

    )()( FF Iππ = .                      (46) 

In case of IR, since friendly objects can be regular or irregular, we apply a disjunctive 
operator (the max) for each of the shape constraints. In order to be cautious when deciding 
F, we combine the two shape constraints and the area measure using a conjunctive operator. 
Taking into account Eq. 18, this reasoning results in:  

( ) ( ))(),(max)(),(max)( 2211 IIRIIIRI FFFFF πππππ ⋅= .                                 (47) 

Thus, in this alternative way to derive decisions, in regions where IR gives an alarm, the 
decision rule chooses M or F depending on which one of the two has a higher possibility 
value, given by Eqs. 41 and 58, respectively. In other regions, at which IR does not give an 
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alarm although at least one of the two other sensors gives an alarm, the decision is based on 
the fusion result for M, as in dec1.    
In case of belief functions, as shown in (Milisavljević & Bloch, 2003), usual decision rules 
based on beliefs, plausibilities (Shafer, 1976) and pignistic probabilities (Smets, 1990a) do not 
give useful results because there are no focal elements containing mines alone (Milisavljević  
& Bloch, 2001). As a consequence, these usual decision rules would always favor friendly 
objects. The underlying reason is that the humanitarian demining sensors are anomaly 
detectors and not mine detectors. In such a sensitive application, no mistakes are allowed so 
in case of any ambiguity, much more importance should be given to mines. Because of that, 

in (Milisavljević & Bloch, 2003), guesses G(A) are defined, where A∈{M, F, ∅}:  

    ∑=
∅≠∩BM

BmMG )()( ,                                  (48) 

    ∑=
∅≠⊆ BFB

BmFG
,

)()( ,                                  (49) 

        )()( ∅=∅ mG .                       (50) 

In other words, the guess value of a mine is the sum of masses of all the focal elements 
containing mines, regardless their shape, and the guess of a friendly object is the sum of 
masses of all the focal elements containing nothing else but friendly objects of any shape, 
meaning that the guesses are a cautious way to estimate confidence degrees.  
As the output of the belief function fusion module, the three possible outputs (M, F, conflict) 
are provided together with the guesses, for each of the sensors and for their combination.  

For GPR, the focal elements are only F and Θ, so guesses for this sensor become simply:  

)()( Θ= GG mMG ,                                   (51) 

 

)()( FmFG GG = .                                  (52) 

 From Eqs. 45 and 51, we conclude that for GPR, the possibility degree of a mine is equal to 
the guess of a mine: 

)()( MGM GG =π .                   (53) 

Furthermore, Eqs. 6 and 48 show that the guess of a mine is equal to its plausibility, while 
Eqs. 5 and 49 show that the guess of a friendly object is equal to its belief. This means that 
the relation given by Eq. 42 shows, actually, that for IR: 

    )()( MMG II π≤ .                   (54) 

 
4.5 Results  
The proposed approach has been applied to a set of known objects, buried in sand, leading 
to 36 alarmed regions in total: 21 mines (M), 7 placed false alarms (PF, friendly objects) and 8 
false alarms caused by clutter (FN, with no object).  
The results of the possibilistic fusion are very promising, since all mines are classified 
correctly with the proposed approach, as can be seen in Table 1. The numbers given in the 
parenthesis indicate the number of regions selected in the preprocessing step for further 
analysis, i.e. measure extraction and classification. Regarding the combination operators, the 
results given in this table are based on the combination proposed in Subsection 4.2 (Eqs. 39-
41). The second fusion step is important, since a decision taken after the first step provides 
only 18 mines for IR, 9 for MD and 13 for GPR. This illustrates the interest of combining 
heterogeneous sensors.  
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Table 1. Correct classification results, possibilistic fusion 

Table 2. Correct classification results, belief functions  

 
 The two decision rules, dec1 and dec2, give the same results for mines and friendly objects 
caused by clutter. In case of placed false alarms, 2 are correctly classified in case of dec2, 
which is a slight improvement with respect to dec1 and the same result as for the belief 
function fusion, shown in Table 2. It is not suprising that the placed false alarms are not so 
well detected by any of the methods, since our model is designed in order to favor the 
detection of mines. This is also the type of results expected from deminers. Regarding 
correct classification of mines, the results of the possibilistic fusion are slightly better than 
those obtained using the belief function method (19 mines detected, Table 2). This is due to 
the increased flexibility at the combination level. False alarms with no objects are correctly 
identified by the belief function method (6 out of 8), and it is the same result as for the two 
possibilistic decision rules. This result shows that a power of our methods is in decreasing 
the number of clutter-caused false alarms without decreasing the result of mine detection, 
thanks to knowledge inclusion.  
All results have been obtained with the models proposed in Subsection 4.1, with the same 
parameters. Note that although the general shapes of the possibility distributions are 
important and have been designed based on prior knowledge, they do not need to be 
estimated very precisely, and the results are robust to small changes in these functions. 
What is important is that the functions are not crisp (no thresholding approach is used) and 
that the rank is preserved (e.g., an object with a measure value outside of the usual range 
should have a lower possibility degree than an object with a typical measure value). Two 
main reasons explain the experienced robustness: (i) these possibility distributions are used 
to model imprecise information, so they do not have to be precise themselves; (ii) each of 
them is combined in the fusion process (Subsection 4.2) with other pieces of information, 
which diminishes the importance and the influence of each of them.  
Analysis regarding the robustness of the choice of the operator is also performed (within a 
class corresponding to the type of reasoning we want to achieve). Different operators within 

Sensors Fusion Classified correctly, possibility 
theory IR MD GPR dec1 dec2 

M 
(total: 21) 

18 
(18) 

9 
(9) 

13 
(13) 

21 
(21) 

21 
(21) 

PF 
(total: 7) 

0 
(4) 

0 
(4) 

2 
(6) 

1 
(7) 

2 
(7) 

FN 
(total: 8) 

0 
(1) 

0 
(0) 

6 
(7) 

6 
(8) 

6 
(8) 

Sensors 
Classified correctly, belief functions 

IR MD GPR 

 
Fusion 

M 
(total: 21) 

10 
(18) 

9 
(9) 

13 
(13) 

19 
(21) 

PF 
(total: 7) 

3 
(4) 

0 
(4) 

1 
(6) 

2 
(7) 

FN 
(total: 8) 

0 
(1) 

0 
(0) 

6 
(7) 

6 
(8) 
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the same family have been tested, leading to the maximisation and minimisation of the 
possibility degrees of mines, thus being the safest and the least safe situations from the point 
of view of mine detection. The results obtained show that the model is robust indeed: all 
mines are detected in the second step, for all fusion schemes. 
Differences between the results of Tables 1 and 2 can be formally explained as discussed in 
Subsection 4.3. For GPR, Eq. 53 explains why the results are the same for the two fusion 
approaches. In case of IR, Eq. 54 indicates that the possibilistic approach would favor mines 
more than the belief function approach, which is indeed the case here. 

 
5. Area Reduction: the SMART Approach 
 

5.1 Overview of the Approach  

The aim of area reduction is to find which mine-suspected areas do not contain mines and 
this task is recognized as a mine action activity that should result in reduction in time and 
resources. Several well-known methods are in use to perform area reduction, especially 
using mechanical means. These expensive methods change and damage the environment 
and the ecosystem most of the time. To avoid this, some approaches have been developed 
that acquire the necessary information remotely, from air or space, using appropriate 
sensors associated with context information collected from the field and integrated in a 
geographical information system (GIS). The SMART project, funded by the European 
Commission/DG/INFSO, is among these approaches, and it is applied to Croatia. The goal 
of this project is to provide the human analyst with the SMART system, i.e. a GIS-based 
system augmented with dedicated tools and methods designed to use multispectral and 
radar data in order to assist in his interpretation of the possibly mined scene during the area 
reduction process. The usefulness of such image processing tools to help photo-
interpretation is, at first place, in the possibility to process automatically a large amount of 
data and help a visual analysis (SMART consortium, 2004). The use of SMART includes a 
field survey and an archive analysis in order to collect knowledge about the site, a satellite 
data collection, a flight campaign to record the data and the exploitation of the SMART tools 
by an operator to detect indicators of presence or absence of mine-suspected areas. With the 
help of a data fusion module based on belief functions and fuzzy sets, the operator prepares 
thematic maps synthesizing all the knowledge gathered with these indicators. These maps 
of indicators can be transformed into risk maps showing how dangerous an area may be 
according to the location of known indicators and into priority maps indicating which areas 
are designed to help the mined area reduction process. Preliminary results obtained using 
SMART have shown a reduction rate of 25% (0.98 km2 over analyzed 3.9 km2) and an error 
rate of 0.1% for what SMART considers as not mined and is actually mined. 
Fig. 1 illustrates the global SMART approach. This paper focuses on the fusion step, which 
provides an intermediary result in SMART, consisting of improved landcover classification 
maps, along with confidence values. Thus, it is a very useful result, exploited by the 
deminers together with the final result.  

 
5.2. Data and Their Specificities in SMART 

The available images include synthetic-aperture radar (SAR), multispectral, high resolution 
optical and satellite data. SAR data were collected with the E-SAR system of the German 
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Aerospace Centre (DLR) in fully polarimetric P- and L-band and in vv-polarization (waves 
are vertically transmitted  

 
Fig. 1. The global SMART approach; Det – detector, Cl - classifier, M – number of detectors, 

N – number of classifiers, ChD – change detection, MIS - mine information system 

 
and received) X- and C-band. Multispectral Daedalus data were collected with a spatial 
resolution of 1 m and in 12 channels, ranging from visible blue to thermal infrared. SAR and 
Daedalus data were geocoded. DLR also provided a complete set of RMK photographic 
aerial views recorded with a colored infrared film at a resolution of 3 cm. This non-
geocoded data set is used as evidence to control the processing tools and for qualitative 
interpretation by photo-interpreters. Finally, geocoded KVR-1000 black-and-white satellite 
images with a resolution of 2 m, recorded before the war in Croatia, were purchased in 
order to assess the changes in the landscape due to the war.  
The legend (expected classes in the images), derived based on the existing and gathered 
knowledge about the mined areas, is given in Table 3. Ground truth was provided as a set of 
regions (training regions and validation regions). In the fusion module, training regions are 
used for estimating the parameters of some of the proposed methods; validation regions are 
used for the evaluation of the results. 
Table 4 summarizes the input of the fusion module. 
A logistic regression classification was developed on SAR data at RMA (Borghys et al., 
2004). The results consist of confidence images for each class, except for class 4, which is not 
detected by this approach. A classification into hedges, trees, shadows, and rivers from SAR 
data has been developed at DLR (Keller et al., 2002). The method relies on the satisfaction of 
several criteria. The number of satisfied criteria directly provides the confidence images for 
hedges and trees (after scaling on [0, 1]). Shadows and rivers, provided as binary images, are 
“discounted“(work done at RMA based on spectral characteristics of these types of 
landcover, and on existing landcover indices and meanings of Daedalus bands). Hedges and 
trees are then grouped to form class 6 using a maximum operator. Shadows and rivers are 
directly interpreted as classes 7 and 8. 
Several classifiers have been developed for Daedalus: 

• a supervised classification method based on minimum distance has been 
developed at RMA and a decision image is provided (Keller et al., 2002); 
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• a region-based classification was performed at Université Libre de Bruxelles (ULB) 
and confidence images interpreted as membership degrees to each class are 
provided; 

• a belief function classification was developed at RMA and confidence images per 
class are provided (Keller et al., 2002).  

 

 
 
 
 
 
 
 
 
 
 
Table 3. Expected classes in the images 
 

Table 4. Summary of the input of the fusion module 
 
Road detection was performed at ULB and RMA. Linear structures are provided. They are 
dilated to obtain roads with a width corresponding to the real width. 
A tool for river detection previously developed at Ecole Nationale Supérieure des 
Télécommunications ENST (Tupin et al., 1999) was used too. It is based on a Markovian 
approach. This is not directly a result of SMART but it is interesting to show how such 
knowledge can be introduced in the fusion process. 
Change detection was obtained at ULB, based on a comparison between older KVR images 
and images made during the project. It provides mainly information on abandoned regions 
(class 1). Again, this is an important knowledge that both improves the landcover 
classification and provides interesting results for the construction of danger map. 
Other anomaly detection and classification tools developed in SMART were not used either 
in the fusion module or at all. For example, detectors of power poles, hilltops and strategic 
locations are not included in the legend. Thus, they are not considered as input data for the 
fusion process, but they are added in the final results (construction of danger maps). 

 
 

Class no. Legend 

1 Abandoned agricultural land 

2 Agricultural land in use 

3 Asphalted roads 

4 Rangeland 

5 Residential areas 

6 Trees and shrubs 

7 Shadow 

8 Water 

Data type Type of result 

SAR Classification with confidence images per class 

SAR & Daedalus Detection of hedges, trees, shadows, rivers, with confidence 
degrees, sometimes discounted 

Daedalus Supervised classification, result as a decision image 

Daedalus Region-based classification with confidence images per class 

Daedalus Belief function classification with confidence images per class 

SAR & Daedalus Binary detection of roads 

SAR River detection (binary) 

Daedalus & KVR Change detection (binary image) 
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5.3. Fusion Strategies in SMART 
In all that follows, the computations are performed at pixel level. A final regularization step 
is then applied (see Section 5.4). Different fusion strategies have been developed (Bloch et 
al., 2007) and we present here three most promising ones.   
Adding a global discounting factor (BF1): Here, we consider each classifier as one 

information source. The focal elements are the singletons and Θ. The definition of m(Θ) takes 
into account both the fact that some classes are not detected (thus it should be equal to 1 at 
points where 0 is obtained for all detected classes) as well as global errors. We propose to 

use a discounting factor α equal to the sum of the diagonal elements of the confusion matrix, 
divided by the cardinality of the training areas. This discounting is applied on all masses 
defined as in the previous approach. Then: 

m(Θ) = 1 - α .                  (55) 
Note that this uses explicitly the confidence matrix, which should be computed on the 
training areas for each classifier or detector. It results that at each step of the fusion, the focal 

elements are always singletons and Θ. Decision rule can be maximum of belief, of mass or of 
pignistic probability (all being equivalent in this case). 
This approach is very easy to implement and models in a simple way the fact that classifiers 
or detectors may not give any information on some classes and may be imperfect.  
 
Use of confusion matrices for more specific discounting (BF2): Now each class of each 
classifier (or detector) is considered as a source and we take into account the behavior of the 
classifier with respect to the other classes, using the confusion matrices to define 
discounting for each class. From the confusion matrix computed from the decision made 
from one classifier and from training areas, we derive a kind of probability that the class is 
Ci given that the classifier says Cj as: 

∑
=

i jiconf

jiconf
jic

),(

),(
),( ,                  (56) 

where the values conf(i,j) denote the coefficients of the confusion matrix. We can ignore the 
low values and normalize the others, in order to reduce the number of non-zero coefficients 
(thus the number of focal elements in the following). We used a threshold value of 0.05. 
There are several ways to use this normalized confusion matrix, e.g. by setting m(Ci)=c(i,j) 
for detected pixels in case of detectors and deriving a more complex method for classifiers. 
The most interesting way, applying to both classifiers and detectors in a similar way, is as 
follows. From v(Cj) (denoting the result provided for class Cj by a classifier), we define: 

),()()( jicjCviCm =                   (57) 

for all classes Ci which are confused with Cj (which provides )()( jCvi iCm =∑ ), and:  

   )(1)( jCvm −=Θ .                   (58) 

In comparison to the simplest method, instead of keeping a mass on Ci only (and Θ), this 
mass is spread over all classes possibly confused with Ci, thus better exploiting the richness 
of the information provided by a classifier. 
 
Fuzzy fusion (FUZZY):  In order to compare the previous methods with a fuzzy approach, 
we test a simple method, where we choose for each class the best classifiers, and combine 
them with a maximum operator (possibly with some weights). Then decision is made 
according to a maximum rule. The choice is made based on the confusion matrix for each 
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classifier or detector, by comparing the diagonal elements in all matrices for each class. In 
the illustrated example, the best detections, according to the confusion matrix of each 
classifier or detector are detailed in Subsection 5.5. They provide the inputs of the 
combination step, and a simple maximum operator performs well for this step.  
This approach is very fast. It uses only a part of the information, which could also be a 
drawback if this part is not chosen appropriately. Some weights have to be tuned, which 
may need some user interaction in some cases. Although it may sound somewhat ad hoc, it is 
interesting to show what we can get by using the best parts of all classifiers.  

 
5.4. Knowledge Introduction and Spatial Regularization 

Knowledge inclusion is one of the main powers of our algorithms with respect to the 
commercial ones. This aspect has led to a lot of work in SMART, at different levels. Note 
that knowledge on the classifiers, their behaviors, etc. is already included in the previous 
steps. At this step, we use only the pieces of knowledge that directly provide information on 
the landcover classification. Other pieces of knowledge such as mine reports, etc. are not 
directly related to classes of interest, but rather to the dangerous areas, and are thus 
included in the danger map construction, which follows the fusion. 
Several pieces of knowledge proved to be very useful at this step. They concern on the one 
hand some “sure” detection. Some detectors are available for roads and rivers, which 
provide areas or lines that surely belong to these classes. There is almost no confusion, but 
some parts can be missing. Then these detections can be imposed on the classification 
results. This is simply achieved by replacing the label of each pixel in the decision image by 
the label of the detected class if this pixel is actually detected. If not, its label is not changed. 
As for roads, additional knowledge is used, namely on the width of the roads (based on 
observations done during the field missions). Since the detectors provide only lines, these 
are dilated by the appropriate size, taking into account both the actual road width and the 
resolution of the images.  
Another type of knowledge is very useful: the detection of changes between images taken 
during the project and KVR images obtained earlier. The results of the change detection 
processing provide mainly information about class 1, since they exhibit the fields which 
were previously cultivated, and which are now abandoned. These results do not show all 
regions belonging to class 1, but the detected areas surely belong to that class.  
Then a similar process can be applied as for the previous detectors.  
With the proposed methods, it was difficult to obtain good results on class 2, while 
preserving the results on class 1 that is crucial since it corresponds to fields no longer in use 
hence potentially dangerous. Therefore we use the best detection of class 2 (extracted from 
region based classification on Daedalus) as an additional source of knowledge. 
As shown in Subsection 5.5, this additional knowledge introduction leads to better results. 
The last step is regularization. Indeed, it is very unlikely that isolated pixels of one class can 
appear in another class. Several local filters were tested, such as a majority filter, a median 
filter, or morphological filters, applied on the decision image. A Markovian regularization 
approach on local neighborhoods was tested too. The results are not significantly better. 
A better approach is to use the segmentation into homogeneous regions provided by ULB.  
In each of these regions, a majority voting is performed: we count the number of pixels in 
this region that are assigned to each class and the class with the largest cardinality is chosen 
for the whole region (all pixels of this region are relabeled and assigned to this class). 
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This type of regularization, which is performed at a regional level rather than at a local one, 
provides good results, as will be seen in the following. 

 
5.5. Results of BF1, BF2 and FUZZY 
Results shown here are obtained on the Glinska Poljana site in Croatia.  

In case of BF1, for each classifier, the discounting factor α is calculated from the normalized 
sum of the diagonal elements of the confusion matrix obtained on the training areas (Table 
5). After this type of fusion, a lot of confusion occurs between classes 1 and 2, but this is 
largely improved by knowledge inclusion, while noisy aspect is suppressed by 
regularization. In order to assess classification accuracy, we use user's accuracy (UA) and 
producer's accuracy (PA) measures that can be derived directly from confusion matrices. 
UA represents the probability that a given pixel will appear on the ground as it is classified. 
PA is the percentage of a given class that is correctly identified on the map. Table 6 shows 
some results for a few classes. Note that the most interesting classes for danger map 
building are 1, 2, 3 and 8, and that, regarding the purpose of the project, PA is important for 
classes 1 and 8, and UA for classes 2 and 3. 

 

Table 5. Discounting factors for method BF1 
 
 
 
 
 
 
 
 
 
Table 6. UA and PA for all three methods (after knowledge inclusion and spatial 

regularization) and the best classifier (BC) for each important class 

 

Team Data type Type of result α 

RMA SAR Classification with confidence images 
per class (except class 4) 

0.41 

DLR & RMA SAR & Daedalus Detection of hedges, trees, shadows, 
rivers, with confidence degrees for 
hedges and trees; rivers and shadows 
discounted based on Daedalus bands 

0.11 

RMA Daedalus Supervised classification, result as a 
decision image 

0.46 

ULB Daedalus Region based classification with 
confidence images per class 

0.80 

RMA Daedalus Belief function classification with 
confidence images per class 

0.67 

Class BC BF1 BF2 FUZZY 

1 (PA) 0.84 0.81 0.78 0.89 

2 (UA) 0.87 0.86 0.81 0.95 

3 (UA) 0.88 0.96 0.96 0.98 

8 (PA) 0.96 0.97 0.99 0.99 

www.intechopen.com



Multi-sensor Data Fusion Based on Belief Functions and Possibility Theory:  
Close Range Antipersonnel Mine Detection and Remote Sensing Mined Area Reduction 

 

113 

In addition, the “best classifier” (BC) in Table 6 is not always the same one, but the result is 
the one provided by the classifier that is the best for a particular class. 
In order for the reader to have a better visual idea about the images containing the results, 
Fig. 2 contains the raw image of Glinska Poljana in a visible channel of Daedalus.   
After classification of this area using BF1 (basic version), we obtain the results given in Fig. 3 
(left), while knowledge inclusion and spatial regularization applied to these results lead to 
Fig. 3 (right). The color code in all classification results is as follows: class 1 – orange; 2 – 
yellow; 3 – medium grey; 4 – light green; 5 – dark red; 6 – dark green; 7 – brown; 8 – blue. 
 

 
Fig. 2. Visible channel of Daedalus  
 
The fusion module also provides confidence and stability images. The confidence image 
represents, at each pixel, the confidence degree of the decided class. The stability image is 
computed as the difference between the confidence in the decided class and confidence in 
the second most possible class. If the stability is high, this means that there is no doubt about 
the decision, and if it is low, the decision should be considered carefully. The confidence 
image and the stability image can be multiplied to provide a global image evaluating the 
quality of the classification in each point.  
In the BF2 method, the confusion matrices for each classifier are normalized row by row, 
and the coefficients that are higher than 0.05 are used for discounting the corresponding 
classes. The results of the basic version of this type of fusion yield a poor detection of class 1 
and a lot of confusion between this class and classes 2 and 7. In addition, class 4 is not 
detected and detection of class 3 is worse than with BF1. However, the results are largely 
improved by knowledge inclusion and confusions are strongly reduced. Finally, the noisy 
aspect is suppressed by the regularization, leading to an improved detection, in particular 
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for class 8. Results are given in Fig. 4 left (after knowledge inclusion and spatial 
regularization). UA and PA are given in Table 6. 
For the fuzzy method, the following outputs of classifiers have been used for each class: 
1: SAR logistic regression, region-based classification, belief function classification and 
change detection; 
2: region-based classification and belief function classification; 
3: region-based classification and road detection; 
4: region-based classification, minimum distance classification and belief function 
classification; 
5: region-based classification and belief function classification; 
6:  region-based classification and SAR trees and hedges detection;  
7: SAR logistic regression, SAR shadow detection, minimum distance classification and 
belief function classification; the maximum is discounted by a factor 0.5, taking into account 
that this class is not really significant for further processing (shadows “hide” meaningful 
classes); 
8: region-based classification, belief function classification and river detection. 
The results of this fusion in its basic version are already very good, due to the fact that not 
all information provided by the classifiers is used, but only the best part of them. Further 
improvements are obtained by knowledge inclusion.  After the regularization step, class 7 
disappears, but this is not a problem since this class is not significant for further processing.  
Results of this method are shown in Fig. 4 right (after knowledge inclusion and spatial 
regularization). Table 6 contains PA and UA for this type of fusion too. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. BF1 results: basic (left), after knowledge inclusion and spatial regularization (right) 
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In order to get a synthetic view of the results obtained by the three methods, the normalized 
sums of the diagonal elements of the confusion matrices are shown in Table 7. The two 
methods based on belief functions provide similar global results, BF1 being somewhat 
better. The differences appear mainly when looking individually at each class. The  
 

 
Fig. 4. Results with BF2 (left) and FUZZY (right), both after knowledge inclusion and spatial 

regularization 

 
improvement achieved with knowledge inclusion is significant. Regularization provides an 
additional improvement. The final results are globally better than the ones obtained by each 

of the initial classifiers, as can be seen by comparing the values with those displayed in 
Table 5 (the best classifier provides a global accuracy of 0.80). The fuzzy method is the best 
in its basic version, since it already selects the best inputs, thus the improvement due to the 
next steps is not as important as for the belief function methods. 
 

Table 7. Comparison of the normalized sum of diagonal elements of the confusion matrices 
for the three tested methods 

 

 
 
5.7. Danger Maps and First Results of SMART Validation 

Method Basic Knowledge inclusion Spatial regularization 

BF1 0.70 0.81 0.85 

BF2 0.65 0.78 0.81 

Fuzzy 0.79 0.83 0.84 
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The danger maps are synthetic documents designed to help the end users in their decision-
making process regarding area reduction. They are created from results of all detection and 
classification tools and methods used in SMART (as well as some other sources such as 
fieldwork). These maps constitute the final output of the system and represent the basis for 
proposing areas for area reduction. Note that the results are for decision makers and that the 
reduction of a suspicious area is not an automatic process. 
Four types of danger maps are developed in SMART (SMART consortium, 2004). The most 
useful continuous location maps, such as the one in Fig. 5, are obtained as a weighted sum 
of factors derived from the number of indicators of mine presence at each point (IMP), with 
a superimposition of vectors having a see-through inside, representing the number of 
indicators of mine absence (IMA) at each point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Continuous location map (SMART consortium, 2004). Grey areas are outside of the 

scope of SMART, while no data exists for white areas. Demined areas are light green. 
IMAs are superimposed as parallel white and green lines. The degree of danger is on 
the scale from green (low) via yellow (intermediate) to red (high) 

 
During the process of area reduction, the decision makers can refer to information relating 
to the IMA and the associated confidence values. The other key element is the information 
that concerns the IMP and the associated confidence values. As pointed out by the end 
users, this information can be of use for prioritizing the mine clearance operations.  
Validation was done by blind tests at three sites in Croatia (Yvinec, 2005) having 3.9 km2 in 
total: Glinska Poljana (0.63 km2, fertile valley surrounded by hills), Pristeg (1.5 km2, rocky, 
Mediterranean area) and Čeretinci (1.7 km2, flat agricultural area). In each site clearing was 
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performed after the flight campaign in order to have the true status of the mine presence, 
but this information was not available before the validation of produced danger maps. From 
these maps, a selection of areas proposed for area reduction was done, and areas considered 
as suspect were selected too. In average 25% of the mine-free area has been proposed for 
reduction: Glinska Poljana – 7.7%, Pristeg – 9.0% and Čeretinci – 47%. The error rate of 0.1% 
is relatively constant for all three sites. In addition to this technical evaluation, a panel of 
independent mine action experts working in Croatia has evaluated the SMART method and 
danger maps. They recognized SMART as a successful project that solved several crucial 
problems of the aerial survey of the suspected areas, especially by approved indicators of 
mine presence, efficient use of very different sensor techniques, data fusion and danger map 
functionalities. It has been found that it might be even more suited for risk assessment. 

 
6. Conclusion 
 

Several fusion methods for close range humanitarian mine detection and remote sensing 
mined area reduction are presented and compared. These methods are based on the belief 
functions as well as on the fuzzy/possibility theory.  
Regarding close range mine detection, the differences at the combination step are mainly 
highlighted in this comparison. The modeling step is performed according to the semantics 
of each framework, but the designed functions are as similar as possible, so as to enhance 
the combination step. Different fusion operators are tested, depending on the information 
and its characteristics. An appropriate modeling of the data along with their combination in 
a possibilistic framework leads to a better differentiation between mines and friendly 
objects. The decision rule is designed to detect all mines, at the price of a few confusions 
with friendly objects. This is a requirement of this sensitive application domain (mines must 
not be missed). Still the number of false alarms remains limited in our results. The 
robustness of the choice of the operator is also tested, and all mines are detected for all 
fusion schemes. The proposed modeling is flexible enough to be easily adapted to the 
introduction of new pieces of information about the types of objects and their characteristics, 
as well as of new sensors.  
As far as remote sensing mined area reduction is concerned, the concept of the whole 
method is described, developed within the SMART project, and most of the attention is 
given to the data fusion task. The proposed fusion approaches are to a large part original 
and constitute by themselves a result of the project. Results have been obtained on three test 
sites in Croatia, being representative of the South Eastern Europe, with the three most 
promising approaches, and as an example, fusion results for one of the sites are given here. 

Note that in order to apply the proposed methodology in another context, a new field 

campaign would be needed to derive and implement new general rules.  We have shown 
how the results can be improved by introducing additional knowledge in the fusion process. 
A spatial regularization at a regional level further improves the results. At the end, the 
results are at least as good as the ones provided for each class by the best classifier for that 
class. Therefore they are globally better than any input classifier or detector. This shows the 
improvement brought by fusion. 

The user has the possibility to be involved in the choice of the classifiers, in the choice of 

some of the parameters (in particular for the fuzzy fusion approach, some supervision is still 
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required in the choice of the parameters), and the programs are flexible enough to allow him 
to modify them at wish. 
The work done here is useful in many other applications, even in quite different domains, 
and constitutes thus a large set of methods and tools for both research and applicative work. 
The developed schemes have a noticeable variety and richness and constitute a real 
improvement over existing tools. 
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