108 research outputs found

    Wearables for independent living in older adults: Gait and falls

    Get PDF
    Solutions are needed to satisfy care demands of older adults to live independently. Wearable technology (wearables) is one approach that offers a viable means for ubiquitous, sustainable and scalable monitoring of the health of older adults in habitual free-living environments. Gait has been presented as a relevant (bio)marker in ageing and pathological studies, with objective assessment achievable by inertial-based wearables. Commercial wearables have struggled to provide accurate analytics and have been limited by non-clinically oriented gait outcomes. Moreover, some research-grade wearables also fail to provide transparent functionality due to limitations in proprietary software. Innovation within this field is often sporadic, with large heterogeneity of wearable types and algorithms for gait outcomes leading to a lack of pragmatic use. This review provides a summary of the recent literature on gait assessment through the use of wearables, focusing on the need for an algorithm fusion approach to measurement, culminating in the ability to better detect and classify falls. A brief presentation of wearables in one pathological group is presented, identifying appropriate work for researchers in other cohorts to utilise. Suggestions for how this domain needs to progress are also summarised

    Towards a wearable system for predicting the freezing of gait in people affected by Parkinson's disease

    Get PDF
    Some wearable solutions exploiting on-body acceleration sensors have been proposed to recognize Freezing of Gait (FoG) in people affected by Parkinson Disease (PD). Once a FoG event is detected, these systems generate a sequence of rhythmic stimuli to allow the patient restarting the march. While these solutions are effective in detecting FoG events, they are unable to predict FoG to prevent its occurrence. This paper fills in the gap by presenting a machine learning-based approach that classifies accelerometer data from PD patients, recognizing a pre-FOG phase to further anticipate FoG occurrence in advance. Gait was monitored by three tri-axial accelerometer sensors worn on the back, hip and ankle. Gait features were then extracted from the accelerometer's raw data through data windowing and non-linear dimensionality reduction. A k-nearest neighbor algorithm (k-NN) was used to classify gait in three classes of events: pre-FoG, no-FoG and FoG. The accuracy of the proposed solution was compared to state of-the-art approaches. Our study showed that: (i) we achieved performances overcoming the state-of-the-art approaches in terms of FoG detection, (ii) we were able, for the very first time in the literature, to predict FoG by identifying the pre-FoG events with an average sensitivity and specificity of, respectively, 94.1% and 97.1%, and (iii) our algorithm can be executed on resource-constrained devices. Future applications include the implementation on a mobile device, and the administration of rhythmic stimuli by a wearable device to help the patient overcome the FoG

    Acute modulation of brain connectivity in Parkinson disease after automatic mechanical peripheral stimulation: A pilot study

    Get PDF
    The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease.Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition.Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79).Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration.This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest.Clinical Trials.gov NCT01815281

    Gait analysis in neurological populations: Progression in the use of wearables

    Get PDF
    Gait assessment is an essential tool for clinical applications not only to diagnose different neurological conditions but also to monitor disease progression as it contributes to the understanding of underlying deficits. There are established methods and models for data collection and interpretation of gait assessment within different pathologies. This narrative review aims to depict the evolution of gait assessment from observation and rating scales to wearable sensors and laboratory technologies, and provide possible future directions. In this context, we first present an extensive review of current clinical outcomes and gait models. Then, we demonstrate commercially available wearable technologies with their technical capabilities along with their use in gait assessment studies for various neurological conditions. In the next sections, a descriptive knowledge for existing inertial based algorithms and a sign based guide that shows the outcomes of previous neurological gait assessment studies are presented. Finally, we state a discussion for the use of wearables in gait assessment and speculate the possible research directions by revealing the limitations and knowledge gaps in the literature

    MOBEEZE. Natural Interaction Technologies, Virtual Reality and Artificial Intelligence for Gait Disorders Analysis and Rehabilitation in Patients with Parkinson's Disease

    Get PDF
    Parkinson's Disease (PD) is the most common degenerative disorder after Alzheimer's disease. Generally affecting elderly groups, it has a strong limiting effect on physical functioning and performance of roles, vitality and general perception of health. Since the disease is progressive, the patient knows he's going to get worse. The deterioration is significant not only in mobility but also in pain, social isolation, and emotional reactions. Freezing is a phenomenon associated with this disease and it is characterized by a motor disorder that leaves the patient literally stuck to the ground. Mobeeze is designed with the main objective of providing health personnel with a tool to analyse, evaluate and monitor the progress of patients’ disorders as well as the personalization and adaptation of rehabilitation sessions in patients with Parkinson's disease. Based on the characteristics measured in real time which will allow the strengthening effects of rehabilitation and help to assimilate them in the long term. The creation of Mobeeze allows the constitution of a system of analysis and evaluation of march disorders in real time, through natural interaction, virtual reality and artificial intelligence. In this project, we will analyse if these non-invasive technologies reduce the stress induced to the patient when he is feeling evaluated

    Detection and Prediction of Freezing of Gait in Parkinson’s Disease using Wearable Sensors and Machine Learning

    Get PDF
    Freezing of gait (FOG), is a brief episodic absence of forward body progression despite the intention to walk. Appearing mostly in mid-late stage Parkinson’s disease (PD), freezing manifests as a sudden loss of lower-limb function, and is closely linked to falling, decreased functional mobility, and loss of independence. Wearable-sensor based devices can detect freezes already in progress, and intervene by delivering auditory, visual, or tactile stimuli called cues. Cueing has been shown to reduce FOG duration and allow walking to continue. However, FOG detection and cueing systems require data from the freeze episode itself and are thus unable to prevent freezing. Anticipating the FOG episode before onset and supplying a timely cue could prevent the freeze from occurring altogether. FOG has been predicted in offline analyses by training machine learning models to identify wearable-sensor signal patterns known to precede FOG. The most commonly used sensors for FOG detection and prediction are inertial measurement units (IMU) that include an accelerometer, gyroscope and sometimes magnetometer. Currently, the best FOG prediction systems use data collected from multiple sensors on various body locations to develop person-specific models. Multi-sensor systems are more complex and may be challenging to integrate into real-life assistive devices. The ultimate goal of FOG prediction systems is a user-friendly assistive device that can be used by anyone experiencing FOG. To achieve this goal, person-independent models with high FOG prediction performance and a minimal number of conveniently located sensors are needed. The objectives of this thesis were: to develop and evaluate FOG detection and prediction models using IMU and plantar pressure data; determine if event-based or period of gait disruption FOG definitions have better classification performance for FOG detection and prediction; and evaluate FOG prediction models that use a single unilateral plantar pressure insole sensor or bilateral sensors. In this thesis, IMU (accelerometer and gyroscope) and plantar pressure insole sensors were used to collect data from 11 people with FOG while they walked a freeze provoking path. A custom-made synchronization and labeling program was used synchronize the IMU and plantar pressure data and annotate FOG episodes. Data were divided into overlapping 1 s windows with 0.2 s shift between consecutive windows. Time domain, Fourier transform based, and wavelet transform based features were extracted from the data. A total of 861 features were extracted from each of the 71,000 data windows. To evaluate the effectiveness of FOG detection and prediction models using plantar pressure and IMU data features, three feature sets were compared: plantar pressure, IMU, and both plantar pressure and IMU features. Minimum-redundancy maximum-relevance (mRMR) and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or Non-FOG states, wherein the Total-FOG class included windows with data from 2 s before the FOG onset until the end of the FOG episode. The plantar-pressure-only model had the greatest sensitivity, and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, freeze windows, and transition windows between Pre-FOG and FOG). The best model, which used plantar pressure and IMU features, detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Models using both plantar pressure and IMU features performed better than models that used either sensor type alone. Datasets used to train machine learning models often generate ground truth FOG labels based on visual observation of specific lower limb movements (event-based definition) or an overall inability to walk effectively (period of gait disruption based definition). FOG definition ambiguity may affect FOG detection and prediction model performance, especially with respect to multiple FOG in rapid succession. This research examined the effects of defining FOG either as a period of gait disruption (merging successive FOG), or based on an event (no merging), on FOG detection and prediction. Plantar pressure and lower limb acceleration data were used to extract a set of features and train decision tree ensembles. FOG was labeled using an event-based definition. Additional datasets were then produced by merging FOG that occurred in rapid succession. A merging threshold was introduced where FOG that were separated by less than the merging threshold were merged into one episode. FOG detection and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging had little effect on FOG detection model performance; however, for the prediction model, merging resulted in slightly later FOG identification and lower precision. FOG prediction models may benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid succession. Despite the known asymmetry of PD motor symptom manifestation, the difference between the more severely affected side (MSS) and less severely affected side (LSS) is rarely considered in FOG detection and prediction studies. The additional information provided by the MSS or LSS, if any, may be beneficial to FOG prediction models, especially if using a single sensor. To examine the effect of using data from the MSS, LSS, or both limbs, multiple FOG prediction models were trained and compared. Three datasets were created using plantar pressure data from the MSS, LSS, and both sides together. Feature selection was performed, and FOG prediction models were trained using the top 5, 10, 15, 20, 25 or 30 features for each dataset. The best models were the MSS model with 15 features, and the LSS and bilateral features with 5 features. The LSS model reached the highest sensitivity (79.5%) and identified the highest percentage of FOG episodes (94.9%). The MSS model achieved the highest specificity (84.9%) and the lowest false positive (FP) rate (2 FP/walking trial). Overall, the bilateral model was best. The bilateral model had 77.3% sensitivity, 82.9% specificity, and identified 94.3% of FOG episodes an average of 1.1 s before FOG onset. Compared to the bilateral model, the LSS model had a higher false positive rate; however, the bilateral and LSS models were similar in all other evaluation metrics. Therefore, using the LSS model instead of the bilateral model would produce similar FOG prediction performance at the cost of slightly more false positives. Given the advantages of single sensor systems, the increased FP rate may be acceptable. Therefore, a single plantar pressure sensor placed on the LSS could be used to develop a FOG prediction system and produce performance similar to a bilateral system

    Context-aware home monitoring system for Parkinson's disease patients : ambient and wearable sensing for freezing of gait detection

    Get PDF
    Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Technische Universiteit Eindhoven. This PhD Thesis has been developed in the framework of, and according to, the rules of the Erasmus Mundus Joint Doctorate on Interactive and Cognitive Environments EMJD ICE [FPA no. 2010-0012]Parkinson’s disease (PD). It is characterized by brief episodes of inability to step, or by extremely short steps that typically occur on gait initiation or on turning while walking. The consequences of FOG are aggravated mobility and higher affinity to falls, which have a direct effect on the quality of life of the individual. There does not exist completely effective pharmacological treatment for the FOG phenomena. However, external stimuli, such as lines on the floor or rhythmic sounds, can focus the attention of a person who experiences a FOG episode and help her initiate gait. The optimal effectiveness in such approach, known as cueing, is achieved through timely activation of a cueing device upon the accurate detection of a FOG episode. Therefore, a robust and accurate FOG detection is the main problem that needs to be solved when developing a suitable assistive technology solution for this specific user group. This thesis proposes the use of activity and spatial context of a person as the means to improve the detection of FOG episodes during monitoring at home. The thesis describes design, algorithm implementation and evaluation of a distributed home system for FOG detection based on multiple cameras and a single inertial gait sensor worn at the waist of the patient. Through detailed observation of collected home data of 17 PD patients, we realized that a novel solution for FOG detection could be achieved by using contextual information of the patient’s position, orientation, basic posture and movement on a semantically annotated two-dimensional (2D) map of the indoor environment. We envisioned the future context-aware system as a network of Microsoft Kinect cameras placed in the patient’s home that interacts with a wearable inertial sensor on the patient (smartphone). Since the hardware platform of the system constitutes from the commercial of-the-shelf hardware, the majority of the system development efforts involved the production of software modules (for position tracking, orientation tracking, activity recognition) that run on top of the middle-ware operating system in the home gateway server. The main component of the system that had to be developed is the Kinect application for tracking the position and height of multiple people, based on the input in the form of 3D point cloud data. Besides position tracking, this software module also provides mapping and semantic annotation of FOG specific zones on the scene in front of the Kinect. One instance of vision tracking application is supposed to run for every Kinect sensor in the system, yielding potentially high number of simultaneous tracks. At any moment, the system has to track one specific person - the patient. To enable tracking of the patient between different non-overlapped cameras in the distributed system, a new re-identification approach based on appearance model learning with one-class Support Vector Machine (SVM) was developed. Evaluation of the re-identification method was conducted on a 16 people dataset in a laboratory environment. Since the patient orientation in the indoor space was recognized as an important part of the context, the system necessitated the ability to estimate the orientation of the person, expressed in the frame of the 2D scene on which the patient is tracked by the camera. We devised method to fuse position tracking information from the vision system and inertial data from the smartphone in order to obtain patient’s 2D pose estimation on the scene map. Additionally, a method for the estimation of the position of the smartphone on the waist of the patient was proposed. Position and orientation estimation accuracy were evaluated on a 12 people dataset. Finally, having available positional, orientation and height information, a new seven-class activity classification was realized using a hierarchical classifier that combines height-based posture classifier with translational and rotational SVM movement classifiers. Each of the SVM movement classifiers and the joint hierarchical classifier were evaluated in the laboratory experiment with 8 healthy persons. The final context-based FOG detection algorithm uses activity information and spatial context information in order to confirm or disprove FOG detected by the current state-of-the-art FOG detection algorithm (which uses only wearable sensor data). A dataset with home data of 3 PD patients was produced using two Kinect cameras and a smartphone in synchronized recording. The new context-based FOG detection algorithm and the wearable-only FOG detection algorithm were both evaluated with the home dataset and their results were compared. The context-based algorithm very positively influences the reduction of false positive detections, which is expressed through achieved higher specificity. In some cases, context-based algorithm also eliminates true positive detections, reducing sensitivity to the lesser extent. The final comparison of the two algorithms on the basis of their sensitivity and specificity, shows the improvement in the overall FOG detection achieved with the new context-aware home system.Esta tesis propone el uso de la actividad y el contexto espacial de una persona como medio para mejorar la detección de episodios de FOG (Freezing of gait) durante el seguimiento en el domicilio. La tesis describe el diseño, implementación de algoritmos y evaluación de un sistema doméstico distribuido para detección de FOG basado en varias cámaras y un único sensor de marcha inercial en la cintura del paciente. Mediante de la observación detallada de los datos caseros recopilados de 17 pacientes con EP, nos dimos cuenta de que se puede lograr una solución novedosa para la detección de FOG mediante el uso de información contextual de la posición del paciente, orientación, postura básica y movimiento anotada semánticamente en un mapa bidimensional (2D) del entorno interior. Imaginamos el futuro sistema de consciencia del contexto como una red de cámaras Microsoft Kinect colocadas en el hogar del paciente, que interactúa con un sensor de inercia portátil en el paciente (teléfono inteligente). Al constituirse la plataforma del sistema a partir de hardware comercial disponible, los esfuerzos de desarrollo consistieron en la producción de módulos de software (para el seguimiento de la posición, orientación seguimiento, reconocimiento de actividad) que se ejecutan en la parte superior del sistema operativo del servidor de puerta de enlace de casa. El componente principal del sistema que tuvo que desarrollarse es la aplicación Kinect para seguimiento de la posición y la altura de varias personas, según la entrada en forma de punto 3D de datos en la nube. Además del seguimiento de posición, este módulo de software también proporciona mapeo y semántica. anotación de zonas específicas de FOG en la escena frente al Kinect. Se supone que una instancia de la aplicación de seguimiento de visión se ejecuta para cada sensor Kinect en el sistema, produciendo un número potencialmente alto de pistas simultáneas. En cualquier momento, el sistema tiene que rastrear a una persona específica - el paciente. Para habilitar el seguimiento del paciente entre diferentes cámaras no superpuestas en el sistema distribuido, se desarrolló un nuevo enfoque de re-identificación basado en el aprendizaje de modelos de apariencia con one-class Suport Vector Machine (SVM). La evaluación del método de re-identificación se realizó con un conjunto de datos de 16 personas en un entorno de laboratorio. Dado que la orientación del paciente en el espacio interior fue reconocida como una parte importante del contexto, el sistema necesitaba la capacidad de estimar la orientación de la persona, expresada en el marco de la escena 2D en la que la cámara sigue al paciente. Diseñamos un método para fusionar la información de seguimiento de posición del sistema de visión y los datos de inercia del smartphone para obtener la estimación de postura 2D del paciente en el mapa de la escena. Además, se propuso un método para la estimación de la posición del Smartphone en la cintura del paciente. La precisión de la estimación de la posición y la orientación se evaluó en un conjunto de datos de 12 personas. Finalmente, al tener disponible información de posición, orientación y altura, se realizó una nueva clasificación de actividad de seven-class utilizando un clasificador jerárquico que combina un clasificador de postura basado en la altura con clasificadores de movimiento SVM traslacional y rotacional. Cada uno de los clasificadores de movimiento SVM y el clasificador jerárquico conjunto se evaluaron en el experimento de laboratorio con 8 personas sanas. El último algoritmo de detección de FOG basado en el contexto utiliza información de actividad e información de texto espacial para confirmar o refutar el FOG detectado por el algoritmo de detección de FOG actual. El algoritmo basado en el contexto influye muy positivamente en la reducción de las detecciones de falsos positivos, que se expresa a través de una mayor especificida

    Etude expérimentale des dynamiques temporelles du comportement normal et pathologique chez le rat et la souris

    Get PDF
    155 p.Modern neuroscience highlights the need for designing sophisticated behavioral readout of internal cognitive states. From a thorough analysis of classical behavioral test, my results supports the hypothesis that sensory ypersensitivity might be the cause of other behavioural deficits, and confirm the potassium channel BKCa as a potentially relevant molecular target for the development of drug medication against Fragile X Syndrome/Autism Spectrum Disorders. I have also used an innovative device, based on pressure sensors that can non-invasively detect the slightest animal movement with unprecedented sensitivity and time resolution, during spontaneous behaviour. Analysing this signal with sophisticated computational tools, I could demonstrate the outstanding potential of this methodology for behavioural phenotyping in general, and more specifically for the investigation of pain, fear or locomotion in normal mice and models of neurodevelopmental and neurodegenerative disorders

    Foot Motion-Based Falling Risk Evaluation for Patients with Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) affects motor functionalities, which are closely associated with increased risks of falling and decreased quality of life. However, there is no easy-to-use definitive tools for PD patients to quantify their falling risks at home. To address this, in this dissertation, we develop Monitoring Insoles (MONI) with advanced data processing techniques to score falling risks of PD patients following Falling Risk Questionnaire (FRQ) developed by the U.S. Centers for Disease Control and Prevention (CDC). To achieve this, we extract motion tasks from daily activities and select the most representative features associated with PD that facilitate accurate falling risk scoring. To address the challenge in uncontrolled daily life environments and to identify the most representative features associated with PD and falling risks, the proposed data processing method firstly recognizes foot motions such as walking and toe tapping from continuous movements with stride detection and fast labeling framework, and then extracts time-axis and acceleration-axis features from the motion tasks, at the end provides a score of falling risks using regression. The data processing method can be integrated into a mobile game to be used at home with MONI. The main contributions of this dissertation includes: (i) developing MONI as a low power solution for daily life use; (ii) utilizing stride detection and developing fast labeling framework for motion recognition that improves recognition accuracy for daily life applications; (iii) analyzing two walking and two toe tapping tasks that are close to real life scenarios and identifying important features associated with PD and falling risks; (iv) providing falling scores as quantitative evaluation to PD patients in daily life through simple foot motion tasks and setups
    corecore