
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2018

Landmine detection using semi-supervised learning. Landmine detection using semi-supervised learning.

Graham Reid
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Computational Engineering Commons

Recommended Citation Recommended Citation
Reid, Graham, "Landmine detection using semi-supervised learning." (2018). Electronic Theses and
Dissertations. Paper 3132.
https://doi.org/10.18297/etd/3132

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=ir.library.louisville.edu%2Fetd%2F3132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3132
mailto:thinkir@louisville.edu

LANDMINE DETECTION USING SEMI-SUPERVISED LEARNING

By

Graham Reid
B.S., Computer Engineering and Computer Science, University of Louisville, 2014

A Thesis Submitted to the Faculty of the JB Speed School of Engineering of the
University of Louisville in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Engineering and Computer Science
University of Louisville

Louisville, Kentucky

December 2018

Copyright 2018 by Graham Reid

All rights reserved

LANDMINE DETECTION USING SEMI-SUPERVISED LEARNING

By

Graham Reid
B.S., Computer Engineering and Computer Science, University of Louisville, 2014

A Thesis Approved On

September 11, 2018

by the following Thesis Committee:

Hichem Frigui, Ph.D., Advisor

Amir A. Amini, Ph.D.

Olfa Nasraoui, Ph.D.

ii

ABSTRACT

LANDMINE DETECTION USING SEMI-SUPERVISED LEARNING

Graham Reid

September 11, 2018

Landmine detection is imperative for the preservation of both military and

civilian lives. While landmines are easy to place, they are relatively difficult to

remove. The classic method of detecting landmines was by using metal-detectors.

However, many present-day landmines are composed of little to no metal, necessi-

tating the use of additional technologies. One of the most successful and widely

employed technologies is Ground Penetrating Radar (GPR). In order to maximize

efficiency of GPR-based landmine detection and minimize wasted effort caused by

false alarms, intelligent detection methods such as machine learning are used. Many

sophisticated algorithms are developed and employed to accomplish this. One such

successful algorithm is K Nearest Neighbors (KNN) classification. Most of these al-

gorithms, including KNN, are based on supervised learning, which requires labeling

of known data. This process can be tedious. Semi-supervised learning leverages both

labeled and unlabeled data in the training process, alleviating over-dependency on

labeling. Semi-supervised learning has several advantages over supervised learning.

For example, it applies well to large datasets because it uses the topology of unlabeled

data to classify test data. Also, by allowing unlabeled data to influence classifica-

iii

tion, one set of training data can be adopted into varying test environments. In this

thesis, we explore a graph-based learning method known as Label Propagation as an

alternative classifier to KNN classification, and validate its use on vehicle-mounted

and handheld GPR systems.

iv

TABLE OF CONTENTS

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES viii

1 INTRODUCTION AND OVERVIEW 1

2 RELATED WORK . 4

2.1 Background . 4

2.2 Prescreening . 7

2.3 Feature Extraction . 7

2.4 Discrimination Algorithms . 10

2.4.1 The K-Nearest Neighbor (KNN) Classifier 10

2.4.2 Label Propagation . 13

3 LANDMINE DETECTION USING SEMI-SUPERVISED LEARNING 20

3.1 Motivations . 20

3.2 Preprocessing . 21

3.3 Edge Histogram Descriptor (EHD) Feature Extraction 24

3.4 Data Summarization and Representation 26

3.4.1 Locating Mine Signatures within Alarms 27

3.4.2 Learning Prototypes . 28

3.4.3 Labeling . 29

3.4.4 Graph Construction . 31

3.4.5 Unlabeled Data . 32

v

3.5 Discrimination Algorithms . 33

3.5.1 Discriminative Classifier Mode 34

3.5.2 Prescreener Mode . 34

4 EXPERIMENTAL RESULTS . 36

4.1 Landmine Detection Using Vehicle Mounted GPR array 36

4.1.1 Datasets . 37

4.1.2 EHD Feature Extraction for Vehicle Mounted GPR . . . 37

4.1.3 Label Propagation . 40

4.1.4 Graph Construction . 40

4.1.5 Analysis of the different LP variations 41

4.2 Landmine Detection Using Handheld GPR device 42

4.2.1 Datasets . 44

4.2.2 Prescreener . 44

4.2.3 Training Methods . 46

4.2.4 Fuzzy and Possibilistic Membership 49

4.2.5 LP Experiments . 51

4.2.6 LP as a Prescreener . 53

5 CONCLUSIONS AND FUTURE WORK 55

5.1 Conclusions . 55

5.2 Potential Future Work . 57

REFERENCES 59

CURRICULUM VITAE 66

vi

LIST OF TABLES

1 Statistics of the Datasets . 37

vii

LIST OF FIGURES

1 Example of an A-scan. The large variation seen around depth 50 is

caused by ground bounce. 6

2 Example of a B-scan consisting of 200 A-scans with a deep target

located around scan 100. These A-scans are uniformly sampled to be

at least 1 cm apart. The colors depict signal strength. 6

3 Illustration of the EHD feature extraction performed on landmine GPR

image data with no nonedge. 9

4 Illustration of KNN classifier. The label of a test point is calculated

by combining the labels of its (k=4) nearest neighbors. 11

5 Illustration of LP classification. By constructing a fully connected

graph over all points, the topology of the data is used to propagate a

label onto the test point. For clarity, not all edges are shown here. . . 14

6 Flowchart illustrating proposed GPR preprocessing method on hand-

held data. 22

7 Illustration of the location of the background buffer Rbg relative to the

current scan sk that is being normalized. 23

8 A sample GPR B-Scan (a) before background subtraction and (b) after

background subtraction. 23

9 (a) Example of preprocessed mine GPR region and the (b) overlap-

ping subwindows into which it is divided. From each subwindow a

corresponding signature and EHD feature vector will be extracted. . . 25

viii

10 (a) Example preprocessed GPR image. (b) calculated edge amount at

each scan from (a), at the depth marked by the dotted red line. (c)

normalized edge amount calculated at the same locations. 26

11 Example of a mine signature with its calculated feature vector EHD(Sxy).

Subimages and their calculated histograms Hxyi are separated by the

red dotted lines (subimages have slight overlap and aren’t exclusively

separated by the red lines). 27

12 Example of how contextual unlabeled data can be extracted. Rtst is

the region from which features are extracted for testing. Rul is where

additional unlabeled data will be extracted to aid LP in label assignment. 33

13 Positional plot of prescreener assigned confidences by UTM coordinate. 35

14 Visual example of 3-D GPR data. 38

15 Visual example of (a) downtrack and (b) crosstrack b-scans taken from

GPR data. 39

16 ROC’s obtained using all 4 LP algorithms on Dataset 1: Iterative

LP, LP based on Jacobi Iteration, LP Based on Label Spreading, and

Closed Form LP. 42

17 ROC’s obtained by incorporating additional unlabeled data into the

LP algorithm to aid in classification on Dataset 1. 43

18 Results from applying a prescreener (blue), possibilistic KNN classifier

(black), and LP classifier (red) on 4 datasets. 43

19 Example of mine signature with high diagonals d1 and d2 and anti-

diagonals a3 and a4. 45

20 Example of combined kernel density for a target: (a) Preprocessed

image. (b) KDE estimated using first group of negative clusters. (c)

Using second group. (d) Sum of (a) and (b). 48

ix

21 Results of applying training methods from section 3.4 to learn proto-

types that are used for a KNN classifier on a handheld dataset. . . . 49

22 Comparison of 3 prototype labeling methods for the KNN classifier. . 50

23 Comparison of results from using Possibilistic and Fuzzy Memberships. 51

24 Comparison of experimentally selecting σ, heuristically choosing σ, and

using a KNN tree as our graph, for our LP classifier. 52

25 Results of including unlabeled data with LP on handheld dataset. . . 53

26 Results of comparing best KNN and LP classifiers. 53

27 Results of comparing KNN and LP as prescreeners. 54

x

LIST OF ALGORITHMS

1 Zhu and Ghahramani (Iterative) . 15

2 LP Based on Jacobi Iteration . 16

3 LP based on Label Spreading . 17

4 Closed Form Label Propagation . 19

5 EHD Prescreener . 45

xi

CHAPTER 1

INTRODUCTION AND OVERVIEW

Landmine detection is a challenging but essential endeavour to the protection

of civilian and military lives. While mines are fairly easy to plant, they are relatively

difficult to detect. This is in part due to the advent of plastic explosives that cannot

be discovered using energy-based detection methods, such as the kind used in metal

detectors. Instead, present-day methods rely on signal analysis and image processing

techniques to identify unique shapes and signals that are representative of landmine

signatures beneath the earth. These methods are employed in both vehicle-based and

handheld sensing devices.

Many landmine detectors employ numerous sensing methods simultaneously.

Some of the most frequently used are Electromagnetic Induction (EMI), and more

recently, Ground Penetrating Radar (GPR). The latter is more advantageous in de-

tecting low-metal and non-metal targets which EMI is incapable of sensing. GPR also

has the advantage that its signals can be reconstructed into an image. This image

can then be analyzed using image processing and machine learning for the purpose

of recognizing visual patterns within the radar.

There are three primary steps involved in landmine detection with GPR: pre-

screening, feature extraction, and alarm classification. Prescreening refers to the

process of screening large quantities of data to identify anomalies. The goal of a

prescreener is to be fast and to catch as many suspicious areas as possible. This

means that a prescreener should prioritize recall at the potential expense of preci-

1

sion. Prior to prescreening, the raw GPR data may be preprocessed using various

normalization methods and other techniques that reduce noise. After prescreening,

the samples are positionally clustered, and single confidence values are assigned to

collective positional areas of ground to speed up the more time-consuming process of

feature extraction and classification. The output of the prescreener is a set of alarms,

or areas of interest, to be fed into a classifier. The classifier typically employs tech-

niques directly on the preprocessed GPR data to yield feature vectors which are used

as observations evaluated by a learning algorithm. Classification refers primarily to

the use of machine learning techniques to discriminate between potential targets and

false alarms.

Classifiers that have been used for GPR based landmine detection generally

fall into two categories: model-based, and instance-based. Model-based classifiers

construct generative models that attempt to capture the underlying properties that

define the data, and classify by estimating how much a test point conforms to assump-

tions made about the properties of the data. Instance based classification does not

attempt to capture the properties of the data. Instead, representatives of data points

are learned during training. These representatives, whose class labels are known, are

then used during testing by comparing them to test points and using their similarity

to determine the labels of test points. Both of these methods of classification are

supervised, which means that they require training in order to distinguish mines and

clutter. These learning methods are thus highly dependent upon accurate training

data. During testing, label assignment is impacted only by a test point’s comparison

to the training data, without insight into the context surrounding that test point.

Supervised learning does not take unlabeled data into account when assigning labels,

potentially missing contextual clues in the test data that may aid the learning process.

In this thesis, we investigate the use of semi-supervised learning with labeled

2

and unlabeled data for classification. In particular, we examine the performance of a

graph-based, instance-based learning method called Label Propagation (LP) as a new

approach to the classification step. We evaluate the results of various implementations

and experiments using LP, and compare them to nearest neighbor classification, which

is another instance-based learning method that has proven successful in landmine

detection.

Although LP does not require much training, it still must learn a set of rep-

resentative prototypes. We explore several methods for learning prototypes, such as

Multiple Instance Learning (MIL) and hierarchical clustering. Additionally, we ex-

periment with fuzzy and possibilistic labeling, which has proven useful in landmine

detection classification.

We demonstrate our methods on both vehicle-mounted and handheld GPR

devices. We show that an LP classifier can consistently match or outperform a kNN

classifier using the same set of prototypes and labels, assuming that the prototypes

accurately represent the data. While our primary interest is in applying LP as a

classifier, we also demonstrate its feasibility as a prescreener.

The organization of the rest of this thesis is as follows. In chapter 2, we dis-

cuss existing implementations of classification systems in both vehicle and handheld

landmine detection. These systems include various preprocessing methods, feature

descriptors and learning algorithms. In chapter 3, we describe our proposed Label

Propagation classification method, including prototype learning and algorithm imple-

mentation. In chapter 4 we cover the results of our proposed methods, and discuss

the implications of those results. Finally, in chapter 5 we draw conclusions about our

results, and outline potential future experiments to improve them.

3

CHAPTER 2

RELATED WORK

2.1 Background

Historically, metal detectors were used to detect landmines. However, several

difficulties have demonstrated that EMI sensing alone is insufficient for detecting

landmines and other explosive devices. For example, EMI sensors are overly sensi-

tive to metallic debris and have high false alarm rates in areas where there is a large

amount of shrapnel and other miscellaneous metal material [1]. GPR is much less sus-

ceptible to this kind of contamination. Also, many modern landmines are composed

of little or no metal, yet GPR is shown to be capable of detecting these landmines

despite their non-metallic composition, while EMI is not [2]. Further, the typical

range of depths under the earth at which landmines are buried is shallow enough to

be precisely portrayed by GPR at high resolutions [3]. Ultimately, studies have shown

that applying both EMI and GPR outperforms the use of either used alone [4]. GPR

is not without its share of problems however. For example, GPR is susceptible to

high signal reflection at the surface of the earth, commonly referred to as ”Ground

Bounce” [5]. The existence of the ground bounce is an important consideration for

both vehicle and handheld GPR analysis.

Handheld GPR differs from vehicle-mounted GPR in several ways. Where ve-

hicle GPR utilizes several dozen channels emitting and collecting signals to construct

a GPR image, a handheld GPR uses significantly less. This means that the recon-

structed image is limited to two dimensions, which restricts the available algorithms

4

that can be used [6]. Despite the smaller number of channels, a handheld GPR device

may be used to sweep repeatedly over the same area of ground multiple times, where

a vehicle-mounted GPR device generally passes over an area of ground only once.

Another and more significant trait of handheld GPR is the effect of operator use on

the reconstructed image. A vehicle-mounted GPR device is held quite steady relative

to the ground assuming that the ground is level. Handheld GPR is susceptible to

height variations which can occur if the operator is not holding the device steadily.

Another possibility is that the operator could be descending or ascending a hill, where

it is more difficult to keep the device at even distance with the ground. These are all

scenarios that can cause the reconstructed GPR image to appear shaky and produce

noise. These inconsistencies in the data can result in noisier features, making dis-

criminative algorithms less reliable [7]. This has led to suggestions of a system that

uses the handheld device as a guide, while ultimately relying upon the operator’s

discretion in determining whether an alarm is due to error or not [8]. Hence, a large

focus of many of the currently developed handheld GPR detection algorithms are

intended to operate as prescreeners serving the purpose of flagging as many alarms as

possible, without taking extra time to identify or validate the alarms, which is what

a classifier might do.

GPR image construction works as follows: The signals transmitted by GPR

reflect back from the ground and are received by sensors on a device. These signals

are interpreted as a function of time. This interpretation is referred to as an A-scan,

and can be plotted as a line depicting time, or depth, along one axis, and signal

strength along another axis. An example of an A-scan is shown in figure 1. One

A-scan is collected for each position at which signals are emitted and received. These

A-scans can be concatenated to form a 2-dimensional image, referred to as a B-scan.

A group of A-scans form a B-scan which can be visualized as a 2-D image. Figure 2

5

shows an example of a B-scan. The A-scans (hereafter referred to as ”samples”) are

lined up along the x-axis.

Figure 1. Example of an A-scan. The large variation seen around depth 50 is caused
by ground bounce.

Figure 2. Example of a B-scan consisting of 200 A-scans with a deep target located
around scan 100. These A-scans are uniformly sampled to be at least 1 cm apart.
The colors depict signal strength.

6

2.2 Prescreening

Several prescreeners have been employed in vehicle GPR. One commonly used

prescreening method is based on the Least Means Squared (LMS) [9, 5, 10, 11].

This LMS prescreener works by modeling the GPR data and removing an estimated

mean from each sample. This approach is useful for removing ground bounce and

suppressing areas with consistently high energies. Other techniques that have been

explored in prescreening include median filtering, ground alignment, and Gaussian

Mixture Models [12].

In the domain of handheld GPR, several new techniques have been explored for

prescreening, such as curvelet filters [13], background adaptive division filtering [14],

and deep belief networks [15]. Prescreeners are typically used as a first pass for data

to go through before being evaluated by a more discriminative and computationally

intense classifier. However, if said classifier is fast enough, it may be used in place of

the prescreener [16].

2.3 Feature Extraction

After the prescreener identifies areas of interest as potential alarms, features

are extracted from these areas and used to represent the alarms in a way that can

be discriminated by a classifier. Features, or more specifically feature vectors, refer

to numeric vectors that characterize individual instances of data. By describing an

observation as a vector, it can be compared with other observations by means of a

classifier which can then label and differentiate the original data.

In the case of landmines, features are used to capture the hyperbolic shape

characteristic of a landmine signature. From figure 2, one can see an example of this

hyperbolic pattern found in a target signature. It is often the objective of a particular

feature representation to capture this hyperbolic shape as a sequence of rising, flat,

7

and falling edges. This is often done by quantizing the edge presence within a B-

scan image. By using image filtering with edge filters corresponding to 45, 0, and

-45 degree gradients, one can measure the amount of rising, flat, and falling edge,

respectively, contained in the image.

Edge Histogram Descriptor (EHD) is one such feature extraction method that

uses edge filters and has been successfully used in the context of landmine detection

[10, 17, 18, 19]. EHD features capture the salient edge content of an image and

represent it by concatenated histograms.

Figure 3 illustrates the process of extracting EHD features from GPR image

data. First, the GPR image is divided by depth into N overlapping sub-windows.

Then, four different edge filters are applied to each of the sub-windows. Each of

these filters corresponds to a type of edge: horizontal, vertical, diagonal, and anti-

diagonal. This filtering produces four new images per sub-window – one per type of

edge. Each of these new images represents the strength of that type of edge at each

pixel. By taking the maximum intensity value over all four images, each pixel votes

for whichever edge type is most prominent at that location. This gives us a matrix

of indices that represents the strongest edge type for each pixel. We then construct

a histogram for each of these matrices that represents the proportion of each type of

edge in each sub-window. Often, a threshold is used to require that the maximum of

the four images at a pixel location be relatively large, otherwise the pixel is counted

as ”nonedge”, which will be a fifth edge type. Finally, we concatenate the histograms

of the sub-windows together to obtain our EHD feature vector of length (N ∗ 4), or

(N ∗ 5) if a non-edge category is used.

Another edge-based feature representation, which has been applied successfully

to landmine detection, is the Histogram of Oriented Gradients (HOG) [20, 21, 22, 23].

HOG can be considered as a generalization of EHD. Instead of restricting the edge

8

Figure 3. Illustration of the EHD feature extraction performed on landmine GPR
image data with no nonedge.

type to four specific directions, each pixel is associated with a quantized gradient

direction.

Local Binary Patterns (LBP) is another feature type that has been used in

landmine detection [20, 23]. Instead of using gradient features like EHD and HOG,

LBP uses binary patterns that depict comparisons of a central pixel’s intensity value

to its neighboring pixels. Fisher Vectors (FV) have also been explored in landmine

detection [24]. FV uses variation from statistical models to characterize image data.

Finally, frequency domain features have also been used to describe GPR images for

landmine detection [25, 26]. In this thesis, we focus on EHD features to represent the

alarms. However, other features could be easily integrated.

9

2.4 Discrimination Algorithms

Once the features are decided and extracted for all data that passed the pre-

screener, a classifier, which can label a signature as either mine or false alarm, must

be learned. Classification is a supervised learning technique that involves training and

testing. These steps vary depending on the classification algorithm used. Training

is the process of using a collection of labeled data to learn a mapping between the

distribution of the features of the data and the labels associated with those features.

Testing is the process of using the learned mapping to predict the label of new test

samples.

To reduce the sensitivity of the results to the selected training and test subsets,

typically, the validation of a classification algorithm is performed using multiple cross-

validation folds. These folds are partitions of the original dataset into mutually

exclusive learning/testing subsets of data. For instance, using 10 fold cross validation,

9 out of 10 subsets of the data are used for training, while the 10th subset is tested.

The results of these 10 folds are then combined and scored to evaluate a classifier’s

performance.

Alarm classification is a subject of research that has been well explored. Ex-

amples of classifiers that have been used include K-Nearest Neighbors (KNN) [19]

Support Vector Machines (SVM) [24, 27], and Hidden Markov Models (HMM) [21,

18, 28, 29, 30]. In this thesis, we compare our proposed LP classifier with the provenly

successful KNN classifier.

2.4.1 The K-Nearest Neighbor (KNN) Classifier

KNN is a simple algorithm that classifies a test sample by comparing it to

training data with known labels. Like most classifiers, KNN involves both training

and testing. Training in this case refers to the process of deciding on a set of example

10

vectors to use as anchor points. Testing involves comparing an unknown test sample

to the example vectors. A confidence value is assigned to the test point based on

the labels and proximity of the k closest training samples. A visual illustration of

how KNN works is presented in figure 4. In this figure, the label of a test sample

is calculated by identifying the (k=4) nearest neighbors and combining their labels

using either a simple or weighted average.

Figure 4. Illustration of KNN classifier. The label of a test point is calculated by
combining the labels of its (k=4) nearest neighbors.

Ideally, a KNN classifier could compare all test data to all training data to

identify the labels of test data. However, in most cases the training data are too

large and would cause comparison of test and training data to become slow and

inefficient. For this reason, training points are summarized by few representatives.

These representative prototypes will have assigned labels learned from the training

data they represent.

Other classifiers, such as SVM [24, 27], HMM [21, 18, 28, 29, 30], Random

Forest [16], Neural Networks [31], and Bayesian Relevance Vector Machines [32] learn

the distribution of the training data and identify boundaries that can separate obser-

vations from different classes in the feature space. Comparatively, training a KNN

11

classifier is relatively simple, which typically results in faster training.

While KNN may be an attractive classifier due to its ease of use, interpretabil-

ity, and generalization ability, its performance is dependent upon the quality of the

labeled samples learned during training. This means that careful selection of these

prototypes during training is key for good classification results. In some cases, it

may be sufficient to choose these samples manually, but in many other cases it is

better to learn them automatically from a training dataset. Methods that can learn

prototypes from training data include clustering (k-means, fuzzy c-means), Multi-

ple Instance Learning (MIL) [21, 31, 33, 34], Self Organizing Maps (SOM) [19], and

transfer learning [35].

After a set of training prototypes is learned, they are labeled based on what

class they belong to. A simple way of labeling these prototypes is using binary labels.

If a prototype represents a group of alarms that include more targets than clutter,

then it will be labeled as a target. Otherwise, it will be labeled as clutter. Another

approach is to use fuzzy labeling. Fuzzy labeling assigns a value between 0 and 1

depending on the target to clutter ratio of the alarms assigned to its cluster. Fuzzy

labeling has been applied to landmine detection in many classifiers [36, 34, 37, 38, 31].

Possibilistic membership is another labeling alternative. Possibilistic labeling

accounts for the possibility that a particular training prototype may not belong to any

available class label. With this, the requirement that the memberships of a prototype

to all class labels sum to one is relaxed. Instead, a prototype is assigned a ”soft” label

that reflects its membership to each class label and which only expresses the likelihood

of belonging to a particular class. Like fuzzy labeling, possiblistic membership has

been extensively applied in landmine detection [24, 19, 36].

During classification, confidence values are assigned to observations indicating

whether they belong to one class or another. Similar to the labels of the training

12

prototypes, a test point’s confidence may be a binary 0 or 1, or it could be any

value within the range of all unique values assigned by the classifier. Once testing is

finished, this range is used to plot a Receiver Operating Characteristic curve [39].

2.4.2 Label Propagation

The classification methods mentioned in section 2.4 are all supervised machine

learning algorithms. This means that these algorithms use only labeled training data

to learn a mapping that can predict the label of a new test sample. Label prop-

agation, however, is a semi-supervised machine learning method. Semi-supervised

learning algorithms also use labeled training data; However, they differ from super-

vised classifiers because they utilize additional unlabeled data to assist labeled data

during training and/or testing. In addition to being semi-supervised, Label Propaga-

tion is a graph-based algorithm that computes pairwise similarities between labeled

and unlabeled data points, converts these similarities to edges in a graph, and uses

this graph together with the labels of the training data to compute the labels of the

unlabeled points. Recent applications for which Label Propagation has been used

include Saliency estimation [40] and object tracking in video data [41, 42, 43, 44]. In

many of these applications, LP is used as an intermediary and high-speed classifier

to identify objects between frames. A slower and more powerful classifier is used to

recognize objects in the initial frame.

LP, like KNN, uses the pairwise similarities between observations to assign la-

bels to test samples. However, KNN only considers the distance between a test point

and its closest training points when assigning its confidence value. LP instead uses the

pairwise similarities between all data to assign a confidence value to any test point.

This includes other test points and other prototypes that aren’t necessarily nearest

neighbors. Figure 5 illustrates how this process differs from KNN (as illustrated in

13

figure 4). LP includes more information in confidence assignment by constructing a

fully connected graph over all points (training and testing), and using the topology of

the graph to assign an appropriate confidence value to each of the unlabeled points.

This means that as long as the features describe the data accurately, the more unla-

beled data one includes in testing, the more reliable one can expect classification to

be.

Figure 5. Illustration of LP classification. By constructing a fully connected graph
over all points, the topology of the data is used to propagate a label onto the test
point. For clarity, not all edges are shown here.

In the following, we explore four different implementations of the Label Prop-

agation. The first three of which are iterative, while the last algorithm offers a closed

form solution.

2.4.2.1 Zhu and Ghahramani (Iterative Label Propagation) Algorithm

The first of these methods uses an iterative approach proposed by Zhu and

Ghahramani (2002) which repeats three steps: (1) propagate labels through graph,

(2) row-normalize graph, and (3) clamp labels of training data.

Let XL = {x1,x2, · · · ,xNL
} represent NL feature vectors of the labeled sam-

14

ples, and YL = {y1,y2, · · · ,yNL
} be the labels of those samples. Let

XU = {xNL+1,xNL+2, · · · ,xNL+NU
} be the feature vectors of the NU feature vec-

tors of the unlabeled data. First we calculate the pairwise distances between all pairs

of instances in the union set X = {XL ∪ XU}. We obtain the distance matrix D,

where dij is the distance between observations xi and xj. We then construct a fully

connected graph over X where nodes represent the xi ∈ X, and the edge between

nodes xi and xj, wij, is proportional to the similarity between xi and xj. We use the

following equation to calculate these similarities.

wij = exp
(
− d2ij

σ2

)
(1)

The value of σ in (1) is a parameter that is used to control the distance at

which two nodes will influence each other. The smaller σ, the closer two nodes must

be to affect one another significantly.

Next, we calculate the diagonal degree matrix Dg that is simply the sum of

the edge weights for each row in W:

Dg
ii =

∑
j

wij (2)

We then append NU zeros onto the end of the YL to get Y 0 ← {YL, 0, 0, . . . , 0}.

Then, the algorithm propagates the labels while clamping the values of the prototypes

to their known labels, and repeats until convergence. This is outlined in algorithm 1.

Algorithm 1: Zhu and Ghahramani (Iterative)

Compute affinity matrix W from (1)
Compute diagonal degree matrix Dg from (2)
Intialize Y (0) ← {YL, 0, 0, . . . , 0}
Iterate:

1: Y t+1 ← (Dg)−1WY t

2: Y t+1
1,...,NL

← YL

Until convergence of Y

15

Step 2 in the ”Iterate” portion of algorithm 1 serves to clamp the known labels

YL while step 1 propagates the class labels based on the topology of the data.

2.4.2.2 Label Propagation based on Jacobi Iteration

The Jacobi Iteration algorithm for LP [45] is inspired by the Jacobi iterative

method for linear systems. In this algorithm, we allow YL to change based on the

topology of the data and the initial labels of the known points YL
(0). This algo-

rithm uses a parameter α to control the influence of the initial labeling. It starts by

computing a matrix A using

aii ← I[l](i) + µDg
ii + µε (3)

where Dg is computed using (2), and I[l](i) is the identity matrix over the l labeled

points. In (3), µ = α
1−α , where α ∈ (0, 1) is a coefficient that controls the degree to

which labels of labeled samples are allowed to change. Our initial labels Y 0 are the

same as in algorithm 1. With the known labels allowed to change, the LP calculation

changes as well. The complete is outlined in algorithm (2).

Algorithm 2: LP Based on Jacobi Iteration

Compute affinity matrix W from (1)
Set wii ← 0
Compute diagonal degree matrix Dg from (2)
Choose value for α ∈ (0, 1) and let µ = α

1−α
Compute diagonal matrix A using (3)
Intialize Y (0) ← {YL, 0, 0, . . . , 0}
Iterate:

1: Y t+1 ← A−1(µWY (t) + Y (0))

Until convergence of Y

A large value for α will allow the topology of both the labeled and unlabeled

points to influence the classification, and a small value of α will allow the initial

labeling of the prototypes to influence the classification.

16

2.4.2.3 Label Propagation based on Label Spreading

LP with label spreading relies on the Laplacian of the degree matrix D which

results in a similar but different result as algorithm 2. The technique used is referred

to as “label spreading” [45], in which each node receives a contribution to its label

from each of its neighbors, in addition to a contribution by the original labeling of

the prototypes.

First, we compute the degree matrix Dg as in (2). Next we compute the graph

Laplacian of Dg using

L ← (Dg)−1/2W(Dg)−1/2 (4)

Once again we initialize Y (0) as in algorithm 1 and decide on a value for the

parameter α to control the influence of the data’s topology against initial labeling of

the prototypes. This gives us the following algorithm:

Algorithm 3: LP based on Label Spreading

Compute affinity matrix W using (1)
Set wii ← 0
Compute diagonal degree matrix Dg using (2)
Compute normalized graph Laplacian using (4)
Intialize Y (0) ← {YL, 0, 0, . . . , 0}
Choose value for α ∈ [0, 1)
Iterate:

1: Y (t+1) ← αLY (t) + (1− α)Y (0)

Until convergence of Y

Similar to algorithm 2, α directly affects the influence of the topology and

inversely affects the initial labeling Y (0).

17

2.4.2.4 Zhu and Ghahramani (Closed Form Label Propagation Algorithm)

Zhu and Gharhamani proposed an alternative approach to the iterative algo-

rithm outlined in algorithm 1. This approach proves that repeating the iterative steps

from algorithm 1 can be shown to converge to a closed form solution [46].

First, we construct a probabilistic transition matrix T from the similarity

matrix computed in (1) using

Tij = P (j → i) =
wij∑NL+NU

k=1 wkj
. (5)

Essentially, (5) represents a random walk, where each element in T is the likelihood

of randomly moving from node j to node i. We then row normalize the matrix using

T̄ij =
Tij∑NL+NU

k=1 Tik

(6)

T̄ is a square matrix of size NL +NU then can be split into four sub-matrices:

 T̄LL T̄LU

T̄UL T̄UU

 (7)

In (7), T̄LL consists of all transitions from a labeled point to another labeled point.

T̄UL consists of all transitions from an unlabeled point to a labeled point, etc.

It has been proven [46] that the labels of the unlabeled points can be computed

using the following equation:

YU =
(
1− T̄UU

)−1
T̄ULYL (8)

The complete process is outlined in algorithm (4).

18

Algorithm 4: Closed Form Label Propagation

Compute transition matrix T̄ using (5) and (6)
Split T̄ into four sub-matrices as per (7)
Compute labels of unlabeled data YU using (8)

19

CHAPTER 3

LANDMINE DETECTION USING SEMI-SUPERVISED

LEARNING

In this chapter, we start by motivating the advantages of using semi-supervised

learning as an alterative to supervised learning for landmine detection. We validate

this by using Label Propagation (LP) as an alternative to a K-Nearest Neighbor

(KNN) based classifier. We outline our architecture which includes preprocessing,

prescreening, feature extraction, and discrimination steps. Our architecture will be

demonstrated on vehicle-mounted and hand-held landmine detection systems. The

intermediate steps involved are illustrated using visualizations of landmine data.

3.1 Motivations

The goal of a discriminative algorithm in landmine detection is to correctly

separate a set of alarms into mines and clutter. KNN classification is an example of

a discriminative algorithm that does this well [10, 19]. In this thesis, we provide an

alternative classifier to KNN that takes advantage of available unlabeled data.

In domains where the underlying characteristics of the data can vary between

datasets, it is critical to have a discriminator that is robust. KNN classification has

proven to be robust, especially in the context of detecting landmines from vehicle

GPR data [19]. This is due in large part to the development of systems which train

a KNN classifier by summarizing a larger training set of data with a smaller set of

representatives. It is this summarization that prevents classifiers from over-fitting the

20

learning data and allows these systems to generalize well to new datasets.

Label Propagation shares many of the same traits as KNN. However, it has the

advantage of incorporating unlabeled data during the testing phase. In GPR based

landmine detection, there is an abundance of unlabeled data that is often discarded

during prescreening or at other stages in the landmine classification process. We seek

to utilize this data during classification to see if it may enhance the accuracy of a

learning algorithm. As a semi-supervised learning method, LP offers an approach

that combines labeled and unlabeled data to aid classification.

We consider using our learning method both as a discriminator and as a pre-

screener. Traditionally, prescreeners act as fast, simple methods of filtering larger

quantities of data into fewer regions of interest. We demonstrate the feasibility of LP

as a prescreener for handheld GPR datasets, given that our application of LP is fast

enough to operate upon raw GPR data in real-time.

We validate our system by comparing it to KNN on several GPR based land-

mine datasets, taken from both vehicle and handheld systems.

3.2 Preprocessing

Using a prescreener directly on unfiltered GPR data is prone to high rate

of false alarms due to anomalies within the data such as noise and uneven terrain.

Therefore, several preprocessing steps are used to filter, normalize, and align the

signal data.

Figure 6 illustrates all of the steps involved in our approach. The first step in

preprocessing is to uniformly sample the signal data. An operator may slow down or

speed up as the device is in use, causing the positional spacing between samples to

be uneven. Uniform sampling reduces the number of samples so that their Universal

Transverse Mercator (UTM) coordinates cannot be closer than a threshold. This way,

21

we can be sure that any two groups of adjacent samples collected that have equal size

cover the same amount of positional space.

Figure 6. Flowchart illustrating proposed GPR preprocessing method on handheld
data.

In the next step, the sampled data is concatenated to form a B-scan image.

We median filter this image to remove speckle noise and small discontinuities within

it. Noise is much more significant across samples than across depths, partially due to

the uniform sampling. Therefore, we filter each depth independently.

Next, we perform a background subtraction similar to what has been used on

vehicle GPR data [36]. In real time, the GPR data are received as A-scans which are

retrieved every 1 cm of forward advance by the device due to our uniform sampling.

We retain a B-Scan Rbg as background data (stored in a buffer) which precedes the

current kth scan by a distance Ndist. We use this B-Scan to learn the statistics of the

background of scan k (µk, σk), then, we normalize the current A-scan k using

s̄k =
sk − µk
σk

(9)

In (9), sk is all of the values collected at the kth A-scan, µk and σk are the

depth-wise mean and standard deviation computed from Rbg. Figure 7 shows the

relative locations of these regions during background subtraction. While sk is the

current scan, Rbg is stored in the buffer. We perform this background subtraction

over all scans collected from the lane GPR data, one scan at a time.

Normalizing with background subtraction helps eliminate constant (not alarm

22

Figure 7. Illustration of the location of the background buffer Rbg relative to the
current scan sk that is being normalized.

related) energies across samples, such as the high energy caused by the ground bounce.

Dividing sk by σk normalizes the strength of the signal energies across depths. This

is necessary because targets buried deeper in the ground tend to have weaker en-

ergy. Figure 8 illustrates the B-Scans of the target from figure 7 before and after

normalization.

Figure 8. A sample GPR B-Scan (a) before background subtraction and (b) after
background subtraction.

23

3.3 Edge Histogram Descriptor (EHD) Feature Extraction

After data preprocessing, our system employs an EHD feature extractor to

capture the hyperbolic shape that is characteristic of landmines in time-domain GPR

data. EHD captures the spatial distribution, degree, and orientation of edges as they

appear in GPR data.

Our implementation of EHD follows a similar process as those described in

prior landmine detection applications [19]. This approach extracts edge histograms

that measures the frequency of occurrence of edge orientations at a particular sample

within GPR data. Our time-domain GPR data are evaluated as a 2-D grayscale

image, and EHD captures the frequency and direction of edges within it.

We apply 2-D EHD edge operators as the hand-held GPR data has a single

channel. Each region, i.e. B-Scan, Rtst that we evaluate spans 21 scans across (a

center scan plus 10 scans before and after it). This region is subdivided by depth

into several overlapping windows, as demonstrated in figure 9. Let Sxy be the 2-

D signature of one of these windows for a given region. We compute each of four

categories of edge strengths: horizontal, vertical, diagonal, and anti-diagonal.

Following this computation, we apply a similar background normalization as

the one described in section 3.2 to each of these edge strength values independently.

Figure 10 demonstrates the benefit of performing this additional normalization. With-

out normalization, horizontal edge activity dominates the other features, even when

no visible edge activity is present. Subtracting the mean computed from background

for each edge type normalizes the edges so the differences in edge presence are com-

pared rather than overall edge strength.

If the maximum of the edge strengths after normalization is greater than a

predetermined threshold θG, the corresponding pixel is considered an edge pixel, oth-

erwise, it is considered a nonedge pixel.

24

Figure 9. (a) Example of preprocessed mine GPR region and the (b) overlapping
subwindows into which it is divided. From each subwindow a corresponding signature
and EHD feature vector will be extracted.

Computing a single histogram over Sxy would fail to capture the hyperbolic

shape we are interested in, because histograms do not take into account spatial in-

formation. For instance, a histogram-based feature cannot discriminate between a

signature that has a diagonal edge followed by an anti-diagonal edge and one that

has an anti-diagonal edge followed by a diagonal edge.

To circumvent this, we vertically subdivide Sxy into four overlapping subimages

Sxyi , i = 1, ..., 4. These subimages overlap in order to capture sufficiently large

edges, and also to reduce the sensitivity of the feature representation to size and

locational variations between signatures. For each Sxy, a four-bin edge histogram

25

Figure 10. (a) Example preprocessed GPR image. (b) calculated edge amount at
each scan from (a), at the depth marked by the dotted red line. (c) normalized edge
amount calculated at the same locations.

Hxyi is computed. The four bins correspond to the four edge categories.

The EHD final feature extracted from Sxy is defined as the concatenation of

the 4 four-bin histograms, i.e.,

EHD(Sxy) = [Hxy1 , Hxy2 , Hxy3 , Hxy4] (10)

This process of extracting a 16-dimensional EHD(Sxy) from a signature Sxy

is demonstrated on a mine signature in figure 11. We label the individual features

hi, vi, di, and ai, to denote the horizontal, vertical, diagonal, and anti-diagonal edge

components of Hxyi

3.4 Data Summarization and Representation

All of the classifiers that we use in our experiments are instance-based. This

means that we achieve classification of our test points by comparing them with other

data. To this end, it is desired that we have as much data as possible with which to

compare our test points. However, landmine detection is a real-time process, and if

26

Figure 11. Example of a mine signature with its calculated feature vector EHD(Sxy).
Subimages and their calculated histograms Hxyi are separated by the red dotted lines
(subimages have slight overlap and aren’t exclusively separated by the red lines).

the amount of data to compare is too large, classification will be too slow to keep up

with the GPR device. To take advantage of the large amounts of available training

data and keep computations to a minimum, we summarize our labeled data by a

smaller set of representative prototypes as will be described in section 3.4.2.

3.4.1 Locating Mine Signatures within Alarms

Summarizing our data requires that we first partition them into mine signatures

and clutter signatures. Our original input data are a set of alarms. Each of these

alarms contains multiple signatures that vary by depth, and has a ground truth

indicating whether the alarm is a mine or clutter. If an alarm is a mine, it is not

known which signatures contain the hyperbolic shape signifying a target. Thus, an

algorithm is needed to locate the depth location at which the signature should be

extracted.

We explore two methods to identify the most likely target signature from each

alarm. The first one uses a simple condition that assigns a confidence value, based

27

on the diagonal edge strength in the left sub-image and the anti-diagonal edge in the

right sub-image, to all signatures belonging to all alarms. It then thresholds based

on this condition to acquire only the strongest signatures from each mine.

Our second method uses Kernel Density Estimation (KDE) [47] to locate the

mine signatures within alarms that are labeled as mines. Let P− = {p−1 , p−2 , . . . , p−k }

be a set of pre-learned prototypes summarizing clutter alarms. We estimate the KDE

of each signature xi within an alarm using

KDE(xi) =
1

z

k∑
j=1

exp(−β‖xi − p−j ‖) (11)

In (11), β is a resolution parameter learned during summarization of the clutter

signatures, and z is a normalization factor. Signatures with low assigned KDE (close

to zero) are selected as the most likely depth corresponding to an alarm’s target

signature.

3.4.2 Learning Prototypes

After the mine signatures have been extracted from their alarms, we use clus-

tering to reduce the number of mines and clutter signatures to a smaller number of

representatives which will allow our classifiers to perform efficiently. We perform this

clustering once for mine signatures and once for clutter signatures to obtain separate

sets of representatives. These representative prototypes constitute our final set of

training points which will be used by our classifiers during testing.

We explore two clustering methods. The first method uses Agglomerative

Hierarchical Clustering since the size of the training data after thresholding is typically

small enough to employ this technique, and agglomerative clustering is shown to be

generally superior to partitional clustering when the size of the training data is small

[48]. We also use complete linkage in order to ensure variation in the final set of

28

prototypes.

Our second method uses Self-Organizing Maps (SOM) for clustering. SOM has

proven successful in training classifiers for landmine detection, and is well-suited for

preserving the topology and representation of data during clustering [19].

3.4.3 Labeling

When assigning labels to indicate which prototypes are mines and which are

false alarms, the easiest way to distinguish between the two is using binary, or crisp,

labeling. In this setting, mine prototypes are assigned a label of 1, and false alarm

prototypes are assigned a label of 0 or -1.

Prototypes outputted by a training method do not equally represent their class

labels however. For example, an ideal mine signature describes a clear hyperbolic

shape. But many mine signatures do not conform to this expectation. The benefit of

training is that exceptions and subtleties are captured by a variation of prototypes,

which broadens the representation of possible mine appearances captured through

training. Further, representatives have varying importance. Some capture the most

obvious features of a mine, while others may capture less apparent indicators.

Binary labeling fails to reflect the significance of individual prototypes. It is

therefore necessary to use some other method of soft labeling to convey this additional

information about our prototypes. Ideally, the more important prototypes should be

assigned a higher label, and during classification these prototypes should have more

influence on the assigned confidence values.

We use fuzzy labeling as a way to convey the significance of the learned proto-

types. Fuzzy labeling serves to provide uncertainty during classification by allowing

our prototypes’ labels to fall into any range of numbers. We use a high value (close

to 1) to indicate a strong mine, and a low value (close to 0) to indicate a weak mine.

29

This helps establish a ranking of the prototypes learned during training that can

influence the confidence values assigned by the classifier.

For our experiments, several different methods of fuzzy labeling are used. Our

first approach uses a prescreener assigned confidence to label prototypes. This pre-

screener is detailed in chapter 4. We also use the KDE from section 3.4 as a labeling

method, where we use a set of clutter signatures learned during training to estimate

the KDE of all prototypes and assign their KDE as their label.

Finally, we look into a labeling approach that considers the nearest training

signatures to each prototype to assign its label. Let yi be the label of the ith closest

training signature to a prototype p. We compute p’s label using the average label of

the n closest training signatures, where each signature is given a label of 1 for target

and 0 for clutter. We calculate a prototype p’s label yp using

yp =

∑n
1 yi
n

(12)

We also considered possibilistic classification in our experiments. A standard

KNN classifier cannot discriminate between cases where a test point’s neighbors are

all equally close and cases where its neighbors are all equally far away. This can cause

a classifier to label a test point that is very close to all of its neighbors to have the

same label as a point that is very far away from the exact same neighbors. We use

possibilistic classification to alleviate this by relaxing the constraint that the sum of a

test point’s membership to all classes must sum to 1. During data summarization, we

calculate the mean and standard deviation of the distances of training points to each

cluster center (i.e. learned prototypes). Let µc and σc denote the calculated mean

and standard deviation for prototype c. After calculating a test point’s distance from

c, we normalize it using

30

d̄ =
max(0, |d− µc|)

σc
(13)

The normalized distance d̄ will be 0 if the test point is close to c relative to µc. Then,

we convert this value to a weight using

w =
1

d̄+ 1
(14)

We use w to adjust the contribution of prototype p to the overall confidence of the

test point. This method of labeling allows us to use the posterior distribution of the

training data in confidence assignment during testing.

3.4.4 Graph Construction

In section 2.4.2, we detailed graph construction over a set of observations,

which is required to perform label propagation. When applied to landmine detection,

we construct a graph that includes all training (labeled) prototypes and one or more

test (unlabeled) signatures. In this context, prototypes/signatures are the nodes, and

the distances between them are the edge weights in the graph.

In equation (1), we use a control parameter σ to limit the influence of adjacent

edges such that the smaller the value of σ, the closer two points must be to influence

each other’s labels. We explore few options to assign a value to σ.

The simplest method is by experimentation, where we vary σ and evaluate

the results. We compare ROCs on specific test datasets and select the best value

for σ. Another approach employs the heuristic suggested in [46] that uses minimum

spanning trees to decide σ. Specifically, by constructing a minimum spanning tree

over all training points, we find the shortest edge d connecting prototypes belonging

to separate classes within the tree. Following the assumption of normal distribution,

we let σ = d/3.

31

We also investigate the use of KNN trees as an alternative method of graph con-

struction. With KNN trees, we construct a sparse graph rather than a fully connected

one, by constructing edges only between an observation and its k nearest neighbors,

and setting the weight of all edges to 1. This method spaces the nodes evenly so that

each training point’s label is influenced equally by each of its neighbors. Construct-

ing the KNN tree replaces equation (1) from section 2.4.2. With this method, we use

experimentation to determine a good value of k to use when constructing the KNN

tree.

3.4.5 Unlabeled Data

One of the advantages of LP is its utilization of unlabeled data in the process

of label assignment. Unlabeled data are any data where the labels are not known or

are not observed. Given the ample data available during landmine detection that are

not used, we propose several methods of acquiring and utilizing unlabeled data to aid

in classification.

Unlabeled data can be collected at different points during system operation.

We explore two options. First, we consider extracting unlabeled data from a region

slightly preceding the location of the alarm reported by the prescreener. Using this

approach, we seek to examine whether including data that spatially precedes an

alarm (ie have the same soil properties) will help in propagating the labels of the

known data. We hypothesize that by creating a context around the test samples in

the feature space, we can use unlabeled samples to bridge gaps between the labeled

samples and test samples. A visual example demonstrating where unlabeled data

would be extracted relative to a test region is presented in figure 12.

The second option that we explore to collect unlabeled data uses known train-

ing points with ambiguous labels (e.g. weak mines that are more similar to clutter

32

Figure 12. Example of how contextual unlabeled data can be extracted. Rtst is the
region from which features are extracted for testing. Rul is where additional unlabeled
data will be extracted to aid LP in label assignment.

or clutter signatures that look like mines) as unlabeled data. We hypothesize that

using these points as unlabeled data, despite knowing their actual labels, provides

more flexibility by using them as ambiguous samples. Instead of committing them to

a specific label, we let them act only as bridges connecting test data to representative

prototypes.

3.5 Discrimination Algorithms

Our experiments use instance-based classification methods. Specifically, we

explore the use of KNN and several variations of the LP classifier as detailed in

section 2.4.

Our system operates in two different modes. The first is as a discriminative

classifier to accept or reject alarms that have been reported by a prescreener algo-

rithm. This is currently the only option for data collected using a vehicle mounted

GPR system. In the other mode, we use the proposed algorithm as a prescreener

33

that processes all raw data and flags potential regions. This scenario is specific to

handheld datasets.

3.5.1 Discriminative Classifier Mode

As a discriminative classifier, our system receives as input a set of alarms

identified by a prescreener. A subset of these alarms is used to train the classifier and

learn its optimal parameters. The remaining subset is used for testing and validation.

We experiment with this setting on both vehicle and handheld datasets. We compare

the performance of the different variations of the proposed LP algorithms to the

prescreener that generated the alarms. We also compare our results to those generated

by a KNN classifier receiving the same set of alarms.

3.5.2 Prescreener Mode

We demonstrate the feasibility of our system in a prescreener setting due to

its computational efficiency. In this setting, we use a different prescreener that uses

a simple condition to extract a set of alarms to train our system. This data is then

summarized to identify a set of learned prototypes.

After learning and labeling the prototypes, we begin prescreening our test

dataset to identify target locations. The input to our prescreener is raw GPR data.

At each location, we extract features for the test samples and features from samples

that precede it as unlabeled data. Our prescreener will then assign a confidence value

to each spatial location in the raw GPR data.

Each of the samples tested by the prescreener has a corresponding UTM co-

ordinate. Figure 13 shows what this looks like from a bird’s eye perspective as the

operator swings the device. Each UTM coordinate has a confidence value assigned by

the prescreener. The circle is the “halo” region representing the surface area under

34

which a target is buried. Any high confidences inside this area are considered a “hit”.

Figure 13. Positional plot of prescreener assigned confidences by UTM coordinate.

After a confidence has been assigned at each position within the GPR data,

we cluster the confidences based on their spatial location to reduce the number of

alarms outputted to a classifier.

To evaluate the performance of the proposed LP prescreener, we compare it to

a computationally efficient prescreener which we use to collect our training data. We

also compare LP to a KNN prescreener which uses the same learned prototypes.

35

CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we validate our proposed system on data collected using both

vehicle and handheld GPR systems. We first demonstrate the performance of LP

on vehicle datasets, and then explore various settings and experiments as outlined

in chapter 3. Next, we detail the implementation of our system on an experimental

handheld GPR system. We follow the same experimental analysis as per our vehicle

settings, but using data collected with a handheld system. For this application,

we look into using LP as both a discriminative classifier and as a prescreener, and

compare those options with a similar KNN-based system as well as a simple rule-

based prescreener. We use Receiver Operating Characteristic (ROC) curves [39] to

analyze the performance of our classifiers and compare them to existing algorithms.

An ROC plots the accuracy rate of a classifier against its false alarm rate for all range

of values assigned by the classifier. This allows classifiers to be compared at different

tolerances.

4.1 Landmine Detection Using Vehicle Mounted GPR array

We first investigate optimizing our proposed LP classifier on datasets collected

using vehicle mounted GPR. Vehicle-based GPR landmine detection systems are more

mature and stable than those of handheld GPR. Therefore, we first demonstrate the

validity of our system on these datasets.

36

TABLE 1

Statistics of the Datasets

Area (m2) Site Number of Targets Number of Lanes Number of Alarms
Dataset 1 28238.5 1 1738 5 1930
Dataset 2 28210.4 1 1736 5 2346
Dataset 3 113286.2 2 1377 8 1847
Dataset 4 113059.7 2 1376 8 2286

4.1.1 Datasets

We performed our experiments on vehicle-mounted GPR using four datasets.

All of these datasets were collected in 2015. Each of these datasets was obtained with

a GPR device collecting signal data over 51 channels.

The first dataset spanned 28238.5 square meters covering 1738 targets. The

second set used a different version of the sensing hardware, and spanned 28210.4

square meters covering 1736 targets from the same site. The third dataset was col-

lected from a different site than the first two sets. This dataset spanned 113286.2

square meters and covers 1377 targets. The fourth and final dataset was taken from

the same site as the third dataset, but spanned 113059.7 square meters covering 1376

targets, and used the same hardware as dataset 2. Each site contained a variety of

targets which included no-metal, low-metal, and high-metal objects. These objects

range from inactive landmines to miscellaneous clutter. An adaptive LMS prescreener

[9] was run on each of these datasets to obtain a set of alarms, which we then tested

independently using 10-fold cross validation. By dividing alarms from each lane into

10 folds, we could train and test using the same dataset.

4.1.2 EHD Feature Extraction for Vehicle Mounted GPR

In section 3.3, we explained our feature extraction as applied to handheld GPR.

Our vehicle implementation used a similar EHD feature representation, but executed

37

on 3-D GPR data. Because the vehicle GPR spans 51 channels of signal data, we used

an identical implementation as in other vehicle-based systems that use EHD features

[19], which capture edge information within a 3-D cube of GPR data per alarm. A

visual example of this is presented in figure 14.

Figure 14. Visual example of 3-D GPR data.

Let S
(z)
xy be a downtrack 2-D signature similar to Sxy from section 3.3, along the

zth channel, or plane, of a 3-D vehicle signature S(x, y, z), spanning 15 scans. Figure

15 shows a visual example of this kind of signature. We compute EHD(S
(z)
xy) using 7

overlapping windows, and subsequently obtain 7 histograms: H
(z)
xyi , i ∈ 1, . . . , 7. We

compute these histograms over Nc channels, giving us Nc downtrack EHD feature

vectors. We then obtain an overall downtrack EHDd by averaging the individual

channel EHD feature vectors, giving us

EHDd(S(z)
xy) = [H̄xy1 , H̄xy2 , H̄xy3 , . . . , H̄xy7] (15)

where H̄xyi is the cross-track average of the ith window over Nc channels calculated

by

H̄(z)
xyi

=
1

Nc

Nc∑
z=1

H(z)
xyi
. (16)

38

Figure 15. Visual example of (a) downtrack and (b) crosstrack b-scans taken from
GPR data.

Each of the 7 downtrack histograms is a 5-dimensional EHD feature vector, giving us

a 35-dimensional downtrack EHD feature vector.

We followed a similar process to calculate the cross-track component of our

EHD feature vector EHDc. We fixed the scans to obtain multiple cross-track 2-D

signatures S
(y)
xz , y = 1, ..., Ns. Due to the low resolution across channels, we take

only one histogram per signature. Finally, we obtained our cross-track component by

averaging over the signatures

H̄(y)
xz =

1

Ns

Ns∑
y=1

H(y)
xz . (17)

39

After concatenating the down-track and cross-track EHD components, the final

EHD feature vector of our 3-D alarm S
(z)
xy is a 40-Dimensional vector.

EHD(Sxyz) = [EHDd(Sxyz) EHDc(Sxyz)] (18)

4.1.3 Label Propagation

We compare the proposed LP discriminator with the possibilistic KNN classi-

fier. Both classifiers learn a set of prototypes from the training data. For this step, we

use the Self-Organizing Maps (SOMs) [49] that is used within the KNN classifier [19].

In addition to learning the prototypes, this approach also learns two independent sets

of fuzzy labels. The first label can be considered as the posterior probability of the

prototype in the class of targets and the second one as the posterior probability in

the class of clutter.

4.1.4 Graph Construction

The next step of our LP classifier is to construct the graph. We explored several

methods for this task as detailed in section 3.4.4. The first method involved varying

σ used in equation (1) experimentally. Using dataset 1, we tried σ from 0.01 to 0.1 in

increments of 0.01. For each σ, we test the LP classifier using 10 fold cross-validation.

Our results have indicated that using σ = 0.1 yielded the best results.

Next we considered the heuristic for choosing σ from [46]. We used the Kruskal

algorithm for constructing minimum spanning trees (MST) to create an MST over

all labeled data. Then, we found the smallest edge d connecting a target node to a

clutter node, and set σ = d/3.

We applied this method for each cross-validation fold. Thus, sigma can vary

between folds. Ideally this will optimize the similarity matrix W from equation (1) to

40

each fold’s training set independently. We found that using a constant value for sigma

worked best. We experimentally found that 0.1 seemed to show the best results.

Finally, we explored a KNN graph implementation as outlined in section 3.4.4.

We experimented with different values of k ranging from 5 to 15 by an increment of 5,

and evaluated performance on dataset 1. We found that the results of using a KNN

graph were close, but using σ = 0.1 had better performance. Thus, for the rest of our

experiments we proceeded using a σ based graph.

4.1.5 Analysis of the different LP variations

We next compared the different implementations of LP described in section

2.4.2. Up until now our LP experiments have been done exclusively using the closed

form LP from section 2.4.2.4 due to its speed. In this section, we compared the

closed form LP version with each of the other algorithms listed in section 2.4.2.

For each of the iterative algorithms we use 100 iterations, as most of the test points

converged to under a threshold ε < 0.01 in about 25 iterations. For LP based on Jacobi

Iteration, we determined experimentally that the best performance was observed with

α = 0.05, which places more emphasis on the initial labeling of the prototypes than

on the topology of the data. Contrarily, we found that LP based on Label Spreading

performs better with a higher value of alpha. Specifically, we found that α = 0.95

performs best.

Figure 16 compares the ROC’s of all 4 versions of the LP algorithms. As it

can be seen, all algorithms, except for LP based on Label Spreading, have similar

performance. We thus continued our experiments using the closed form LP, as it is

the most efficient and does not require convergence criteria.

Finally, we explored the use of additional unlabeled data. We implemented and

tried each of the settings described in section 3.4.5. We compare these settings with

41

Figure 16. ROC’s obtained using all 4 LP algorithms on Dataset 1: Iterative LP, LP
based on Jacobi Iteration, LP Based on Label Spreading, and Closed Form LP.

an LP classifier that uses no additional unlabeled data (which we refer to as LP1),

and an LP classifier that tests all (10) signatures collected at a particular sample at

once (LP10). The results are shown in figure 17. While most of the options did not

affect the results significantly, we did observe a slight improvement when we used a

large number of additional context data. Thus, we reported results on the vehicle

GPR using the context as additional unlabeled data.

With our optimized settings, we compared the performance of the standard

KNN algorithm [19] and the proposed LP classifier on all of our vehicle datasets. We

observed in figure 18 that LP either improves upon or matches a possibilistic KNN

classifier on all datasets.

4.2 Landmine Detection Using Handheld GPR device

Having proved the efficacy of LP on vehicle GPR data and its improvement

over a possibilistic KNN classifier, we will repeat the above experiments on a handheld

GPR dataset. Unlike the vehicle GPR, the handheld device is still in its early stages

42

Figure 17. ROC’s obtained by incorporating additional unlabeled data into the LP
algorithm to aid in classification on Dataset 1.

Figure 18. Results from applying a prescreener (blue), possibilistic KNN classifier
(black), and LP classifier (red) on 4 datasets.

of development and no standard prescreener or algorithms have been integrated into

this system. Hence, we devised our own methods of prescreening, feature extraction,

prototype learning/training, and labeling methods prior to comparing KNN and LP

classifiers. Afterward, the same experiments as from section 4.1 are run and evaluated.

43

4.2.1 Datasets

The dataset for the handheld device consisted of raw GPR signal data collected

from one channel. Scans were collected as the operator moved the sensor down-track.

Each down-track position contains 256 time samples. The down-track scans were

uniformly sampled to have one scan per 1 cm. Similar to the vehicle datasets, we

used 10-fold cross-validation to perform both training and testing on the same data.

The dataset that we use to validate our algorithms was obtained in 2015 on a site

spanning 919.8 square meters and containing 350 targets.

4.2.2 Prescreener

We devised a simple conditional prescreener on our handheld datasets to act

as a baseline for comparison of our classifiers and as a method of reducing our data

for training purposes. This prescreener operates in the same manner as the system

described in section 3.5.2. The only difference is the way in which it calculates labels

for extracted signatures.

Referring to figure 11, each of the four portions of our EHD feature vector has

a measured amount of horizontal, vertical, diagonal, and anti-diagonal edges. These

measurements are denoted as h, v, d, and a, respectively, followed by the number of

the portion from which that measurement was taken. Thus, it follows that h1, v1, d1,

and a1 represent the first four features of EHD(Sxy).

Our simple prescreener employed a condition that can detect the hyperbolic

shape of a mine signature. Figure 19 shows an example of a signature to which a

prescreener should assign a high confidence value. From this figure, we observe the

high diagonal in the first two portions of the signature, denoted by d1 and d2, and

the low antidiagonal a1 and a2 indicating the presence of an upward slope. We also

observe the low diagonal in the last two portions denoted by d3 and d4, and the

44

high anti-diagonal a3 and a4, indicating a downward slope in the latter portions of

the signature. The presence of both conditions indicate that a hyperbolic shape is

present within the signature.

Our prescreener used the above idea to determine if a hyperbolic shape is

present within an EHD signature. Specifically, it checks to see if the signature meets

several conditions. These conditions evaluate whether the diagonal edge in either of

the first two portions of the signature is greater than the amount of anti-diagonal, or

that the opposite is true in the latter two portions. If this condition is passed, then

Figure 19. Example of mine signature with high diagonals d1 and d2 and anti-
diagonals a3 and a4.

the product of the diagonal edge on the left subimage with the antidiagonal edges on

the right subimage can be used as an indication of the likelihood of a target. The

resulting prescreener is outlined in algorithm 5.

Algorithm 5: EHD Prescreener

1: if ((d1 > a1) + (d2 > a2) + (a3 > d3) + (a4 > d4)) < 2 then
2: c = 0
3: else
4: c = (d1 + d2) ∗ (a3 + a4)
5: end if

45

We see from line 1 of algorithm 5 that each of the four possible conditions

yields a logical 1 if the condition is passed and 0 if it is not. In figure 19, we can

see that each of these conditions would pass, yielding a result of 4 which passes the

required threshold of 2. If a signature does not pass this requirement, the confidence

will be set to 0. If it passes, we use the calculation in line 4 to assign a confidence

value to the signature. If this signature has both a high amount of diagonal edge

activity in the first two portions of the signature, and a high amount of anti-diagonal

edge activity in the last two portions, it will be assigned a high confidence value.

In our experiments we used this conditional prescreener as a baseline with

which to compare our more sophisticated classifiers. When run on our handheld

dataset, it produced 3185 alarms.

4.2.3 Training Methods

We learned our prototypes using the two methods discussed in section 3.4. We

took the training samples outputted from the EHD prescreener, separated them into

targets and clutter according to the ground truths, and then passed these as input

into either of our training algorithms.

We first extracted all signatures from our alarms using our feature extractor

described in section 3.3. We then used our prescreener from section 4.2.2 to assign

a confidence to all signatures from all alarms. Each of our training methods takes a

different approach to identifying the mine signatures within the positive alarms.

Our first method keeps only the signatures with assigned confidences higher

than a threshold tmine. We applied a similar thresholding to the false alarm instances

to reduce the number of repetitive and noisy signatures. We used an upper threshold

tupper and required that false alarm instances have a prescreener assigned confidence

less than this value, as well as a lower threshold tlower which they must be above. For

46

our experiments, we selected our mine threshold tmine = 0.04, and our false alarm

thresholds tupper = 0.1 and tlower = 0.01.

Our second method combined MIL and KDE to assign density values to in-

stances within bags (alarms). All instances belonging to negative bags are summa-

rized by few prototypes. To maintain diversity within the clutter and background

objects, we first divide the clutter data into 7 groups according to the strength of

their diagonal and antidiagonal edges. After the instances have been separated, the

first group contains all instances with low edge activity, and the last group contains

all instances with very high amounts of edge activity. Finally, we clustered each group

independently using SOM to reduce the number of observations per group to 100.

Each of these groups is then independently used to estimate the Kernel Density

of each of the positive bags. The densities are then summed across groups to determine

which instances within each positive bag are of low density, and thus have a high

likelihood of being mines. Experimentally, we found that for the handheld dataset,

summing the densities estimated using only the two groups with the weakest (least

edge activity) false alarms gave the best results in establishing a contrast in the

kernel density between positive and negative instances in positive bags. An example

illustrating the advantage of combining these two groups on our handheld dataset is

presented in Figure 20. In this figure, brighter pixel color indicates higher density.

A high density means that a signature extracted at that location was estimated as

clutter.

After calculating the densities of all observations belonging to all bags, we

thresholded observations from positive bags by density using a threshold tdensity. We

used tdensity = 0.05. The remaining observations were thresholded once more using

the same thresholding as in method 1.

Finally, we clustered the results of each of our training methods to obtain our

47

Figure 20. Example of combined kernel density for a target: (a) Preprocessed image.
(b) KDE estimated using first group of negative clusters. (c) Using second group. (d)
Sum of (a) and (b).

final set of representatives. Our first method used Hierarchical Agglomerative Clus-

tering (HAC) on both the positive and negative observations to reduce the number

of prototypes to 100 clutter and 100 mine representatives. Our second method used

SOM which also provided us with 100 mine prototypes and 100 clutter prototypes,

giving us 200 total representative prototypes constituting our outputted prototypes

used as labeled data during classification.

After deciding our method of learning representative prototypes, and our method

of classifying test points, we still required a way of summarizing the assigned confi-

dences to test points (sub-windows) within an alarm, in order to assign it an overall

confidence. We did this by assigning the alarm a confidence equal to the average of

the 3 sub-windows with the highest confidences.

We compared the quality of our prototypes by classifying our test points using

a crisp KNN classifier with k = 10, similar to the KNN classifier used on the vehicle

datasets. The results of using this classifier are presented in figure 21. We perceived

no significant difference in the results between our two training methods, and thus

48

proceeded using our HAC based training method, as it is the faster and simpler of

the two training methods.

We also found that varying the number of prototypes and value of k yielded no

definitive improvements over our original choices of k = 10 with 200 total prototypes.

Figure 21. Results of applying training methods from section 3.4 to learn prototypes
that are used for a KNN classifier on a handheld dataset.

4.2.4 Fuzzy and Possibilistic Membership

In another experiment, we evaluated the results of using our fuzzy labeling

methods described in section 3.4.3 by comparing them on a KNN classifier using the

same settings that were used for the classifiers from section 3.4. The results of these

labeling methods are presented in figure 22. The differences in performance are slight,

but we concluded that using KNN based labeling resulted in the best performance.

Thus, for all remaining experiments, we used this as our labeling method for our LP

classifier.

We also compared a possibilistic KNN classifier with our fuzzy LP classifier.

During data summarization in our training methods we learned the mean and stan-

dard deviation of each prototype’s cluster, µc, and σc. During testing, to reduce the

49

Figure 22. Comparison of 3 prototype labeling methods for the KNN classifier.

effect of noise and outliers, we weighed the contribution of each nearest neighbor. To

calculate the weight for the kth nearest labeled point xlk to a particular test point xu,

we used

w(xu, xlk) =
1

max(0,|dk−µc|)
σc∗m + 1

(19)

In (19), dk is the Euclidean distance between xu and xlk, and m is a constant

used to amplify or dampen the effect of σc. Through experimentation, we found that

m = 6 seemed to yield the best classification results. Equation 19 is meant to reduce

the significance of a labeled prototype that is too far from the test sample even when

the prototype is among the k nearest neighbors to the test point.

Finally, the weight of the kth nearest labeled point is multiplied by its class

label. These labels are then summed over all k nearest labeled points using

yu =
k∑
i=1

yli ∗ w(xu, xli) (20)

where yu is the confidence value assigned to the test point, and yli is the unweighted

label of the ith nearest labeled prototype.

We combined our KNN and density labeling methods with our possibilistic

50

labeling method on our KNN classifier. Our KNN labels are more positive for mine

prototypes, and more negative for false alarm prototypes. Our density labels are vice

versa, so we combine them using

yu(combined) = yu(KNN) ∗ (1− yu(density)) (21)

to obtain our final assigned label for the test point xu.

Figure 23 shows that possibilistic labeling performed similarly to fuzzy labeling

using KNN labels. Thus, we continued our experiments using fuzzy KNN labels, due

to its simplicity.

Figure 23. Comparison of results from using Possibilistic and Fuzzy Memberships.

After deciding upon the use of KNN based fuzzy labels as the optimal labeling

method for our KNN classifier, and our HAC based training method for learning

prototypes, we applied these settings to an LP classifier.

4.2.5 LP Experiments

Our first experiment using LP on our handheld dataset sought to find an

appropriate value for σ from equation (1). Similar to section 4.1, we experimentally

51

chose a value for sigma. We found that σ = 0.01 performed best on our handheld

dataset. We once again apply our MST heuristic, as well as a KNN tree graph method,

which we determined experimentally performed best with k = 10, and compared the

ROCs of each and found that using σ = 0.01 was the best option. The results of

these experiments are presented in figure 24.

Figure 24. Comparison of experimentally selecting σ, heuristically choosing σ, and
using a KNN tree as our graph, for our LP classifier.

Similar to our vehicle GPR experiments, we applied each of our different LP

algorithms from section 2.4.2 on our handheld dataset. Once again we found that

all LP algorithms performed equally well, with the exception of LP based on Label

Spreading, which performed worse.

We experimented with including additional unlabeled data to aid our LP clas-

sifier, similar to our vehicle experiments. The results are presented in figure 25. We

found that the inclusion of unlabeled data did not have a significant effect on the

results of testing, and hence we continue without using unlabeled data.

Comparing the best of our KNN and LP experiments, we obtained the results

in figure 26. We see that while LP did not definitively outperform the KNN classifier,

52

Figure 25. Results of including unlabeled data with LP on handheld dataset.

it still matched it in performance for this dataset.

Figure 26. Results of comparing best KNN and LP classifiers.

4.2.6 LP as a Prescreener

We also applied our LP classifier to our handheld dataset as a prescreener

instead of as a classifier. For this experiment, we obtained our prototypes from a

53

separate handheld dataset. The dataset that we used for training was collected in

2014, covered 441.7 square meters and contained 174 targets.

We kept all of our settings the same as what was used for discriminative clas-

sification, for both training and testing. However, we did adjust our thresholding

during training in order to obtain lower confidence mines, since we tested over the

entire GPR data, and not just locations with relatively high energy. Specifically, we

changed the mine threshold to tmine = 0.01.

We applied both a KNN and LP prescreener using the same settings as before,

provided both prescreeners with the same set of prototypes, and compared perfor-

mance with the conditional prescreener from section 4.2.2.

Figure 27. Results of comparing KNN and LP as prescreeners.

From figure 27, we saw that using LP as a prescreener outperformed both the

conditional prescreener and KNN prescreener.

54

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work, we have proposed a landmine detection method based on Label

Propagation classification for application in both vehicle and handheld systems.

We hypothesized that an LP classifier would outperform an identically trained

KNN classifier due to its utilization of additional information about labeled and

unlabeled data.

In our vehicle system, we propose an LP system that performs the following

steps: First, raw GPR data are normalized via preprocessing. Next, a preselected

computationally inexpensive prescreener identifies regions of interest within the GPR

data. EHD features are then extracted from these areas of interest and divided into

training and testing sets. Additional EHD features are extracted from a small context

around these areas to be used as unlabeled data for our LP classifier. During training,

our system summarizes the training data by reducing them to a set of representative

prototypes via Self-Organizing Maps to characterize mine and clutter classes.

During testing, our classifier uses closed-form Label Propagation to calculate

and assign labels to test points using the training prototypes and unlabeled data.

In our handheld system, we propose a discriminative system that operates

similar to the vehicle LP system but with slight differences. We propose a new

simple prescreener that uses EHD features to assign confidence values to samples.

Our training method uses simple thresholding on the outputted confidence value

55

assigned by our new prescreener followed by Hierarchical Agglomerative Clustering

to summarize training data. Finally, we label our summarized prototypes with a

nearest-neighbor approach, detailed in section 3.4.3.

Lastly, we proposed a prescreener alternative to our handheld system, which

follows all of the same steps as our handheld discriminative classifier, but takes as

input the outputted trained prototypes learned from a separate dataset. In this

setting, our handheld LP classifier calculates confidence values for each sample in a

dataset.

Our results show that, if properly optimized, a Label Propagation classifier can

consistently match or outperform a KNN classifier when using the same set of trained

prototypes, if their features accurately convey the data. On the vehicle datasets, we

determined that most iterative LP algorithms will converge to the same value as

equation (8). We note that the most important factor in optimizing LP is choosing

the correct value of σ. We also found that using a context of background data as

unlabeled points can offer a slight improvement in LP performance.

On our handheld dataset, we noticed that the most important factor affecting

performance is the manner in which representative prototypes are selected during

training. Specifically, we found that thresholding the input data to our training

methods had the largest effect on the performance of both the KNN and LP classifiers.

Our handheld experiments did not yield much variation in performance. Be-

cause the handheld datasets were collected with an experimental system, it is likely

that the data are not as reliable, or further preprocessing is required to reduce the

prevalence of noisy features.

As a prescreener, we found that LP performed well. This may suggest that

LP performs better at rejecting false alarms than identifying mines, as the ratio of

clutter to mines in prescreening is much larger than it is during classification.

56

Ultimately, it appears that the graph-based nature of the LP is its primary

advantage that allows it to outperform possibilistic KNN classification. We noticed

either slight or negligible improvements from using unlabeled data. There are several

possibilities as to why additional unlabeled data did not improve the classification.

One likely explanation has to do with our application itself. In several of the

applications listed in section 2.4.2, LP was used for object detection in video data.

In these applications, unlabeled data were used to bridge test points from one frame

to known points from an earlier frame. All frames in between are used as unlabeled

data. In this case, each labeled point has a different class label and the unlabeled

points are used to assign the most likely class label by propagating the labels between

frames.

In our landmine detection application, targets are encountered only once. It is

the equivalent of an object in a video appearing in only one frame. Unlabeled data in

this case is being used to bridge between different ground truths. This may mean that

there is not enough similarity between unlabeled data and labeled data to establish

a bridge between test points and similar targets.

5.2 Potential Future Work

On the vehicle datasets, we suggest further analysis into why the LP outper-

forms the KNN. It seems that LP’s graph-based nature is the primary contributor

to the success of the classifier, so it may be worthwhile to explore other graph and

network-based classification methods.

On the handheld datasets, raw GPR data preprocessing and feature represen-

tation should be refined. The data are too noisy to rely on subtle differences between

features to distinguish between classes. Instead, our classifiers seemed to rely on

simple and highly generalized patterns. As a result, our prototypes often tended to

57

be different variations of the same patterns, rather than unique signatures. Cleaning

the GPR data will help to bring out the more subtle differences between signatures

and allow more sophisticated feature representations to have greater use and be less

prone to noise.

58

REFERENCES

[1] A Survey of Current Sensor Technology Research for the Detection of Landmines,

volume 6, Zagreb, Croatia, Sept-Oct 1997.

[2] J. MacDonald, J.R. Lockwood, and L. Carin. Alternatives for Landmine Detec-

tion. RAND, Santa Monica, CA, 2003.

[3] M. P. Kolba and I. I. Jouny. Clutter suppression and feature extraction for land

mine detection using ground penetrating radar. In Antennas and Propagation

Society International Symposium, 2003. IEEE, volume 2, pages 203–206 vol.2,

June 2003.

[4] Robert C. Doheny, Sean Burke, Roger Cresci, Peter Ngan, Richard Walls, and

Jeff Chernoff. Handheld standoff mine detection system (hstamids) field evalu-

ation in namibia, 2006.

[5] Luc M. van Kempen, Hichem Sahli, J. Brooks, and Jan P. Cornelis. New results

on clutter reduction and parameter estimation for land mine detection using gpr,

2000.

[6] D. J. Daniels. A review of landmine detection using gpr. In Radar Conference,

2008. EuRAD 2008. European, pages 280–283, Oct 2008.

[7] K. C. Ho, L. M. Collins, L. G. Huettel, and P. D. Gader. Discrimination mode

processing for emi and gpr sensors for hand-held land mine detection. IEEE

Transactions on Geoscience and Remote Sensing, 42(1):249–263, Jan 2004.

59

[8] David J. Daniels. Ground Penetrating Radar, Volume 1, volume 1. Institution

of Electrical Engineers, London, United Kingdom, 2 edition, 2004.

[9] P. A. Torrione, C. S. Throckmorton, and L. M. Collins. Performance of an adap-

tive feature-based processor for a wideband ground penetrating radar system.

IEEE Trans. Aerospace and Electronic Systems (in press).

[10] H. Frigui and P. D. Gader. Detection and discrimination of land mines based

on edge histogram descriptors and fuzzy k-nearest neighbors. In Proceedings of

the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada,

July 2006.

[11] C. R. Ratto, P. A. Torrione, and L. M. Collins. Exploiting ground-penetrating

radar phenomenology in a context-dependent framework for landmine detection

and discrimination. IEEE Transactions on Geoscience and Remote Sensing,

49(5):1689–1700, May 2011.

[12] Peter Torrione, Kenneth Morton, Jr., and Lance E. Besaw. Adaptive gaussian

mixture models for pre-screening in gpr data, 2011.

[13] Julie L. White, Derek T. Anderson, John E. Ball, and Brian Parker. Curvelet

filter based prescreener for explosive hazard detection in hand-held ground pen-

etrating radar, 2016.

[14] Matthew A. Lee, Derek T. Anderson, John E. Ball, and Julie L. White. Back-

ground adaptive division filtering for hand-held ground penetrating radar, 2016.

[15] Lance E. Besaw. Detecting buried explosive hazards with handheld gpr and deep

learning, 2016.

[16] P.A. Torrione, K.D. Morton, R. Sakaguchi, and L.M. Collins. Histograms of ori-

ented gradients for landmine detection in ground-penetrating radar data. Geo-

60

science and Remote Sensing, IEEE Transactions on, 52(3):1539–1550, March

2014.

[17] J. M. Malof, K. D. Morton, L. M. Collins, and P. A. Torrione. A probabilistic

model for designing multimodality landmine detection systems to improve rates

of advance. IEEE Transactions on Geoscience and Remote Sensing, PP(99):1–

13, 2016.

[18] J. N. Wilson, P. Gader, W. H. Lee, H. Frigui, and K. C. Ho. A large-scale

systematic evaluation of algorithms using ground-penetrating radar for landmine

detection and discrimination. IEEE Transactions on Geoscience and Remote

Sensing, 45(8):2560–2572, Aug 2007.

[19] Hichem Frigui and Paul Gader. Detection and discrimination of land mines in

ground-penetrating radar based on edge histogram descriptors and a possibilistic

k-nearest neighbor classifier. Trans. Fuz Sys., 17(1):185–199, February 2009.

[20] Timothy C. Havens, Kevin Stone, Derek T. Anderson, James M. Keller, K. C.

Ho, Tuan T. Ton, David C. Wong, and Mehrdad Soumekh. Multiple kernel

learning for explosive hazard detection in forward-looking ground-penetrating

radar, 2012.

[21] A. Manandhar, P. A. Torrione, L. M. Collins, and K. D. Morton. Multiple-

instance hidden markov model for gpr-based landmine detection. IEEE Trans-

actions on Geoscience and Remote Sensing, 53(4):1737–1745, April 2015.

[22] P. Gader, M. Mystkowski, and Y. Zhao. Landmine detection with ground pene-

trating radar using hidden markov models. IEEE Trans. Geoscience and Remote

Sensing, 39:1231–1244, 2001.

61

[23] D. T. Anderson, K. E. Stone, J. M. Keller, and C. J. Spain. Combination of

anomaly algorithms and image features for explosive hazard detection in forward

looking infrared imagery. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 5(1):313–323, Feb 2012.

[24] Andrew Karem, Amine B. Khalifa, and Hichem Frigui. A fisher vector represen-

tation of gpr data for detecting buried objects, 2016.

[25] K. C. Ho, P. D. Gader, J. N. Wilson, W. Lee, and T. C. Glenn. Landmine

detection using frequency domain features from gpr measurements and their

fusion with time domain features, 2005.

[26] Samuel Harris, K. C. Ho, and Alina Zare. On the use of log-gabor features for

subsurface object detection using ground penetrating radar, 2016.

[27] A. Hamdi, O. Missaoui, and H. Frigui. An svm classifier with hmm-based ker-

nel for landmine detection using ground penetrating radar. In Geoscience and

Remote Sensing Symposium (IGARSS), 2010 IEEE International, pages 4196–

4199, July 2010.

[28] S. E. Yuksel and P. D. Gader. Mixture of hmm experts with applications to

landmine detection. In 2012 IEEE International Geoscience and Remote Sensing

Symposium, pages 6852–6855, July 2012.

[29] Xuping Zhang, Seniha Esen Yuksel, P. Gader, and J. N. Wilson. Simultaneous

feature and hmm model learning for landmine detection using ground penetrating

radar. In Pattern Recognition in Remote Sensing (PRRS), 2010 IAPR Workshop

on, pages 1–4, Aug 2010.

[30] O. Lohlein and M. Fritzsche. Classification of gpr data for mine detection based

62

on hidden markov models. In Detection of Abandoned Land Mines, 1998. Second

International Conference on the (Conf. Publ. No. 458), pages 96–100, Oct 1998.

[31] A.B. Khalifa and H. Frigui. A multiple instance neuro-fuzzy inference system

for fusion of multiple landmine detection algorithms. In Geoscience and Remote

Sensing Symposium (IGARSS), 2015 IEEE International, pages 4312–4315, July

2015.

[32] S. L. Tantum, W. R. Scott, K. D. Morton, L. M. Collins, and P. A. Torrione.

Target classification and identification using sparse model representations of

frequency-domain electromagnetic induction sensor data. IEEE Transactions

on Geoscience and Remote Sensing, 51(5):2689–2706, May 2013.

[33] S.E. Yuksel, J. Bolton, and P. Gader. Multiple-instance hidden markov models

with applications to landmine detection. Geoscience and Remote Sensing, IEEE

Transactions on, 53(12):6766–6775, Dec 2015.

[34] A. Karem and H. Frigui. Fuzzy clustering of multiple instance data. In Fuzzy

Systems (FUZZ-IEEE), 2015 IEEE International Conference on, pages 1–7, Aug

2015.

[35] Kenneth A. Colwell and Leslie M. Collins. Attribute-driven transfer learning for

detecting novel buried threats with ground-penetrating radar, 2016.

[36] H. Frigui, K. Satyanarayana, and P. Gader. Detection of land mines using fuzzy

and possibilistic membership functions. In Fuzzy Systems, 2003. FUZZ ’03. The

12th IEEE International Conference on, volume 2, pages 834–839 vol.2, May

2003.

[37] H. Frigui, P. Gader, and K. Satyanarayana. Landmine detection with ground

penetrating radar using fuzzy k-nearest neighbors. In Fuzzy Systems, 2004. Pro-

63

ceedings. 2004 IEEE International Conference on, volume 3, pages 1745–1749

vol.3, July 2004.

[38] R. Mazhar, J. N. Wilson, and P. D. Gader. Use of an application-specific dic-

tionary for matching pursuits discrimination of landmines and clutter. In 2007

IEEE International Geoscience and Remote Sensing Symposium, pages 26–29,

July 2007.

[39] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–

874, June 2006.

[40] X. Tian and C. Jung. Visual saliency estimation through label propagation.

Electronics Letters, 51(14):1073–1075, 2015.

[41] S. Tripathi, S. Belongie, Y. Hwang, and T. Nguyen. Detecting temporally con-

sistent objects in videos through object class label propagation. In 2016 IEEE

Winter Conference on Applications of Computer Vision (WACV), pages 1–9,

March 2016.

[42] B. Raducanu, A. Bosaghzadeh, and F. Dornaika. Multi-observation face recogni-

tion in videos based on label propagation. In 2015 IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages 10–17, June 2015.

[43] J. Liu, Q. Fan, S. Pankanti, and D. N. Metaxas. People detection in crowded

scenes by context-driven label propagation. In 2016 IEEE Winter Conference

on Applications of Computer Vision (WACV), pages 1–9, March 2016.

[44] Y. Wu, M. Pei, M. Yang, J. Yuan, and Y. Jia. Robust discriminative tracking

via landmark-based label propagation. IEEE Transactions on Image Processing,

24(5):1510–1523, May 2015.

64

[45] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised

Learning. The MIT Press, 1st edition, 2010.

[46] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data

with label propagation. Technical report, 2002.

[47] Ahmed Elgammal, R Duriswami, D Harwood, and Larry Davis. Background and

foreground modelling using nonparametric kernel density estimation for visual

surveil. 90, 01 2002.

[48] Ying Zhao and George Karypis. Comparison of agglomerative and partitional

document clustering algorithms. Technical Report 02-014, 2002.

[49] Teuvo Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1):59–69, 1982.

65

CURRICULUM VITAE

NAME: Graham Reid

ADDRESS: Computer Engineering & Computer Science Department

Speed School of Engineering

University of Louisville

Louisville, KY 40292

EDUCATION:

M.S., Computer Science & Engineering

December 2018

University of Louisville, Louisville, Kentucky

B.S., Computer Science and Engineering

May 2014

University of Louisville, Louisville, Kentucky

PUBLICATIONS:

1. Graham Reid, Hichem Frigui, ”A label propagation approach for detecting

buried objects in handheld GPR data,” Proc. SPIE 9823, Detection and Sens-

ing of Mines, Explosive Objects, and Obscured Targets XXI, 98230M (3 May

2016)

66

	Landmine detection using semi-supervised learning.
	Recommended Citation

	tmp.1538608081.pdf.tRK18

