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Context-aware Home Monitoring System for Parkinson’s Disease Patients
Ambient and Wearable Sensing for Freezing of Gait Detection

S

Freezing of gait (FOG) is a disabling symptom commonly occurring in later stages of Parkin-
son’s disease (PD). It is characterized by brief episodes of inability to step, or by extremely short
steps that typically occur on gait initiation or on turning while walking. The consequences of
FOGare aggravatedmobility andhigher a nity to falls, whichhave a direct e fect on thequality
of life of the individual. There does not exist completely e fective pharmacological treatment
for the FOG phenomena. However, external stimuli, such as lines on the oor or rhythmic
sounds, can focus the attention of a person who experiences a FOG episode and help her ini-
tiate gait. The optimal e fectiveness in such approach, known as cueing, is achieved through
timely activation of a cueing device upon the accurate detection of a FOG episode. Therefore,
a robust and accurate FOG detection is the main problem that needs to be solved when devel-
oping a suitable assistive technology solution for this speci c user group.

This thesis proposes the use of activity and spatial context of a person as the means to im-
prove the detection of FOG episodes during monitoring at home. The thesis describes design,
algorithm implementation and evaluation of a distributed home system for FOG detection
based on multiple cameras and a single inertial gait sensor worn at the waist of the patient.

Through detailed observation of collected home data of 17 PD patients, we realized that
a novel solution for FOG detection can be achieved by using contextual information of the
patient’s position, orientation, basic posture and movement on a semantically annotated two-
dimensional (2D) map of the indoor environment. We envisioned the future context-aware
system as a network of Microsof Kinect cameras placed in the patient’s home, that interacts
with a wearable inertial sensor on the patient (smartphone). Since the hardware platform of
the system constitutes from the commercial of-the-shelf hardware, the majority of the system
development e forts involved the production of sof ware modules (for position tracking, ori-
entation tracking, activity recognition) that run on top of themiddle-ware operating system in
the home gateway server.

The main component of the system that had to be developed is the Kinect application for
tracking the position and height ofmultiple people, based on the input in the formof 3Dpoint
cloud data. Besides position tracking, this sof ware module also provides mapping and seman-
tic annotation of FOG speci c zones on the scene in front of the Kinect.

One instance of vision tracking application is supposed to run for every Kinect sensor in the
system, yielding potentially high number of simultaneous tracks. At any moment, the system
has to track one speci c person - the patient. To enable tracking of the patient between di fer-
ent non-overlapped cameras in the distributed system, a new re-identi cation approach based
on appearance model learning with one-class Support Vector Machine (SVM) was developed.
Evaluation of the re-identi cationmethodwas conducted on a 16 people dataset in a laboratory
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environment.
Since the patient orientation in the indoor space was recognized as an important part of

the context, the system necessitated the ability to estimate the orientation of the person, ex-
pressed in the frame of the 2D scene on which the patient is tracked by the camera. We devised
a method to fuse position tracking information from the vision system and inertial data from
the smartphone in order to obtain patient’s 2Dpose estimationon the scenemap. Additionally,
a method for the estimation of the position of the smartphone on the waist of the patient was
proposed. Position and orientation estimation accuracy were evaluated on a 12 people dataset.
Finally, having available positional, orientation andheight information, a new seven-class activ-
ity classi cation was realized using a hierarchical classi er that combines height-based posture
classi er with translational and rotational SVM movement classi ers. Each of the SVM move-
ment classi ers and the joint hierarchical classi er were evaluated in the laboratory experiment
with 8 healthy persons.

The nal context-based FOGdetection algorithm uses activity information and spatial con-
text information in order to con rm or disprove FOG detected by the current state-of-the-art
FOG detection algorithm (which uses only wearable sensor data). A dataset with home data
of 3 PD patients was produced using two Kinect cameras and a smartphone in synchronized
recording. The new context-based FOG detection algorithm and the wearable-only FOG de-
tection algorithm, were both evaluatedwith the home dataset and their results were compared.
The context-based algorithm very positively in uences the reduction of false positive detec-
tions, which is expressed through achieved higher speci city. In some cases, context-based al-
gorithm also eliminates true positive detections, reducing sensitivity to the lesser extent. The
nal comparison of the two algorithms on the basis of their sensitivity and speci city, shows the

improvement in the overall FOGdetection achievedwith the new context-aware home system.
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1
Introduction

Thanks to the expected improvements of life standard in the future,more andmore peoplewill
have a chance to experience the joy of a long life. And although the promise of longer living by
itself is very good news for each of us, wemust not forget di culties that the old age can bring.
Some of the biggest threats to one’s quality of life (QoL), which increase in likelihood as the
person is getting older, are various chronic health conditions such as diabetes, Alzheimer’s and
Parkinson’s disease. Chronic conditions are usually progressive by nature, gradually worsening
the physical and cognitive state of the individual, until one ultimately comes to the stage where
constant attentionof a caregiver is necessary. Future population growthprojections, alongwith
already high numbers of elder citizens in developed countries, require changes in the way in
which existing public health systems deal with chronic conditions. Catering to needs of those
with chronic condition is a labour intensive errand that none of the countries will be able to
a ford it to its citizens. What is needed is a sensible way to economize on human labour, the
most costly element in healthcare. As the answer to this need arose the concept of Personal
Health System (PHS).

Technical and scienti c advances over the last twodecadesmade computers to evolve rapidly,
becoming a fordable, powerful and omnipresent in our lives. Nowadays, computing devices
have the ability to collect, transmit and store human generated content and, when a su cient
miniaturization is achieved, human body signals. The described state of information technol-
ogy enables design and implementation of systems able to automatically gather data necessary
for construction of the knowledge about the health state of each individual. Using compre-
hensive knowledge of individual’s health state to “assist in the provision of continuous, quality
controlled and personalised health services to empowered individuals regardless of their loca-
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tion” (Abadie et al., 2011) is the core function of PHS. Foresight (2013) consortiumde nedPHS
as a system consisting of:

• Ambient, wearable and/or in-body devices, which acquire, monitor and communicate
physiological and other health-related data→ Perception

• Intelligent processing of the acquired information (data analytics), able to couple the
acquired informationwith expert biomedical knowledge, and in some cases, knowledge
of social circumstances and living conditions→ Cognition

• Action based on the processing of acquired information, either applied to the individu-
als beingmonitored, or tohealth practicemore generally, concerning informationprovi-
sion and/ormore active engagement in anything from disease and disability prevention
to diagnosis, treatment and rehabilitation. →Action

We should note that PHS is not strictly limited to dealing with the care for elders and to dif-
cult cases such as chronic conditions. There is a whole spectrum of possible PHS applications

ranging from life-style management (involving well-being, tness, prevention and early detec-
tion) to themost demanding cases necessitating the independent living support. Evidently, the
potential applications of PHS correlate with the possible health conditions of di ferent target
groups, where the groups are ranging from healthy t people to the ones with severe chronic
cases. Also, it is natural to expect that various health conditions will require di ferent levels of
technical complexity in the implementation of supporting PHS. Abadie et al. (2011) proposed
a hybrid typology for PHS taking those two factors (health condition and technical sophistica-
tion) into account. This typology is presented in Figure 1.1, along with the short descriptions
for each type of PHS.

In the examination of Figure 1.1, we turn our attention towards the right side; where the
past, the present and the future of PHS for management of chronic diseases is displayed. The
concept of Remote Monitoring and Treatment (RMT) was recognized as the key aspect in
improving the care for peoplewith chronic conditions. In the rst generationofRMT,only the
monitoringpartwas automatizedusing a single disease-speci c sensor. The available amountof
data about the patient’s condition improved, but that data was still used only for the treatment
by on-demandhuman intervention. In the next phase, there has beenpresent the integrationof
the remote monitoring directly into a traditional disease management process. Management
systems have been designed to fully include medical professionals in the treatment and help
them through availability of improved analytical possibilities provided by the knowledge that
was extracted from the collected patient data. Concurrently, the independence of the patients
has been improved through integrated telecare solutions. Af er improving the integration, the
next step for RMT systems that is occurring right now, is the development of Advanced RMT
(ARMT) systems.

ARMT solutions are the ones possessing the capability to permanentlymonitor one or even
several diseases at the same time, and to provide an immediate closed-loop treatment via actua-
tion. These solutions are fuelled with the technological progress re ected in the form of sensor
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MOBILE HEALTH

-for fitness and well-being

-basic monitoring of vital signs

-using mobile phone or portable device

-store health data localy

-no direct connection with physician

1st GENERATION RMT AND TELECARE

-RMT: Remote Monitoring and Treatment

-Telecare: remote assistance or surveillance 

from call center

-no multi-sensor or multi-disease capability

-data collected and forwarded to data center

-treatment on demand by human intervention

INTEGRATED HOME-BASED TELEMANAGEMENT

-devices are similar to 1st generation solutions,

but service is advanced 

-RMT and traditional disease management 

activities of medical professionals are fully 

integrated

-combining ICT solutions for RMT, 

Telecare and Wellnes 

ADVANCED RMT SOLUTIONS

-pervasive sensing with multiple sensors

-multiple disease support

-automatic closed-loop action support

-convergence with Ambient Assisted Living

and Robotics to fully support independent 

living  

LAB ON CHIP 

-point-of-care testing and 

diagnosis

-used when there are early 

sings or assumed risk of a

disease

-cloud storage and online 

analytics   

INTEGATED PREVENTION AND

WELLNESS 

-mobile devices and special 

sensors for tracking sleep, 

nutrition, weight, activity

-cloud storage integrated with

online analytics service 

providers  

Figure 1.1: Hybrid typology for PHS according to Abadie et al. (2011)

miniaturization, processing power increase, energy consumptiondecrease, arti cial intelligence
advancement and omnipresentwireless communication networks. To get the complete picture
of the patient’s health state, ARMTs not only need to pick-up the vital signals from his body,
but also need to capture the context inwhich those signals have been acquired. ARMT systems
thrive on the achievements of context-aware computing and converge with the e forts in the
elds of Ambient Intelligence, Ambient Assisted Living and even Robotics.
This thesis presents a contribution within Erasmus Mundus Joint Doctorate in Interactive

andCognitive Environments to the body of work inAdvancedRemoteMonitoring andTreat-
ment systems for chronic condition patients. The chronic condition in the focus of the thesis
is Parkinson’s disease (PD), or to be more speci c, the most peculiar symptom of Parkinson’s
disease known as Freezing of Gait (FOG). The work presented here is a continuation of the
line of research on assistive technologies for Parkinson’s disease patients started at the Tech-
nical Research Centre for Autonomous Living and Dependency Care at Technical University
of Catalonia, and it is a continuation of the commitment to healthcare systems design of the
Department of Industrial Design at Eindhoven University of Technology.

1.1 B

1.1.1 P ’ D

Parkinson’s disease is a progressive neurological disorder that results from degeneration of neu-
rons in a region of the brain that controls movement. This degeneration creates a shortage of
the brain signalling chemical (neurotransmitter) known as dopamine, causing the movement

3



I

impairments that characterize the disease. Parkinson’s disease was rst described in ”An Essay
on the Shaking Palsy,” published in 1817 by a London physician James Parkinson (Parkinson,
2002). According to the estimations of Parkinson’s Disease Fundation∗ there is between seven
and tenmillion of people worldwide who su fer from the disease, with onemillion of them liv-
ing in the United States of America. The European Parkinson’s Disease Association† (EPDA)
represents more than 1.2 million of people with Parkinson’s in Europe, with the projections
of this number being double by 2030 due to ageing population and the fact that incidence of
Parkinson’s increases with age. Economic impact of the disease is already enormous with the
current EPDA estimate of annual European cost at 13.9 billion euros.

PD has a great impact on the everyday life of each individual su fering from it. The ability
of the brain to generate and coordinate bodymovements is disrupted in a person stricken with
PD, and this disruption produces characteristic signs and motor symptoms which complicate
every day living. There are four key motor symptoms, whose occurrence is unmistakable indi-
cation of the onset of PD.These cardinal symptoms can be grouped under the acronymTRAP
(Jankovic, 2008):

Tremor
Involuntary rhythmic shaking of the limbs, heador parts of the face, which comes in two
types. The rst type is the rest tremor, which is probably the most common and easily
recognizable symptom of PD present in around 75 of cases (Hughes et al., 1993). It
happens when the muscles are at rest and are not used. The second type is the postural
tremor which is phenomenologically identical to essential tremor that appears during
action of a fected muscles.

Rigidity
Increased resistance that is present duringpassivemovementof a limb in the joint, due to
an increase in themuscle tone. There are two types of rigidity relatedwith PD, lead-pipe
and cogwheel rigidity. The names of the types are based on the description of the feeling
experienced by a person who is trying to bend a limb of someone with the symptom.
In the case of the lead-pipe rigidity, the person applying external force to the a fected
limb would feel like bending a lead-pipe. During the same examination in the case of
the cogwheel rigidity, the person would feel a jerky or a ratchet-like movement.

Akinesia (or bradykinesia)
Hypo-kinetic disorders due to lack of dopamine. Akinesia is de ned as the inability
to initiate movement resulting in complete stand-still at moments, while bradykinesia
describes a slowness in the execution of a movement. Bradykinesia is the most char-
acteristic clinical feature of PD as it encompasses di culties with planning, initiating
and executing movement, and with performing sequential and simultaneous tasks (Be-
rardelli et al., 2001).

∗http://www.pdf.org
†http://www.epda.eu.com
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Postural instability
A balance disorder that happens due to the loss of postural re exes. The most e fective
way to asses it is the pull test, in which the patient is quickly pulled backward by the
shoulders. If he takes more than two steps backward, or if there is no postural response
at all, this is the indicator of an abnormal postural response. The postural instability
(along with FOG) is the most common cause of falls and contributes signi cantly to
the risk of hip fractures (Williams et al., 2006).

There are three general stages in the PDdevelopment: a) early; b)moderate; and c) advanced
stage, that appertain both to the severity ofmotor symptoms and to the impact that the disease
has on a person’s daily living activities. It is important to note that, besides the motor symp-
toms, the non-motor symptoms of PDhave been shown to have as equal in uence on theQoL.
The list of the possible non-motor symptoms includes: mood changes, cognitive decline, pain,
autonomic dysfunction, olfactory problems, dribbling saliva, constipation, sleep disorders, de-
pression, apathy, hallucinations and more (Chaudhuri et al., 2005; Chaudhuri and Schapira,
2009). Progression of PD varies among di ferent individuals, so the stages of PD are better ex-
plained by describing their characteristic sets of symptoms, than giving the exact time frames:

Early stage
Motor symptoms (inner tremor, light tremor) occur on one side of the body. These
symptoms may be inconvenient, but do not a fect daily activities. People around the
patientmay notice changes in the person’s posture, walking ability, facial expression and
voice. All these body changes can cause anxiety, and in the case of receiving a positive
PD diagnosis, also depression and apathy might occur. The e fectiveness of Parkinson’s
medications in suppressing movement symptoms at this stage is high.

Moderate stage
Motor symptoms occur on both sides of the body. The cardinal motor symptoms of
tremor, rigidity and bradykinesia are now fully present. Trouble with balance and co-
ordination may develop, resulting in stooped posture and postural instability. This is
when freezing of gait, described by the patients as “the feeling of having your feet glued
to the ground” (Giladi and Nieuwboer, 2008), may occur. The e fectiveness of Parkin-
son’s medications is weaker. Weaker e fectiveness can cause wearing-off e fect in which
the symptoms re-imerge between the doses. It can also cause involuntary movements
(called dyskinesia) at the beginning of a dose, when themedication concentration is too
high (Marconi et al., 1994).

Advanced stage
Motor symptoms become so heavy that there is a great di culty in walking. A patient
gets tied to a wheelchair and falls into bed for most of the day. This means that the as-
sistance is needed with all the daily activities. Di ferent combinations of all previously
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mentioned non-motor symptoms are possible. The e fectiveness of Parkinson’s medi-
cations is low, which causes the balancing of the bene ts of medications with their side
e fects to be very challenging.

The most common way to asses the stage of PD in a patient is by using rating scales. Two
scales are used most of en. Hoehn and Yahr (H&Y) scale (Hoehn and Yahr, 1967), takes into
account onlymotor symptoms and rates them from 1 to 5. On this scale, depending onmobility
di culties that the patient experiences, 1 and 2 correspond to early stage, 2 and 3 to moderate
stage, and 4 and 5 to advanced stage PD. For its practicality, H&Y scale is used in practical re-
search and in patient care setting. The Uni ed Parkinson’s Disease Rating Scale (UPDRS) is
themost commonly used scale in clinical research (Mitchell et al., 2000). It consists of four sec-
tions. Three sections evaluate the main areas of disability (mental and cognitive state, activities
of daily living, motor function), while the fourth section evaluates treatment complications.
Very of en the UPDRS scale is accompanied with H&Y scale and Schwab and England Activ-
iti of Daily Living scale (McRae et al., 2002).

The response of the patient tomedications for treating symptoms of Parkinson’s is as an im-
portant feature of each stage of the progression of the disease as are its original symptoms. The
medication treatment in PD is done with several types of drugs, such as levodopa, dopamine
agonists and inhibitors. The most potent and e fective medication for PD is levodopa, devel-
oped in the late 1960s (Barbeau, 1969). Levodopa medication is based on L-dopa, a chemi-
cal that is a precursor to dopamine. Neurons in the brain have the ability to convert L-dopa
into dopamine, which directly nulli es dopamine de ciency responsible for themajority of the
symptoms. This is why levodopa has the broadest antiparkinsonian e fects compared to any
other medication. Levodopa causes nausea and vomiting if converted into dopamine while in
the peripheral nervous system, so it is usually combined with carbidopa which prevents this
conversion to occur before themedication reaches the brain. Carbidopa cancels the nausea side
e fects, making carbidopa/levodopa mix the basis of the PD treatment.

The treatment with levodopa also has its downsides. In the early PD, side e fects include dry
mouth, nausea and dizziness. With the progression of the disease the e fectiveness of levodopa
decreases, requiring increased dosage and causing patients to experience dyskinesias and ON-
OFF periods. TheON-OFF periods are the occasions when the medication will suddenly and
unpredictably start or stop working (Nutt et al., 1984). The best description of the clinical
picture of theON-OFF phenomenonmight had been given in an extract from a letter written
by a patient who had been taking levodopa (Lees, 1989):

It in fact difficult now to stick to the 2-hour regime because of th apparent
unreliability. If for instance I findmyself over, suffering from so-called involuntary
movements, my limbs behaving if controlled by a drunken marionette master,
I am reluctant to take a pill in the midst of these side-effects. So I postpone it.
And then before I know where I am I am OFF. ON quite simply normal; I
can survive a dinner party, drive a car, write a fair, round hand, my voice
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normal. I can fall asleep rather easily unless I am trying not to. OFF on the
other hand very unpleasant. I lose almost all motor power in my legs; and th
paralys increasingly now spreads to my arms. Sometim odd pains and cramps
move round the body. There no position in which I am comfortable. I can’t
write, I can’t type, my speech slurred and low powered. The OFF com on with
increasingly little warning.

In the ON state the majority of the PD symptoms are suppressed by levodopa, enabling
mobility level that is almost comparable to a healthy person. In the OFF state all the charac-
teristic symptoms of PD return. This makes prolongation of ON periods and avoidance of
overdoses to be the main goal for clinicians in the PDmanagement. Other PDmedications are
usually combined with levodopa to improve its e fectiveness. For example, dopamine agonists
are drugs thatmimic the activity of dopamine in order to stimulate dopamine de cient parts of
the brain. If a person takes dopamine agonists, they need less levodopa, which can avoid over-
dose and reduce dyskinesias. On the other hand, di ferent inhibitors prolong the ON state.
Monoamine oxidase type-B (MAO-B) inhibitors prevent breakdown of existing dopamine in
the brain by blocking the enzymes responsible for the process. Catechol-O-methyl transferase
(COMT) inhibitors do the similar. These inhibitors modestly suppress symptoms of PD and
are usually used to avoid problems of wearing-off. Anticholinergics may alleviate tremor and
may help with symptoms associated with the wearing-off or the peak-dose e fect. Similarly,
amantadine has been found useful in helping with tremor and reducing dyskinesias.

The pharmacological treatment tailored speci cally for each patient can be successful in alle-
viating majority of symptoms of PD until very advanced stage of the disease progression. The
main problem is the dosage in order to avoid side-e fects, and how to combine the available
medications for the optimal e fect. So far, thenormal practice for assigning complexmedication
has included periodic visits to the neurologist. The number and the complexity of Parkinson’s
disease motor symptoms, along with their variability over time, make the optimal prescription
assignment di cult for the therapist.

The systems for remote monitoring, evaluation andmanagement of PD patients (e.g. PER-
FORM (2008), HOME (2008)) have been recognized as a potential solution to this problem.
These systems are able to recognize, monitor and objectively asses patient’s motor status and
support physicians in taking therapy-modi cation decisions. The most advanced future solu-
tions, such as REMPARK (2011), are expected to adapt to patient’s symptoms on-the-go and
dispense drug into the the bloodstreamof the patient automatically. In the systemswith closed-
loopmedication dispensation, the accurate recognition of each speci c symptom of PD is very
important in order to achieve the complete picture of the patient’s PD state, and in that way
minimize the possibility of an incorrect medication dose.
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1.1.2 F G

Freezing of gait (FOG) is a temporary, involuntary inability to initiate or continue movement
experienced by approximately 50 of patients with advanced Parkinson’s disease (Macht et al.,
2007). Giladi andNieuwboer (2008) de ne it as “an episodic inability (lasting seconds) to gen-
erate e fective stepping in the absence of any known cause other than parkinsonism or high-
level gait disorders.” Most commonly, FOG lasts a couple of seconds, but episodes can occa-
sionally exceed 30 seconds. FOG usually depends on the walking situation. It of en occurs
at turns, start of walking, upon reaching the destination and in open spaces (Schaafsma et al.,
2003). It can also occur when people approach narrow spaces, such as doors, and when peo-
ple are in crowded places (Giladi et al., 1992). In the home environment, freezing episodes are
usually reported by patients to occur at the same location every day.

The apprehension of FOG as an episodic phenomenon is important. Unlike the contin-
uous gait disorders, where the slow progression of gait disturbances allows patients to adapt
slowly to the alterations in their walking, with episodic gait disorders it is very hard to make
those adjustments. FOG is unpredictable in nature, which in uences the QoL of the patient
in two ways. The more obvious impact is seen in the reduced mobility and a nity to falls due
to balance problems (Bloem et al., 2004; Kerr et al., 2010) which lead to the direct loss of in-
dependence. Falls in the elder age are a great cause of hip fractures, resulting in high mortality
in PD patients (Coughlin and Templeton, 1980) or admission in the care-taking institution.
The less obvious impact is recognized in the fear of future falls and the overall sense of loos-
ing control and feeling of helplessness (Wallhagen and Brod, 1997). Helplessness, and potential
embarrassment and frustration that come with it, can be a cause of decreased socialization and
lead towards depression (Giladi andHausdor f, 2006). The signi cant impact of FOGonQoL
in PD patients that goes beyond its e fect on gait and mobility has been clearly demonstrated
in the study by Moore et al. (2007).

What seems as a simple event described by the terms “lack of movement” or “inability to
step” in reality is a very complex phenomenon. The complexity of FOG is re ected in its de-
pendence on the interplay of patient’s gait abnormality, patient’s internal emotive and cogni-
tive state and his environment. Nutt et al. (2011) consider that FOG might be not one single
phenomenon, but possibly a set of several di ferent syndromes in which each syndrome has
their own underlying mechanism. The di culty in providing universal explanation for FOG
is visible from completely distinctive ways in which FOG can be manifested. Three types of
manifestation, originally introduced by Thompson and Marsden (2000) and later con rmed
by Schaafsma et al. (2003), are distinguished:

Shu ing
Very small steps during which there is practically no lif ing of the feet from the ground.
It results in a minimal forward movement.

Leg trembling
Legs tremble with slight movements in the knees, while feet are fully on the ground or
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with slightly raised heels. The asymmetrical case, where only one leg is trembling, is also
possible.

Complete akinesia
Person stays immobile, rigid and totally still with no observablemotion of the legs. Typ-
ically occurring at the movement initiation.

Whenever FOG manifests, what we actually see is the resolution of the process previously
triggered by the internal pathophysiology of the motor system and/or external factors in the
environment. In otherwords, the likelihood for FOGtooccur depends heavily on the situation
that the patient is experiencing. Five types of speci c situations are recognized in the literature
(Fahn, 1995; Schaafsma et al., 2003):

Start hesitation
When the person wants to start walking. Frequently it is preceded with a postural
change from sitting or lying to standing posture.

Turn hesitation
When turning during walking. Of en happens as a response to the (movable or immov-
able) obstacles on the path.

Tight quarter hesitation
When approaching and walking in narrow zones, such as passages or doorways.

Destination hesitation
When reaching a nal target, such as a chair or a sofa.

Open space hesitation
When there is no obvious reason in the environment for causing the episode.

We can divide the described situations into two groups, depending on whether the patient
was alreadywalkingwhen the episode started. The rst group,which considers thenon-locomotive
state as the starting point for the freezing episode, includes only the FOG by start hesitation.
The second group encompasses the cases of freezing in which the episodes start while the per-
son is walking, and in this group belong all other types of the listed situations. Nieuwboer and
Giladi (2013) used a similar division, using the terms akinetic freezing andmotor freezing in their
discussion about potential mechanisms behind the episodic nature of FOG.

Starting hesitation is manifested as a complete akinesia or leg tremor. During the starting
hesitations there is no external environment trigger for the onset of the episode. In this case
the start and the end of the episodes are linked with the internal desire to execute a motor
task. This kind of FOG has been related with the problems in the preparatory phase of the
step initiation (known as anticipatory postural adjustment; APA), when the patient is trying
to make a rst step andmove his center of mass forward (Jacobs et al., 2009). The experiments
in which the forces under the feet of the patients were measured during such type of FOG
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episodes, recorded low amplitude complex oscillations in the range of 3-6Hz (Hausdor f et al.,
2003a). This oscillations were brought into relation with the inability to couple normal APA
to the stepping motor pattern, which would enable the instigation of gait.

On the other hand, the evolution of a FOG episode is di ferent when it occurs due to one of
the precipitating situations from the second group. Such episode, that is initiated during gait,
usually is characterized by one or more of the several following features:

• Incremental decrease in the patient’s step length;

• Decrease in joint ranges in a hip, a knee and an ankle;

• Lost temporal control of the gait cycle; and

• Appearance of trembling leg movements at a frequency between 3 Hz and 8 Hz.

These listed episodic gait abnormalities that are preceding and accompanyingFOGepisodes,
are the re ection of the overall set of gait impairments and continuous gait abnormalities that
has been found in patients with FOG. Five features of the continuous gait have been observed
to be under the negative in uence: a) bilateral step coordination (Plotnik et al., 2008); b) step
length (Chee et al., 2009); c) gait symmetry (Plotnik et al., 2005); d) gait rhythmicity (Hausdor f
et al., 2003b); and e) dynamic postural control (Jacobs et al., 2009). According to the theory of
Plotnik et al. (2012), these continuous gait impairments can start to in uence negatively one an-
other, until the point in which the breakdown of the automatic locomotion program becomes
inevitable. This idea was supported by several studies that tested spatio-temporal properties of
gait. For example, the experiments in which high cadence was imposed on the patients with
FOG resulted in frequent FOG episodes (Moreau et al., 2008). Similarly, the experiments in
which very short stride lengths were imposed resulted in a provocation of the sequence effect
(step-to-step reduction in amplitude) which lead to a shu ing FOG (Chee et al., 2009).

The aforementioned theoretical concept of Plotnik et al. (2012) predicts two kinds of po-
tential triggers causing the appearance of episodic gait abnormalities that lead to FOG. The
rst type of trigger is related to transitions between di ferent types of walking. An excellent

example of such trigger is the change in the trajectory type, between the straight line walking
and turning. During turning each leg (inner and outer) has its separate gait control program.
Changing between the two types of trajectories challenges the locomotion control by requiring
asymmetric step lengths and good bilateral step coordination. Since these two gait properties
deviate from the normal in FOG patients, the induction of FOG is plausible due to the mu-
tual negative in uence of the said gait parameters. Additionally, the demand of the step size
reduction on the inner leg can lead to the appearance of the sequence effect. One more example
of a situation in which a walking type transition occurs is when approaching narrow spaces.
When PD patients perceive the space as too narrow for the dimensions of their body, adaptive
postural changes involving shoulder rotations may be needed during locomotion to achieve a
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collision-free passage. If the upper body rotations are limited due to the faulty dynamic pos-
tural control, there will be a large reduction in the speed of movement (Higuchi et al., 2006).
This speed reduction can then lead to shorter steps and the sequence effect.

The second type of gait breaking trigger are the attention shif s. In cognitive psychology,
attentional set-shif ing is de ned as the ability to move back and forth between tasks, opera-
tions, or mental sets in response to changing internal goals or the changes in the environment
perceived through senses (Miyake et al., 2000). According to Naismith et al. (2010), the ability
to keep di ferent motor and cognitive tasks active at the same time is reduced in the persons
with FOG. Passing through a doorway (Cowie et al., 2012), negotiating obstacles (Almeida and
Lebold, 2010), turning (Spildooren et al., 2010), reaching destinations - all o f these are the types
of environment-related situations that require adaptation of the gait pattern, alongwith the el-
evated level of attention. The best example of the interference between the required elevated
level of attention and a motor control task is visible from the behaviour during performance
of a dual-task (Yogev et al., 2005). One dual-task that is of en present in daily living situations
is walking and carrying a tray with a glass full of liquid. This task becomes even more di cult
if making a turn is required, instead of straight walking. Spildooren et al. (2010) have found
that turning for 360◦, in the combination with a dual-task, is the most important trigger for
freezing.

Except by the ve types of hesitation situations of Schaafasma that involve motor control
and cognitive aspects, FOGbehaviourmay be caused by the strain in the emotional andmental
state. Known as such internal triggers are: stress, anxiety, depression and fatigue (Giladi and
Hausdor f, 2006; Moreau et al., 2008). Susceptibility to such conditions may explain why in
daily life FOGof en happens in crowded areas, when trying to reach a ringing telephone, when
trying to enter the elevator or cross a street at the green signal light. Experimental studies on
in uence of internal mental states on FOG onset are very di cult to conduct, because it is
not easy to objectively measure such long term qualities as depression and fatigue. Short-term
emotional states like stressful events or momentary anxiety might be easier to sense. One good
example of a possible approach to their sensing is the study by Maidan et al. (2010) in which
FOG was associated with the increased heart rate dynamics.

Levodopa is mostly bene cial, but occasionally also happens that FOG gets worse under
levodopa in uence (Ambani and Van Woert, 1973; Giladi et al., 1992). Other types of medica-
tion are likewise not fully e fective. It was shown that dopamine agonists are able to decrease
the OFF time in advanced PD patients, which should hypothetically also reduce the amount
of OFF -FOG. Confusingly, some studies on dopamine agonists reported that FOG episodes
are actually more frequent in the patients receiving this type of medication (Jankovic, 1985).
MAO-B inhibitors have been associated with a decreased likelihood of developing FOG, but
they rarely reduce FOG once it has developed (Giladi et al., 2001a). One study revealed that
patients receiving amantadine are less likely to develop FOG (Giladi et al., 2001b), while the
other study came to a less favourable conclusion, associating the amantadine treatment with
the higher frequency of FOG (Macht et al., 2007).
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Fortunately, there exists an additional way to deal with FOG, besides using medications. In
the past, it was observed that some of the patients developed by themselves various techniques
for solving the start hesitation, such as lateral swaying, stepping over someone’s foot, stepping
over lines on the oor or moving in a rhythm of music. Observations of these techniques led
to the development of the sensory cueing as a feasible therapeutic option. As a consequence,
rehabilitation approaches based on the sensory cueing received a lot of attention during the last
decade (Nieuwboer, 2008).

Sensory cueing is de ned as ”the use of external temporal or spatial stimuli to facilitatemove-
ment, gait initiation and continuation” (Nieuwboer et al., 2007). There are three mainmodal-
ities of cueing: a) visual cueing; b) auditory cueing; and c) tactile cueing. The fourth possible
modality is the cueing as amix of the previous three. Examples of devices used for visual cueing
include perpendicular stripes on the oor (Bagley et al., 1991; Morris et al., 1994; Azulay et al.,
1999), walking sticks (Dietz et al., 1990), rhythmic ashing light xed on glass frames (van We-
gen et al., 2006) and a laser beammounted on a chest (Lewis et al., 2000). Themost used device
for rhythmic auditory cueing (RAC) is metronome (Freedland et al., 2002; Ledger et al., 2008).
Tactile cueing via tapping on patient’s shoulder or using a combination of audio (metronome)
and video cues (bright coloured lines) (Suteerawattananon et al., 2004) has also been used. The
theory behind the sensory cueing predicts that improvements in walking speed, stride length
and cadence should be observed when external stimuli are applied during the gait of a PD pa-
tient. However, not all sensorymodalities act equally on all gait parameters. Visual cues, which
are spatial in nature, help more to enlarge the stride length and generate su cient amplitude
movement (Bagley et al., 1991; Azulay et al., 1999), while rhythmical auditory (temporal) cues
target to stabilize the gait timing (Freedland et al., 2002).

The e fectiveness of the sensory cueing in improving gait has been established for general
PD patients, but the evidence is limited for cueing used to mitigate FOG (Morris et al., 1994;
Nieuwboer, 2008). Some of the single session studies that speci cally explored the relation
between the e fects of cueing on FOG during walking, showed no change in the number of
FOG episodes and walking time, regardless whether the visual (Kompoliti et al., 2000) or the
auditory (Cubo et al., 2004) modality had been used. On the other hand, there was a single
session study demonstrating that walking over parallel lines is capable to reduce the number of
FOGepisodes (Dietz et al., 1990), and two longer studies lasting 6 and 12weekswhich indicated
thepositive in uence of the cueingby the assessmentwithFOGquestionnaire scores (Brichetto
et al., 2006; Nieuwboer et al., 2007).

Interesting relations were found between the cueing and its in uence on starting hesita-
tion, turning and attention. It seems that the movement initiation is more successful when
stimulated by visual spatial cues (Jiang and Norman, 2006). Rhythmical temporal cues help
to maintain the gait during turns, by forcing patients to apply the wide-arc turning strategy
which involves multiple, more evenly, timed steps (Willems et al., 2007). In uence of the cue-
ing to attention related FOG is somewhat surprising. Although it has been demonstrated that
walking becomes attention-demanding and worsens when the secondary tasks are performed
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(Yogev et al., 2005), the outcome of the study by Rochester et al. (2007) showed improvements
in patients’ gaits during dual-tasks. This results were explained by the theory that the cues can
reduce attentional demands by making it easier to allocate attention.

Thepreliminary ndings in the studies ofRACwithFOGpatients reveal that themetronome
frequency set to be 10 lesser than the person’s self-selected walking speed can improve the
stride length (Willems et al., 2006). In the conclusion about the future perspectives of the cue-
ing in FOG, the world renown expert Nieuwboer (2008) considers as crucial factors both the
personalized parametrization and the proper use of the cueing modalities:

To address the motor control deficits leading to rhythm and amplitude interfer-
ence, it mak sense to address both aspects in any therapeutic intervention by
providing a stabilizing cueing (baseline) frequency combined with appropriate at-
tentional strategi and instructions to alleviate scaling deficits. Where possible,
visual cu to maintain and tri er amplitude generation in the very context in
which FOG tak place may be of use.

Her conclusion suggests that the context-aware sensory cueing adapted to the current situation
of the patient, has the most chances to overcome freezing and re-initiate gait. The challenge in
such approach is to reliably and in real-time detect FOGepisodes by using the currently existing
sensor technology.

1.1.3 C - M

A completely robust, clinically proven solution for the automatic detection of FOG still does
not exist, but there are several research groups that have been making the advancements to-
wards the nal goal (Moore et al., 2008; Bächlin et al., 2009a; Zhao et al., 2012). While studying
the most prominent systems and methods for FOG detection, we witnessed to a variety of
approaches di fering in the number of sensors, detection accuracy and detection speed. Still,
there are two properties that all the state-of-the-art solutions have in common. First, they have
all been based on inertial sensors, usually attached to the middle or the lower part of the pa-
tient’s body. And second, none of them featured sensor data collected in the patient’s home
environment.

The detection algorithms based on the inertial sensors (Moore et al., 2008; Mazilu et al.,
2012; Zhao et al., 2012) are known to achieve very good accuracies in highly controlled clinical
or laboratory tests. The signi cant problemwith sensory data collected in such environments is
that during data collection experiments a large percentage of the PD patients do not have FOG
episodes as of en, or in the same manner, as they would have at their home (Nieuwboer et al.,
1998). Therefore, when deployed in free-living conditions, the algorithms that were optimized
with the laboratory data might get subjected to unpredicted everyday life situations (Moore
et al., 2008; Bächlin et al., 2012). The usualmovements and activities (e.g. rhythmicallymoving
legs while sitting or brushing teeth) may produce inertial signal patterns that are unexpectedly
similar to those during FOG episodes. Therefore, such situations will most probably result
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in false positive detections. The false positive detections may threaten the user-acceptance of
a system by annoying patients, or in a worse case, even cause dangerous situations if the sen-
sory cueing is engaged in an unfavourable moment. Consequently, it is important to minimize
the number of false detections and achieve the maximum possible clinical e cacy in a home
environment.

Due to the dependency of FOG on di ferent internal and external triggers, relating patient’s
movement data with his/her broader contextual image has a potential to signi cantly improve
the FOG detection. Bächlin et al. (2009b) de ned four types of context situation aspects that
have a potential for a FOG detection improvement and related these aspects with the appro-
priate sensor modalities:

Situational aspects
These are the speci c situations causing hesitation according to Schaafsma et al. (2003),
such as turns, start of walking, walking in narrow spaces and reaching destinations. Pos-
sible sensors for sensing this typeof situations include gyroscopes for detecting turns and
proximity sensors for detecting obstacles.

Local aspects
FOG of en happens at the same location in the patient’s everyday environment. Track-
ing the patient’s current location and his location history, and relating those with the
previous instances of FOG, could be a good predictor of the next episode. To incorpo-
rate the information about the patient’s location in the home, it is necessary to have an
indoor localization system. So far, general purpose localization systemshavebeen imple-
mented with a variety of sensor technologies (e.g. camera, Wi-Fi, ultrasound) (Teixeira
et al., 2010).

Cognitive‐a fective aspects
This aspect includes internally oriented freezing factors, such as the attention shif s, cog-
nitive load, stress, anxiety and depression. The appropriate perceptional input for the
assessment of the cognitive‐a fective state can be achieved with sensors for physiological
signals (e.g. sensor for galvanic skin response (GSR), electrocardiograph (ECG)).

Physiological aspects
This aspect is related with the direct manifestation of FOG through physiological pa-
rameters like changes in gait and heart rate. This is the most utilized contextual aspect
for FOG detection, since the inertial sensing of gait abnormalities is the basis of all the
existing ambulatory monitoring systems.

Several recent studies have investigated the potentials of multi-modal sensing. Mainly they
have been focused at the additional bene ts from the inclusion of physiological and cogni-
tive‐a fective contextual aspects into FOGprediction. So far, themost elaborate study in terms
of the number of sensors and the variety in sensor modalities, included foot pressure sensors,
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1.2. Research Objectives

ECG, GSR and a sensor for the measurement of brain activity (fNIR), along with multiple in-
ertial measurement units (IMUs) (Mazilu et al., 2013a). Since this study was a data collection
study, only the visual inspection of results was performed, indicating possible bene ts from the
GSR and magnetometers signals. A study by Maidan et al. (2010) in which ECG was used, re-
ported that there is an increase in the heart rate several seconds prior to a FOGepisode, and that
such event could be used as a potential episode indicator. The collection of GSR or ECG data
under the ambulatory conditions is di cult because there is currently no sensor technology
that would enable long-term robustness in the sensor placement (Mazilu et al., 2013a). Hando-
joseno et al. (2012) presented results of the laboratory study that used electroencephalography
(EEG) signals for the early detection of FOG in the PD patients. The utility of this approach
has not yet been tested in daily life situations.

Hitherto, there has not existed any system that explicitly uses the situational and/or local as-
pects of context to improve the FOG detection. To enable more accurate and robust FOG de-
tection algorithms, and to provide a contribution to the state-of-the-art in the previously non-
explored direction, we decided to investigate the properties of these two untapped contextual
aspects. Such e fort demanded development of a new multi-modal context-aware monitoring
system, that will be presented in this thesis.

1.2 R O

Since the start of the project, we used the term spatial context to refer to the union of the situ-
ational and local contextual aspects. The development of the system and the method that use
the spatial context for improving the detection of FOG was set as the nal goal of the thesis.
This main goal has been carried out trough the following three research objectives:

Objective 1: Design of the distributed multi-modal system for home monitoring of FOG
The starting point towards the nal goal of improved detection is the development of
the system capable to capture, store and process (in real-time) contextual data of the
patient. The system has to be designed to undertake double role, both as a research
platform, and a nal in-the-home deployment platform. The design of the systemmust
include the best features of the previously developed FOGmonitoring systems in terms
of usability and robustness, and o fer the space for the sensory and algorithmic upgrade.
The complexity of the speci c FOG situations that we want to recognize in relation to
the spatial context, requires high density of information and implies the necessity for
multiple sensors. The everyday ease-of-use of the system is considered as the toppriority,
meaning that an endeavour has to be taken tominimize the number ofwearable sensors.
Contribution
We present a distributed system consisting of one wearable inertial sensor device worn
by the patient and an arbitrary number of additional camera sensors in the patient’s en-
vironment. The system is designed to support usability, fast setup, maximum spatial
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coverage via modularity andmulti-functionality. Themain contribution accomplished
during this objective is the establishment of the knowledge base about the types and
onset locations of the FOG episodes. This knowledge base was obtained through a de-
tailed observation of home collected patient videos, and it was a very valuable input for
the analysis of the system requirements.

Objective 2: Development of algorithms for extraction of spatial context information
Oncewe are set on the systemarchitecture that provides necessary sensory inputs, one of
the most important tasks is to design the algorithms for extraction of the spatial context
information from the incoming sensory data. In the proposed concept, the extraction
of the location aspect of the context is expected through the localization of the patient
within a camera network, while the situational aspect should be assessed through the
correlation of kinematic parameters of the patient (e.g. walking velocity, height di fer-
ence) with the inertial data from the worn sensor. In both cases, the tracking and the
identi cation of the patient in the network of cameras is of critical importance.
Contribution
We describe the practical implementation and evaluation of algorithms for video track-
ing of persons, person re-identi cation and basic activity classi cation. The attention
in selection and implementation of the algorithms was given to achieving robustness
when dealing with potentially noisy sensor data in home environments. The ful lment
of the Objective 2 also resulted with several contributions to the existing state of-the-art
in multiple elds:

• We developed a new method for estimation of the absolute orientation of the
patient in indoor spaces based on the fusion of gyroscopic data from thewearable
IMU device with image-based features from a camera;

• We developed a new method for patient re-identi cation in a camera network
based on machine learning; and

• Wedeveloped an algorithm that fuses wearable IMUdata with the trajectory data
from video tracking to detect the basic human postures and activities (e.g. stand-
ing, sitting down, walking backwards).

Objective 3: Contextualization of freezing of gait using spatial context information
Contextualization is expected to improve the FOG detection, especially in terms of the
speci city rate. Having the perception system that is able to localize the patient in the
known environment and recognize his basic movements, we are lef with the task of
nding the way to optimally use this additional information.

Contribution
We propose and implement the method which uses explicit information about the spa-
tial context to support or reject the primary detection of FOG. The primary detection

16
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is based on the current state-of-the art algorithm, which uses solely the accelerometer
signal from the wearable sensor. The new context-based detection method is evaluated
on data that was collected in the homes of PD patients using the prototype of the new
distributed monitoring system. The results for the context-based FOG detection algo-
rithm are numerically compared with the results of the wearable-only detection algo-
rithm. The comparison shows the nal contribution of the new approach in the form
of the achieved higher speci city.

1.3 O T

Chapter 2 provides a chronological and critical review of the state-of-the-art in ambulatory sys-
tems for detection of FOG. The attention in the critical review is given to the analysis of the
common properties, strengths and shortcomings of such systems.

Following the review of the state-of-the-art, in Chapter 3 we make our own exploration
about FOG by conducting a comprehensive analysis of the FOG episode situations. For the
analysis, we use a set of home videos from the PD patient database of REMPARK project.
The newly gathered knowledge about the usual behaviour of patients in their homes, and the
recognition of critical situations and locations that form the spatial context is used to set the
clinical requirements for the new system.

In Chapter 4 we describe the design process and the nal concept of the distributed mon-
itoring system. We present the selection of hardware and sof ware platforms, and we end the
chapter with the presentation of the general architecture of the home monitoring system

Since the hardware of the system is based on commercially available sensor devices, ourwork
in this thesis wasmainly oriented towards the sof ware development. FromChapter 5 to Chap-
ter 8, we describe the design and the implementation of the system sof waremodules. Chapter 5
brings the description of the application for multiple people position tracking using one cam-
era.

In Chapter 6 we introduce and solve the problem of tracking the absolute orientation of the
patient in reference to the observing camera. Towards the end of this chapter, we conduct the
evaluation of both position tracking and orientation tracking accuracy on a 12 people dataset.

In Chapter 7 we develop a new re-identi cationmethod that enables tracking of the patient
between the cameras in a home network. The evaluation of the new re-identi cation method
conducted with 16 people in a laboratory environment is presented.

In Chapter 8 we turn our attention to the recognition of the elements of the situational as-
pect of FOG context. The knowledge of the postures and basic movements is expected to help
in the recognition of the situations that are characteristic for FOG, such as the starting hesi-
tation or the turning hesitation. We implement a vision-based classi er to assess the patient’s
posture state (e.g. sitting, standing) and combine it into a hierarchical classi er for the recog-
nition of elementary human movements (e.g. walking forward, bending, turning) based on
fusion of inertial and video data. We report the results for the evaluation of the posture and
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activity classi ers done with 8 healthy people and 4 PD patients.
A new FOG detection algorithm that uses the spatial context is presented and evaluated

in Chapter 9. The algorithm is tested on home data of three PD patients, collected with the
prototype of the monitoring system. The characteristics of the patients’ home environments
are analysed and the system is evaluated for each patient case separately. The nal results of the
thesis are reported.

InChapter 10weo fer a general discussion of our research ndings andoutline the directions
for the possible future work.
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2
State of the Art

The assessment of FOG is a di cult task due to the variability of its manifestation in each pa-
tient. An additional aggravating circumstance is that FOG happens more of en during daily
life at the home and much less of en during observations at the doctor’s o ce or in a research
laboratory (Nieuwboer et al., 1998). The data that the medical specialists get from the PD pa-
tients when assessing their physical state via clinical examination is not a reliable representative
of their state throughout a period of days. The only validated tool that has been available to
doctors for assessing FOG in daily living of their patients is the Freezing of Gait Question-
naire (FOG-Q) (Giladi et al., 2000, 2009), which is susceptible to subjective impressions and
memories of the patient. Due to the above reasons, the engineering and scienti c community
recognized the need for the development of more objective methods for FOG assessment, that
will be based on quantitative long-term data.

The active monitoring technology has a potential to objectively assess FOG on a long-term
scale and to alleviate the episodes that happen in daily living, by using a timely detection and the
context-aware sensory cueing. The usual approach to the assessment of motor related symp-
toms is to use wearable inertial sensors in order to measure the kinematic parameters of the
movements of body segments. Since various gait alterations, like short shu ing steps and fes-
tinations are characteristic for FOG, the analysis of the gait parameters has been recognized
as a good indicator of the patient’s FOG state. In this chapter, we are providing a review of
the most prominent FOG detectionmethods, along with our critical insight on their common
characteristics, their de ciencies and the possibilities for improvement.
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2.1 C R

The rst who tried to detect FOG episodes using on-body inertial sensors were Han et al.
(2003). They used one accelerometer at each ankle and with the help of the frequency anal-
ysis came to a conclusion that the characteristic signal of a freezing episode contains frequency
components between 6Hz to 8Hz, setting it apart from the normal walking dominated by
the 2Hz frequency component. Several years later, Moore et al. (2008) used accelerometers
mounted on the lef ankle of 11 advanced PD patients to measure their vertical leg movement.
Power analysis revealed that during freezing episodes there are frequency components in the
3Hz to 8Hz frequencyband,which arenotpresent during thenormalwalkingor the volitional
standing. Their o ine detection algorithm used the freezing index (FI), the ratio of power in
the freeze band (3Hz to 8Hz) and the locomotor band (0.5Hz to 3Hz). The freezing indexwas
compared against the freezing threshold, a threshold value optimized based on the available pa-
tient data. All calculation windows in which the freezing index was higher than the freezing
threshold were designated as FOG. The FI algorithm used sliding window of 6 s length for the
calculation of power spectrum. Such approach resulted in a considerable detection latency (>
2 s).

Thework following the direction set byMoore et al. (2008) has been continuedby the group
of researchers leadbyBächlinwithin theDAPHNET(2006) project. Theyput the emphasis on
enabling automatic online detection of the symptom andmaking the necessary improvements
so that the system based on the FI method can be used outside of the laboratory environment.
E forts were done in the direction of lowering the FI algorithm latency and enhancing its speci-
city. (Bächlin et al., 2009a, 2010a,b). The latency of the FI algorithm dominated by the win-

dow length needed for the Fast Fourier Transformation (FFT), was reduced by using the 4 s
analytic window with the 0.5 s window step. Their acquisition system consisted of a portable
computer and three accelerometer sensors placed on the trunk, a thigh and a shank. To help
with the elimination of the false positives that occur in daily situations inwhich patients are in a
static posture state, like sitting or standing, the DAPHNET research group expanded the orig-
inal algorithmwith the second threshold (power threshold). This second threshold was used to
drive the output of the freezing threshold comparison to False state in the case when the lack
of su cient power in the total observed frequency spectra (0.5Hz to 8Hz) indicated that the
person was not moving.

There were also other systems inspired by the algorithm of Moore et al. (2008). Jovanov
et al. (2009) developed deFOG, a system consisting of a small sensor module with a 3-axial ac-
celerometer and a 2-axial gyroscope that had an online processing capability and could connect
to a wireless headset for RAC via Bluetooth. The sensor module was worn on a foot. Their
algorithm used correlation with the total power in the FFT calculation window to eliminate
false detections produced by the FI-based thresholding. The algorithm was designed to have
a minimum latency in the FOG episode detection thanks to the usage of a very short (320ms)
window for spectral processing.

MiMed-Pants by Niazmand et al. (2011) is a textile integrated measurement device that con-
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sists of ordinary pants with sewn-in ve tri-axial acceleration sensors (on thighs, shanks and
waist). The sensor data from MiMed-Pants can be saved on the µSD-card enclosed in the cen-
tral processing unit, or it can be sent by wireless connection to a PC. Niazmand et al. (2011)
performed o ine FOG detection using a hybrid approach in which they analysed the inertial
signals both in time and frequencydomains in order to reduce the detectiondelay andminimize
the processing requirements. Time domain analysis was used to detect the ”normal” walking
pattern, which is the pattern that is very regular and periodic in comparison to the ”freezing”
pattern. A shorter analysis window of 1.5 s was used to detect a suspicious non-rhythmic walk-
ing which triggers the frequency analysis on a 4 s window. The nal decision was made using
the well established FI method.

Recently, Moore et al. (2013) extended their initial work on the FI method by searching for
the optimal con guration of the sensor placement and the signal processing parameters. They
used seven sensors attached to the lumbar back, thighs, shanks and feet, and tested their signals
with di ferent sizes of the analytic window (2.5, 5, 7.5 and 10 s). Binary waveforms of classi -
cation output were obtained for each accelerometer sensor by applying the FI threshold. The
majority vote that requests at least 4 out of 7 sensors to register FOG at the same moment
was used to obtain the uni ed output of the multi-sensor system. Based on the measures of
performance, Moore et al. (2013) found this complex seven-sensor con guration suitable for
demanding research applications, but overly complicated for everyday use. A single sensor at
the middle of the back was recommended for use in ambulatory monitoring applications.

The complete chronological development of ambulatory systems for detection of FOG is
given in Table 2.1. Except the frequency domain based approach to FOG detection which was
the most popular at the end of the last decade, we can see a new type of approach that has
started to be more prominent in the recent years. This new approach involves the use of var-
ious machine learning techniques. In the attempt to classify between di ferent types of gait
disturbances Djurić-Jovičić et al. (2010) used 6 inertial measurements units (IMUs) placed lat-
erally on each leg segment of both legs. Their algorithm combined an arti cial neural network
(ANN) with a simple signal processing and the rule-based classi cation to distinguish between
the normal (walking, standing) and the pathological (small steps, shu ing, akinesia, festina-
tion) states. Due to its ability to recognize patterns, ANNwas used primary to identify regular
strides, while the heuristically set thresholds on the quantities such as energy and directionwere
used to discriminate between the rest of the classes in the decision tree (DT).

Insteadof a static neural network,Cole et al. (2011) applied adynamicneural network (DNN)
(Sinha et al., 2000). Their two-stage FOGdetection algorithm consisted of a linear classi er for
detecting when the subject is upright (i.e. standing or walking), and a DNNdesigned to detect
FOG given the rst classi er decided that the subject is upright. The expected advantage of
using a DNN was its ability to learn how the features of FOG change over time, and in that
way better capture the time-varying nature of FOG, in comparison with a normal static ANN.
The eleven node input layer of the DNN accepted features extracted from the signals of the
three accelerometers (shank, thigh and forearm) and the electromyography (EMG) sensor on a
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shank. All the features were calculated using a 2 s analytic window.
In an attempt to improve the FOG-detectionperformance of thewearable systempreviously

developed within the DAPHNET project, Mazilu et al. (2012) started from the presumption
that “FOGcanbe seen as a speci c activity in the context of activity recognition” and applied on
the problem themajority of the supervisedmachine learning approaches used for activity recog-
nition. Their list of applied algorithms included: Random Trees (RT), Random Forests (RF),
Decision Trees (DT), Naive Bayes (NB), Bayes Nets (BN), k-Nearest Neighbour (KNN),Mul-
tilayer Perceptron (MLP), boosting (AdaBoost) (Freund and Schapire, 1996) and bootstrap
aggregating (BAG) (Breiman, 1996). Besides the attempt to improve the FOG detection rate,
the authors also strived to improve the wearable system in terms of the technology, economics
and unobtrusiveness by using a smartphone as the main online processing unit. The FOG de-
tection classi ers were trained online and then serialized and downloaded onto a smartphone.
Their new Android application utilized de-serialized classi ers with online sensor data to de-
tect FOG events in a real-time. The extensive evaluation of the system used the DAPHNET
dataset (Bächlin et al., 2010b) with 10 patients and the accelerometers xed at three positions
(lower back, thigh and shank).

The most recent attempt of using machine learning for automatic detection of FOG was
presented byTripoliti et al. (2013). Their newmethod takes signals received from six accelerom-
eters, placed on the right and the lef leg, the right and the lef wrist, the chest and the waist and
two gyroscopes placed on the chest and the waist. The entropy of signal for each axis of each
sensor is calculated in the sliding window and taken to be a part of the feature vector used in
the classi cation. Four di ferent classi ers were tested: Naive Bayes, RandomForests, Random
Trees andDecisionTrees. The best results were achieved for theRandomForests classi er. The
Decision Tree algorithm came close second in accuracy, while being much simpler and o fering
a lesser complexity in the decision making process.

2.2 C I

In the following part, we present themost signi cant aspects of the reviewed systems andmeth-
ods for the ambulatory FOG detection, along with our insight into their strengths, shortcom-
ings and future trends:

Threshold based vs. machine learning approach
Themajority of early solutions used signal processing in frequencydomain toobtain the
spectral components of signals coming from inertial sensors, and then based their deci-
sion on the comparison of this newly obtained frequency spectrumwith the frequency
spectrum characteristic for the normal gait. The comparison that leads to the decision
about the FOG, can be done either directly between the separate spectral components
(Han et al., 2003; Zabaleta et al., 2008), or implicitly using the freezing index approach
(Moore et al., 2008; Jovanov et al., 2009; Bächlin et al., 2009a; Niazmand et al., 2011;
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Moore et al., 2013). Regardless, in both cases it is necessary to obtain the threshold val-
ues uponwhich the comparison is based. For best results user-dependent thresholds are
required, due to di ferent types of manifestation of FOG between the patients. Since
usually only a few threshold comparisons are used in the decision process, the optimal
threshold values are easily found with the parameter sweep method.

In contrast, the machine learning approaches deal with data of higher dimensionality
and have the ability to automatically and optimally set decision boundaries for a speci c
dataset. It was shown that di ferent supervisedmachine learning algorithms can outper-
form the threshold-based approaches in terms of detection accuracy, if given enough
training data for the speci c patient (Mazilu et al., 2012; Tripoliti et al., 2013). A recent
study by (Mazilu et al., 2013b) has shown that by using the unsupervised feature learn-
ing with the accelerometer data, it is possible to identify the occurrence of patterns even
before the FOG episodes start. This approach could lead towards a very e fective FOG
prediction, and it will probably be one of the main directions for the research in the
future.

Online processing and minimal latency
The ability to recognize FOG in (nearly) real-time is a necessary prerequisite for a timely
actuation of the sensory cueing. Previously to the advent of the “age of the smartphone”,
the ability to process data online in the ambulatory system required the development
of special wearable hardware devices and systems (Jovanov et al., 2009; Bächlin et al.,
2009a; Zhao et al., 2012; Rodríguez-Martín et al., 2013). Mazilu et al. (2012) have shown
that modern smartphones have a serious potential to be used not just as the processing
and communication hub of a body sensor network (BSN), but also as a single necessary
sensing device. In any case, the commitment to online classi cation requires optimized
algorithms with a small memory imprint and minimal processing requirements, which
both help to preserve the battery life.

The size of the analytic window used to extract the features for classi cation, is the key
parameter for the faster detection of FOG. The mean latency of the FOG detection
increases linearly with the size of the window. The size of the analytic window also
in uences the discriminative power of the algorithm. The exact in uence depends on
the type of the used approach. For instance, when using machine learning algorithms
Mazilu et al. (2012) observed that shorter windows have a lesser discriminative power
due to the noise. On the other hand, when using the freezing index method, Moore
et al. (2013) noticed that shorter windows (towards 1 s) result in a higher sensitivity, and
longer windows (towards 10 s) result in a higher speci city. Hence, the state-of-the-art
FI basedmethods use a 4 s to 6 swindow length, while themachine learning approaches
use shorter 1 s to 2 s windows.

Type, position and number of sensors
Accelerometer was used as the primary sensor in all the reviewed systems for the am-
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bulatory FOG detection. All of these systems, except MiMed-Pants, used at least one
accelerometer placed at the low part of the leg (either shank, ankle or foot). Additional
accelerometers in the systems that usemultiple sensors were xed at the positions higher
on the body, such as the thigh, the waist or the chest. The lower leg is used as the pri-
mary sensing location because it is the closest to the point of impact of the foot on the
ground, which is the main source of accelerations during walking. The potential prob-
lem with placing accelerometers higher on the body is that the inertial forces produced
by the foot impact will be attenuated. Several studies (Bächlin et al., 2009a; Mazilu
et al., 2012; Tripoliti et al., 2013; Moore et al., 2013) have examined the accuracy of FOG
detection algorithms that use solely accelerometers xed close to themiddle of the body
(thigh, waist). It was shown that in this case the negative e fect of the acceleration atten-
uation lowered the detection accuracy for only 1 to 2 , compared to the case when the
same algorithms used the lower leg sensor placement. The best results were, of course,
achieved when the algorithms used all available sensors, both on lower and upper legs.
Having one sensor on a convenient location seems like the best way to achieve a good
online wearable solution, since it minimizes the energy consumption, communication
problems and the system setup time in the everyday use.
Except with the superior sensor positioning and the higher number of sensors, the im-
provement in the detection accuracy has also been sought with the introduction of the
additional sensor types, such as a gyroscope and an electromyograph. Their role was to
enrich the basic movement information sensed by the accelerometers by providing new
features such as the energy of the limb rotation (Djurić-Jovičić et al., 2010) or the energy
ofmuscular activity (Cole et al., 2011). Using new types of sensors for sensing physiolog-
ical changes could be a promising path, not just for detection, but for the prediction of
the actual FOG episodes. For example, the study of Maidan et al. (2010) suggests that
there is an increase in the heart rate several seconds prior to the freezing episode, which
is a favourable condition for the potential use of electrocardiograph (ECG). Even better
example is the study by Handojoseno et al. (2012) in which an electroencephalogram
(EEG) was used to predict the transition from walking to freezing with around 75
speci city and sensitivity. The main problem that these physiology based approaches
will need to solve in the future, is to ensure the quality of the necessary physiological sig-
nal acquired outside of the experimental laboratory environment (Mazilu et al., 2013a).

Scripted laboratory datasets and spatial context
An important fact that was noticed is that all the datasets used in the studies were pro-
duced in a clinical or a laboratory environment. When the researchers who study FOG
do clinical or laboratory data collectionwith the patients, they need to comeupwith dif-
ferent ways to induce freezing episodes. Through the years, more and more potentially
triggering situations were identi ed. The latest datasets contain the combination of the
walking along prede ned trajectories and the simulation of several daily living activities,
that are all intertwined with the potential FOG triggering situations. The most of en
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captured situations in the datasets were: sitting, sit-to-stand transitions, straight walk-
ing, walking around obstacles, 180◦ and 360◦ turning, opening door, passing through
doorway, making a stop and executing dual-task. There does not yet exist any standard-
ized experimental protocol for FOG research, which would provide the exactly de ned
combination and order of the FOG triggering situations. Instead, each group of re-
searchers have hitherto used their own protocol.

One major de ciency of the data collection, as it has been done so far, has to do with
FOG being heavily dependent upon the environment around the patient. A clinical
or a laboratory environment are not people’s natural environment, and their freezing
episodes do not happen on the arti cial polygons in the sameway as theywould happen
at thehome. That especially has todowith the speci c locations at thehomewhereFOG
happens every daydue tounknownparameters (e.g. discomfort, fear or just plainhabit),
which we are not able to recreate in a laboratory setting. The relation between the FOG
patient and the space surrounding it (that we call spatial context), has so far not been
thoroughly studied, especially not in the home environment. Recently, there has been
some intention to record FOG episodes at a home, mainly under the patronage of two
big European projects, REMPARK (2011) and CuPID (2011). Even though the newest
datasets from these European projects have been recording data at patients’ homes, they
are still limited to the acquisition of the physiological parameters and do not have the
intention to capitalize on the spatial context as a factor in the FOG detection.

Evaluation measures
In clinical decision making it has been generally accepted that the results of diagnos-
tic tests are reported in terms of sensitivity and speci city (Simon and Boring, 1990;
Lalkhen and McCluskey, 2008). In the FOG detection these statistical values are de-
ned based on the relation of the classi cation output with the ground truth value set

by the expert medical personnel. In the case when a FOG is correctly classi ed by hav-
ing a positive classi er output and a positive ground truth label, a true positive (TP)
detection is obtained. If a classi er detects a FOG, but the ground truth label claims the
opposite, it is the case of a false positive (FP) detection. When a FOG is not correctly
detected during an actual FOG episode, it is considered to be a false negative (FN) de-
tection. All other instances when the classi er predicts that there is no FOG,while there
is truly no FOG are true negative (TN) cases. Sensitivity∗ is de ned as the ability of the
system to identify the episode correctly. It is calculated as the proportion of the number
of truly positive (TP) classi cations to the total number of classi cations in which FOG
should have been found positive (TP+ FN). Speci city† is relatedwith the ability of the
classi er to exclude a FOG episode correctly. As such, it is obtained as the ratio of the
number of truly negative classi cations (TN) and the number of instances in which the

∗sensitivity = TP
TP+FN

†speci city = TN
TN+FP

26



2.2. Critical Insight

FOG should have not been detected (TN + FP).

The last column in the Table 2.1 gives the overview of the values of average sensitivity
and speci city thatwere achieved by the reviewed systemswhile using user-independent
data in the evaluation. The values in parentheses are the results with the user-dependent
data, where the same data of one patient was used for the classi er training (or manual
threshold setting) and for the subsequent classi er evaluation. Although the majority
of the systems used sensitivity and speci city as the measures in evaluation, it is hard to
make straightforward comparison of the presented results. One of the reasons is that
sensitivity and speci city were not always calculated in the exact same manner in all the
studies. When slidingwindows are applied in the FOGclassi cation, there are twomain
ways of evaluation applicable, the window-based and the episode-based evaluation. The
window-based evaluation (Mazilu et al., 2012; Tripoliti et al., 2013) compares classi ca-
tion output of each window with the ground truth at the moment when the classi ca-
tion is executed. In the episode-based evaluation (Bächlin et al., 2009a; Niazmand et al.,
2011; Cole et al., 2011; Moore et al., 2013), a classi cation is considered to be TP if the
classi er detects FOG at least in one window during the time of lasting of the actual
episode. Furthermore, a short delay (2 s) between the classi cation output and the start
of the episode is usually tolerated. The total number of classi cation values participat-
ing in the calculation of sensitivity and speci city for the window-based evaluation is
equal to the total number of windows, while in the episode-based evaluation it is equal
to the total number of FOG episodes. This means that in the former case the statistical
calculation is done with tens to hundreds of times more values than in the latter case.

Length and manifestation type of FOG episode
Another reason why it is di cult to mutually compare the reported results of the re-
viewed studies, is the minimal length of the FOG episodes used for evaluation. The
lengths of the FOG episodes in each study are given by the values in the parentheses in
the FOG events column of Table 1.1. In this table, it can be notices that among the stud-
ies that reported the information about the length of the episodes, two studies (Bächlin
et al., 2009a; Mazilu et al., 2012) worked with the minimal length of episodes of only
0.5 s, one study (Cole et al., 2011) with the 1 s episode length, and two studies (Moore
et al., 2008; Tripoliti et al., 2013) with the 2 s episode length. The shorter episodes that
last under a second contain very fast changes in the stepping pattern that are sometimes
di cult to spot, even by an experienced observer. On the other hand, the freezing pat-
tern is more recognizable (both for a human observer and a pattern based detection
algorithm) in the episodes that last several seconds. This implies that a more sensitive
algorithm is required for capturing very short FOG episodes, and that the accuracy of
the algorithms tested with a longer minimal episode length would probably not be as
high, if these algorithms had been applied to the shorter (0.5 s) episodes.

Another manifestation-related factor in uencing FOG detection accuracy are akinetic
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episodes. Due to the total lack of movement, it is impossible to detect truly akinetic
episodes using solely inertial measurements (Niazmand et al., 2011). Sometimes even
the experienced human observers can have problems with recognizing akinesia in FOG,
especially if they base their decision solely on the video, and are not aware of the patient’s
context and intentions. The additional sensor modalities like ECG, or the additional
information like the location based behaviour patterns, have to be used in the systems
that have the goal of detecting the akinetic FOG.The automatic detectionof the akinetic
FOG is still a completely open area of research.

2.3 S

Wehave provided a chronological and a critical review of the state-of-the-art in the ambulatory
systems for FOG detection. The chronological review reported on the most relevant systems
and studies in the ten year period between the years 2003 and 2013. The state-of-the-art pre-
sented in this chapter is an updated version of the initial state-of-the-art made when the work
on this thesis started at the beginning of 2011. Since the year 2011 we have witnessed several
novelties bringing the improvement to the eld, such as the introduction of machine learning
algorithms, the use of smartphones and the experimentationwith the additionalmodalities like
GSR and ECG.

The observed main approach for the implementation of the ambulatory system for FOG
detection is to use several inertial sensors (accelerometers) on the lower extremities. Although
some studies have used a fairly high number of accelerometers (5 or more), several compari-
son studies (Mazilu et al., 2012; Samà et al., 2013) have proved that good detection results can
be achieved already with one sensor placed in the waist region. In the terms of the preferred
algorithmic approach, the freezing index calculation is the de-facto basicmethod that was grad-
ually expanded, improved and tested by several di ferent research groups throughout the years.
The recent use of variousmachine learning algorithms showed their potential to become a new
state-of-the-art approach in the future. Furthermore, we observed the trend towards the mini-
mization of the latency in detection, and evenworking towards the pre-emptive behaviour and
the development of a system that would be able to predict in advance the future upcoming
episodes.

The literature review has shown that there does not yet exist a mature home tested moni-
toring system (available on the market), although a few research groups might be close to the
required solution. Currently, it is hard to directly compare the results between the groups
and pick the best approach due to the di ference in the datasets (episode length, manifesta-
tion types) and the measurements they used in evaluation. Generally, the detection accuracy
of the existing systems based on the clinical and the laboratory data obtained through scripted
lab experiments is around 80 to 90 in terms of sensitivity and speci city. Until we have a
way to collect long-term PD patient data in their home environment, it will be unknown how
much exactly the activities and uctuations of other PD symptoms in daily living in uence the
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detection of FOG.
The knowledge of the context of the patientwas recognized as a goodway for improving the

FOG detection. Some of the newest systems added physiological sensors for tracking the cog-
nitive aspects (Handojoseno et al., 2012; Mazilu et al., 2013a). However, we have not witnessed
any systems or studies that explicitly in their detection algorithms use the dependency of FOG
on the properties of the home environment. There is a knowledge gap about the required char-
acteristics and the possible bene ts of location based context-aware home monitoring systems
for FOG.We start the exploration of this gap in the next chapter, with a detailed analysis of the
behaviour of the PD patients in their homes.
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3
Characterization of Freezing of Gait on

REMPARK Database

REMPARK database (Samà et al., 2013) is a heterogeneous database for movement knowl-
edge extraction consisting of inertial signals, ground truth videos and questionnaires collected
from 90 PD patients within the REMPARK project (Cabestany et al., 2013). The database has
been built with the collaboration of 4 di ferent hospitals: Maccabi Healthcare Centre (Israel),
Fundazione Santa Lucia (Italy), National University of Galway (Ireland) and Centro Médico
Teknon (Spain). Movement signals from PD patients have been collected in uncontrolled
home or outdoor environments in order to be used in training and evaluation of learning algo-
rithms for detection of all major symptoms in PD: tremor, FOG, gait bradykinesia, dyskinesia,
as well as the recognition of theON andOFF motor states.

D2FOG subset of the REMPARK database is the part of the database that contains signals
necessary for the development and the evaluation of the FOG detection algorithms. The in-
ertial signals and the videos for the D2FOG subset were collected from the PD patients with
at least 2 points on H&Y scale (Hoehn and Yahr, 1967) and a reported history of FOG. For
this thesis, we analysed inertial and video data of 17 PD patients (12 men, 5 women) from the
D2FOG subset. The analysed patients had an average age [μ = 72.2, σ = 5.21] years and an
average H&Y score [μ = 2.91, σ = 0.40].

The goal of this chapter is to present the results of a systematic and objective analysis of FOG
in the home environment. To achieve this goal we use the D2FOG subset of the REMPARK
database. We start the chapter with the descriptions of the tests performed by the patients in
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the experiments for collection of the FOG-related movement data. To achieve an objective
assessment of FOG, we use a state-of-the-art FOG detection algorithm. The outputs of the
algorithm are compared with the ground truth observations by human observers. For each
misdetection of the algorithm, we record the description of the context in which it occurred.
At the end of the chapter, we present the results in the form of the assignment of certain types
of the algorithm misdetections to the speci c categories of the contextual in uences in the en-
vironment.

3.1 C FOG- M D

Data collection for theD2FOGsubsetwas doneby research teams consistingof at least 3 people.
Patients were in their homes wearing the inertial sensor device called 9x2 (Rodríguez-Martín
et al., 2013) on the elastic belt around theirwaist. The sensorwas xedon the lef side of thebody
above the hip. Acquired inertial data was stored on a µSD card with 200 Hz sampling rate∗.
During data collection sessions one member of the research team stayed close to the patient at
all times to prevent possible falls, one performed video recording using a mobile phone video
camera of HD quality (Google Nexus S), and one clinical expert executed on-site observation
of the FOG episodes (and other PD symptoms) using specially designed annotation sof ware
for a tablet computer. To keep the experiment objective, and to avoid deconcentration of the
patient, the patient was not asked to give any subjective reports of the FOG instances during
the tests.

The experimental protocol for D2FOG subset of REMPARK database consisted of four
types of FOG-related short controlled tests:

Indoor walking test
The patient starts while seated on a chair in the living room. The patient stands up and
shows his house to the researchers, as if he was trying to sell the house. He shows each
room and explains what is the room for. Af er the tour of the house, the patient returns
to the chair in the living room and sits down again. Since during the test the patient is
making his own decisions about what path to take inside the house, the test is useful for
capturing the natural walking behaviour and non-deliberately provoked FOG episodes.
Estimated duration of the test is between 5 and 10 minutes.

Gait test
Gait test is done af er the indoor walking test. The test is executed by having the patient
walk on a clear straight path of the length of approximatively 20 meters. Due to spatial
constraints the test is usually done outdoors. Themain purpose of this test is tomeasure
the speed and the cadence of the patient and not to explicitly provoke a FOG. A video
camera records the patient, not only during the test walk, but also while he is exiting

∗Detailed description of all devices and tools for data collection is provided by Samà et al. (2013)
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and returning to the building where he lives. This allows us to observe potential FOG
episodes under natural circumstances. The estimated duration of this test is 5 minutes.

FOG provocation test
This test aims to capture several FOG episodes in the short period of time. The patient
walks through the door, a passage or a narrow place repeatedly, up to 10 times. This
zone is placed at the middle of the straight 5 meter path. The test is quite similar to the
ordinaryUp an Go Test (Mathias et al., 1986). Each trial of the test starts with the patient
sitting on a chair. The patient gets up and goes through a narrow FOGprovoking zone.
Af er passing the zone and reaching the end of the path, a 180◦ turn is taken and the
patient goes back through the FOG provoking zone, reaches the chair and sits down.
Estimated duration of the test is 5 minutes.

Tremor and FOG false positives test
In this test the patient is invited to perform the following activities (depending on the
availability of the necessary props in the home): to brush their hair, to shake a deodor-
ant bottle, to erase something with a rubber, to type on the researcher’s computer (or
in their own computer if available), to wipe the glasses or the furniture and to wash a
glass. All these activities simulate upper bodymovements that have the frequencies cor-
responding to tremor. Consequently, since the inertial unit for detecting FOG is placed
around the waist, the measured upper body movement frequencies are similar to the
frequencies characteristic for leg trembling in FOG, which can potentially result in false
positive detections. Estimated duration of the test is 5 minutes.

The “Indoor walking test” and the “Gait test” were performed twice, both in the ON and
theOFF state. However, the “FOG provocation test” usually was performed only once, in the
OFF state. Similarly, the “FOG false positives test” was performed only in theON state.

3.2 V I S A

The assessment of the signal database was a four stage process. The rst stage dealt with estab-
lishing the ground truth for the FOG episodes. This stage was the necessary precursor for the
second stage, whichwas to run the current state-of-the-art FOGdetection algorithmandobtain
its optimal classi cation labels for the dataset. Comparing the algorithm’s output labels with
initially established ground truth labels in the third stage, we found the exact time instances in
which the algorithm gave false positive and false negative FOG detections. In the nal stage we
assessed the context in which the falsely detected FOG episodes happened. We observed the
contextual causes for the false detections produced by the algorithm and we searched for the
characteristic types of situations that indicate the higher probability for misdetections.
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3.2.1 M -B¨ A

Under the name Moore-Bächlin (Moore-Bächlin) algorithm we refer to the FOG detection al-
gorithm that is based on the use of two thresholds, the freeze threshold (FThr) introduced by
Moore et al. (2008), and the power threshold (PThr) introduced by Bächlin et al. (2009a). For a
long time theMoore-Bächlin algorithm has been considered as the state-of-the-art FOG detec-
tionmethod, due to its ease of implementation, low algorithm complexity, and good detection
results proven on a publicly available dataset. For these reasons we used the Moore-Bächlin al-
gorithmas themain algorithm in the analysis of the FOGcharacteristics on theD2FOGdataset.

The algorithm was already brie y mentioned earlier in the Section 2.1, and now we give a
more detailed description. The principle described by Moore et al. (2008) requires the cal-
culation of the freezing index (FI) from the FFT signal by dividing the spectral power in the
3Hz to 8Hz freeze band with the spectral power in 0.5Hz to 3Hz locomotor band. The FI val-
ues above the freeze threshold are identi ed as a FOG. The FI has very high values when the
patient is in a static situation, such as sitting or standing in the place. This happens because
both the locomotor and the freeze band have a very small power when there is no movement.
Having a very small value in the divisor results in a high ratio value, regardless of the value of
the dividend. The power index (PI) calculated as the sum of powers in both bands (FB and LB)
takes care of this problem (Bächlin et al., 2009a). A person is considered to be moving only
when the PI value exceeds the power threshold. This condition is the prerequisite for the sub-
sequent comparison of the FI value with the freeze threshold which forms the nal detection
output. If the value of the PI is under the power threshold, then the Moore-Bächlin algorithm
output automatically declares False FOG state. The Moore-Bächlin algorithm can be de ned
as a piecewise function by the following equation:

FOG(FI,PI, FThr,PThr) =
{
True : FI > FThr ∧ PI > PThr
False : otherwise

(3.1)

The choice of the freeze threshold and the power threshold parameters has thedirect in uence
on the sensitivity and the speci city of theMoore-Bächlin algorithm. With the freeze threshold
set too low there will be toomany false detections, while the freeze threshold that is set too high
will result in additional FOG events being missed. The behaviour of the algorithm output in
relation to the power threshold follows a similar trend. A low power threshold acts towards a
higher sensitivity and a lower speci city, because it accepts a higher percentage of analytic win-
dows as the ones with a potential FOG episode. Oppositely, a high power threshold designates
a major portion of analytic windows as a part of some non-FOG static activity which raises the
speci city and lowers the sensitivity of the FOG detection. Themain task in the application of
the Moore-Bächlin algorithm is to properly optimize these two thresholds. The optimization
can be conducted to get one common pair of values of the threshold parameters for all patients
in the dataset, or it can be done to get a pair of values for each patient separately.

The recorded accelerometer signal of each patient was used as the input in the MATLAB
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(a) Early episode detection and early end. (b) Late episode detection and early end.

(c) Early episode detection and late end. (d)Multiple episode detections during one labelled

episode.

Figure 3.1: Event-based detection algorithm evaluation.

implementation of the Moore-Bächlin algorithm. Raw data was resampled at 40Hz, and the
detection windows of the length 2.56 s were applied. For each combination of the patient and
his FOG state, we used optimal values of the freezing threshold FThr and the power threshold
PThr. The values of these thresholds, along with all other statistical data about the used part
of the REMPARK dataset are given in Appendix A (Table A.1).

3.2.2 C G T

The classi cation algorithm output from theMoore-Bächlin detection algorithmwas synchro-
nized with the ground truth labels (GTL) and the video captured with a HD camera. We used
an evaluation method based on events to assess the conformity between the GTL and the out-
put from the classi cation algorithm. This speci c event based evaluation method relates each
True period in theGTL signal with aTrue period in the detection algorithmoutput signal. Fig-
ure 3.1 depicts our approach. It illustrates di ferent cases for which we considered to have a true
positive (TP) matching between the GTL and the algorithm output. Since the synchronous
classi cation output is available every 1.25 s, it is impossible to achieve the perfect parallelism of
the two signals. Thus, we allowed a delay to exist between the GTL and the algorithm output.
We accepted to have the rising edge of the algorithm output up to half a second earlier than the
start of GTL for the true positive case, such as shown in Figures 3.1a and 3.1c. The same held
for the falling edge of the algorithm output, where half a second delay of the algorithm out-
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put af er the GTL was acceptable (Figures 3.1c and 3.1d). If the algorithm output had a rising
and a falling edge (or several of them) inside the time when the GTL was True, this was also
considered as a true positive (Figure 3.1d). When at the same time the GTL was True and the
algorithm output False, the FOG was declared as a false positive (FP). Similarly, for a negative
GTL and a positive algorithm output, a false negative (FN) was set.

3.2.3 C FOG E

The episodes thatwere incorrectly classi ed by theMoore-Bächlin algorithm (FP and FN)were
carefully inspected in the video. We noted down the following factors that describe the situa-
tion of the patient:

General situation
The misdetected FOG episodes were described with a free vocabulary. We noted the
posture, location and the detailed behaviour of patient’s legs (e.g. whether one or both
legs are trembling, which leg is used for pivoting during turns). Also, we recorded in-
formation about the intention of the patient and whether the patient was helped by
a person or a walking instrument. The most characteristic traits of each episode were
noted. Some examples of the produced descriptions are:

• Timed up and go / Turning 180◦ before sitting / Small steps while pivoting around
the standing leg.

• Stepping in place / Starting hesitation a er getting up from a chair.
• Sudden stop during straight walk using a walker / Light trembling in the le leg /

Leaning forward on a walker.
• Sitting in a chair with some dyskinesia movements.

Duration
The exact duration of the event in seconds. If a FP was detected, we took the dura-
tion of the episode on the output of Moore-Bächlin algorithm. For a FN, we took the
undetected episode duration according to the GTL.

Location / Spatial relation
This factorwas speci ed as a combinationof the coarse location in thehome (e.g. kitchen,
living room) and the relation between the patient and the closest contextual in uence
(e.g. af er a doorway, in front of a chair). Some examples of the produced descriptions
are:

• Bedroom / In the passage between a wardrobe and a wall / Oriented towards a
doorway.

• Living room / Passing 20 cm distance from a chair, but still there a lot of space
in front and right of the patient.
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• Kitchen / Tight passage between the kitchen table and the fridge ( 0.5m width).

Activity / Posture
A description of the ongoing activity (e.g. walking, turning, starting walk) or the static
posture occurring just before and during the misclassi ed event (e.g. standing, sitting).
For example, if there was a starting hesitation FOG that occurred af er getting up from
a chair, the description such as “Sitting / Standing” was used.

Exit strategy
Adescription of how the patient exited fromaFOGsituation in his home environment.
We noted whether the patient was helped by someone and what tool, or part of the
environment he used. The example situation descriptions are:

• Helped by other / Given a chair to sit.
• Helped by other / Held by hand and given a foot to step over.
• Alone / Hand on an armchair close to the patient.

3.3 R

3.3.1 F P

We found 158 instances of FP detections that had total duration of 782 seconds. We aimed to
nd the characteristic situations under which these FP detections (re)occurred. The previously

collecteddescriptions of the general situations duringwhichFPdetections occurred, alongwith
the descriptions of the related locations, activities and postures, provided us with a wealth of
qualitative data. These qualitative data canbe considered as a result of the initial codingprocess.
In qualitative inquiry a code is de ned by Saldana (2009) as:

...most o en a word or short phrase that symbolically assigns a summative, salient,
essence-capturing, and/or evocative attribute for a portion of language-based or
visual data. Coding enabl the organization and grouping of similarly coded data
into categori or “famili ” because they share some characteristic – the beginning
of a pattern.

The results of the initial coding were taken as a data input for the categorization during the
second coding cycle. Similar word formulations in our descriptions were reoccurring and our
coding patterns started becoming recognizable. Clusters of similar situations that all can be
described by the same category name emerged one by one. A set of 11 categories was ultimately
de ned, that allowed each of the 158 FP situations to be assigned to at least one of the categories.
Table 3.1 displays the names of the categories and the number of the observed FP detections for
each category. The complete table with the distribution of categories per each patient can be
found in Appendix A (Table A.2).
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Table 3.1: Categorization of false positive (FP) detections ofMoore-Bächlin algorithm onD2FOG dataset.

Category Total
Turning 48
Small steps 28
Start walking 9
Stop walking 7
Conditioned walking 3
Backward/Lateral steps 13
Normal walking 18
Standing with legs moving 7
Standing with upper body moving 12
Posture change 2
Sitting 11

The values in Table 3.1 show that the FP detection error most of en happened during turn-
ing (48 instances), followed in frequency by situations inwhich patients produced steps of small
length (28 instances). In the large majority of the observed cases of turning, patients were also
making smaller steps. This observation is in accordance with the previously recorded impair-
ment of the gait parameters (such as the step length and the gait time variability) in PDpatients
during turns (Willems et al., 2007). Themajority of the FPdetections involving turns (30 of 48)
and small steps (20 of 28) were recorded for patients in their OFF state. The amount of time
that a PD patient spends in the double support phase during gait cycle in the OFF state in-
creases for 5-10 compared to theON state, causing the patient to produce slower and shorter
steps, and to have a reduced ground clearance of the feet (Morris et al., 2001a). A reduced
ground clearance and a sporadic contact of a foot with the surface can cause the appearance of
higher harmonics in the measured accelerometer signal. These higher harmonics in uence the
power of the calculated freeze band, potentially increasing the estimated value of the freezing
index above the freezing threshold and generating a false positive. A similar reasoning about
the cause of the false positiv can be applied to some of the other categories that we extracted;
especially to the categories ofwalk initiation and sudden stop of walking. Due to themanner in
which the patients performed these actions (with more upper body movement or accentuated
rst/last step), and due to the presence of the change from a static to a dynamic accelerometer

signal, the proportion of higher harmonics in the freezing index ratio could have easily become
su cient to exceed the freezing threshold.

Into the category conditioned walk, we classi ed the situationswhere false positive detections
were caused due to the use of a walking aid. For instance, in one case a walker device got stuck
under the carpet and the patient tried to get it unstuck by performing rhythmical up-and-down
movements with the whole body. This is an unexpected behaviour that was hard to imagine
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prior to seeing it in the home videos.
We did not expect to nd a high number of FP detections in the category normal walking.

Under the term normal walking, we considered the behaviour in which the patient produced
steps of a seemingly normal length and frequency. However, with 18 instances, normal walking
is the third category by incidence on our list. The category backward/lateral steps is on the
fourth place of the list with 13 instances. Backward and lateral steps usually occur at a home,
but they are rarely tested in a laboratory. During the REMPARK home data collection, these
types of steps transpired when patients had to open a door, or when they had to sit down
on a chair behind a table. The Moore-Bächlin algorithm resulted in false positiv because the
acceleration signal acquired from patients during non-forward stepping deviated considerably
from the nominal conditions for which the algorithm was originally designed (i.e. forward
walking).

A similar deviation of the accelerometer signal from the nominal conditions happens also
during posture chang . The major observed types of posture changes in the videos were from
standing to sitting, and vice-versa. Once the patient is in the sitting posture, false positiv are
also possible due to some rhythmic activity of hands or legs. Examples of such activities are
cutting foodwhile eating, ormaking (unconscious) rhythmical legmovements under the table.
For this reason, sitting as a static posture was given its own category, independently from the
dynamic posture changes.

Another category that involves static posture is standing. We made a distinction between
standing with legs moving, and standing with upper body moving categories. The description
“standing at the spot while there is movement of the legs” sounds quite similar to the usual
description of FOG. However, the leg movements during standing with legs moving were of a
di ferent type than in any of the usual FOG manifestations. They mainly consisted of balance
adjustments from one leg to another, during which a minimal feet displacement was present.
In the category standing with upper body moving are gathered the false positiv which originate
from the “FOG false positives test” (see Section 3.1).

3.3.2 F N

We found 127 instances of false negative detections that had the total duration of 739 seconds.
We described the situations in which these false negatives occurred, similarly to how was done
for the false positive detections. In this case, it was not necessary to de ne new categories for
characterization of FOG episodes. Instead, we used the three manifestation and the ve hesita-
tion types introduced by Schaafsma et al. (2003), thatwere already described in detail in Section
1.1.2. The aggregated results of this categorisation are presented in Table 3.2, while detailed data
for each patient is given in Table A.2 in Appendix A.

We can notice in Table 3.2 that the incidence of FOG episodes in terms of manifestation
types has an almost even distribution, with shuffling, trembling and akinetic FOG episodes, all
having around 40 recorded instances. The episodes involving shuffling and trembling FOG
that were not correctly captured, were the ones that lasted too short, or had an insu cient
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Table 3.2: Categorization of false negative (FN) detections ofMoore-Bächlin algorithm onD2FOG dataset.

Category Total

Manifestation
Shu ing 45
Trembling 44
Akinetic 38

Freezing Type

Starting 34
Turning 38
Narrow space 27
Destination 3
Open space 25

level of leg movement. It has to be noted that due to its dependency on dynamic signals, the
Moore-Bächlin algorithm had no capability to capture an akinetic FOG. Consequently, the set
of 38 false negative detections of the akinetic FOG manifestation includes every akinetic FOG
episode that was observed during the experiments. Taking into account the number of cor-
rectly detected FOGepisodes (221 instances) and the non-akinetic FNdetections (89 instances),
we come to the conclusion that the akinetic FOG episodes in the dataset were represented in
around 8 of the cases. This percentage gives us an orientation about the possible improve-
ment in the FOGdetection sensitivity, if we are successful in nding a way to detect an akinetic
FOG. The results of the categorization according to the freezing type re ect the nature of the
tests performed during the data collection. Each patient repeatedUp and Go test several times,
with the goal of provoking a FOG. Therefore, it is not surprising that the main components
of the test, such as starting and turning, caused the highest number of the detected episodes.
The activity of approaching a chair at the end of an Up and Go test has a potential to cause
a destination hesitation. A chair approach was of en preceded by a 180◦ turn prior to sitting,
which seemed to be a more direct FOG trigger.

Since the available home data allowed us to give a special attention to the environment of the
patient, in addition to the manifestation and the freezing type, we observed the locations and
objects in the patients’ homes that seemed to have in uence on the FOGepisodes. Wewill refer
to the locations in question as FOGmicro-locations, contrary tomacro-locations that is the term
that we use for the environment at the level of a room or bigger. We analysed the FOG-related
micro-locations for all the observed instances of FOG in the dataset, which includes both the
true positive and the false negative detections.

Table 3.3 presents a distribution of FOG episodes per micro-location for the whole dataset.
TheTotal percentage in the last row of the table was calculated as the ratio of the FOG episodes
at the speci c location type (TP+FN) over the total number of the observed FOG episodes
(348 instances). A detailed distribution of the micro-locations per patient (on which Table 3.3
is based) is given in Appendix A (Table A.4 for the true positiv and Table A.5 for the false
negativ ). Out of all the locations, doorways had the most obvious in uence (26 ). This
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Table 3.3: Distribution of FOG permicro location onD2FOG dataset.

Condition Open space Narrow space Doorway Chair Bed Sofa / Couch Table Lif door Other
TP 81 19 56 41 1 5 4 11 3
FN 44 18 33 16 1 1 8 0 5

TP + FN 125 37 89 57 2 6 12 11 8
Total [ ] 36 11 26 16 1 2 3 3 2

in uence is well known, and has even been assessed in a speci c laboratory study (Cowie et al.,
2012). Since the patients usually started each new test from the sitting posture, and due to a
high number ofUp and Go tests, “in front of a chair” and “near a chair” were the secondmost
used spatial relations (16 ). Chairs were triggers for both starting and destination hesitations.
Since patients can also sit at sofas and beds, it is safe to presume that these furniture have the
same kind of in uence on triggering FOG, as chairs.

The in uence of the environment is the most evident in narrow spaces (11 ). We noted
the con gurations of the environment elements that created such critical situations (Appendix
A, Table A.3). Under the term Open space (36 ) we classi ed all the episodes that we could
not bring into any relation with the surrounding environment. The category Other includes
locations that were mentioned rarely, such as a kitchen sink or a bottom of the stairway.

A secondary analysis of the places where a FOG happened was done on the macroscopic
level. Appendix A (Table A.6 for TP andTable A.7 for FN) o fers detailed analyses per patient,
while their summary is presented in Table 3.4, in the same way as it was for micro-locations.

Table 3.4: Distribution of FOG permacro location onD2FOG dataset.

Condition Living room Kitchen Hall Bedroom Bathroom Other indoor Terrace Building Outside
TP 104 16 39 7 0 5 14 25 11
FN 59 13 26 3 5 0 5 11 5

TP+FN 163 29 65 10 5 5 19 36 16
Total 47 8 19 3 1 1 5 10 5

In the macro-location analysis we formed the main location classes according to the main
rooms that make a living space (living room, kitchen, hall, bedroom). The category Other in-
door includes spaces such as a dedicated o ce, a dining room or a stairway. Into the category
Building, we classi ed FOG episodes that happened inside the building, but outside of the
apartment, such as getting stuck in front of the lif door or on the building stairways.

3.4 S

Schaafsma et al. (2003) o fered the rst objective and systematic analysis of FOG by the means
of video recordings. In this chapter, we tried to repeat that process, not just by analysing FOG
episodes, but by additionally analysing the situations in which FOG was falsely detected by

41



C F G REMPARK D

the state-of-the-art detection algorithm. Af er the detailed observation of home videos of 17
patients, we introduced 11 categories of situations in which we found the Moore-Bächlin algo-
rithm to give false positives. We also observed all the false negative detections and marked the
locations and the interesting obstacle con gurations in home environments that induced FOG
episodes. The behavioural observation process executed in this chapter was important, since
the knowledge gathered here directed the choice regarding what elements of the contextual in-
formation should be recognized and used in the new context-aware monitoring system.
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4
Context-aware Distributed Home

Monitoring System

The main objective of our research is to discover how spatial context can e fectively be used
to improve automatic detection of FOG in the home of a patient. The ful lment of this ob-
jective requires design and development of a technical system that is able to: a) collect sensory
data about the patient and his/her indoor environment; and b) match the perceived sensory
stimulus with the FOG-related context.

The rst important step towards the realization of such a system is to fully understand the
requirements and to obtain a clear idea about the qualities that the future monitoring system
should contain. When specifying the requirements, it is necessary to bear in mind the desired
functionality of the system, but also to think about other important factors, such as the sys-
tem’s environment, the user-centric and the economical aspects. In the system design phase we
explore how to optimally ful l the given requirements. We start with a preliminary design of
a system concept, then we choose the appropriate technologies (hardware and sof ware) and
in the end we present a detailed system design. We de ne the architecture in a form of system
modules with strictly assigned functionalities, inputs, outputs and execution domains.

In this chapter, we present the requirements analysis and the design process for the new
context-aware monitoring system. First, based on the conclusions of the research on the state-
of-the-art and the observations of the homepatient videos, we investigate howdi ferent context

Parts of this chapter appear in Takač et al. (2012a), Takač et al. (2012b) and Takač et al. (2013)
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data types (e.g. location, orientation, activity) couldbeused to spot aFOGepisode. The chosen
types of context data de ne the kind of the perception system that has to be built. Knowing the
potential context data types, we explore the related work on existing sensor types and systems
which are able to capture them. Having the idea about the basic functionality that will be
requested from the system, we form the functional and user requirements. Towards the end of
the chapter, we present the system concept and our choice of the technologies for the system
implementation. We nish the chapter with the overview of the general system architecture.

4.1 C I , D R F

Initial de nitions of context were based on the enumeration of di ferent types of information.
Schilit andTheimer (1994) thought of context as location, identities of nearby people, identities
of nearby objects and changes to those objects. Brown et al. (1997) expanded this de nition of
context by addition of new contextual aspects such as time of the day, season and temperature.
Dey (1998) went even further, and enumerated context as the user’s emotional state, focus of at-
tention, location and orientation, date and time, objects, and people in the user’s environment.
Abowd et al. (1999) considered that these de nitions were all too speci c and that it is not pos-
sible to enumerate all important aspects of all situations in advance, since these aspects change
from application to application. Finally they gave a widely accepted de nition of context as:

...any information that can be used to characterize the situation of an entity. An
entity a person, place, or object that considered relevant to the interaction
between a user and an application, including the user and applications themselv .

This de nition leaves it to the application developer to enumerate the context for his par-
ticular application scenario. Under this de nition any piece of information that is signi cant
enough to describe some situation of interest can be considered as context. In the home video
analysis in the previous chapter we selected the context information types that are interesting
for our FOG-related context application. These types are location and orientation for mini-
mization of false negative detections, and activity for minimization of false positive detections.
In the following sections, we analyse the possible ways for using each of the speci ed context
information types in the FOG monitoring system.

4.1.1 L

In their home, PD patients are likely to encounter narrow passages such as doorways or dy-
namically changing spaces created by the presence of other people andmovable objects such as
chairs. When PD patients perceive the space as too narrow for the dimensions of their body,
adaptive postural changes during locomotionmay be needed to achieve a collision-free passage
(Higuchi et al., 2006). Laboratory experiments with the PD patients showed that there might
be a direct correlation between the width of the narrow space and the tendency for a FOG
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episode (Almeida and Lebold, 2010). In an extensive study, Cowie et al. (2012) successfully
provoked freeze-like events near a doorway and concluded that the prevalence of such events
signi cantly increased with the narrowness of the doorway. Furthermore, they showed that a
decreasing door width caused progression velocity to drop for approximately 20 in the region
preceding the doorway, or immediately af er it.

Our observations of the PD patients’ home video-recordings (presented in Section 3.3.2) are
in line with the ndings above, since we witnessed numerous FOG episodes that happened
in doorways (26 ) and other narrow spaces (11 ). The design of a new perceptive-cognitive
system starts with an established representation model for humans. The representation model
should be informative enough to allow the description of the targeted human behaviour, and
simple enough to be easily computable. In the case of FOG detection, we are primarily inter-
ested in the locomotion behaviour of the patient. Already a two-dimensional (2D) point (x, y)
can be used as a su cient representation to track humans, depict human walking trajectories,
detect behaviour anomalies, and to o fer an e fective navigational assistance (Fajen et al., 2003;
Tastan and Sukthankar, 2011).

We developed the concept for a location-aware approachwhich uses 2Dpositional datawith
location semantics. For reasoning about the FOG, the future system could use probabilistic
inference (Steinhauer et al., 2012; Hong and Nugent, 2013) in which evidence components of
the patient’s gait and location are fused together. If the patient is inside a marked FOG zone,
the location dependent evidence of FOGwould bemodi ed accordingly to the type of the zone
(location semantics) and the geometrical distances towards the objects dominating the speci c
zone. For example, for the object door, the probability of a FOG episode could be modelled to
have the highest value approximatively 0.3 m before the middle of the doorway.

Another possible approach can be the historical location-based reasoning. This approach
is related with the local aspect of the FOG explained in Section 1.1.2, which claims that some
speci c places in the patient’s environment can of en cause an episode. The observation of the
historical positional data over a long-term period can provide the knowledge about the exact
places in the home where this claim is actually true. To expand the location semantics approach
that uses geometrical and gait evidence components, a probability value related to the history
of FOG on the location could be taken as an additional evidence component.

The system that can provide a 2D position of a patient is a necessary requirement for any of
the proposed location based approaches. In the semantic and the historical location approach,
we can recognize the accuracy of location as a very important factor. The use ofmicro-locations
requires the capability to measure in centimetres the distances between the patient and the ob-
stacles around him/her. Such requirement makes it di cult to nd an already existing system
or technology for localization that could be directly applied.

4.1.2 O

Many PD patients are experiencing FOG during turns. Snijders et al. (2008) note that wider
turns are easier to perform than axial turns on the spot, and slow turns are easier to perform
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than rapid turns. A rapid turn on the spot is hard to track using only a 2D point as a repre-
sentation of the tracking target. The observation of on-the-spot turns can be achieved only by
precisely estimating the angular velocity of the person, which requires an additional tracking
of the heading angle.

Furthermore, there was an additional realization about the possible role of the orientation
in the FOGdetection by using the location-based principles explained above. Human locomo-
tion through an obstacle environment is in uenced by visual input and visual eld limitations
(Jansen et al., 2011). For instance, the in uence of a FOG zone on a PDpatient is not exclusively
limited to the space next to the obstacle, but instead its in uence starts a few meters prior, in
the moment when the obstacle comes into the focus of the patient’s visual eld and causes a
switch in attention (Riess, 1998). Hence, to assign an in uence to a FOG zone, it is necessary
that the obstacle takes the main part of the visual eld. In some situations the patient can be
located inside the FOG zone, but also visually oriented away from the obstacle. Let us take,
once again, as an example, the situation when the patient passes through a door, that is in this
case represented as a symmetric FOG zone. Af er the patient passes the middle of the doorway,
he is still in the door FOG zone, but now he faces an open space. If the reasoning about the
in uence of the door is based solely on the position, then due to symmetry, the same FOG
probability would be given at the same distance from the middle of the doorway, regardless of
whether the person is in front or behind the doorway. On the other hand, if the information
about the orientation of the patient is added into reasoning, it would be possible to assignmore
meaningful probabilities.

For the reasons above, we consider that the instant orientation of the patient, measured by
a continuous tracking of the patient’s heading angle (θ) on a 2D oor plane, is an important
contextual information type for our context-aware application.

4.1.3 A

Before starting a deeper discussion about activity as a contextual information type, we need
to develop the appropriate taxonomy of human behaviours and to understand the relation
between action, posture and activity.

The terms action and activity can sometimes be used interchangeably, and sometimes they
can be used to distinguish between behaviours of di ferent complexity and time duration.
We connect the term action with shorter lasting behaviours, that usually describe some sim-
ple movements or ambulatory behaviour (Moeslund et al., 2006). Appropriate examples for
action are the movements such as making a step, making a turn, putting a glass on a table or
picking up something from the oor. Compared to action, activity is considered to be a more
complex behaviour that typically lasts longer, and consists out of a sequence of actions. It is
hard to nd a clear boundary between the two terms and the distinction is pretty much by in-
stinct, but if the relation of sets is applied on the two concepts, it can be said that action is a
subset of activity.
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In a more exact interpretation, postures such as standing, sitting and lying are called static
postur . Between thesemain three static postures, there are dynamic postur , ormore precisely
dynamic posture transitions (i.e. sit-to-stand, stand-to-sit, sit-to-lie). The de nition of action
includes basic movements of a relatively short duration. Thus, the postural transitions can also
be classi ed as actions. On the other hand, static postur usually are executed over a prolonged
time duration, i.e. person can be sitting or standing on the place for several minutes or tenths
of minutes. Therefore, static posture can be considered to be the same as activity. This equality
of static posture and activity is of en visible in the literature. There are many examples where
postures are considered as a class in the standard activity recognition (Frank et al., 2010). In the
rest of the thesis we will use the simple categorization that we have just introduced. The term
activity will be used to refer to simple actions, dynamic postures, static postures and complex
activities. The speci c terms for action, dynamic posture and static posture will be used if an
additional distinction is necessary.

In Table 3.1 in Chapter 3, we presented 11 categories of activity related situations. The recog-
nition of these categories would help into minimizing FP detections. The majority of these
categories are actually actions with a relatively short duration, lasting from under 1 second to
few seconds. This insight suggests that the one of the requirements of the future system will
be to recognize the actions that have a very short duration (< 1 second).

4.2 R W

In this section we give a short overview of some of the existing solutions and the general ap-
proaches for human localization, orientation tracking and activity recognition. We are mainly
focused on the advantages and shortcoming of the most of en used sensor types for each of
these tasks.

4.2.1 L S

The origins of today’s context-aware computing can be found in the location-aware comput-
ing for mobile applications initiated in the 90-ies of the last century (Hull et al., 1997; Abowd
et al., 1998). An inquiry about localization systems showed that many di ferent technologies
are used for this task. Radio frequency, sonic waves, inertial systems and photonic energy, have
been used to solve the problem of a precise indoor localization. Each of these systems has its
own set of limitations (Torres-Solis et al., 2010). Examples of hardware systems based on Ra-
dio Frequency (RF) technology include WLAN (Xiang and al, 2004; Yim et al., 2008), Ultra-
Wideband (Gentile et al., 2008) and RFID (Ni et al., 2003; Tesoriero et al., 2008). Usually, by
using RF technology it is possible to achieve the positioning accuracy of a few meters, but the
main limitation is the impact that a physical environment can have on the quality of a mea-
surement (e.g. radio-interference, EM noise). The environmental factors like ambient noise,
echoes, air temperature and co-interference, also pose limitations for the technology based on
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sonic waves, such as ultrasound sensors and microphones (Kleine-Cosack et al., 2010). In con-
trast, the limitations of inertial sensors are internal and not external. Inertial sensors have inter-
nal drif associated with thermal changes, which can add up to a great positional error due to a
double integrationof accelerationnecessary for the calculationof displacement. Inertial sensors
yield only relative positional information, and therefore should be combined with some abso-
lute reference to provide an absolute location estimate (Evennou and Marx, 2006; Retscher,
2007).

Use of cameras and color image processing is themost popular technique for people tracking
and indoor localization. Spatial coverage of such systems can range from one part of a room,
whenusing a single ceiling-mounted camera (McKenna andCharif, 2004) or an over-head cam-
era (Ribeiro and Santos-victor, 2005), to the whole room coverage in the case of overlapping
multiple-cameras (Petrushin et al., 2006). Camera based solutions provide a sub-meter local-
ization accuracy, but this is paid with a high cost in terms of computational e forts. Further
limitation of RGB camera systems is the sensitivity to time-varying light conditions, shadows
and occlusions. Regardless of the above disadvantages, cameras still seem like the best solution
for our indoor localization problem.

4.2.2 A R

An accurate activity recognition depends on the quality of information that the sensors in the
system can collect. Hence, the activity recognition is directly dependent on the type (and num-
ber) of used sensors. One of the main divisions according to these principles is between vision-
based and sensor-based activity recognition (Chen et al., 2012).

A vision-based activity recognition uses video cameras to observe a user’s behaviour and
changes in the environment. The cameras generate fast sequence of 2D images that are pro-
cessed with di ferent computer vision techniques such as feature extraction, movement seg-
mentation, structural modelling and pattern recognition. A general processing pipeline for a
vision-based activity recognition consist of the following steps: 1) human model initialization,
2) person tracking, 3) extraction of low level features 4) inference of the current activity using
the extracted features with the previously obtained referent activity model. The eld of vision-
based activity recognition has been in the intense research focus for a long-time, and there are
already plenty of existing solutions for each stage of the pipeline.

There are several surveys that give a nice overview of the state-of-the-art in the vision-based
activity recognition domain. Cédras and Shah (1995) provide a review of the computer vision
basedmotion recognition (i.e. walking, skipping, running), and focus on the twomost impor-
tant steps in motion recognition: a) motion information extraction and motion information
models building; and b) matching unknown inputs with the constructed model. Aggarwal
andCai (1999) discuss body structure analysis, tracking and recognition. Gavrila (1999) is inter-
ested in the recognition of whole-body motion and hand motion, and is focused on the vari-
ousmethodologies for humanmodel representation (stick- gure based, volumetric, statistical).
Poppe (2010) reviews the techniques for human action recognition that focus only on the full
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bodymovement, and excludes thework on gesture recognition. He takes into account only the
activities that are not depending on the context. Moeslund et al. (2006) o fer an extensive sur-
vey of over 300 papers between years 2000 and 2006. The survey focuses on all the important
stages in the vision-based activity recognition, frommodel initialization, over tracking and pose
estimation to high-level behaviour recognition. Yilmaz et al. (2006) present a comprehensive
survey of the e forts in the past couple of decades to address the problems of representation,
recognition, and learning of human activities from video. In their latest e fort Aggarwal and
Ryoo (2011) provide a detailed overview of various state-of-the-art research papers on human
activity recognition. The authors discuss both themethodologies developed for simple human
actions and those for high-level activities.

Sensor-based activity recognition involves the use of a wide range of di ferent types of non-
vision sensors such as accelerometers, RFID (Fishkin et al., 2005; Patterson et al., 2005), motion
sensors (Wilson andAtkeson, 2005;Wren andTapia, 2006), pressure sensors (Orr andAbowd,
2000), microphones (Chen et al., 2005), etc. These sensors can sense an activity either by being
deployed on the person which leads to wearable sensing, or by being deployed in the environ-
ment which is called dense sensing (Tapia et al., 2004; Chen et al., 2012). The most of en used
sensor for wearable activity recognition is the accelerometer (Bao and Intille, 2004a; Maurer
et al., 2006; Yang et al., 2007; Cho et al., 2008). The use of accelerometers for activity recogni-
tion in terms of the number of sensors, position on human body and employedmachine learn-
ing algorithms is very similar to how they are used in the FOG detection, which was previously
described in Section 2.1. Accelerometers are usually usedwith supervised learningmethods and
are able to classify with high accuracy between simple activities like walking, running, sitting,
standing, and climbing stairs (Anguita et al., 2012). Wearable sensor-based systems have no data
association problem and also have less data to process, comparedwith the vision-based systems.

Theobviousproblemof the vision-based activity recognitionunder real-world circumstances
is the dependency on an elaborate human model that requires a lot of visual data and perma-
nently good subject visibility in front of the camera. Compared to vision-based systems, wear-
able sensor-based systems process less data, but they also need several wearable sensors placed
at potentially obtrusive body locations when the systemneeds to recognize certain complicated
activities. However, there is also a third, hybrid approach to activity recognition based on the
mix of vision and wearable inertial sensor data (Zhu and Sheng, 2011). The advantages of this
approach are the need for a minimum number of wearable sensors worn by the user which
reduces encumbrance, the use of a simpler human model which requires less visual data and
lowers the visibility demands, and the opportunity to maintain the classi cation accuracy by
using independent data modalities. The hybrid approach has already been used for activity
recognition and in the healthcare domain (Pansiot et al., 2007; ElHelw et al., 2009; ElSayed
et al., 2010).
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4.3 R

Based on the analysis of existing technologies for di ferent types of context (Section 4.2), we
concluded that it is more preferable to use video cameras for a precise indoor localization, while
hybrid systems based on vision and wearable sensors are well suited for a recognition of activi-
ties. A hybrid system, due to the placement of its physical components, can also be referred to
as a distributed sensor system.

The design of a distributed sensor system for healthcare is a collaborative and multidisci-
plinary process that involves engineers, medical personnel (geriatric specialists and clinical re-
habilitation specialists) and the end-users (PD patients in our case). Two parallel imperatives
should be met with such system - the solution should meet the clinical (or research) require-
ments and it should be appropriate and acceptable for the end users (Dishongh andMcGrath,
2009).

4.3.1 R R

We, the researchers, aim to ll the knowledge gap about the relationof FOGand spatial context.
To ful l this goal, we need to develop an instrument that provides a solid technical framework
for collecting, storing and analysing the set of sensor signals from which the necessary con-
textual information can be extracted. The main functional requirements for the new context-
aware system, were de ned in the analysis of the context information types that were presented
in Section 4.1. We need a system that can:

• Track human position in real-time with a su cient accuracy (acceptable error < 10 cm);

• Track human orientation in in real-time with a su cient angle (allowed error < 20◦);

• Recognize a speci c set of patient’s activities; and

• Be used in a multiple people environment.

For a FOG detection based on location, it is of a great importance to achieve a su cient
accuracy when measuring the distance between the patient and an obstacle. When the system
needs to observe that the patient is passing through a door frame, a necessary accuracy of loca-
tion sensing is in the range of several decimetres. The same is true when the patient is standing
next to an object, such as chair. Proximity to an object in a congested space can easily be inferred
when the person is standing at a very short distance (< 0.4m to 0.5m). To set the criteria for a
su cient accuracy, we can use the literature about the minimal distance from objects that was
observed for people during locomotion behaviour. According to Weidmann (1993), a person
walking in a corridor keeps on average a minimal distance of 0.25m to a wall made of concrete
and 0.20m to a wall made of metal. Obstacles in a general environment need to be avoided
with a gap of at least 0.10m.
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The heading of the patient should be observed with the goal of inferring if he is facing any
speci c landmark on the map. When observing the patient’s relation with the landmark, such
as having the intention of going through a door or facing a kitchen sink, the heading error of
15-20 degrees lef or right from the true angle is acceptable, because such an error cannot change
the perception about the patient being generally directed towards the object.

A context-aware system usually contains sensors that have to be installed in the environ-
ment. Thus, it is a custom to build a test-bed for the prototyping stage, or to develop a piece
of sof ware that will simulate context information inputs (Oh et al., 2007). This approach
holds for themajority of context-aware applications that are targeting “normal” users and non-
medical context. In the development of the system that targets the context of FOG that is not
the case. and it is necessary to do more than build just one prototyping test bed. There is a va-
riety in the symptoms between di ferent patients. If we have a test-bed permanently installed
at one location, we will not be able to capture the in uence of the natural environment on the
FOG episodes of the patient. This importance of being able to obtain the sensor data from
the patient’s natural environment, was already explained earlier in Section 2.2. These reasons
impose an additional research requirement - a physical portability of the system prototype. A
portable system prototype would allow us to go into the homes of PD patients, do a fast sys-
tem setup and collect data about their natural behaviour. A fast system setup requires a rapid
mounting of the vision sensors in an environment and a fast setup of the sof ware application
for localization. We need to localize people in relation to objects, landmarks and zones in an
indoor space. This imposes a requirement to have an appropriate tool formaking maps of the
observed environment.

Two of themain functional requirements demand the system to operate in real-time. By the
de nition of IEEE (1990), real-time pertains to:

...a system or a mode of operation in which computation performed during the
actual time that an external process occurs, in order that the computation results
can be used to respond in a timely manner to the external process.

We aim to enable iterative development of real-time algorithms during the prototyping stage.
Therefore, we need to record raw data from all the sensors, and also to be able to replay the
recorded data in real-time. We expect to have sensors of di ferent modalities, whichmeans that
each of those sensorsmight acquire data using its owndata acquisition frequency. For example,
cameras usually operate with 30 Hz, while accelerometers can operate with anything between
20-200 Hz. To enable real-time operation of the system, a mechanism for synchronization of
sensor streams with di ferent data frequencies has to be provided.

The last research requirement is relatedwith the transition of the system from the prototype
stage into the permanentmonitoring solution stage. This transition can happenwhen the nec-
essary (context) algorithms have been implemented and evaluated, and it is easier to perform
if we take care to limit the costs and to handle the system complexity during the system design
stage. The costs can be limited by using a fordable sensors, and by upholding the principle of
scalability. In terms of a system that is focused on localization, scalability implies that the costs
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would increase linearly with the indoor area monitored. System complexity can be handled by
the appropriate sof ware design that supports decentralized computing. A distributed system
should calculate context information on sensor locations and only communicatemessage pack-
etswith smaller data size between its nodes. Withdecentralized sensor data processing,we avoid
the possibility of having a system “bottleneck”. In a real-time sensor system, a bottleneck can
appear if there is a single processing unit that has to take care of all the low level sensor data, and
its processing capabilities become insu cient to uphold the real-time operation requirement
as the number of sensors in the system increases.

4.3.2 U R

Elderly individuals are of en very sensitive to small changes in environment (Steele et al., 2009;
Beringer et al., 2011). Homemonitoring systems require sensors on the users or in their environ-
ment and this “sacri ce” is accepted by the users only if the system is e fective and they perceive
that its usefulness clearly improves their quality of life (Rahimpour et al., 2008). Hence, the
main functional requirement concerning the user of our system is the ability to detect FOG
with the maximum accuracy/robustness and minimum latency. This requirement has been
the main motivation for the research described in this thesis.

Sensor acceptance by the patient is pivotal for the success. Wearable and ambient sensors
have di ferent requirements in relation to the user acceptance. Themain issue with using wear-
able sensors is adherence and getting the user to wear necessary sensors each day (Steele et al.,
2009). Minimizing the number of the sensors that will be worn on the body, and optimizing
their position so that they minimally in uence the user’s freedom of movement, is de nitely a
step in the right direction. The other step is achieving a su cient power e ciency andworking
autonomy, so that a wearable sensor can last at least a day on one charge. An important factor is
also the ease of use ofwearable sensors. The ease of use involves simple interactions for powering
on/o f and recharging the sensors, a simple way to x them on the body and avoidance of an
additional sensor management training. Lastly, the physical form of the wearable sensors and
their placement should avoid to o fer a space for any social stigma (Parette and Scherer, 2004).

Ambient sensors should ideally be invisible or have a familiar form. If it is too di cult to
embed the sensors in the environment, they should be installed in the home in such a way that
they cause the least amount of infrastructural work (e.g. drilling, cabling). In a great majority
of cases, ambient sensors have to be retro tted, so the advantage should go to wireless sensor
solutions that can avoid the need for additional wiring.

One of the main concerns related to ambient sensors, especially cameras, is privacy and pro-
tection of sensitive information (Friedewald et al., 2007). Loss of privacy and constant video
monitoring is of en seen by older adults as obtrusive and a violation of privacy in one’s own
home (Demiris et al., 2004, 2009). The participant study by Coughlin et al. (2007) showed
that the constant videomonitoring is perceived as acceptable only in the case when the individ-
uals are extremely frail, or when the only other alternativemay be nursing care or livingwith an
adult child. Participant studies also show that “anonymizing” captured images, by introducing
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shadows, silhouettes and other distorting featuresmakes the camerasmore acceptable (Demiris
et al., 2004, 2009). An example of such approach are some of the fall detection systems based
on video with enhanced privacy (Edgcomb and Vahid, 2012; Zhang et al., 2012). Another way
to to ensure the privacy is that the raw data is not recorded or transmitted outside of the home.

4.4 S C

In our concept, a wearable assistive system is used to monitor gait and to treat the patient’s
FOG via a cueing device at any time or place (both indoor and outdoor) during the day. The
sensing capacity and the detection capabilities of the wearable assistive system are expanded
with the contextual information that is produced by a network of vision sensors installed in
the patient’s home environment. Vision sensors are placed in the areas of the home where
the patient spends the most of his/her time every day, such as living room, kitchen, and hall.

Figure 4.1: Block diagram for the concept of the distributedmonitoring system. Thewearable system inde-

pendently detects FOG based on inertial data (blue rectangle). Gait-based detection is complemented by the

user’s spatial context from the vision sensor system (red rectangle) in the areas of the homewhere such system

is present.

53



C - D H M S

The distributed vision systemprovides patient localization, environmentmapping and context
inference. The concept and the main components of the monitoring system are presented in
the block diagram in Figure 4.1.

A wearable assistive system (Figure 4.2) uses one inertial sensor device that is worn on the
waist. This device collects the egocentric data about the patient’s gait. Instead of developing a
dedicated hardware, we propose to use a smartphone as a relatively a fordable alternative that
has good sensing capabilities and high computational power. Sensing capabilities of a smart-
phone arise from a set of cheap and powerful embedded sensors: accelerometer, digital com-
pass, gyroscope, GPS,microphone, and camera (Lane et al., 2010). Besides as a sensor platform,
a smartphone can also be used as a communication hub. It is able to connect to a Body Area
Network (BAN) sensors via Bluetooth, or to communicate with a home ambient system via
Wi-Fi. Concerning the user requirements, smartphone can potentially bridge the problem of
technology acceptance. It is a familiar device that has already penetrated into peoples lives.
Economical and social merits of its use should also not be forgotten. Using smartphone pro-
duced in big series is cheaper than developing dedicated hardware, and they are already socially
accepted devices that will not draw attention and bring social stigma.

The concept of cueing for the prevention or termination of the FOG state has been previ-
ously presented in the introductory chapter in Section 1.1.2. A wearable assistive system needs
to have a cueing device that will use the cueing modality that is optimal for the patient. Simi-
larly to the concepts for cueing in the REMPARK (Cabestany et al., 2013) project, we predict a
possibility to use either earphone for audiomodality cueing, or a functional electro stimulation

Figure 4.2: Wearable assistive system for FOG. Smartphone is used for sensing and communication. In the case

of FOG detection cueing can be executed by using audio or haptic modality. Only one cueing devices is worn,

depending on the patient’s preference.
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device worn on a leg for the haptic modality cueing. The e fectiveness of a cueingmodality and
the exact cueingmethods are not in the focus of this thesis. The only requirement for the use of
the speci c cueing device is that it needs to have the communication capabilities for inclusion
into BAN, such as a Bluetooth connection support.

As vision sensors in our system, we propose to use cameras which have the capability to
sense both the color and the depth (RGB-D). These cameras, also known as active 3D range
cameras are able to overcome the illumination caused drawbacks of color vision systems, which
is very favourable for improving the background subtraction. Furthermore, one depth sensor
is enough to retrieve the precise spatial information about the 3D environment, compared to
multiple color cameras required for the same task. The spatial 3D information can be used
for an environment mapping, while reduced number of cameras in the system minimizes the
complexity and simpli es the installation. A 3D sensor-based in-homemonitoring was already
considered as a wide-range solution suitable in several assisted living scenarios (Leone et al.,
2013).

The work ow diagram of the system is given in Figure 4.3. The diagram shows how one
RGB-D camera is paired with a wearable sensor in order to achieve improved FOG detection,
and consequently improved cueing actuation. This process can be executed for each RGB-D
camera. Independent elements of the process include a 2D position tracking and a 2D scene
map calculation using RGB-D image, a 3D orientation calculation using inertial data from the
wearable sensor, and a gait-based detection of FOG from inertial signals. These elements have
towork independently, so that the FOGdetection can be achieved by thewearable sensor, even
when the patient is not in front of the camera. The main prerequisite for position tracking is
the background subtraction in each frame. The background subtraction is heavily based on
depth image processing. The background model for subtraction is set by periodic updates of
the 3D point cloud of the whole observed scene. These periodic updates are done every few
minutes on occasions when no tracked objects are present in the eld of view. Furthermore,
this background model is used to build the 2D map of the scene, which is used as one of the
inputs for spatial context inference.

The foreground image obtained af er background subtraction is used to build point clouds
for updating the positions of the persons being tracked, and to detect any new persons in front
of the camera. Af er the detection of new persons, positions of all tracked persons are updated.
We are only interested in the position of the patient. If the track of the patient is not identi ed,
the process of matching all known track histories against inertial sensor data is executed. If
the match is successful and the patient’s track is known, the position of the matched track is
used in the calculation of the patient’s pose. If none of the tracks in front of the camera are
identi ed as the patient, the camera data is excluded from the FOG detection. The calculation
of 2D pose involves a combination of the position obtained from the vision tracker and the
2D heading obtained from the wearable sensor. The estimated 2D pose is combined with the
2D map information and the history of FOG detections to infer contextual probability of a
FOG episode. This probability is published over a wireless network and read by the FOGState
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Figure 4.3: Workflow diagram for FOG detection using the distributed sensor system.
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Interpreter (FSI) module that runs on a smartphone device. The FSI module conducts a high
level fusion of the (spatial) context information and the gait classi er output to produce the
nal system output. A Boolean True or False at the output of FSI is what activates the cueing

device.

4.5 T S

Af er completing exploratory steps and establishing the functional requirements of the system,
our next step was to choose the most appropriate hardware and sof ware that will enable the
implementation of the system. During the requirement analysis and the preliminary design,
we already chose a smartphone and RGB-D cameras as the appropriate types of sensors. Both
smartphones and RGB-D cameras are commercially available devices that are o fered by di fer-
ent manufacturers and with di ferent characteristics. When using such standard of-the-shelf
components for the project, it is important to chose the exact device models that will fully
meet the requirements. Our device model selections for the camera and the smartphone are
presented in Section 4.5.1 and 4.5.2 respectively.

Equally important as the selection of the sensor devices is the choice of the appropriate sof -
ware platform. When there is a necessity to develop a sof ware application that involves han-
dling inputs/outputs and lots of interprocess communication, as is the case with a distributed
sensor system, a computer sof ware known asmiddleware can be used to provide these services
(Hadim and Mohamed, 2006). When using middleware the application developers can focus
on the speci c purpose of their application instead of writing the code to solve generic prob-
lems. Section 4.5.3 presents our choice for the middleware, while in Section 4.5.4 we present
other important sof ware that was used in the development process (e.g. development envi-
ronment, data processing libraries).

4.5.1 A S : M K

Microsof Kinect gives us an open, easily programmable, well supported and economical sensor
platform with satisfying technical properties. The main Kinect sensor modality that we want
to use is the depth sensor based on PrimeSense LightCoding technology. The basic principle
behind the Kinect depth sensor is to emit the infra-red (IR) light, and then to utilize a standard
o f-the-shelf CMOS image sensor ttedwith an IR-pass lter to read the IR light back from the
scene. The IR light that is emitted has a special pattern known by the Kinect. When the image
processor of the Kinect reads the returned light pattern, it can calculate the depth displacement
at each pixel position in the image (Batlle et al., 1998). The depthmeasured is an estimate of the
distance from the object to the plane formed by the IR camera and laser, rather than the actual
distance from the object to the IR camera opening. In this way, the depth sensor is basically a
device that returns the (x, y, z)-coordinates of 3D objects. The main nominal speci cations of
Kinect are given in Table 4.1.
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Table 4.1: Kinect hardware specifications.

Property Value
Angular Field of View 57◦ horz., 43◦ vert.

Framerate 30 Hz
Depth image resolution 640x480 (VGA)

Nominal spatial resolution (at 2m distance) 3 mm
Nominal depth range 0.8 m - 3.5 m

Nominal depth resolution (at 2m distance) 1 cm
Extended depth range 0.5 m - 9.7 m

Kinect sensor was primary intended to be used indoor for gaming purposes. Since its release
in November 2010, it was popularized by the enthusiasts in the eld of computer vision as
a tool for people tracking (Shotton et al., 2011; Xia et al., 2011), as a motion capture system
(Dutta, 2012) and for building indoor maps (Stoyanov et al., 2013). Although the additional
3D information that it provides opens a whole spectrum of new possibilities and gives it the
edge over RGB systems, especially in background subtraction and object recognition, there
are still some limitations. One of the limitations is unavoidably related to characteristics of
the viewed object. Due to the Kinect’s dependency on re ected IR light, there are obvious
problems with very re ective, mirror-like surfaces that are unable to re ect the light back. The
other problematic type of surface is the one that is not re ective enough, such as very dark pieces
of cloth. An additional complication can also be an interference with other IR light sources
(e.g. sun or an open re). The interference with the sun can limit the usefulness of Kinect in
the areas close to windows, where strong sun rays are possible. Except with the external factors,
Kinect is also characterizedwith the internally related factors. A few studies (Khoshelham, 2011;
Andersen et al., 2012) measured the internal technical properties of the depth sensor, such as
linearity, depth resolution, depth accuracy and precision, spatial precision and structural noise.
More about how those internal aspects in uence decisions concerning our tracking algorithm
will be presented in Chapter 5.

4.5.2 W S : S

We used the Samsung Galaxy Nexus (GT-I9250) smartphone for the mobile sensing and pro-
cessing. Relevant technical speci cations are given in Table 4.2.

4.5.3 M : R O S

Af er the investigation of the available middleware systems for intelligent environments, we
chose an open source, community-supported middleware from the robotics domain to de-
velop our distributed sensor system. Robot Operating System (ROS) (Quigley et al., 2009)
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Table 4.2: Smartphone hardware specifications.

Property Value
Dimensions 135.5×67.9×8.9 mm

Weight 135 g
Processor Dual-core 1.2 GHz Cortex-A9
Memory 1 GB RAM

Operating System Android 4.0
Accelerometer Bosch BMA220, 3-axis, 100 Hz,±16 g max. range,
Gyroscope Invesense MPU-3050, 3-axis, 100Hz,±2000 ◦/smax. range

Magnetometer Yamaha YAS530, 3-axis, 100Hz,±800 µT max. range

is a meta-operating system that runs on top of the “real” operating system (e.g. Linux, Win-
dows). ROS provides the services that would be expected from an operating system, including
hardware abstraction, low-level device control, implementation of commonly-used function-
ality, message-passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple computers. ROS
is not a hard real-time framework, though it is possible to integrate ROS with real-time code.

The fundamental concepts of theROS implementation are nodes, messages, topics, and ser-
vices. Nodes are the processes that perform computation, similar to an independent sof ware
module. Nodes communicate with each other by passing messages. Node sends a message by
publishing it to a given topic. A node that is interested in a certain kind of data will subscribe
to the appropriate topic. There may be multiple concurrent publishers and subscribers for a
single topic. Publishers and subscribers are not aware of each other’s existence. Publishing on
topics is asynchronous communication. Synchronous transactions are supported by the con-
cept of services, where messages are passed on the request/reply principle. ROS introduces the
concepts of packag and stacks for easier distribution and recon gurability. Nodes are grouped
into packages, and a collection of packages makes a stack. One package usually solves one func-
tionality, like camera calibration or face detection, while a stack covers the whole eld of appli-
cation, like computer vision or navigation.

Potentials of the ROS middleware in the context of the use in an intelligent environment
were explored by Roalter et al. (2010). A great advantage of ROS are the stacks that provide
automatic hardware support (openni-kinect) and access to various open source processing li-
braries.

4.5.4 S D P

The basic operating system for which the system was developed is Linux Ubuntu 12.04 LTS,
with installed ROS (version Fuerte). Eclipse (version 3.7.2) integrated development environ-
ment was used for code development and debugging. Graphical user interface was developed
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with QT 4.8 library. For 3D point cloud processing, the Point Cloud Library v.1.5 (PCL) was
used, while image processing was done in OpenCV 2.0. The code was written in the C++ pro-
gramming language.

4.6 S A

Figure 4.4 presents the sof ware architecture of the system. The architecture is presented in
the way that is used for the presentation of a graph of the distributed system in the ROS mid-
dleware. The oval objects represent ROS nodes. Each node is a process that is dedicated to
the execution of the speci c functionality (speci ed with a node name). As mentioned before,
ROS enables interprocess communication by passing messages between nodes. The main top-
ics in the system are marked by arrow lines. The node that is the source of an arrow line is the
publisher for the topic. The nodes where the arrow line sinks are the subscribers for the topic.
Topics are usually named by the notation that involves the name of the source node and the
type of data that is published on them.

A smartphone and an unspeci ed number of Kinect sensors are the possible sources of sen-
sor data. Each Kinect has its own dedicated node that processes its color and depth image data.
This node is called the Vision node. The main task of the Vision node is to track all the
persons that are in front of the Kinect and to provide their locations for each image frame.
The secondary task of the Vision node is to collect information about the appearances of the
tracked persons. The Vision node also contains graphical user interface (GUI) that is used
by a researcher for setting up environment maps and context zones. Environment maps are
obtained from the dedicated Map Server node. This node is always active as it waits a request
from any Vision node to produce a map. When the request comes, Map Server node takes
the 3D point cloud of the background in front of the Kinect as the input, and returns the 2D
projection of the cloud in the form of a bitmap. The details of the Vision node implementa-
tion and its interaction with the Map Server node are described in Chapter 5.

In a distributed systemwithmanyKinect cameras, many person tracksmay exist at the same
time. In our application we are interested to knowwhich of those tracks belong to the patient.
The identi cation manager (ID Manager) node handles the assignment of the identity for all
tracks. It supports two modes of operation: 1) a mode in which it learns the identity from the
appearance of the persons in the system; and 2) a mode in which it uses the learned appearance
models to identify persons. When the ID Manager identi es the patient, it forwards the pa-
tient’s location (and other context data) to the rest of the distributed system. The algorithm
for the extraction of appearance features and learning identi cation models will be presented
in Chapter 7.

To use an Android smartphone inside the ROS middleware, the smartphone needs to have
installed a special node, named ROS Android. This node enables the smarthphone to publish
and subscribe onROS topics in the samenetwork. TheROS Androidnode acquires raw signals
fromthe inertial sensors anddistributes themto the twoprocessingnodes. TheIMU Orientation
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Figure 4.4: System architecture overview.
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node calculates the absolute 3D orientation of the smartphone device based on the fusion of
the accelerometer, gyroscope and magnetometer sensor channels. The FOG Algorithm node
uses data from 3 accelerometer channels to calculate theFI using theMoore-Bächlin algorithm.
Results from the both nodes are then forwarded towards the Context node, where the nal
decision regarding FOG ismade. The use of a smartphone for tracking the patient’s orientation
and calculation of his/her 2D pose is explained in Chapter 6. Two othermain tasks of the Con-
text node, activity recognition and contextually enhanced FOG detection, will be presented
in Chapter 8 and Chapter 9, respectively.
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5
Multiple Person Tracking and

Localization

The concept of our monitoring system requires the placement of multiple Kinect cameras in
a home. These cameras form a home camera network whose main purpose is to localize the
PD patient. The location of the patient has to be determined on a map of the environment.
Thus, the cameranetworkneeds to ensure two functionalities: 1) away to continuously provide
accurate location of the patient (expressed in the coordinates of the appropriate coordinate
system); and 2) a way to obtain the appropriate map of the environment.

Video tracking is the process which uses a camera to estimate the location of one or more
objects over time (Maggio and Cavallaro, 2011). The actual object of interest (tracking target)
can be anything, depending on the speci c application. In our medical application the object
of interest is a human target. Video tracking is an established eld that already o fers plenty of
potential methods and algorithms that can be usedwith our hardware setup in order to localize
PD patients.

We start the chapter with an overview of the main elements of the tracking process, and we
list the existing di culties that are presentwhen tracking humanswith a color camera in indoor
environments. We recognize that in our system, a possibility to eliminate some of the tracking
errors and achieve a robust indoor tracking, exist in the correct use of the Kinect’s depth sensor.
One of the most common approaches to make use of the depth data is the method known as
background subtraction. We conduct an exploration of some of the existing background sub-
tractionmethods, and search for a people trackingmethod that is able to bene t from the addi-
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tional depth information. We conclude the rst part of the chapter with a detailed theoretical
description of one such tracking method, that we have chosen to implement. In the second
part of the chapter, we describe the practical implementation of the chosen tracking algorithm,
along with the implementation of the additional algorithms that are necessary for the extrac-
tion of context data. The tracking method and the extraction algorithms are implemented in
the Vision node. This node is a complete sof ware solution that, besides tracking, also tries
to handle the mapping of the environment and to provide the setup utility to the researchers.
Af er reading this chapter, the importance of the Vision node, its inner workings and the way
inwhich its elements interact with the other nodes in the distributed system should be clari ed.

5.1 P T

Themain logical components of the video tracking algorithm, also known as the video-tracking
pipeline, include:

• Initial detection of the target object;

• Extraction of relevant information (features) from the tracking target and encoding this
information into a suitable representation inside a computing system;

• Propagation of the state of the target via an update with new features; and

• Managing the target by eliminating it when it is evident that it has lef the scene.

The video tracking process is hampered due to the loss of information by the projection of
the 3D world on a 2D image. The challenges in this process are related to the similarity of ap-
pearances between the target andother objects in the scene, and the variations of the appearance
of the target (Maggio and Cavallaro, 2011). Appearance variations can happen due to:

Angle change
Except the completely spheric objects, all other types of objects vary in appearancewhen
seen from di ferent angles.

Translation
The distance from the camera directly in uences the size of the object; those further
from the camera appear smaller than those near to the camera.

Deformation
Some objects (e.g. a car) are completely rigid, while the other (e.g. a human) are de-
formable and can assume shapes that are hard to predict and model in advance.

Illumination changes
The appearance of the object may vary due to the properties of the ambient light, such
as direction, intensity and color temperature. Change in the position of the light source
or the object movement can also in uence the amount of light that falls on the object.
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Shadows and re ections
When a shadow of the object is cast on the ground it appears in the shape of the object
that has produced it. For the trackers that do not use color and use justmotion or shape,
the shadow practically represents a duplicate of the object. The re ections of objects on
smooth surfaces have the same e fect as shadows.

Occlusions
Occlusion occurs when there is an object that prevents full visibility between the camera
and the tracking target. A target object can get occluded by another moving object, by
its own moving part, or by moving itself behind a static object that forms the scene
background. Furthermore, an occlusion can be a partial occlusion, where only a part of
the target is not visible, or a full occlusion in which the target completely disappears.

One of themost fundamental problems in the design of video tracking is nding the appro-
priate description, known as the object model, for the object that we want to track. The object
model has to be speci c enough to allow the target to be clearly distinguished from other sim-
ilar areas on the image. However, it has to be general enough so that the target can be linked
to its previous instances in time. The object model usually includes the information about the
shape and/or the appearance of the target (Yilmaz et al., 2006). Object representations that
are based solely on shape encompass: points (Veenman et al., 2001; Sha que and Shah, 2003),
primitive geometric forms such as rectangle or ellipse (Comaniciu et al., 2003), object silhouette
and contour (Yilmaz et al., 2004) and articulated models (Thome et al., 2008; Sundaresan and
Chellappa, 2009). Examples of the strictly appearance-based representations are probability
density estimates (e.g. Gaussian distribution (Han and Davis, 2005), histograms (Pérez et al.,
2002)) and templates (Jurie and Dhome, 2002). Active appearance models are generated by
simultaneously modelling the shape and the appearance of the object (Cootes et al., 1998).

The choice of the object model for tracking is dependent on the particular application. For
tracking locations of small (Jaqaman et al., 2008) or distant (Sha que and Shah, 2003) objects
already a point representation can be su cient. On the completely other part of the spectrum
are detailed humanmotion recognition applications in which articulated 2D or 3Dmodels are
used. More about these complexmodels canbe found in surveys onhumanmotion recognition
(Moeslund et al., 2006; Poppe, 2007).

5.1.1 B S D D

Smith (2007) proposes an alternative approach for modelling objects in a video by modelling
everything that is not the object itself. This technique is known as background subtraction or
foreground segmentation. This approach aims to detect moving objects within a video stream
from the di ference between the current frame and a reference frame, called the background
image, or the background model (Piccardi, 2004). The simplest method for background mod-
elling is the static frame difference where one image is taken at the beginning of the tracking
and is used for the di ference calculation with each new frame. This static model has no way to
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deal with the various dynamic changes of the scene such as illumination changes or shadows.
The frame difference approach uses the previous frame as the backgroundmodel for the current
frame, which successfully eliminates changes in the background, but also fails if themoving ob-
ject suddenly becomes static. A more robust and complex solution is to obtain a continuously
adaptive backgroundmodel from the temporal sequence of frames. Features such as color and
texture (Zhang and Xu, 2006; Jian et al., 2008) or edges (Jain et al., 2007) may be used for this
task.

One of the most of en used background modelling methods are the statistical methods.
Wren et al. (1996) modelled the background independently at each pixel location by tting
a Gaussian probability density function. This model copes well with gradual illumination
changes, but fails for non-static backgrounds, such as moving leaves of a tree. To improve the
algorithm behaviour in such situations, Stau fer and Grimson (1999) proposed to model each
pixel color as a sum of weighted Gaussian distributions, known as Gaussian Mixture Mod-
els (GMMs). The GMM has a good performance in the analysis of outdoor scenes, and has
become a very popular background subtraction algorithm due to its ability to handle low illu-
mination variations (Sobral and Vacavant, 2014). Rapid variations of illumination and shad-
ows are still problematic and many authors studied ways how to improve this method (Kaew-
TraKulPong and Bowden, 2002; Zivkovic, 2004; Tuzel et al., 2005).

One of the possible solutions for improving the GMM-based background subtraction is to
add depth data. The potentials of using depth data in a tracking system based on background
subtractionwere nicely summarized byHarville (2004). The author advocates the use of depth
in a person tracking system and summarizes its advantages:

• It is a powerful cue for foreground segmentation,

• It provides shape and metric size information that can be used to distinguish people
from other foreground objects,

• It allows occlusions of people by each other or by background objects to be detected and
handled more explicitly,

• It permits the quick computation of new types of features for matching person descrip-
tions across time,

• It provides a third, disambiguating dimension of prediction in tracking.

One recently introduced approach to the background subtraction that achieves excellent re-
sults is the algorithmcalledDepth-Extended Codebook (DECB)proposedbyFernandez-Sanchez
et al. (2013). The DECB builds up on the well known Codebook background subtraction algo-
rithm (Kim et al., 2005), by fusing depth and color information to segment foreground regions.
The basic color Codebook method samples values of the background at each pixel and quan-
tizes/clusters them into a compressed representation of the background model convenient for
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a long-term observation. For each pixel location, the image color values are grouped into clus-
ters called codewords. Af er some time there will be several codewords built for each pixel. This
set of codewords is called the codebook. The criteria for assignment into a codeword cluster is the
color distortion metric with brightness bounds. Although the color-based algorithm handles
well moving backgrounds or illumination variations, there is a problem with the robustness
of the algorithm to shadows, highlighted regions and sudden lighting changes. An additional
depth information can be helpful in improving these shortcomings.

When a shadow appears or the illumination changes suddenly, the depth information of
the pixel stays unchanged. The easiest way to exploit the depth would be to base background
subtraction only on the depth and disregard the color information. In that case, the objects
that have a similar depth as the background would miss from the foreground, because of non-
su cient depth sensitivity. Hence, the DECB approach consists of modifying the condition
around the color distortion to consider the depth only when the color distortion is between
two speci c thresholds ε1 and ε2. The threshold ε1 is used in the original color-based Codebook
algorithm. If the color distortionmeasures less than ε1, the pixel is de nitively considered to be
a part of the background. The addition of the second threshold ε2, where ε2 > ε1, de nes the
area of uncertainty stemming from illumination changes. This is the case when a pixel would
be declared as the foreground, but is still close enough to the ε1 threshold that it might be a part
of the background. In such case, pixel depth value is taken into account.

The comparison of the DECB and the Codebook algorithm by Fernandez-Sanchez et al.
(2013) demonstrated clear bene ts of using depth data for the background subtraction. Be-
sides improving the background subtraction, depth data o fers additional advantages for peo-
ple tracking, such as better handling of occlusions and image noise. This bene ts are possible
if we use a special data representation, the plan-view, which we will explain in the next section.

5.1.2 P - R M

When using the Kinect in the overhead position, a 3D point cloud can be constructed from
the depth data. The created point cloud does not have the same depth resolution at all the
distances from the camera. The depth resolution decreases quadratically with increasing the
distance from the sensor. The point spacing in the depth direction (along the optical axis of the
sensor) is around 7 cm at the range of 5 meters, compared to 1 cm at 2m distance (Khoshelham,
2011). Also, the random error of depth measurements increases quadratically with increasing
distance from the sensor and reaches 4 cm at the range of 5 meters (Khoshelham and Elberink,
2012). These sensor characteristics make it di cult to apply typical image analysis and tracking
methods to depth data with the same con dence on all the distances from the camera. To deal
with the sensor related problems and equalize their in uence over the whole scene, it is more
favourable to analyse the depth data statistics rather than working with the raw depth values
(Harville, 2004).

Plan-viewprojection is oneof the six possiblemulti-vieworthographic projections (Carlbom
and Paciorek, 1978) of a body in which the projecting plane is horizontal (parallel to the oor)
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and the object is seen from the top. The separation between the people who are close together
is better on plan-view projection, then in the image produced by the camera positioned under
the ceiling with a downward angle of around 45◦ from the horizontal (which we designate
as camera-view). Projected depth data can then be combined with the statistical approach to
avoid the in uence of occlusion, depth sensor non-linearity and noise on the tracking. Our
main arguments to use a plan-view based person tracker are: 1) it is easy to produce the plan-
view representation by orthographically projecting 3D point cloud of the scene foreground on
the oor plane; and 2) the projected depth data can be combined with the statistical approach
to avoid the in uence of occlusion, sensor resolution non-linearity and noise on the tracking
process.

Figure 5.1 presents the main geometric principles, coordinate frames and frame transforma-
tions necessary to obtain a plan-view projection from an overhead camera view of a 3D point
cloud. The two main coordinate systems are world coordinate system Xw − Yw − Zw and
camera image coordinate systemXci − Yci − Zci. The original point cloud built from Kinect
data has theXci −Yci −Zci frame as its reference, and its points are expressed in homogeneous
coordinates as pci = (xci, yci, zci, 1). The world frame Xw − Yw − Zw has two of its axes par-
allel to the oor plane, while the Z coordinate axis is orthogonal to the oor and aligned with
the vertical axis of the world. We can expect that people will be aligned with this vertical axis
during locomotion and the majority of other activities that do not involve lying down. Hence,
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Figure 5.1: Three-dimensional reconstruction of the scene showing the reference coordinate frames for plan-

viewmapping.
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for tracking purposes it is preferable to translate the foreground point cloud in theworld frame
coordinates. To obtain a point pw = (xw, yw, zw, 1) in the world frame, we need to know the
position and orientation of the camera towards the oor plane and to establish a homogeneous
transformation ci

wT. In Figure 5.1 we can also observe camera base frameXcb−Ycb. This an aux-
iliary framewhich is formed by the projections of the axesXci andZci onto the oor plane. This
frame is of en used as a frame for representing the camera on the 2D plan-view image.

From Kinect we obtain a large amount of 3D data which makes it possible to have tracking
directly on the point cloud. However, this approach can be computationally expensive. In-
stead, it is possible to nd 2D projections of the 3D data that reduce the original amount of
information, but still preserve meaningful spatial properties useful for tracking. The solution
for dimensionality reduction is to divide the world into vertical bins parallel to the axis Zw at
which base on the oor is a grid of 2D cells and then project each point cloud point pw on the
grid. Such discrete grid can easily be seen as a 2D image where one cell equals one pixel. A value
of each pixel value can be calculated as some statistic of the 3D points within the corresponding
vertical bin. When a statistic is calculated, we call the obtained data representation plan-view
map. Three kinds of maps have been used so far:

Occupancy map
First introduced by Beymer (2000). Instead of simply counting the number of points
in the vertical grid cell, we calculate how much space they occupy. In this way the map
displays weighted counts of the points in each bin, which compensates for the smaller
appearance ofmoredistant objects in the camera-view image. Theusualweighting equa-
tion is Z 2

ci/f 2, where the measured depth value in the camera image frame coordinates
is weighted by the focal length f of camera. Depth value weighted with the focal length
approximates the physical surface area covered by the related image point. This repre-
sentation omits almost all object shape information in the vertical dimension.

Height map
The height above the ground-level plane of the highest point within each vertical bin.
Height maps preserve as much 3D shape information as possible in a 2D image, and
therefore seem better suited than occupancy maps for distinguishing people from each
other and fromother objects (Harville, 2004). Amore pronounced shape of projections
provides better features for accurately tracking people during close interactions and par-
tial occlusions. Also, from the overhead angle the head and the upper body of a person
are usually visible even when another person is passing very close by and producing an
occlusion. Hence, height map contains data that is more robust to partial occlusions.

Color map
First deployed by Harville (2005), this type of map registers color information of the
scene. Di ferent color statistics can be used, such as the color of the highest point in
each vertical bin, or the mean color of all points in the bin. Color maps add important
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appearance information that can be used for making both short and long term person
appearance models.

5.1.3 P - T

Several multiple person tracking approaches with plan-view maps have been applied so far.
Beymer (2000)modelled peoplewithGaussians thatwere applied to occupancymaps and used
the Kalman lter maintained through position and velocity updates. Darrell et al. (2001) used
dynamic programming with occupancymap to solve a batch trajectory estimation problem for
each person. However, their solution was still impractical for real-time use. A method that al-
lowed for online, real-timepeople detection and trackingwas developedbyHarville (2004). He
used a Kalman lter with occupancymaps, height maps and adaptive templates. In the contin-
uation of the work with adaptive templates, Harville and Li (2004) replaced the Kalman lter
with a new probabilistic technique based on the maximum a posteriori (MAP) method. This
method was further adapted to incorporate plan-view color maps and long-term appearance
models (Harville, 2005).

The rst to use particle lters for multiple people tracking with plan-view occupancy maps
was Hayashi et al. (2004). Unlike Kalman lter, particle lters can deal naturally with systems
where both the posterior density and the observation density are nonlinear and non-Gaussian.
A particle lter provides a robust tracking framework, since it models uncertainty and consid-
ers multiple state hypotheses simultaneously, which helps when dealing with short occlusions
(Nummiaro et al., 2002).

Muñoz-Salinas (2008) presented a low-error stereo camera tracking method that can deal
with partial and total occlusions. The method uses multiple particle lters and three types of
plan-view maps. We evaluated that this method could meet the requirements of our applica-
tion, and used it to implement the core people tracking functionality of the Vision node. In
this subsection, we summarize the main principles of the method presented byMuñoz-Salinas
(2008) using the author’s original notation.

Space discretization
The rst task is to discretize properly the space in front of camera and to producemaps.
A cell grid on the oor plane has n × m rectangular cells with xed a size of side δ.
The origin of the plan-view, the cell (0, 0), is set at the position (0, 0,Zw) in the world
frame (Figure 5.1). Cell coordinates (x i, y i) can be obtained from the 3D point p i

w by
the following calculations:

x i =
X i

w
δ , y i =

Y i
w
δ . (5.1)

Only the 3Dpoints in the speci edheight range are allowed for tracking. This is achieved
by using height thresholds. Maximum height limit hmax avoids including points from
the ceiling, while the minimum height limit hmin avoids inclusion of oor or very low
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objects. A set of points in the vertical bin projecting into a cell (x, y) is de ned as:

P(x,y) = {i | x i = x ∧ y i = y ∧ Z i
w ∈ [hmin, hmax]} (5.2)

Making plan-view maps
Themethod uses all three types of plan-viewmaps presented in the previous section; oc-
cupancymapO, heightmapH and colormapC. The value in each cell of the occupancy
map is calculated using camera image pixels by the formula:

O(x,y) =
∑

j∈P(x,y)

(Z j
ci)

2

f2 (5.3)

Each cell of the heightmap takes themaximumheight among all the points in its vertical
bin according to the equation:

H(x,y) = max(Z j
w | j ∈ P(x,y)) (5.4)

Each color map cell C(x,y) contains a color histogram in HSV space of the points from
P(x,y). The histogram is composed out ofm = nh×ns+nv bins, where the subscripts h,
s and v designate hue, saturation and luminance respectively. A 2Dhistogram of nh×ns
bins contains chromatic information part, while the luminance information in nv bins
accounts for credibility of color information when it is too bright or too dark.

Extraction of measurements
An unoccluded person will project to an area on the map proportional to its real di-
mensions. Amajor part of a person in an upright posture will t in a rectangular region
whose size of the side, ζR, varies from 0.4 to 0.6 m (Muñoz-Salinas, 2008). People de-
tection and tracking is based on the analysis of rectangular regions fromwhich the three
measures, each based on one type of map, are extracted. Before extracting measures,
the person region has to be de ned in the coordinates of the plan-view map. For this
purpose, we introduce the parameter ζM that represents the size of a person’s projection
ζR expressed in the number of grid cells. Using the parameter ζM, a rectangular person
region can be de ned as a set of cells centred around (x, y) that satisfy the equation:

R(x, y) = {i |max(|x i − x|, |y i − y|) < ζM/2} (5.5)

The rst measure, de ned as:

OR(x,y) =
∑

i∈R(x,y)
O(x i,y i) (5.6)

provides information about the total surface area that an object in the region occupies.
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The second measure, de ned as:

HR(x,y) = max(H(x i,y i)), ∀i ∈ R(x, y) (5.7)

represents the height information of a region by recording themaximumheight among
all the points projected in the region. The third measure CR(x,y) is the color histogram
of a region. The region histogram has the same number of bins m as the color map.
Each bin u is calculated by aggregating color information of the cells in the region by
applying:

CR(x,y)(u) = 1/|R(x, y)|
∑

i∈R(x,y)
C(x i,y i)(u) (5.8)

The division by the total number of cells |R(x, y)| is done in order to obtain a normal-
ized histogram.

People detection
The method presumes the availability of a foreground point cloud in which there can
be several people (or other movable objects). Regions in which people project on plan-
view are expected to have height HR(x,y) and occupancy OR(x,y) that fall into some
normally distributed ranges de ned by Gaussian distribution parameters (μh, σh) and
(μo, σo). The two measures can be combined into a likelihood of the cell(x, y) to be a
centre of the person by the equation:

Lnew(x, y) =
exp

(
−
(
(OR(x,y) − μo)

2/σ 2
o +HR(x,y) − μh)

2/σ 2
h
))

2πσoσh
(5.9)

The above equation is applied to every cell in the plan-view in order to create a likelihood
map Lnew. The presence of people in the scene causes regions of high likelihood in
Lnew. People are detected by searching for peaks in this new type of map. For each new
frame a new Lnew is calculated and it can potentially contain the information about
the people that are already being tracked and about the new persons that just entered
in the scene and are not tracked. New persons are detected only af er the positions of
already tracked people are determined and erased from theLnew. Af er the deletion, the
cell (x, y) with the maximum likelihood is selected as the candidate for a new person.
Af er being added to the list of potential candidates, the likelihood in all the cells of
region R(x, y) is set to zero to avoid considering the region again as a candidate. The
search process is repeated for other potential new candidate regions, until the cell with
maximum likelihood is below a certain threshold. The error of omitting some region as
a person candidate, is still possible due to noise and occlusions. Therefore, the principle
of temporal consistence is applied. The same candidate region has to be detected for
a minimum number of consecutive times, before it gets promoted into a person track.
When the promotion to a track occurs, the person’s colormodelCp is created using color
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histogram of the candidate region CR(x,y).

Particle filter
The state of the object tracked by PF at the time t is described by the vector Xt, while
the vector Zt denotes all observations {~z1, ...,~zt} up to time t. The particle lter uses
a weighted sample set St = {(~s (n)t ,π(n)

t )|n = 1...N} (where n indicates a particular
sample in the set ofN samples) to approximate the posterior density p(Xt|Zt) at a dis-
crete time t. Each particle~s (n)t represents a possible state of the object that can be true
with some sampling probability π(n)

t , conditioned by
∑N

n=1 π
(n)
t = 1. The particle l-

ter incorporates a cyclical repetition between the three main actions: state prediction,
state correction and particle resampling. During state prediction, the sample set is prop-
agated according to the dynamic system model~st = A ·~st−1 + ~wt−1, where t designates
the current iteration of the discrete time system, t− 1 designates the previous iteration,
matrix A defines the deterministic component of the model, and ~wt−1 is a multivari-
ate Gaussian random variable. Usually, to describe human movement on a plane, it is
su cient to use a matrixA that describes a rst order dynamic system with a constant
velocity (ẋ, ẏ). During state correction each sample~s (n)t in the set St = {(~s (1)t , ...,~s (N)t }
is weighted accordingly to its observation density p(~zt|X (n)

t ) to nd itsmeasured proba-
bilityπ(n)

t = p(~zt|X (n)
t ). The particle resampling process generates a new set of particles

with the probability of each samplen from the old set to be repeated equal toπ(n). Af er
each state correction step, a mean state of the tracked object εt is estimated by calculating∑N

n=1 π
(n)
t ·~s (n)t .

State and observation model
With the assumption that there are P people tracked, the state of the speci c particle
lter for the j-th tracked person can be de ned in terms of variables X j

t and Zt. State
vectorX j

t = (x j
t , y

j
t , ẋ

j
t , ẏ

j
t ) represents position and velocity on a 2D oor plane at time

t, while Zt denotes concurrent world observations in the form of the plan-view maps.
The observation model combines occupancy O j

t , color C
j
t and height information H j

t
from the plan-viewmaps to calculate the observation density, de ned as:

p(Zt|X j
t ) = po(O

j
t |X

j
t ) · ph(H

j
t |X

j
t ) · pc(C

j
t |X

j
t ) (5.10)

The likelihood of the speci c particle n at time t in lter j is obtained from the general
observation by applying:

π j,(n)
t = p(Zt|X j,(n)

t ) · ph(H
j,(n)
t |X j,(n)

t ) · pc(C
j,(n)
t |X j,(n)

t ) (5.11)

The variable O j
t = OR(x,y) ∼ N (μo, σ 2

o ) represents the occupancy level of region
R(x, y) centred at the particle n. Similarly, the maximum height in the regionR(x, y)
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is taken for the calculation of variableH j
t = HR(x,y) ∼ N (μh, σ 2

h ). Probability distri-
butions po(O

j
t |X

j
t ) and ph(H

j
t |X

j
t ) are obtained by comparing the level of divergence

between the variable values and expectedmean values μo andμh. The color distribution
pc(C

j
t |X

j
t ) is de ned based on a Bhattacharyya distance C j

t between two color distribu-
tions; the histogram colormodel sustained for the personCp, and the histogram CR(x,y)
of the region on which the particle is centred.

Multiple trackers and occlusion handling
Alterations in the original CONDENSATION algorithm were made to improve total
occlusions handling and preserve multimodality. An occlusion is recognized when the
observation likelihood for estimated person track is below a threshold. Multimodality
is preserved by de ning an interaction factor that models interactions between persons
(Khan et al., 2005). The interaction factor I j

i,t prevents particles from the j-th tracker to
end up tracking another target with a similar observation model. The interaction fac-
tor goes towards a zero value, when particles of the tracker are near positions of other
people with similarly colored clothes. When particles are far from other people, or near
people with clothes of di ferent color, the interaction factor goes towards value 1. The
calculation of the interaction factor requires a prior knowledge of the distances between
the mean position estimation ε jt for tracker j and position estimations εit,∀i 6= j for all
other active trackers. In this summary we just gave the intuition about the purpose of
the interaction factor I j

i,t and presented the necessary inputs for its calculation. For a
more detailed explanation and exact equations, it is recommended to consult the origi-
nal work of Muñoz-Salinas (2008).

5.2 V N

Vision node is the basic node in our system, which tracks people and their locations. Besides
the primary tracking functionality, this node has several support functions that were listed in
its description in Figure 4.4 in Chapter 4. The Vision node has to provide the data for learn-
ing appearances of persons in ID Manager node, it has to provide the data for mapping in
Map Server node and, it serves as the user interface for the whole distributed system. In this
section, we describe in detail the implementation of the Vision node, its interaction with the
other nodes in the distributed system that depend on it, and the interaction with the system
administrator.

5.2.1 O

Each Kinect in the network has its own instance of Vision node. The context in which one
Vision node operates inside the distributed system is illustrated in Figure 5.2. The Kinects in
the system are using the camera+ ordinal number naming convention (e.g. camera2), with the
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Figure 5.2: Vision node in a distributed system.

rst Kinect simply named camera. The Vision node takes two inputs from its Kinect: color
image and depth image. For example theKinect named camera (Figure 5.2) publishes its images
on the topics /camera/rgb img and /camera/depth img, respectively. Color image is the stan-
dard 24-bit imagewith 3 channels (RGB),where each channel has 8 bits. The 11-bit depth image
is obtained from the raw disparitymeasurements that are normalized and quantized between 0
and 2,047 (Martinez and Stiefelhagen, 2013). When using the ROS middleware with OpenNI
drivers for Kinect, color and depth images can be streamed in one of the three di ferent resolu-
tions: a) 640x480 (VGA); b) 320x240 (QVGA); and c) 160x120 (QQVGA). Also, Kinect can
be set to stream images with either 15Hz or 30Hz frame rate. The choices of streaming parame-
ters, alongwith the other data related to the speci c camera, such as the camera calibration data
or themaximumdepth to be covered are recorded in the camera con guration le (kinect1.cfg).

NewKinect image data has to be processed every time before it is passed to theVisionnode.
The principal mechanism of sensor data processing in the ROS setting is callback function.
Whenever a new message is available on the topic, ROS calls the callback function registered
with the topic and passes the new message. The data inside the new message is read in the
function and a desired routine is performed. Af er the routine is nished, the result for new
message data is usually published on the output topic.

The integration of the depth and color data into a 3D color point cloud requires use of color
and depth images in the same callback function. Color and depth images are transmitted from
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Figure 5.3: Main functionalities and data types in rgbdCallback function.

Kinect via two independent streams and their frames have a slightly di ferent timestamps of
origin. The image streams need to be matched so that the frames that originated the closest
in time are paired together. A ROS message lter mechanism can take in messages and may
output those messages at a later time, based on the conditions that are prescribed for the lter.
The Synchronizer lter in ROS setting synchronizes incoming channels by their timestamps,
and outputs them in the form of a single callback (ROS.org, 2014)∗. The callback function
for processing the Kinect data in the Vision node is called rgbdCallback. A simpli ed block
diagram showing functional components and data types in rgbdCallback is shown in Figure
5.3.

The most critical and important functionality in the rgbdCallback function is people track-
ing (see Section 5.2.2). People are tracked in the two dimensions (x, y) of the oor plane, and
the output of the tracking for eachperson is a bounding rectangle around the personof the con-
stant width w. Since the tracking algorithm uses as the input 3D point cloud data, the height h
of the point cloud at the current 2D position of the person’s track can be easily retrieved. Un-
der the assumption of the person’s vertical orientation, a bounding cube (x, y, h) is obtained
around the person’s point cloud.

Kinect depth data can be very noisy at large distances which introduces errors into the track-
ing process (Khoshelham and Elberink, 2012). Even for the perfectly still target there will be
variations in the 2D position estimation output. Hence, it is useful to employ lters on the
position data from the tracker (see Section 5.2.3). Filtered 2D position data can be used to cal-

∗A complete online documentation for ROS middleware is available at: http://wiki.ros.org/
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culate its derivative, the velocity, that will be used for activity recognition based on trajectory
properties (presented in Chapter 9). Except from the trajectory data, activity recognition also
bene ts from the knowledge of the person’s static posture. The classi cation of static posture
uses the ltered height data as the main input in the nite state machine explained in Chapter
8 (see Section 8.1).

The bounding cube representation simpli es the extraction of the necessary visual features
from the tracked person, since the points of the bounded point cloud can easily be projected
onto the scene oor plane or the camera image plane. By projecting the cloud points onto the
oor plane, it is possible to get a 2D image with patterns that are useful for the classi cation

of a person’s orientation. Although this visual orientation classi er is implemented as the part
of Vision node, the exact role of the visual orientation classi cation in the person orientation
tracking process is explained in Chapter 6 (Section 6.1.2). Similarly, in Chapter 7 (Section 7.2.2)
we will explain the algorithm for the extraction of appearance features from the projection of
the bounded points on the camera image plane and its importance in the process of people
identi cation.

The nal output of the Vision node towards the other nodes in the system is published us-
ing two custommessage types,TrackData and PersonModel (see Appendix E for both). Track-
Datamessages are published on the end of each call to rgbdCallback. One TrackDatamessage
is made for each person track that is active, and the message contains all the trajectory related
data, alongwith the results of both classi cations. PersonModel messages contain the informa-
tion about the appearance of each track. Their scheduling is dependent on the internal timers
that are controlled via messages from the IDManager node.

The Vision node supports real-time visualization of the tracking process output. Sup-
portedmodes of visualization are: 1) bounding rectangle around the person on a 2Dmap (seen
from above); 2) bounding rectangle around the person in the original RGB image (seen from
overhead perspective); and 3) bounding cube around the 3D point cloud of the person. The
ability to directly visualize results of the tracking is very useful during the nal phase of the sys-
tem setup process, when we want to con rm that the Kinect was set in the optimal position to
cover the desired surveillance area. Prior to the nal veri cation phase, there is the o ine phase
of setup that consist of: 1) nding the plane of the oor; 2) recovering 3D pose of the camera;
3) mapping the scene and setting the boundaries of the tracking area; and 4) adding contextual
zones on the map. The elements of the user interface for visualization and system setup will be
presented in Section 5.2.4.

5.2.2 T I

This subsection displays the speci cs of the implementation and additional interventions that
adapt the people tracking method of Muñoz-Salinas (2008) for our speci c purpose. We give
the overview of the implemented processing stages and their outcomes in Figure 5.4.

Color and depth images are synchronized in the rgbdCallback function (Section 5.2). Af-
ter the synchronization, both images are used in the background subtraction. For the back-
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Figure 5.4: Main functions in multiple people tracking implementation.
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ground subtractionwe used theDECB algorithm that was previously explained in Section 5.1.1.
Our implementation of the DECB algorithm uses the same parameters that were proposed by
Fernandez-Sanchez et al. (2013): α = 0.75, β = 1.3, ε1 = 10, ε2 = 1.6ε1, αd = 0.75, βd =
1.25, ttrain = 50. The background subtraction process results in the foreground mask. The
foreground mask is used on depth and color images for building a foreground point cloud in
camera image frame (ciPFG).

Next, the ciPFG cloud gets transformed into the camera base frame by applying the trans-
formation ci

cbT obtained during the system setup (cbPFG = ci
cbT · ciPFG). In our system, the

camera base coordinate frame replaces the world frame, which was introduced earlier during
the general description of plan-view approach (see Figure 5.1). Compared to the world coor-
dinate frame, the camera base frame keeps the same orientation of the axes in relation to the
grid cells, but its origin is translated directly under the origin of the camera image frame (see
Figure 5.5, next page). Thus, each camera has its own referent frame on the oor plane, where
positions are tracked in the local coordinates. Also, by having many camera base frames, the
world frame can be given its real meaning in the context of multiple camera network, and pro-
claimed as the single referent frame for thewhole system. It is then easy to change local position
coordinates from di ferent camera base frames into the world coordinate system by applying
a transformation cb

wT (j) for each camera j. This transformation is a 2D transformation on the
oor plane, which means that it is easily obtainable by measuring one metric distance and one

rotation angle between the two frames.
The cloud cbPFG is subjected to the space discretization and 3D to plan-view conversion as

described in Section 5.1.3. Prior to the discretization the cell grid has to be initialized. The pa-
rameters of cell grid de ne the size and resolution of the plan-view image. The cell size δ = 3 cm
recommended by Muñoz-Salinas (2008) is used. The width n and the heightm of the grid are
not de ned as constant values, but they are calculated from metric values obtained by project-
ing the Kinect camera frustum on the oor plane. The frustum is de ned with the distances of
close clip (ciZclose) and far clip (ciZfar) planes and the eld of view (FOV) of the Kinect camera
determined by its horizontal and vertical viewing angle parameters. The frustum projection
de nes four coordinates cbXmin, cbXmax, cbYmin and cbYmax, in camera base frame that are used
as the rectangular area limits (see Figure 5.5). With these coordinates the plan-view image is
minimized to contain only the area of the scene in which the range sensor is actively used. Such
parametric approach enables us to easily and e ciently use other types of depth sensors (that
have a di ferent FOV geometry) with the Vision node. That would only require a change of
the horizontal and the vertical FOVangles in the cameramodel. The position of theKinect and
its rotation a fect the coverage of the oor area and the image size. For example, we usually used
a downward camera angle between 20◦ and 25◦ and the clipping plane distances ciZclose = 0.7
m and cbZclose = 5.5 m. With these parameters the area limit coordinates are: cbXmin = −3.3
m, cbXmax = 3.3 m, cbYmin = 0.5 m and cbYmax = 5.5 m. This set of coordinates with a 3 cm
cell size transforms the observed oor area into a grid of dimensions n×m = 220 × 167.

We expanded multiple particle lters person tracking of Muñoz-Salinas (2008) with algo-
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Figure 5.5: Camera frustum and active tracking area on the floor.

rithms that extract contextual and appearance data from each tracker. Person tracking starts
with theupdate of the existingparticle lterswhennewobservationdata is available. To achieve
an update, the loop over the existing trackers needs to be executed twice. In the rst pass, the
distances between each tracker and all other trackers are calculated in order to get the necessary
interaction factors I j

i,t. In the second pass, particle lters are updated through resampling, pre-
diction and correction to obtain the mean position estimations ε jt , ∀j = 1, ...,P. We used the
number of the particles in the lterN = 100 and the rectangular person region of size ζR = 0.6
m, the same as in the original work. The second image from the bottomon the right side on the
Figure 5.4 visualizes the particles and bounding rectangles in plan-view for two particle lters
that simultaneously track two persons. Af er the positions are estimated for all active trackers,
we obtain the set of tracks with su cient support in the observation dataZt. This set of tracks
has to be traversed once more in order to extract TrackData messages with updated position
values for each track. Tracking and contextual information processing for a synchronized pair
of input images is nalizedwith the PFmanagement stage. During themanagement stage, new
person candidates are detected and assigned to a PF that will track them. The condition for the
addition of a new PF is that the appearance of the candidate has been su ciently consistent for
at least 3 frames in a row (based on histogram comparison).
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(a) Position filtering. (b)Velocity filtering.

Figure 5.6: Influence of the 2nd order lowpass Butherworth filter on position and velocity data.

5.2.3 T D E

Af er a new position estimation εt is obtained for a person track, its 2D position coordinates
pvxt and pvyt expressed as pixel values on the plan-view image are transformed into metric val-
ues of the camera base frame xt = cbxt and yt = cbyt. The height of the person ht is read
directly in meters from the measureHR(pvx, pvy). The newly obtained position and height data
require ltering before they can be applied in the subsequent algorithms. For that purpose we
use a 2nd order low-pass in nite impulse response (IIR) Butterworth lter. An appealing prop-
erty of the Butterworth lter is the maximally at frequency response in the passband - a range
of frequencies that can pass through a lter without being attenuated. The cut-o f frequency
fc de nes the passband, as on that frequency the output starts to get attenuated with the slope
of 20 ·n ·dB/decade on the logarithmic scale, where n is the order of the lter. The digital lter
of the 2nd order can be implemented with the following equation:

qt = b0pt + b1pt−1 + b2pt−2 − a1qt−1 − a2qt−2 (5.12)

where qt is the current output sample that we want to obtain, pt the current input sample, and
pt−1, pt−2, qt−1 the inputs and outputs from the previous iterations. Since it is necessary to
wait 3 samples to determine the value of the current output sample, a small delay in the sig-
nal is obtained (ca. 100 ms). This delay is an acceptable trade-o f for getting a ltered output
signal with reduced noise as shown in Figure 5.6a. The lter coe cients b0, b1, b2, a0, a1 are
determined in dependency of the base sampling frequency fs of image data and the cut-o f fre-
quency fc. These parameters, along with the order of the lter, also implicitly de ne how long
it will last the transient period at the beginning of the lter operation. For the low-pass lter
with the parameters fs = 30 Hz and fc = 2 Hz which were used in our algorithms for position
and height data ltering, the transient period ttr takes around 500 ms. Figure 5.6a shows posi-

81



M P T L

(a) Partial person point

cloud.

(b)Complete person

point cloud.

(c) Plan-view imagewith highlighted height update

zone and rectangles for cases a) and b).

Figure 5.7: Height update.

tion measured along the coordinate axis cbX for one of the tracks. The transient that happens
at the start of the tracking when a person enters the camera FOV is visible in the 1st second.
During the transient the lter produces a substantial error that in uences the accuracy of the
location dependent calculations in the system. To avoid this error, during the rst 500ms af er
the tracker initialization the original, un ltered position and height data is copied at the out-
put of the low-pass lter. Af er the lter transient has passed until track termination, the actual
ltered data is used.
To calculate the derivative of the discrete position signal, we use the simple rst order dif-

ference ẋt = (xt − xt−1)/Δt. Figure 5.6b shows the in uence the low-pass ltering of position
has on the output of velocity calculation by rst-order di ferencing. If we disregard the signal
during the transient period of the lter, it is visible that the velocity calculated from the ltered
position gives more accurate information about the movement of the person. For example, in
the period between 2.5 s and 3.0 s in Figure 5.6a there is a change of position in the X coor-
dinate from 0.75 m to 0.55 m. The velocity calculation that uses the low-pass ltered position
data, manages to capture the general direction of the humanmovement and registers a negative
velocity in the cbX coordinate, whereas during the same period the di ferentiation of the raw
position signal produces a noisy velocity that has both positive and negative values.

Besides the estimation of the current height, the second type of the height-related calcu-
lations is done in order to estimate a person’s standing height h st

t . Standing height h st
t is an

important input for the height-based posture classi cation process (see Section 8.1). A simple
approach towards the estimation of h st

t is to calculate the average of the height values during
the time when the person is standing. For the average value calculation, we use a computa-
tionally e cient implementation of the linear average lter based on the recurrence formulas
introduced by Welford (1962). To provide the correct standing height h st

t , the averaging lter
needs to be initialized and updated with correct data. We assume that people will usually enter
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the scene in the upright, standing posture. However, when people enter or exit the scene, their
point cloudsmay be cut-o f since they are crossing over the border of the depth sensor FOV. In
this situation, the tracker will measure only a part of the real standing height (see Figure 5.7a).
Thus, the calculation of the standing heightmight take in awrong value. Toprevent the update
of the standing height averaging lter with incorrect height values, we built in twomechanisms
in the algorithm:

Averaging sum control
The averaging lter is updated in a di ferent way depending on if there is an increase,
or a decrease in the averaging sum. Assuming that the initial height during the rst few
frames af er entering the scene still might be lower than the real height of the person,
the algorithm allows the addition to the average sum of every new height value ht bigger
than the current standing height h st

t . To prevent the change of sumwhen sitting down,
the algorithmprevents adding heights that are smaller than the threshold θhmin = h st

t −
δh, with δh set at 0.15 m.

Height update zone
To demonstrate the concept, we will use Figure 5.7c. Gray lines mark the limits of the
active tracking area of the camera. The black area in the middle is the height update
zone inwhich the averaging lter updates are allowed due to the availability of complete
point clouds. The zone between height update zone and scene limits is the border zone
where averaging lter updates are not allowed. Red rectangles in Figure 5.7c show the
approximations of track positions that correspond to the situations depicted in Figures
5.7a and 5.7b. In both cases the referent point for inclusion into lter update process is
the center of the bounding rectangle.

5.2.4 S S V R

The requirement of physical portability of the system depends on the ability to conduct fast
sensor mounting. We acquired special hardware for temporary physical placement of cameras
- extensible tripods up to 3 m of height with a spherical bearing on the top, on which a Kinect
could be mounted. This speci c hardware allows for setting all possible camera heights and
viewing angles that might be needed in experiments.

The idea of a portable system allows a researcher to arrive in a clinic or a home of a patient,
and need to spend only several minutes to set the physical position, tracker parameters and
scene properties for each camera. Af er choosing areas in the patient’s environment that will
be covered by Kinects and setting optimal camera viewing angles, a researcher does the setup
of the tracking sof ware. Therefore, GUI application for vision tracking setup was designed
and implemented as a part of the Vision node. An example of the application GUI is given in
Figure 5.8.

For each stage during the setup, there is a corresponding tab on which the appropriate in-
formation can be visualized. When physically setting up a camera, live feeds with the color,
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Figure 5.8: An example of GUI for camera setup in the Vision node application.

depth and foreground images, along with the foreground and background point clouds, can
be observed on the Viewer tab. The Tracker tab visualizes the data produced by the trackers,
such as bounding rectangles in images or bounding cubes in point clouds. On the same tab, the
system operator can also observe in real-time the intermediate outputs of the tracking process,
such as height and likelihood maps. The last three tabs are designed for work with camera in
the o ine mode. Upon saving the point cloud of the camera scene, the rst step is to nd the
oor plane on the scene and recover the 3Dpose of the camera in relation to the oor. The oor

detection process is largely automated, requiring minimal human intervention (Section 5.2.5).
The control over the stages of the oor detection process and its outcomes are visualized on the
Camera setup tab (Figure 5.8). Af erwards, the background of the scene has to be mapped into
a 2Dmap on which 2D contextual FOG zones can be added by manual editing (Section 5.2.6).
This is done using tools on tabs Scene setup and Scene map tabs, respectively.

5.2.5 F P D C S

The process of camera setup allows de ning the position of the camera in the space where
it is installed, expressed as the transformation ci

cbT between the camera image frame and the
camera base frame (see Figure 5.5). The input data is acquired in the camera image frame, in
the form of the point cloud of the scene background. Since the camera base frame is supposed
to span the oor plane with two of its axes (cbX and cbY), the rst task towards getting the de-
sired frame transformation is to nd the equation of the oor plane in the camera image frame.
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When the oor plane equation is de ned, we can use it to have the origin of the camera image
coordinate frame and unit vectors along the axes ciX and ciZ orthogonally projected on it. The
projected origin with each of the projected points makes a directional vector in the oor plane.
These twodirectional vectors are the base of the new camera base coordinate frame. The vector
ciX projects into the vector cbX on the oor plane, while ciZ projects into cbY. The third vector
of the frame has to be orthogonal cbZ, so it is found by the vector product of the other two.
When the three vectors of the new frame are de ned, it is easy to obtain the transformation cb

ciT.
This transformation can then be inverted to nd the nal solution, the transformation ci

cbT.
Finding the correct equationof the oorplane is the critical part of establishing the camera base

coordinate system. To nd the equation of the plane from the set of 3D points, we use RAN-
dom SAmple Consens (RANSAC)method (Fischler andBolles, 1981). TheRANSACmethod
takes as input a point cloud, the parametric model of the sought geometric object and accept-
able con dence measures. The method then tries to guess the model parameters that best t
the point cloud data.

The search for the oor plane in the indoor point cloud usually results not just with one,
but with several appropriate plane models. Some of those models might correspond to the
actual oor surface, but also there will be plane models that will correspond to any other at
surface on the camera scene, such as a wall or the top of a table. Hence, to speed up the oor
detection process, it is necessary to minimize the number of potential oor plane solutions
when using RANSAC method. To do so, we introduce additional constraints on the plane
equation in the form of the distance of the plane from the camera image frame origin and
the minimum number of points that the plane should have. These constraints can be used
only if two particular assumptions about the positioning of the Kinect are satis ed. The rst
assumption is about the height of the camera above the oor. We predict that Kinects will be
mounted at the height between 2.1 m and 2.5 m, which means that these two heights are the
minimum and the maximum distance from the potential oor plane. The second assumption
is that Kinects will always observe the scene from the overhead position with a downwards
angle. Such orientation angle should ensure that the oor has a plane model with the highest
number of points, out of all plane models in the point cloud.

Since the spacing between points and the random error of measurements in Kinect become
larger with the increased depth, the points of the oor close to the camera are very dense while
those distant from the sensor become dispersed. With the increased distance from Kinect, the
spacing between points and the random error of depth measurements become larger. Thus,
the points of the oor close to the Kinect are very dense, while the points that are distant from
it become dispersed. Even with the applied constraints, the RANSAC method might still give
as output a few potential oor plane models, instead of only one. Potential plane models will
all t the same part of the point cloud that corresponds to the oor, but with a slight di ference
between their model coe cients. This exact t depends on the distance threshold (dthr) pa-
rameter in the RANSACmethod. The dthr is used to decide whether a certain point is an inlier
or an outlier in relation to the plane model. With a very small dthr, only points lying very close
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(a) Two potential floor planes. (b)Chosen floor plane and the corresponding camera

frustum.

Figure 5.9: Floor detection and the setup process.

to the ideal mathematical plane will be considered inliers. Since the relevancy of a proposed
model is evaluated based on the number of the points that is t to it, in the case of a too small
dthr the number of points can be insu cient and the model deemed irrelevant. On the other
hand, with a very big dthr many points far from the ideal mathematical plane will be accepted.
In this case, an incorrect plane model that visibly deviates from the actual oor surface can still
have su cient support in the observation data, and become accepted as the nal solution.

Usually, when a moderate dthr = 0.01 m is used together with the previously introduced
constraints, two or three plane equations will be t onto the oor point cloud data. This situa-
tion is visualized in Figure 5.9a, where we can see two hulls for two potential oor planes. The
Vision node GUI enables the system operator to cycle through the plane hulls and choose
the most appropriate plane. The camera setup steps that the system user should perform are
visible at the example of GUI in Figure 5.8. First, the user loads the background point cloud
(load scene cloud). The cloud can be inspected in the interactive 3D point cloud visualizer.
Then, oor detection process is started with the detect floors button. The button choose hull
cycles through the detected oor planes hulls, while the set floor plane button chooses the plane
model for the currently active (highlighted) hull, and saves its coe cients into the setup le.
Ultimately, the user selects the set camera button that calculates the camera frustum limits,
nds the frame transformation cb

ciT, and de nes the active tracking zone (see Figure 5.9b).

5.2.6 2D M S S

Af er setting the camera, we need tomodel the scene in front of the camera in the format that is
appropriate for the usage within the computer system. In Section 4.1.1 we introduced the idea
of semantic maps that use di ferent types of FOG zones to relate the patient’s location with the
FOG probability.
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Figure 5.10: An example of scene editing in the Vision nodeQt application.

Toobtain semanticmaps during theprototype anddevelopment stage, the easiest and fastest
way is to produce themmanually. There are two steps in obtaining the semanticmap: 1) getting
a base map which shows empty and taken space in front of the camera in the form of the 2D
bitmap; and 2) imposing 2D FOG zones of di ferent types, sizes and orientations on the new
bitmap. During this last step, we should have in mind the exact metric relations between the
real world and the map.

The 2D bitmap is obtained by using the occupancy grid. As a mapping approach, the occu-
pancy grid was rst introduced in the robotic community during the 1980-ies for mobile robot
perception and navigation (Moravec, 1988; Elfes, 1989). When the occupancy grid is used for
the mobile robot navigation, each grid cell (x, y) in the map has an occupancy value which
measures the subjective belief whether, or not, the center of the robot can be moved to the
center of that cell (Thrun and Bü, 1996). The occupancy grid based map is built on the prob-
abilistic principles from several consecutive observations over time. By doing so it takes into
account sensor noise and potential robot movement. In our application, the use of a static
camera eliminates the need to account for potential movement, but the depth sensor uncer-
tainties still persist. We use the advantages of working with the ROS framework, to easily get
high quality occupancy grid maps. The ROS octomap server package (Hornung et al., 2013) al-
lows a volumetric 3D occupancy grid map to be incrementally built from the incoming range
data (formatted as 3D point clouds). Occupancy map in 2D is obtained from the 3D volu-
metric map by a simple down-projection. For each Vision node there is one Map Server
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node. The nodes communicate with each other via input topic /camera/map cloud and out-
put topic /map server/projected map. Input data for mapping is the point cloud of the scene
background transformed from the camera image frame into the camera base frame. Addition-
ally, we apply a height threshold lter on the transformed cloud, so that it contains only the
points higher than 0.2 m from the oor. Two of the main parameters for Map Server are grid
resolution and maximum depth range. Usually, these parameters are set at 3 cm and 5.5 m, re-
spectively.

Figure 5.10 shows a simple editor that is used to set FOG zones. The button new scene loads
the 2D background bitmap obtained from the map server. Multiple FOG zones can be added,
deleted and changed via editor. Thebasic properties of a FOGzone are its geometric shape (rect-
angle, ellipse, polygon) and its type (Entry, FoG Hesitation, FoG Cluter, FoG Turning). The
orientation of a zone towards the camera base frame can be manually set by inputting the an-
gle in degrees. The example camera scene displayed in Figure 5.10 has one entry zone at the door
(red), one clutter zone between two chairs and the table (blue), and one starting hesitation zone
next to the bed (green).

5.3 S

In this chapter we described how to solve the problem of people localization in a distributed
monitoring system which uses Kinect sensors. We built a GUI application, called the Vision
node in order to satisfy the following functional requirements:

• Multiple people tracking;

• Extraction of the relevant contextual data from person tracks;

• Easy setup of camera hardware;

• Facilitation of environment mapping; and

• Real-time operation.

The development process started with the research about the main theoretical concepts and
state-of-the-art methods for people tracking. The goal was to nd an already existing algo-
rithm that can use the depth data for reliable people tracking. The bulk of work presented
in this chapter was sof ware system engineering, that involved the implementation of the cho-
sen algorithm for multiple person tracking, and the additional algorithms and tools for data
ltering, data recording, data visualization and system setup manipulation.
We used a well known plan-view representation and occupancy-based grid maps to provide

the basis for the implementation of the tracking and mapping functionality. The motivation
for using the plan-view approach was to annulate the de ciencies that Kinect’s depth sensor
has at the larger distances (over 3.5 m from the camera), and to use its depth data with the same
con dence on the whole camera scene. The position tracking accuracy of the implemented
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multiple-person tracker that uses plan-view approach on Kinect data will be examined in the
Chapter 6.

The original person tracking algorithmwas expandedwith the functions for extracting con-
textual data necessary for orientation estimation and activity recognition. Contextual data
shared with the other nodes in the distributed monitoring system includes person’s position,
velocity, height, orientation and posture. There is an existing long history of using occupancy
grids for tasks in robotics. Since we use ROS framework, scene mapping was simpli ed with
the usage of a proven state-of-the-art robotic mapping algorithm (Hornung et al., 2013). This
reduced the need for implementation of extensive code in the Vision node. We only had to
implement the code that provides the correct background point cloud to Map Server node
and saves returned bitmaps. Our experience of the easy and fast system setup, gained while
collecting the PD patient data from di ferent clinical and home settings, showed that the e fort
put into the design and the implementation of the visualization and setup algorithms paid o f.
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6
Orientation Tracking and

Two-dimensional Pose Estimation

In the conceptual stage of the design of our monitoring system, 2D pose of the patient was
recognized as the necessary data to be delivered. In the previous chapter (Chapter 5) we pre-
sented how to track positions of multiple people in front of one camera. In this chapter, we
will focus on achieving the solution for tracking the orientation of one, speci c person. Ac-
cording to the concept of the system, the necessary data for the estimation of the orientation is
provided by a smartphone that is supposed to be worn by the patient as the main gait sensor.
The combination of the accelerometer, gyroscope andmagnetometer signals inmodern smart-
phones already allows the calculation ofwhat is called the absolute 3Dorientation. The absolute
3D orientation of the device is the one which uses the angle measurements in the coordinates
of the axes of the global Earth coordinate system. As the main referent axes in this system there
are the axes along the direction of gravity eld and in direction of the magnetic North. The
third axis that completes the system is then, naturally, de ned by the Cartesian product of the
rst two axes.
The global absolute system is very good for usage in the smartphone when the device is used

for navigation purposes and people can use the display, and in that way by themselves relate the
orientation of the smartphone in global coordinates to the space surrounding them. However,
for the use in an autonomous monitoring system it is not possible to rely on human intuition

Parts of this chapter appear in (Takač et al., 2013)
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for such process. There are two reasons why we have to use a di ferent method for orientation
estimation:

Local coordinate system
The estimation of the patient’s orientation is needed in the distributed system only
when the user is viewed by any of RGB-D cameras. Each camera in the system has its
own coordinate system. Therefore, the orientation of the user at the given moment
needs to be expressed as the angle in the coordinate system of the camera which per-
forms the tracking, instead of being expressed in the global magnetic-North referenced
world frame.

Person vs. device orientation
It is necessary to strictly di ferentiate between theorientationof the inertial device (smart-
phone) and the orientation of the user, since they cannot be considered equal. When
the inertial device estimating orientation in reference to the global frame is xed on the
body of the user, its 3D pose in reference to the user’s body must be exactly known for
the system to correctly calculate the user’s orientation in the global frameof reference. In
a real-world, everyday scenario, the autonomous system has no means to exactly know
how and where the smartphone is xed on the user. It is just presumed by convention
that the smartphone will be xed on the user at the expected, previously set, position
and orientation. Still, the uncertainty about the current pose of the sensor will always
exist. A smartphone is usually xed as a sensing device on the patient by being placed in
a horizontal belt case or an elastic strap around the waist. Even if the device was ideally
positioned at the beginning of the day, due to postural changes and other trunk move-
ments, it is possible that its position will change during the day by rotating for some
angle in the plane around the waist.

The focus of ourwork in people orientation estimation thatwill be explained in this chapter
is not on the development of new fusion algorithms for inertial devices, but it is on the develop-
ment of methods that enable the existing inertial fusion orientation algorithms to be used for
sensing the orientation of the people in reference to the coordinate frames in our distributed
system. We present two methods that were developed and evaluated.

6.1 T M O T

Wehave developed twomethods for transforming the orientation of the inertial device into the
2D heading of the user expressed in the referent camera coordinate system. In ourmethods, we
use a very good and proven device orientation estimation algorithm introduced by Madgwick
et al. (2011). The algorithmuses numerical integration of the orientation data in the quaternion
representation. There are two versions of the algorithmdepending on the number and the type
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of sensors available in the inertial sensor system where it is applied. The basic version of the al-
gorithm is suitable for IMUdevices consisting only of gyroscopes and accelerometers, enabling
the tracking of rotational and translationalmovement. This basic version of the algorithmuses
gradient descent optimization, whichmakes it possible to obtain the relative orientation of the
device towards the gravity eld based on accelerometer input. When referring to this version
of the algorithm in the rest of the paper, we will use the name Gravity Relative Orientation Es-
timation (GROE) algorithm. This basic algorithm is not able to give absolute 3D orientation,
since there is no absolute reference in the plane perpendicular to the gravity vector. To achieve
completemeasurement of 3D orientation in the gravity eld - Earth’smagneticNorth reference
system, it is necessary to have the ability to sense the Earth’s magnetic eld. TheMARG (Mag-
netic, Angular rate andGravity) sensor is an extension of IMUwhich also incorporates a tri-axis
magnetometer. An extended version of the algorithm that can be applied on MARG sensory
platform computes its result by numerically integrating changes of orientation measured by
gyroscopes, and then correcting gyroscopic measurement errors using a compensation compo-
nent obtained from the combination of accelerometer andmagnetometer measurements. The
gradient descent algorithm that uses the combination of accelerometer andmagnetometer data
takes care of achieving absolute 3D orientation in several iterations af er the algorithm initial-
ization. We will refer to this version of the algorithm as the Absolute Orientation Estimation
(AOE) algorithm. Both versions of the algorithm are stable, computationally inexpensive and
e fective at low sampling rates.

6.1.1 M 1: U S W I S D

The rst methodwe developed for person orientation estimation uses data only fromwearable
inertial sensor. The method employs AOE algorithm to obtain absolute 3D orientation of
the device and relies on the following three assumptions: 1) the sensor device is worn in the
predeterminedorientation and at the predeterminedposition relative to the bodyof the user, 2)
the heading is estimated only when the user is standing, and 3) the angle between the magnetic
North frame and ground camera frame is known in advance.

We de ned the user’s orientation as a vector along his dorsoventral axis with the direction
from the dorsal to the ventral side of the body. As the predetermined position for placing
the smartphone, we chose the lef hip. As the reference coordinate system orientation for the
smartphone, we set the X-axis facing upward along the anteroposterior axis of the body, the
Y-axis parallel to dorsoventral axis, and the Z-axis facing lef from the body along the lef -right
axis. Expected smartphone positioning is depicted at Figure 6.1b.

When the smartphone is in the expected ideal position and orientation on the user’s body,
the vector of gravity will be along its negative X-axis, while Y-axis and Z-axis de ne the plane
parallel with the oor (see Figure 6.1b). Thus, we can obtain the 2D heading of the device in
the oor plane by measuring the angle between the Y-axis of the smartphone and the axis of
magnetic North (α) with AOE algorithm. Since there is no di ference between the presumed
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(a) Smartphone reference axes. (b) Smartphone in the

correct predetermined

orientation at the expected

position and orientation on the

waist.

(c) Smartphone in the non-

expected position and orien-

tation on the waist. There is an

angle of error in the transverse

body plane between the device’s

real (green arrow) and expected

(yellow arrow) orientation.

Figure 6.1: Frame definitions for orientation estimation.

direction of the Y-axis of the smartphone and the user’s heading vector (δ = 0), angle α also
gives the heading of the user in reference to the magnetic North, as shown in Figure 6.2.

Our nal goal is to obtain the heading of the user in the camera frame (θ). Two corrections
with known static angle values are necessary. To get the user’s heading θ, rst the measurement
of the smartphone (α) is corrected for angle (ψ) between the Yc-axis of the camera coordinate
system and the Ym-axis of pointing to magnetic North. This gives angle φ, which de nes the
user’s heading in reference to the Yc-axis of the camera coordinate frame. Since user’s heading
θ is always expressed as the angle towards Xc-axis, a nal correction is executed by adding 90°
to angle φ.

6.1.2 M 2: C W I S V T -
D

Our second person orientation estimation method uses wearable inertial sensor data in com-
bination with the classi cation of the person’s orientation conducted in the vision tracking
system. The goal of the method is to eliminate the set of assumptions used in the rst method,
making itmore robust and applicable foruse inuncontrolledhomeenvironments. Themethod
uses the previously-introduced GROE algorithm, which estimates the 3D orientation of the
device relative only to gravity. As the algorithm can align just two of the inertial device’s axes
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Figure 6.2: Overhead view of relations between the frames in the system.

with the plane perpendicular to the gravity (presumed oor plane), this leaves the nal angle
of the device unknown. To calculate the device’s heading in the oor plane an external refer-
ence angle is needed. If, instead of the gravity-magnetic North, we use as the referent frame
for the external reference angle the frame in which the camera is currently tracking the user’s
position, we can eliminate the need for nding the angle between the camera tracking frame
and the gravity-magnetic North frame. Furthermore, the assumption of having the wearable
sensor in the predetermined position can be eliminated if the external heading reference angle
given to the inertial sensor contains information about the true heading of the user expressed
in the common frame of reference. Providing the necessary external heading reference is there-
fore the task of the vision tracking system, because of its ability to observe the user directly in
the camera reference system.

The implemented vision-based orientation classi er was inspired by the work of Harville
and Li (2004), where the person’s plan-view height templates are used to classify eight di ferent
headings in the range between 0° and 360° with a 45° resolution for humans standing upright
(see Figure 6.3). Our neural network classi cation algorithm was trained with the features of
4 persons of di ferent heights. To achieve uniformity of the visual orientation detection in the
whole area covered by one camera, training datawas collected frompeople standing at di ferent
distances and positions in relation to the camera. The positions for data collection were set
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Figure 6.3: Patterns for neural network training. The top row shows eight headings for one person at the same

position in reference to the camera. The bottom row contains examples of related height templates used in

orientation classification with neural network.

using a grid of 0.5× 0.5 meter rectangles on the oor. People were asked to move horizontally,
vertically and diagonally on the grid, akin to pieces in chess, and to stop in the middle of each
rectangle of the grid for one second. During post-processing, a total of 6022 height templates
for 4 persons were extracted and labeled with their pertaining classes. The feature vector for
classi cation consists of 443 attributes, the rst 441 being normalized pixel values coming from
the 21x21 pixel height image template, and the last two being height normalization constant and
the number of non-zero elements in the template image. The neural network has an input layer
with 443 neurons, a hidden layer with 25 neurons and an output layer with 8 neurons. Classic
back-propagation training algorithmwith symmetric sigmoid activation functionwas utilized.

The classi cation accuracy test on 100height templates gave 92 correct classi cations. Dur-
ing testing under real-world circumstances errors were noticed in classi cation between oppo-
site directions, and also in classi cation of body poses which di fer too much from upright
standing. This has been noted as the source of the possible error in the heading reference.

When the classi er proposes the orientation reference forwearable system, its accuracy needs
to be ensured. A high con dence level for the heading reference can be achieved with the use
of two additional sources of information: the quality score of the classi cation result, and the
position history of the person. The quality score of the classi cation result is calculated using
values at output neurons. A neural network for 8 classes has eight output neurons, and the
rule is that the output class of the whole classi er is assigned to the neuron with the maximum
probability. The output neuron with the maximum probability has a high value when the
user’s height template is similar to a training template. This probability number can be used
as the quality indicator for classi cation. A high con dence level using the classi cation qual-
ity score is achieved through the temporal process, n which the classi er output is tracked for
consistency tobe above a certain thresholdduring several consecutive frames. When this consis-
tency holds, the orientation angle represented by the class can be taken as the person’s heading
proposition. We call this angle static heading. To further strengthen the heading proposition
and minimize the probability of assigning the opposite direction, the kinematic properties of

96



6.1. Two Methods for Orientation Tracking

(a) Themoment in timewhen there exists external

heading reference.

(b)Using the calculated correction angle to get the

person’s heading during periods in which only inertial

orientation estimation is available.

Figure 6.4: Coordinate frames in the process of fusion of vision and inertial information for orientation estima-

tion.

the person’s track are used. Using position history, the velocity vector for the tracked 2D point
is calculated. This vector in relation toXc-axis of the referent coordinate frame gives the angle
called dynamic heading. Ultimately, when the angular di ference between the static heading
and dynamic heading is inside a speci ed error boundary (i.e. +/- 15°) for 3 consecutive image
frames, the static heading is con rmed to be the external heading reference for inertial system.

When the person is upright andwears the smartphone in the belt case, one of the axes of the
device points approximately along the gravity vector, while the other two axes span the plane
which is almost parallel with the oor. This can be observed on Figure 6.1b, where the X-axis
of the smartphone is pointing upwards and axesY andZ are forming the speci ed “almost par-
allel” plane. Since the GROE algorithm estimates the angle of orientation of the smartphone
towards the gravity, it measures howmuch the plane formed by Y andZ axes is deviating from
being fully parallel with the oor plane. This angle can be used to calculate the projection of
Y and Z axes on the oor plane. Axes Y ′ and Z ′ shown in Figure 6.4-a are the result of such
projection.

The external heading reference angle θs is not always available, but only when the vision
tracker has a heading proposition of su cient quality. When the external heading reference
angle θs is known, it is possible to calculate the value of the correction angle δc between the
external heading reference vector and the referent orientation axis of the inertial sensor system.
In Figures 6.1b and 6.1c, the Y-axis is set closer to the user’s dorsoventral axis, so we choose its
projection Y ′ to be the referent orientation axis for the fusion. Figure 6.4a shows the relations
between the X − Y − Z coordinate frame of the smartphone, the Xc − Yc − Zc coordinate
frame of the camera and the linking Zc − Y ′ − Z ′ frame used for the fusion at the moment
in time when the static heading is known. Correction angle δc is calculated as the di ference
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between theY ′ axis angle θi and the external heading reference angle θs, which at that moment
also represents the person’s true orientation θ.

In the subsequent frames when no external heading reference is available and there is the
dependency only on the inertial system orientation estimation, angle δc is subtracted from the
observed angle θi to get the person’s true heading θ. This is demonstrated in Figure 6.4b

6.2 O P T E

Thepurpose of the experimentwas to con rm the functionality of the position andorientation
tracking system for di ferent users, and to collect su cient data for the statistical analysis of
the system accuracy. Additionally, we wanted to show that the user’s position can constantly
be estimated within certain statistical error limits irrespective of his distance from the camera
and his orientation. We chose the approach with the known static ground truths for position
and orientation to enable an evaluation based on comparing with known referent values. The
smartphone position on thewaist of the participantwas taken as a parameter in this experiment
with the objective of assessing how each of the two heading estimation methods adapts to a
change in the sensor attachment position.

6.2.1 E

The experiment had 12 participants (9 male, 3 female), who were recruited from among the
sta f and graduate students of the Industrial Design Department of Eindhoven University of
Technology. The average height of the participants was [μ = 174.2, σ = 8.8] cm. None of
the participants had gait problems. The area used for walking had dimensions 8 x 5 meters,
and it was covered with a green carpet which had a visible grid of squares of size 0.5 × 0.5
m. Two Kinect devices were put at a height of 2.25 m facing downwards with a pitch angle
of approximately 25°. The devices were placed to cover the walking area in a non-overlapping
manner. A unique world frame for the experiment was set at the corner of the walking area,
with its orientation equal to the base frame orientation of Kinect1. To con rm the uniformity
of the magnetic eld in the walking area, we executed control measurements of its quality at
approximate waist height (h = 1.0 m) before and af er the experiment.

On the green carpet surface, markers were placed to indicate points on the oor where the
participants are supposed to stop in prede ned orientations (see Figure 6.5). For each desig-
nated pose, two parallel lines of 0.5 m length were put on the oor at the mutual distance of
0.25 m. As the reference for measuring themarker position, the center point between two lines
was taken.

The experimental conditionwas the sensor attachment positionwith twopossibilities, Posi-
tion1 with the smartphone xed at the iliac crest on the lef hip (see Figure 6.1-b) and Position2
with the smartphone rotated between 50° and 60° around the waist and put on the frontal lef
side under the belly (see Figure 6.1c. Position1 is the expected sensor position for the method
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using theAOE algorithm, while Position2 is substantially deviating from the expected position
for the same method. The second method using the GROE algorithm and video orientation
classi er has no expected sensor position. The test for each sensor position was split into two
walks, one walk with predominantly lef turns (see AppendixB, Figure B.1) and the other one
with predominantly right turns (see AppendixB, Figure B.2). Walks were designed with mul-
tiple consecutive turns in the same direction in order to induce possible orientation bias. Par-
ticipants were instructed to walk to each marked position, where they were told to stand still
for 3 seconds before continuing towards the next marked point. The procedure was repeated
for each subsequent point. Each test walk lasted around one minute. Each participant rst did
two walks for Position1, followed by two walks for Position2.

During the experiment, color images and depth data of each Kinect were recorded along
with the data from the smartphone which encompassed raw accelerations, orientation, mag-
netometer measurements and calculated orientations for GROE and AOE algorithms. Esti-
mations of the positions obtained from the video tracking algorithm along with the absolute
heading estimation angle for the two orientation estimation methods were stored in a SQL
database. Post-processing consisted of annotation of frames when participants were standing
still on themarked oor positions and calculation of the average position coordinates andhead-
ing angles from sensor data. A video segment of around one second was extracted each time a

Figure 6.5: The experiment venue. Markers on the floor indicate start and end points and numbered reference

points for standing in a predefined orientation. Additional markers also showwhich part of the area is covered

bywhich Kinect device.
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participant stood still at a reference point.
The vision-based position tracking algorithm gives a new estimation of the position for each

frame. With a 30Hz frame rate, approximately 30 position estimations were available to calcu-
late the average value of theX andY coordinates during a one second video. Average valueswith
a su ciently small standard deviation ( σ < 0.04) were taken as the measured position coordi-
nates. In total, 288 pairs of position coordinates were obtained (12 participants× 12 reference
points× 2 sensor attachment positions). The average value of the heading angle was calculated
using temporal alignment of inertial signals with video segments. For the rst method using
AOEapproximately 80-100 orientation estimation valueswere extracted for each 1 second video
segment to calculate average angle value. In total, 288 average angle values were calculated. For
the secondmethod usingGROE, the combination of vision-based orientation classi cation in-
formation and smartphone inertial information was collected at the smallest common denom-
inator update rate, which is the rate of the video tracking algorithm. Around 30 orientation
estimates were produced each time a person stood on a reference point. The total of 288 aver-
age angle values was expected, but orientation was not registered due to an algorithm failure,
in 11 out of 288 cases.

6.2.2 R

Calculated position values from all test walks were aggregated on a per point basis to enable
comparison with reference values. Statistical results (see Table 6.1) include average value, av-
erage error and root-mean-square error (RMSE) for each of the two position coordinates at
each stopping point. Under the presumption of normal distribution, the average error value
is an indicator of the presence of a bias in the measurement. In our experiments, the overall
randomness of the error values does not point to any signi cant positive or negative bias, or
bias in any of the coordinates. The RMSE, which is a good measure of accuracy, indicates that
the estimated position was on average in the majority of points 0.16 m or less from the true
position.

The results of the estimation of person orientation closest to the ground truthwere expected
for tests with the sensor in Position1 when all assumptions needed to get the correct result were
satis ed. The results for Method1 (AOE algorithm) with the smartphone in Position1 are re-
ported in Table 6.2. The average angle value for a stopping point (each row in Table 6.2) was
calculated from the set of direction angles estimated for each of the 12 participants. The average
angle was compared with the point’s reference angle value to give the average error and RMSE.
We also observed the maximal error, by extracting the angle value for the case when the partic-
ipant’s orientation was furthest away from the ground truth. The average error values do not
point to the existence of any speci c bias in angle measurement. We took the highest observed
value of theRMSE as the reference for error. Statistically, an average error of 17° can be expected
if the initially assumed conditions about smartphone placement and upright walking posture
hold.
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Table 6.1: Statistical results for positionmeasurements of reference points.

Point ID Coordinate Ref. value [m] Avg. value [m] Mean error [m] RMSE [m]

1 x 2.25 2.21 -0.04 0.07
y 1.75 1.74 -0.01 0.06

2 x 3.25 3.14 -0.11 0.16
y 1.75 1.66 -0.09 0.13

3 x 5.75 5.65 -0.10 0.15
y 3.00 3.02 0.02 0.05

4 x 3.25 3.23 -0.02 0.09
y 4.25 4.19 -0.06 0.10

5 x 1.25 1.22 -0.03 0.06
y 4.25 4.31 0.06 0.10

6 x 1.75 1.64 -0.11 0.16
y 2.75 2.77 0.02 0.06

7 x 6.25 6.20 -0.05 0.07
y 1.75 1.89 0.14 0.20

8 x 4.75 4.79 0.04 0.08
y 1.75 1.93 0.18 0.25

9 x 1.75 1.73 -0.02 0.07
y 2.75 2.72 -0.03 0.06

10 x 1.25 1.14 -0.11 0.16
y 4.25 4.21 -0.04 0.08

11 x 3.25 3.17 -0.08 0.13
y 4.25 4.19 -0.06 0.10

12 x 6.75 6.71 -0.04 0.08
y 2.25 2.27 0.02 0.06

Ref. - Referent,Avg. - Average
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Table 6.2: Statistical results aggregated permarker point for person orientation estimationmethod using AOE

algorithm (Method1) with the smartphone on the hip (Position1).

Point ID Ref. angle [°] Avg. angle [°] Avg. error [°] RMSE [°] Max. error [°]
1 270 278 8 11 24
2 0 -2 -2 8 20
3 30 37 7 13 24
4 180 181 1 7 13
5 225 231 6 10 19
6 330 333 3 7 13
7 270 269 -1 10 26
8 180 181 1 9 16
9 150 150 0 9 17
10 45 41 -4 12 22
11 0 -8 -8 13 23
12 330 331 1 12 22

The results of the estimation of person orientation closest to the ground truthwere expected
for tests with the sensor in Position1 when all assumptions needed to get the correct result were
satis ed. The results for Method1 (AOE algorithm) with the smartphone in Position1 are re-
ported in Table 6.2. The average angle value for a stopping point (each row in Table 6.2) was
calculated from the set of direction angles estimated for each of the 12 participants. The average
angle was compared with the point’s reference angle value to give the average error and RMSE.
We also observed the maximal error, by extracting the angle value for the case when the partic-
ipant’s orientation was furthest away from the ground truth. The average error values do not
point to the existence of any speci c bias in angle measurement. We took the highest observed
value of theRMSE as the reference for error. Statistically, an average error of 17° can be expected
if the initially assumed conditions about smartphone placement and upright walking posture
hold.

Table 6.3 provides the data for the comparison of the two di ferent smartphone attachment
positions when Method1 (AOE algorithm) was used. The data in the table was obtained by
aggregating on a per participant basis. This means that to get the data of one row in the table
statistics were based on a set of 12 di ferent orientations calculated for the stops of one person.
The most notable observation is the uniformly negative angle of the average orientation error
obtained for Position2. This negative angle is anticipated considering the orientation change of
the smartphone performed for the tests with Position2. The average error values in each row of
Table 6.3 indicate how much the smartphone was rotated around the anteroposterior axis for
each participant. Negative angle values of the average error for Position2 closely match values
of the RMSE.

Evaluation results of the person orientation using Method2 (see Table 6.4) are similar to
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Table 6.3: Statistical results aggregated per participant for the orientation estimationmethod using AOE algo-

rithm (Method1) with two sensor attachment positions.

Position1 Position2
Participant Avg. error [°] RMSE [°] Avg. error [°] RMSE [°]

1 -8 9 -66 66
2 -7 13 -41 42
3 3 8 -60 62
4 3 5 -60 60
5 3 5 -43 43
6 7 8 -55 55
7 -8 8 -62 63
8 -6 14 -57 57
9 8 8 -50 50
10 11 11 -47 47
11 13 15 -58 58
12 5 7 -39 40

Table 6.4: Statistical results aggregated permarker point for orientation estimation using vision based classifi-

cation and the GROE algorithm (Method2) with the smartphone on the hip (Position1).

Point ID Ref. angle [°] Avg. angle [°] Avg. error [°] RMSE [°] Max. error [°]
1 270 276 6 15 47
2 0 2 2 15 44
3 30 50 20 21 32
4 180 188 8 10 15
5 225 236 11 17 37
6 330 334 4 13 33
7 270 272 2 14 27
8 180 187 7 16 35
9 150 143 -7 24 32
10 45 40 -5 17 32
11 0 -6 -6 13 22
12 330 313 -17 18 28
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Table 6.5: Statistical results aggregated per participant for the orientation estimationmethod using AOE algo-

rithm (Method1) with two sensor attachment positions.

Position1 Position2
Participant Avg. error [°] RMSE [°] Avg. error [°] RMSE [°]

1 11 28 5 13
2 -2 19 3 14
3 -4 20 4 21
4 10 14 13 22
5 -3 15 4 14
6 4 17 6 16
7 0 13 1 14
8 4 12 11 17
9 -3 12 0 13
10 0 13 -6 18
11 0 14 13 12
12 8 12 9 16

those achieved with Method1 (see Table 6.2), with the exception of bigger RMSE values maxi-
mum errors, which indicate worse behaviour of Method2 at certain moments.

Our expectation is thatMethod2 is able to compensate for the unknown orientation change
of the attachment point of the smartphone. The adaptive nature of the method is visible in
Table 6.5 from the fact that there is no signi cant di ference in the observed average errors and
RMSE between the two attachment positions.

6.2.3 D

The nal goal of the experimental measurements of the position orientation tracking subsys-
tem is to properly model its output as a virtual sensor that senses 2D poses and has known
characteristics in terms of accuracy.

The position estimation errors in Table 6.1 have two principal sources. The rst source is
the tracking algorithm based on the noisy depth sensor data. The second source is the random
nature in which participants arrived at marked points, since during the experiment they were
allowed to stop anywhere along the 0.5m marker line inside a target square. With the current
experimental design it is impossible to separate the contribution of each source to the obtained
position errors, so we will impose a strict rule and assign the whole error to the tracking algo-
rithm.

The RMSE is equal or less to 0.16m for all the measurement points in Table 6.1, except for
points 7 and 8. A greater error in these points can be explained by the combination of body
position, camera placement, and depth sensor characteristics. When a person is sensed by a
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depth camera, depth measurements are taken only on the side of the body directly exposed to
the camera. Close to the camera in the overhead position (points 1 and 2), a depth sensor will
collect more 3D points from the head and upper shoulder, which are the parts closer to the
vertical body center. At the middle distances (2m to 4m) from the camera (points 7 and 8),
the depth sensor will collect the majority of points from the exposed side of the body. In point
7 this part of the body is at the back, and in point 8 at the right side of the body. This anomaly
happens only when people are exposed to the camera under orientation angles close to 0°, 90°,
180°, 270° and 360°. When a person is oriented diagonally towards camera more depth points
are taken from the body center. At the bigger distances (af er 4m), depth sensor noise and
smaller occupancy values in uence the tracking algorithm to give more signi cance to height
values, estimating a position more towards the true center of the person.

The comparison of the average orientation errors for the same points across Tables 6.2 and
6.4 implies that there was no signi cant magnetically-caused bias at any marker position. The
accuracy comparison based on the maximum RMSE and maximum errors in the same tables
reveals that the rst method with AOE algorithm performed better when the sensor was in
Position1. The RMSE values, and especially the maximum error values presented in Table 6.4,
indicate thatMethod2 in its current implementation under-performs in terms of accuracy. The
cause for this is incorrect static orientation (45° lef or right from true value) registered as the
external heading reference at certain moments. This could be improved by decreasing the al-
lowed angle error between static and dynamic headings. However, this decrease in error angle
can prolong the time necessary to ful l conditions for registering the external heading reference
af er entering the camera scene. With the current setup, the detection time for the external ref-
erence of a person’s heading can sometimes be delayed for one second, depending on how close
the trajectory of the movement is aligned with the eight principal orientations of the classi er.
This delay is also the reason for the algorithm failure in 11 of the recorded cases. On the positive
side, our adaptive vision-inertial sensor information fusion method performed as predicted in
conditions of unknown sensor placement, evidently outperforming the non-adaptivemethod,
as seen in the results for Position2 in Tables 6.3 and 6.5.

The achieved result of RMSE = 0.16m is su ciently close to the required minimal distance
value of 10 cm (Section 4.3.1). As the indicator of the orientation accuracy for each method we
took the worst RMSE value in its related table (Table 6.2 forMethod1; Table 6.4 forMethod2).
For Method1 we obtained RMSE = 17° which is satisfying in relation to the acceptable error
of 15-20 degrees. Method2 gave RMSE = 24° which falls just outside of the desired error range.
Results inTable 6.5 show similar RMSE for di ferent attachment positions of the sensor (28° vs.
22°) which proves that Method2 is able to adapt to an unknown sensor attachment situation.

In conclusion, for the orientation data collection from patients in controlled conditions the
recommendation is to use the smartphone and AOE algorithm, because it is the simplest so-
lution with acceptable accuracy. For uncontrolled conditions, like a home environment, we
propose to apply the method based on the fusion of vision and inertial sensor information. A
successful real-world application of thismethod depends on the improvement of the algorithm
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to achieve faster detection of the person’s true orientation af er entering the camera scene.

6.3 S

The experimental study demonstrated that we have obtained a localization system with a suf-
cient position tracking accuracy for use in the intended FOG-monitoring application. The

studyof orientation algorithms gave us the necessary insight into the properties of smartphones
for indoor orientation tracking in the relation of FOG. The proposed method of data fusion
of visual and inertial data for absolute orientation tracking demonstrated how to use data from
multiple sources to improve robustness ofmeasurements with respect to the uncertainty of the
wearable sensor xing position.
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7
Person Identi cation in a Home Camera

Network

In this chapter, we propose a solution for the problem of identi cation of the patient in a
home monitoring system. For this purpose we developed a new method that is able to per-
form identi cation of multiple persons living in one home. The chapter starts with a neces-
sary background of the problem that we are facing. A short state-of-the-art, speci c terms and
frameworks are presented. In subsequent sections, we follow up with the presentation of a
new appearance learning approach that uses recently introduced feature descriptors and the
combination of Support Vector Machine (SVM) (Cortes and Vapnik, 1995; Burges, 1998) and
Naive Bayes (NB) (Domingos and Pazzani, 1997; Rish, 2001) classi ers. Finally, we are ending
the chapter with the evaluation of the new re-identi cation method on the prototype of our
monitoring system.

7.1 B

7.1.1 I RGB-D C

Up to date, there have been several systems and algorithms developed speci cally for the identi-
cation of persons using RGB-D cameras. Basso et al. (2013) presented a tracking approach for

Parts of this chapter appear in (Takač et al., 2014)
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multiple people in which an online classi er based on Adaboost (Freund and Schapire, 1996)
was used for learning identities of people. Randomized parallelepipeds inside a 3D color (RGB)
histogram spacewere used asweak classi ers for boosting. Since the algorithm is geared towards
the use for tracking in mobile robots, the approach was not tested in the conditions matching
those of domestic camera networks in which multiple static displaced cameras are used.

Similar online boosting technique, using three types of RGB-D features and the con dence
maximization search in 3D space, was used to build people models for tracking by Luber et al.
(2011). The system evaluation was done on the data from a populated indoor environment us-
ing the setup of three Kinect sensors with a joint eld of view. The evaluation of this algorithm
for a true distributed non-overlapping camera con guration is not available.

Barbosa et al. (2012) presented the set of 3D sof -biometric cues, such as skeleton-based and
surface-based distances calculated on the 3D point cloud, which they used to build identity
signatures. The 3D sof -biometric cues could be the best approach for home network, since
the biometric signature of household members needs to be taken only once. However, at the
current moment the approach does not seem to be suitable for a range of di ferent camera
viewpoints, low resolution and unconstrained poses that can be expected in a multitude of a
di ferent home network con gurations, since many of the proposed anthropometric measures
are hard to extract under non-perfect real-world conditions.

Satta et al. (2013) developed a fully functional prototype of a real-timemultipleRGB-D cam-
era re-identi cation system which uses the fast re-identi cation method based on their own
dissimilarity representation descriptors. We consider this method to be appropriate for the ap-
plication in a domestic camera network. However, the method is primarily oriented towards
the typical surveillance re-identi cation scenario, with a large number of cameras and persons
and presumed presence of the human operator for the system. To see how the method could
be adapted for our application, we should discuss the advantages and the limitations of a small
home camera network compared to a public surveillance network.

7.1.2 (R ) H C N

The usual approach to the re-identi cation for public surveillance is to build a database of
descriptors generated for each person and apply some distance measure between them. The
database of descriptors is known as the gallery, while the distance measure is known as the
matching score. In the re-identi cation for public surveillance, there are two possible frame-
works (Chen et al., 2007). The rst framework works with the complete gallery, which means
that the appearance descriptors of all the persons that need to be identi ed are available when
the re-identi cation needs to be done. In this case the re-identi cation is solved as the rank-
ing problem, by searching for the minimal matching score against all other descriptors in the
gallery. The second framework is the one in which the complete gallery is not available, so that
new persons are added to the gallery by the human operator and the re-identi cation problem
is solved by setting the similarity threshold value on the matching score.
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7.1. Background

The re-identi cation in a home camera system, which has to be automatically executed dur-
ing long-termdailymonitoring, involves components of both frameworks. It needs to improve
on the functionality of the second framework in terms of providing automatic detection of new
person appearances, and it has to be able to assign available appearance when the system is op-
erating with the complete gallery of all household members.

Once there exists a short-term re-identi cation approach for multiple cameras that is able
to support both previously described functionalities, the advance towards absolute long-term
person identi cation can be made by using the contextual knowledge of the living habits of
inhabitants or by adding additional sensors in the environment/on the persons. For example,
the primary initialization of the gallery could be supervised by contextual information, such as
the time of a day and the roomwhere the speci c appearance rst showed up. Or, if the person
wears an inertial sensor, the association between the learned appearance model and the person
identity could be reinforced using the matching of movement data between inertial and video
sensor modalities.

At the moment, our nal goal of automatic association between the appearance and person
identity in a vision-based healthcare monitoring system is predicated by the need to rstly ob-
tain a robust re-identi cation framework capable of automatically deciding whether track ap-
pearances are apart of the existinghousehold gallery ornot. Insteadof solving the re-identi cation
problem using ranking and threshold on the similarity matching score of a single probe image,
we propose the use of appearance learning (similar as was done in (Barbosa et al., 2012) or Lu-
ber et al. (2011)) to nd amore dynamic, multi-view appearancemodel of each individual in the
home gallery. During re-identi cation, the binary classi cation is rst applied to discriminate
between all the learned appearance models of gallery members and unknown people outside
the gallery. Then, if a new appearance (probe) is classi ed as a part of the gallery, the subse-
quent identi cation between known individuals in the gallery is performed by using a simple
prediction on a multi-class classi er trained with the known gallery members.

7.1.3 D R A D

The Multiple Component Matching (MCM) framework proposed by Satta et al. (2011b) pro-
vides an unifying view of appearance-based person re-identi cation methods, by embedding
the common concepts of multiple instance representation (e.g. patches, strips, interest points)
and body part subdivision. An extension ofMCMframework called theMultiple Component
Dissimilarity (MCD) framework Satta et al. (2011a) adopts very compact representation of in-
dividuals, while still trying to keep the discriminative capability and robustness of the original
identi cation method. Under the MCD framework, the descriptor IDp for the image of a per-
son subdivided into M body parts, is obtained as the concatenated vector of M dissimilarity
vectors, where each dissimilarity vector represents dissimilarity between each body part and a
set of bag of components for that part, which are called prototypes. In this thesis, we use a spe-
ci c implementation of MCD descriptor, calledMCDimpl Satta et al. (2012). TheMCDimpl
descriptor subdivides the body into torso and legs and uses components patches randomly ex-
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tracted from each body part, represented by their HSV colour histogram. A great density of
information, along with a xed small size, make theMCDimpl descriptor a good candidate for
use in statistical classi ers.

7.2 A L O - S V M

7.2.1 O - SVM N B C C

We have emphasized that the ability to automatically con rm or reject a track as a part of the
existing set of household members is an important property. The problem of detecting an
unknown identity can not be solved by any supervised binary classi cation method, since the
training data for unknown identities can not be collected. Problem can be posed as a novelty
detection case, for which a suitable solution can be found in the application of the one-class
SVM (OCSVM) introduced by Schölkopf et al. (2000).

In the OCSVM, the kernel function is used to map feature vectors in a higher dimensional
space, and nd a hyperplane that separates the trained class from the origin. Given the training
vectors xi = IDp , xi ∈ Rn, i ∈ [l], the model is estimated as follows:

min
w,b,”ξ,”ρ

1
2
wTw− ρ+ 1

νl

l∑
i=1

ξi

subject to wTφ(xi) ≥ ρ− ξi, ξi ≥ 0,

(7.1)

where ρ/‖w‖ speci es the distance from the decision hyperplane to the origin, and ξi are intro-
duced slack variables. The trade-o f parameter ν ∈ (0, 1) corresponds to an expected fraction
of outliers within the feature vectors. As is the usual case in other SVMs, a kernel K(xi, xj) is
needed to form a decision function. One of the most common kernel functions used in ex-
periments is the Gaussian Radial Basis Function (RBF) K(xi, xj) = e−(γ‖xi−xi‖2), with the
parameter γwhich sets the kernel width. For the multi-class classi cation of the persons inside
the household gallery, the Naive Bayes classi er is used. We use it because it is simple, non-
parametric and there are implementations which enable on-line training.

The identi cation algorithm based on the combination of the two classi ers is shown in
Figure 7.1. Each descriptor of the unidenti ed track is rst classi ed by the OCSVM. In the
case of a positive result, theNB classi cation on the same descriptor is invoked. The outputs of
both classi cations are stored in their respective bu fers. When the su cient number num dsc
of SVM classi cations for the track has been reached, the contents of both bu fers are used for
the nal identi cation class decision according to SVM and NB decision functions (written
on Figure 7.1). If the SVM decision function con rms that the current track appearance is a
part of the gallery, the class given by NB decision function is forwarded to the system output.
Otherwise, the appearance is declared to be unknown.
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Figure 7.1: Identification using two classifier cascade.

7.2.2 A F V E

For building a dissimilarity representation of a person, we use a two part model of a human
(torso and legs) similarly to how it was done by Satta et al. (2012). We base the body part ex-
traction on knowing xed ratios of human proportions towards the standing height. This
approach has contextual dependency, since the model is taken only for the people which are
having the standing posture. In a home environment, where frequent posture changes be-
tween standing, sitting and lying are to be expected, this approach ensures that appearances
will be taken under consistent and similar conditions. The necessary contextual information
about the standing posture is obtained by tracking person’s height and applying pre-set height
thresholds.

Starting with the 2D bounding rectangle (a = 0.6m) of the person track, the appearance
extraction algorithm recovers the bounding cube for the 3D point cloud of all the points in the
column above the tracked area (Figure 7.2b). Using the known transformationmatrix between
the 3Dworld coordinate space and 2D pixel coordinates of the Kinect camera image plane, it is
possible to re-project back to the image plane the points only inside the bounding cube of the

111



P I H C N

(a)Color image. (b) Tracked 3D point cloudwith

bounding cube.

(c)Re-projection

of points inside the

bounding cube on

image plane forming

personmask and

bounding rectangle.

(d)Upper and lower

body part mask based

onmetric anthropo-

morphic ratios.

Figure 7.2: Extraction of body part images.

person. Since the pixels of the re-projected image all belong to the tracked person, by applying a
threshold operator it is straightforward to obtain the person mask and the bounding rectangle
(Figure 7.2c). The masks for torso and legs are then obtained by applying body region limits
on the existing mask of a person. Body region limits are given as follows, taking as the basis the
anthropomorphic ratio towards height in meters:

hs = H
α , α = 7.5 (7.2)

ts = H ∗ β ∗ 2
3
, β = 0.46 (7.3)

ls = H ∗ δ, δ = 0.5 (7.4)

whereH is standing height of a person, hs is head size, ts is torso size, ls is lower legs size, and the
coe cients α, β and δ are based on values given in (ISO, 2013). By applying 2/3 coe cient only
the upper two-thirds of the torso are taken into account, leaving unmasked space between the
upper torso and the legs (Figure 7.2d). This ensures that only color consistentpartswill be taken
by part masks, nullifying a potential in uence of the change of perspective. In the end, body
part images extracted in this manner are given to the original implementation ofMCDimpl to
produce person’s appearance feature vector.
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7.3 R - E E

The purpose of the experiment was to evaluate the feasibility and statistical properties of the
proposed person identi cation approach based on the OCSVM and NB classi er cascade for
learning and detection of the people living inside a home. Weused the prototype of localization
system consisting out of two Kinect sensors and a PC server (Intel Core i7 @ 2.3 Ghz; 8 GB
RAM; Linux) on which all the processing nodes were run.

7.3.1 D

We constructed a new dataset of 16 persons. For each person in a dataset there are two recorded
videos. Oneused for the appearance learning, and theother used for the testing. A learningdata
video for each participant consists of the participant walking for approximatively 20 seconds
in a random pattern in front of each Kinect camera. A testing data video for each participant
consists of the participant walking the prede ned route which alternates between the scenes in
front of the two cameras. Thewalk along the testing route takes about aminute and a half, and
it was designed to maximize the number of possible ways a person can enter camera FOV. For
the given camera con guration set in a laboratory environment, therewere seven possible views
of a person when entering into camera FOVs. These views are shown in Figure 7.3. In route
planning, we tried to introduce possible obstacles. One of the camera FOV entries (Figure 7.3-
4) is performed by opening the door which were previously shut, forcing the system to extract
the appearancewhile dealingwith anocclusion. The other similar situation is entering the FOV
behind the obstacle (Figure 7.3-5), when only a part of the body is visible.

Collected videos were used to build a training database and a testing database of person ap-
pearances. To obtain the training database, learning video for each person was replayed with
the systemput into the learningmode inwhich trackingnodes continuously (every 0.5 seconds)
extracted one appearance (an image and twomasks) and sent them to ID Managernode, which
recorded those appearances in the SQL database associated with that person’s class label. Dur-
ing the testing database construction, testing videos were replayed with the system set into the
normal operation mode in which appearances were extracted only when a new track was de-
tected. For each new track detection num dsc = 7 appearances per track were taken, with the
extraction frames being at least 0.1 s spaced in time. On-line re-identi cation in ID Manager
was turned o f and feature vectors were recorded in the SQL database.

7.3.2 C T

For this experiment, the size of the target household gallery was set to C = 3. The NB and the
OCSVM classi ers needed to be trained for an each separate instance of the household gallery.
To get the statistical data about the classi er cascade performance, pairs of both classi ers were
trained 16 times, each timewith a di ferent triplet of persons inside the gallery. The sets of three
peoplewere chosen at random,with a constraint that the same person could not be represented
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Figure 7.3: Examples of FOV for each camera and eight entry events into those FOVs. There are 7 different

person views (1 frontal, 2 right profile, 3 left back overhead, 4 frontal with door, 5 semi-frontal with obstacle, 6

left profile, 8 right back overhead), with one view (7 right profile) repeated twice in order to enable a continuous

walking path during experiment.

more than three times. Obtained galleries are presented in the rst column of Table 7.1, where
numbers in the Person IDs column are related to the appearances in Figure 7.4.

The prototype gallery for obtaining dissimilarity descriptors usingMCDimpl was pre-built
using the 1264 pedestrian images of the VIPeR dataset (Gray et al., 2007), the same as was used
by Satta et al. (2013). Given the triplet of persons forming a household gallery, their stored
appearances were retrieved from the training database and turned into the dissimilarity repre-
sentation forming the training data set X = {Xr1 ,Xr2 ,Xr3} = {xi, ..., xl}, where r1, r2, r3 ∈
{1, .., 16}, r1 6= r2 6= r3 are class indexes for the persons in the dataset, and l = Nr1+Nr2+Nr3
is the total number of the feature vectors used. The number of collected training descriptors for
each person varied between 25 and 50, due to the random walking patterns in learning videos.

OpenCV Machine Learning library was used for training of both classi ers. The training
of the Naive Bayes classi er is non-parametric, requiring only feature vectors and labels. On
the other hand, the performance of the OCSVM classi er with the RBF kernel is dependent
upon the used value of the hyperparameters ν and γ during the training. Since using the usual
cross-validation method in order to optimize the hyper-parameters of OCSVM is not possible
(Lukashevich et al., 2009), we had to nd another approach.

We decided to use 642 di ferent appearances taken from the VIPeR dataset as the validation
data on which performance metrics is calculated to be used as the guidance in the grid search
optimization process. Since the VIPeR dataset is diverse and does not contain the exact ap-
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Figure 7.4: Appearance of each of 16 persons in the dataset. Top row, left to right, appearances 1-8. Bottom

row, left to right, appearances 9-16.

pearances from the household gallery on which the OCSVM was trained, the intuition is that
the fraction κ of the VIPeR images classi ed byOCSVM as belonging to the household gallery
should tend towards zero as the OCSVM is improving in the rejection of the unknown ap-
pearances. Still, in order to avoid over-training, we can consider that there is a possibility of
having a few appearances in the VIPeR set that are similar to the ones in the household gallery,
which means that there should exist some small fraction κ of VIPeR images classi ed as posi-
tive by OCSVM. To investigate this behaviour, the OCSVM classi er was trained for each of
16 galleries in Table 7.1 with the target κthresh values of 0.5 , 1 , 2 and 4 .

7.3.3 R

Statistic results for the accuracy of Naive Bayes classi cation are given in Table 7.1. Each row
contains the test result for oneNBclassi er trained on the data of a randomly chosenhousehold
gallery triplet. The column Tested contains the sum of the entries into camera FOV taken by
the persons in the triplet during testing trials for which the su cient number num dsc = 7 of
the track appearance images was collected by the underlying tracker, while the column Correct
shows how many of those entries were correctly classi ed. In the nal NB decision function
the nb detect rate threshold set to 75 was used. According to the aggregated testing results for
all 16 trained NB classi ers, the achieved average accuracy of the classi cation is 90.0± 9.2 .

Table 7.2 demonstrates the in uence of the OCSVM classi cation on the identi cation sys-
tem output. The dependent variable is the newly introduced performance metric κ used for
OCSVM hyperspace parameter optimization. The OCSVM classi ers for each person triplet
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Table 7.1: Accuracy of Naive Bayes classifier.

Person IDs Correct Tested Accuracy [ ]
8,12,13 24 24 100.0
4,6,15 22 23 95.7
4,8,12 23 23 100.0
4,9,14 20 23 87.0
9,10,11 19 22 86.4
6,10,16 14 22 63.6
5,8,11 23 23 100.0
3,5,10 22 23 95.7
7,9,13 19 23 82.6
1,7,13 18 20 90.0
2,5,14 22 24 91.7
3,6,7 19 23 82.6
2,15,16 20 23 87.0
1,14,16 19 20 95.0
1,13,15 20 21 95.2
2,12,16 20 23 87.0
Total 324 360 90.0± 9.2

from Table 7.1 were re-trained four times, each time with a di ferent value of κthresh. Each row
of Table 7.2 shows average results obtained by testing the classi er cascade with 16 di ferent
OCSVM models, all of them trained with the same value of κthresh. To test the OCSVM and
the overall system, the same set of valid FOV entries from the test database was used as when
testing the NB classi er. In OCSVM decision function the svm detect rate acceptance thresh-
old was set to 70 .

The average speci city and the sensitivity (alongwith the standarddeviation) of theOCSVM
classi er are given in the 2nd and the 3rd column. The best balance of positive andnegative SVM
classi cations, with almost 80 sensitivity and speci city, can be be expected for κthresh value
around 1 . The last two columns of Table 7.2 express the average sensitivity and accuracy of
the classi er combination. The true positives for a given person inside a gallery are in uenced
by the misdetections of the NB classi er, resulting in the lower sensitivity output for the classi-
er cascade. Since the NB classi er only acts when there is a positive SVM classi cation, it has

no in uence on the true negatives that in uence system speci city. The consequence is that
the system speci city is the same as the speci city of the OCSVM classi er alone, so there is no
need to show it separately in Table 7.2.
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Table 7.2: Classification results for one-class SVM and combined classification system output.

OCSVM System
κthresh Sensitivity[ ] Speci city[ ] Sensitivity[ ] Speci city[ ] Accuracy[ ]
0.5 71 ± 24 87 ± 10 64 ± 21 87 ± 10 83 ± 7
1 78 ± 17 82 ± 11 71 ± 19 82± 11 80± 8
2 81± 16 75 ± 12 74 ± 19 75 ± 12 75 ± 8
4 85 ± 10 64 ± 15 76 ± 13 64 ± 15 66 ± 11

7.4 S

In this chapter, we presented the method for identi cation of people by appearance learning
in a small camera network. The method uses the combination of two classi ers. The rst clas-
si er (OCSVM) is used to discern if a new track in front of any camera has the appearance that
belongs to the target group of people whose appearances are already known from before. If
the inclusion in the group is con rmed, the second classi er (NB) predicts the exact person
identity for the new track. Although we can target any group of people for re-identi cation,
the original purpose of our method is to use it for the identi cation of the members of a PD
patient’s household.

In appearance learning, we employed a novel dissimilarity representation descriptor by Satta
et al. (2011a), and we showed how to control the acquisition of those descriptors when a new
track appears in front of a camera. Furthermore, we showed how to train theOCSVMclassi er
to discriminate between known and unknown groups of people by using totally independent
dataset for the training parameter optimisation. Training for such discrimination presented a
problem prior to the introduction of our method, because it is not possible to make a cross-
validation for parameter optimization when training one-class SVM classi ers.

Our re-identi cation method still does not have a completely automatized way to assign
appearances to people’s identities at the initial stage of system operation while the appearance
gallery is empty. In the presented work, this inputs were provided by human supervisor. We
presume that this initial identity assignment task could in the future be automatized by using
the contextual information of location or people’s posture. However, at this moment solving
the problem of the initial conditions of the system was not in our focus. The main intention
was to nd the technique for appearance learning that can be used in our patient data collec-
tion experiments. In the chapter about future work, we will o fer more ideas how to solve
bootstrapping problem.

Ourmethodwas tested on the 16 people dataset collectedwith the prototype of the real-time
localization system in a laboratory environment. The experimental results have shown that the
best balance of the speci city and the sensitivity of the classi er combination is achieved with
around 75 for both (Table 7.2; 3rd row). This results should be additionally improved if the
method is to be applied in a long-term deployment in a completely uncontrolled environment.
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We used the presented method to identify the patients and extract their movement data
during clinical and home experiments. Details of these experiments will be presented later in
Chapters 8 and 9. In clinical experiments there was medical personnel on the same scene as
the patient, while in the home there was usually the patient’s caretaker. Since we were only
interested in following the patient, the size of target group for re-identi cation was set to 1
person. Such setup leaves it to OCSVM to con rm the identity of the patient, while the NB
classi er step is skipped. Using only one person in the gallery minimizes the necessary training
time, and minimizes system error to the level of the error of the OCSVM.
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8
Posture and Activity Recognition

The relation between the patient’s activity context and its importance for an improved FOG
detectionwas established earlier in Section 3.3.1. In this chapterwe present the newly developed
solution formonitoring the activity context in PDpatients. To get the activity context we need
to asses both posture and activity.

At the beginning of the chapter we are exploring posture identi cation, setting the focus
on the problem of detection of postures and postural transitions in the PD patient popula-
tion. We present the possible sensormodalities for the task. To handle both static and dynamic
postures, our posture identi cation algorithm relies on the height data obtained by tracking
the person using the Vision node. We nish this part with the description of the algorithmic
implementation.

The secondpart of this chapter belongs to the presentationof the newly developed approach
for the fast activity classi cation. We give an explanation for the choice of the classi er, followed
by the implementation details. The new activity classi er was developed usingmovement data
from the participants without PD. Af er the evaluation on healthy participants, this classi er
was also evaluated on the clinical data of PD patients. The training methods and the results of
both evaluations are reported in the last sections of the chapter.

8.1 P I

There are two basic strategies that can be applied in posture identi cation with body-worn
inertial sensors. The rst strategy involves the usage of the accelerometer as an inclinometer.
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The accelerometer measures the gravity force along each axis in order to infer the orientation
of the body part on which it is attached. The problem of this approach is that static postures
with similar inclination angles such as standing and sitting are easily confused (Gjoreski et al.,
2011). The second strategy is based on the analysis of postural transitions. Postural transitions
are recognized as independent states (in the temporal process) and taken as an indicator for
determining the subsequent static body posture. Mathematical tools such as discrete wavelet
transform (DWT) and FFT are usually used for the analysis of dynamic signal and posture
transition identi cation (Naja et al., 2002; Bao and Intille, 2004b; Bidargaddi et al., 2007).

Recent e forts by Rodriguez-Martin et al. (2013) resulted in a posture recognition algorithm
that targets the population of the PD patients. The algorithm uses a hierarchical structure of
5 classi ers to identify eleven postures divided into 2 groups; static postures (stand, sit, bent,
lying) and dynamic postures (walking, sit-to-stand, stand-to-sit, bending down, bending up,
lying from sit, sit from lying) by means of a single tri-axial accelerometer located at the waist.
The 5 classi ers were rst trained and tested on 31 healthy volunteers. The posture classi cation
algorithm achieved per-activity sensitivities of at least 97 and per-activity speci cities of at
least 84 . The algorithm was af erwards additionally tested with unchanged parameters on
the accelerometer data from 8 patients with PD. The patient dataset had a shortened list of 5
activities (sit, sit-to-stand, sit, stand-to-sit, walking). On the PD patients dataset the algorithm
achieved per-activity sensitivities of at least 87 and per-activity speci cities of at least 78 ,
except for the sensitivity of walking which was 25 . The analysis showed that lower speci city
results forwalking are due todisturbances in gait balance orbradykinesia inPDpatients. Except
walking, other lower sensitivity and speci city results of PD patients in comparison to healthy
people are the consequence of confusion in the recognition between sit-to-stand and stand-
to-sit transitions. The authors assigned these errors to movements that introduce unexpected
dynamic signal. Some movements, such as dyskinesias, are speci c to PD, while the others are
consequences of unforeseen real-life behaviour such as sitting in a chair and thenmaking several
up and down movements to correct the sitting position.

The algorithmofRodriguez-Martin et al. (2013) already o fers a solution for posture tracking
using inertial sensors. The sensor con guration of our monitoring system, allows us to make
a complimentary solution for static posture detection based on video data. Adding a compli-
mentary solution has two advantages. The rst advantage is that a more informative modality
has a higher chance to improve on shortcomings of accelerometer-based posture identi cation.
The second advantage is that if we have two posture identi cation algorithms in two separate
modalities, we create the basis for a method that could improve the patient re-identi cation
process. A periodic con rmation of the identity of the patient, that was previously assigned by
the appearance based re-identi cation (Chapter 7), would be possible by comparing postural
transitions between the two di ferent modalities. If the same type of postural transition is de-
tected at the same time in one of the video tracks and in the inertial sensor algorithm, there is a
high chance that the tracked person is actually a patient wearing the sensor. This particular re-
identi cation method is just a concept, that was not implemented in this thesis. Nevertheless,
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we did implement vision-based posture identi cation.
There are several examples in the literature where video data was applied for the postural

transitions detection. Of en the silhouettes of people are used for privacy reasons (Demiris
et al., 2009). Di ferent 2D image features can be extracted from the silhouettes and sent to
a classi er. For instance, to identify postures Allin and Mihailidis (2008) use Hu moments
(Hu, 1962) and clustering, Banerjee et al. (2010) apply Zernike moments (Teague, 1980) with
a decision tree, and Cucchiara et al. (2005) use Bayesian inference on silhouette projection his-
tograms. Besides using silhouettes, another common option is to use posture identi cation
based on simpli ed 2D (Go fredo et al., 2009) and 3D (Pellegrini and Iocchi, 2008) human
body models.

Our goal is to implement a posture identi cation algorithm that uses the existing structure
of the Vision node, and that will not require a lot of additional processing resources for image
feature extraction. The reason for this is the expectation that in the future the Vision node
might be deployed on embedded systems with limited resources. Berrada et al. (2007) used
simple statistical features such as mean value and standard deviation of the blob of active pix-
els. Since they observe the person from the side, the vertical mean value of the blob is directly
related with the height of the posture. Banerjee (2010) introduced several approaches based
on voxel data captured by a system of three cameras. Banerjee’s simplest approach uses three
height thresholds and presumes that the person is in the upright posture when her height is
above the rst threshold and in the sitting posture when the height is between the other two,
lower thresholds. The advantage of using height as the determining feature is its invariance to
the angle and the distance that the person has from the camera. The disadvantage of this ap-
proach lies in the errors in the height measurement induced by the tracking. For example, the
occlusion of the upper body part can decrease the measured height and directly in uence the
outcome of the posture classi cation.

In Section 5.2.3, we decided to base the posture classi cation on the height information.
We observed the behaviour of the PD patients and we analysed the reported experiences from
Rodriguez-Martin et al. (2013). We concluded that someof themovements can confuse a simple
threshold-based posture classi er. Up and down bending or squatting to pick up an object
from the oor are such types ofmovements. A simple height threshold algorithmwould detect
SIT posture every time when the height value is inside the sitting threshold zone. When there
is dyskinesia or when the person is searching for a better seating position by producing up and
downmovements of the upper bodywhile sitting, the height value can exceed the upper sitting
threshold and be interpreted as a sit-to-stand action. Our nal conclusion was that we can not
only rely on the height information and two thresholds. We need to use historical information
extracted from the height pro le to con rm the actual posture.

8.1.1 F S M

A nite state machine (FSM) is an abstract construct in which there is a nite number of states,
out of which in any moment only one state can be active. The changes between the states
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Figure 8.1: Finite statemachine for posture identification.

are known as the state transitions and they happen when some triggering event or condition
occurs. Figure 8.1 shows an example of a posture change from standing to sitting, sitting for
around 4 seconds and going back to standing. Two signals are used as the inputs in the FSM:
the person’s current ltered height h and the person’s estimated standing height hst. There are
three thresholds (green lines) that were mentioned earlier. We de ne them as follows:

Threshold 1 (THR1)
The height at which a person is considered not to be in the fully standing posture any
more. A person could be bent a bit or starting the posture transition. Mathematically
we de ned the threshold value as hthr1 = hstd× (1− q), where q is the percentage of the
standing height that is tolerated for the height signal variation.

Threshold 2 (THR2)
The height underwhich a person is expected to bewhen sitting. The value of the thresh-
old is de ned as hthr2 = hsit+p×hstd, which is the estimated sitting height of the person
enlarged by the percentage p of the standing height hstd. The sitting height is de ned on
the basis of the formula hsit = hchair + 0.51 × hstd (Fredriks et al., 2005). Value hchair is
the height of the object on which the person is sitting (usually between 0.45 m and 0.52
m), while 0.51 × hstd is the height of the person’s torso when sitting.

Threshold 3 (THR3)
The height above which a person is expected to be when sitting. It was de ned in a
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similar way as THR2 by the formula hthr2 = hsit − p× hstd, to produce a symmetrical
band of values centred at the expected sitting height.

The FSMhas a nite set of 5 possible states: stand (STD), stand-to-sit (STD SIT), sit (SIT),
sit-to-stand (SIT STD), and the unknown state (UNK). There are 6 threshold-based events
and 3 time-based events. Threshold-based events are triggered each timewhen the height signal
crosses oneof the three thresholds in anyof the twodirections. These events are: THR1 DOWN,
THR1 UP, THR2 DOWN, THR2 UP, THR3 DOWN, THR3 UP. Time-based events are
events that happen a certain amount of time tdly af er the threshold has been crossed. Three
timebased events are de ned in relation to their triggering threshold crossings: THR2 DOWN
TIMED, THR3 DOWN TIMED, and THR3 UP TIMED.
The transitions between the states are de ned by the current state, the previous state, event

type and additional conditions when the event occurs. A successful transition assigns a new
value to the current state and the previous state. Table 8.1 shows the transitions that aremarked
with numbered arrows in Figure 8.1.

Table 8.1: State transition table for posture changes.

State transiiton Event Statet Prev. statet Condition Statet+1 Prev. statet+1

1 THR1 DOWN STD any UNK STD
2 THR1 UP UNK any STD UNK
3 THR2 DOWN UNK STD STD SIT UNK
4 THR2 DOWN TIMED STD SIT UNK THR2 > h > THR3 SIT STD SIT
5 THR2 DOWN TIMED STD SIT UNK h > THR2 UNK STD SIT
6 THR2 DOWN TIMED STD SIT UNK h < THR3 UNK STD SIT
7 THR3 DOWN TIMED SIT STD SIT or UNK h < THR3 UNK SIT
8 THR3 UP TIMED UNK SIT THR2 > h > THR3 SIT UNK
9 THR3 UP TIMED UNK SIT h > THR2 UNK UNK
10 THR2 UP SIT UNK or STD-SIT UNK SIT
11 THR2 DOWN TIMED UNK SIT THR2 > h > THR3 SIT UNK
12 THR2 DOWN TIMED UNK SIT h < THR3 UNK UNK
13 THR1 UP UNK SIT STD SIT STD

The main reason for using FSM to track transitions between the postures is to con rm SIT
posture and assign a dynamic posture change to the part of the analysed signal. The lef side of
the Figure 8.1 (between time = 13 s and time = 17 s) shows a standard height pro le during the
stand-to-sit movement. State change (StTr2) ensures that the FSMalgorithm can always return
into the default state, which is to declare that the person is standing (STD) when the height is
su ciently large.

StTr1 is the start of the bendingmovement. Before the height crosses THR2, we are not sure
if the existing forward bending is signi cant enough to warrant a change of posture state. The
downward crossing of THR2 by height value, indicates that the currentmovement could actu-
ally be deep bending that is characteristic for the stand-to-sit posture change and the STD SIT
state gets declared (StTr3). The SIT state is de ned by the threshold band formed by the com-
parison THR2 > h > THR3. Sometimes the forward lean during the normal sit down move-
ment is so deep that the person’s height can temporarily get even lower than THR3 (visible
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around time = 15 s) before it returns inside the expected threshold band for the SIT state. To
avoid declaring some other posture state when the height decreases bellowTHR3, the decision
is delayed until the expiry of the timed event triggered by the height value crossing THR2. On
the expiry of THR2 DOWN TIMED, a person’s height can be the one expected for sitting
(StTr4), lower (StTr5) or higher (StTr6). Sometimes when a person is sitting, there can be a
short movement in the seat upwards to x the manner of sitting, or to lean more forward. In
both cases, the height value can exceed of the thresholds for sitting (StTr7, StTr10).

If SIT was the previous state before the height value crossed THR2 or THR3, FSM algo-
rithm allows for the possibility that the personmight return into the previous SIT state (StTr8,
StTr11). The postural transition of sit-to-stand is the inverse of the stand-to-sit. If there is a
forward leaning with the height going lower than THR3, that is af erwards followed by a fast,
upward crossing of THR2, it is possible to consider this sequence as a SIT STD transition.
However, forward leaning during getting up is usually not deep enough. Thus, the only avail-
able evidence of person getting up is when THR2 and THR1 are crossed in the upward direc-
tion (StTr13).

8.1.2 P O

The performance of the posture algorithmdepends on the values of the three height thresholds
(hthr1, hthr2, hthr3) and the delay times (tthr2D , tthr3D , tthr3U) for the time based events. We used
a grid parameter search method to optimize the thresholds and delay times. The search space
for 6 variables is too big, so we reduced its dimension to 3 parameters. As seen before, three
height thresholds are de ned using two percentage parameters q and p, while the delay times
for time based events are de ned via a single delay parameter tdly as tthr2D = tthr3D = tthr3U =
tdly. The objective function for the optimization is de ned as the maximum accuracy of the
posture classi cation on the given dataset, under the constraint hthr1 > hthr2 > hthr3. If several
sets of parameters achieve the same maximum accuracy at the end of the parameter search, the
preference is given to the parameters (p, q) that enable the biggest distance (hthr1 − hthr2), and
the smallest parameter tdly.

For the threshold optimization we collected posture transition data from eight healthy peo-
ple with the average age [28.0± 7.3] years and average height [168.6± 7.6] cm. We wanted to
test the invariance of the posture identi cation method in relation to di ferent angles and dis-
tances of the person from the camera. Hence, we used four chairs of the same height (hchair =
0.46 m) that were set around a round table with angles of 45◦, 135◦, 225◦, 315◦ (see Figure 8.2a).
Two of the chairs were set at the distance of 2 m and another two at 4m from the camera. Each
participant was asked to sit on each chair, maintain seated for a few seconds, get-up, walk and
sit on the next chair. Af er making a circle around the table and sitting into each chair he/she
would leave the camera scene. Each participant did the sequence twice, rst going to the lef
side and then going to the right side around the table. This produced eight instances of each
static and dynamic posture per participant.
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(a) Image of the scene. Chairs are 2m and 4m far

from the camera. (b)Result graphs for two stand-sit-stand sequences.

Figure 8.2: Data for posture FSM parameter optimization.

The calculation of the output accuracy for parameter optimization is explained on the ex-
ample of the two consecutive stand-sit-stand sequences presented in Figure 8.2b. The height
pro le and three height thresholds are marked with the same blue and green colors as in Figure
8.1. The black line represents the ground truth for postures, which was set by the video obser-
vation, while the red line is the output of the FSM for some set of parameters (p, q, tdly). For
every sample of height data, we compared the ground truth class and the output posture class.
We accumulated the comparisons of predicted and actual classes. For all the samples by all the
participants we collected a 5× 5 confusion table (CFT). The accuracy is then calculated straight
from the CFT as:

acc =
∑

diag(CFT)
N (8.1)

whereN is the total number of samples. The maximum achieved accuracy for the dataset was
around 80 . The main reason is the inability of the state machine to infer the sit-to-stand
posture transitionbefore themomentwhen theheight value crosses thresholdTHR2 UP.This
causes the di ference between the moment in which the FSM outputs STD SIT posture class,
compared to the same class onset in the ground truth. If we analyse a way in which sit-to-stand
transition can be executed, there are actually three possible cases. Case 1 is the simplest one in
which the frontal bend is not large enough to cause a drop in theheight value lower thanTHR3.
Case 2, showed in Figure 8.2b, happens when the time counter for THR3 DOWN TIMED is
activated, but it is reset by the height value crossing over THR2. This case, similarly to the
previous, also gives a clean transition from SIT to SIT STD state. In Case 3, frontal bending
takes too long and THR3 DOWN TIMED event expires before THR2 UP threshold gets
crossed. Such behaviour causes a short period of UNK state, before SIT STD state is detected.

The assessment of the FSM depends on the application. For internal parameter optimiza-
tion the outputwas comparedwith the ground truth for each sample. Thedescribed evaluation
method yielded amaximumaccuracy of around 80 . If the exact timing of the start of a postu-
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ral state is not very important, but only the the fact that the postural state event got recognized,
the assessment can be done on the principles explained in Section 3.2.2. Similar event-based
evaluation was used by Rodriguez-Martin et al. (2013). The test of FSM on PD patient data is
presented in the next section, within the evaluation of the complete activity classi er.

8.2 H A C

A decision tree classi er is a multi-stage classi er which classi es an unknown sample into an
output class using one or several decision functions in a successivemanner (Swain andHauska,
1977). Its name stems from the fact that such classi cation strategy can easily be represented
by a graph diagram in the form of a tree. The main topological elements of a decision tree are
the root node, a number of interior nodes, and a number of terminal nodes. Consequently,
the design of a decision tree involves the search for an appropriate tree structure, selection of
features, and a de nition of decision functions to be used for each internal node (Safavian and
Landgrebe, 1991).

Depending on the chosen features, the decision function can be a simple comparison over
a single number value, or more complex, such as a statistical classi er taking a feature vector
as input. If learned statistical classi ers are used, it is necessary to give more importance to the
classi ers that behave better and have less chance for error. This is achieved by allowing them
to decide rst, which leads to hierarchical classification, an of en employed approach for human
activity recognition (Zhang et al., 2010; Khan et al., 2010; Banos et al., 2013; Su et al., 2014).

The reason for using hierarchical classi er is that its con guration minimizes the decision
error. Hierarchical classi ers for activity recognition that analyse both static postures and ac-
tions, usually rst make the decision whether the activity is static or dynamic, before proceed-
ing with the further classi cation. The main disadvantage of the hierarchical classi cation ap-
proach is that an error committed at the rst levels of classi cation can propagate to higher
levels and likely result in an erroneous decision (Banos et al., 2013). Nevertheless, due to the
hierarchy of humanmovements and the decomposition of complex activities intomore simple
sub-activities, using this type of classi er for human activity recognition of en yields superior
results over simple multi-class classi er (Ribeiro and Santos-victor, 2005; Subramanya et al.,
2006).

8.2.1 A

The main goal of our activity classi er is to identify 7 activities divided into 2 groups; static
postures (Stand, Sit) and actions (Forward walk, Non-forward move, Wide turn, Spot turn,
Bending). This set of activities was chosen from the set of false positive and false negative FOG-
related activities described in Section 3.3. The choice was made on the basis of two criteria: 1)
the importance for detecting or discriminating FOG; and 2) a realistic chance that the activity
can be recognized from the available sensor data.
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The inclusion of two static postures in the set of activities for classi cation was automatic.
The Sit class directly eliminates the possibility of FOG, and the Stand class signalling nomove-
ment on the spot is an indicator that FOG might be occurring. By detecting the Bend class,
either while the person is standing, or as a part of the sit-to-stand postural change, it is possible
to directly eliminate FOG false positives. Unlike previous three activities which have clearly
de ned relation to FOG, the turning action is ambiguous, with both FP and FN FOG detec-
tions being observed during turns. (On-the-)Spot turns with small radius require signi cant
change in the motor program, which of en results in the shu ing step FOG while the turn is
still ongoing. In Wide turns FOG patients have enough space to execute normal step lengths
and sustain a highermovement speed, with FOGmost of en happening towards the end of the
turning action. Therefore, recognizing the situation in which there is a wide turn followed by
a sudden stop in locomotion, could be one of the FOG indicators. Since there is a di ference
in the expected sequence of actions leading to FOG between these two types of turning, they
were added separately into the activity set.

Table 3.1 in Section 3.3.1 displays four activities that have the word walking in their name
(start walking, normal walking, stop walking and conditioned walking) and two activities with
theword steps (small steps, backward/lateral steps). A general di ference between the twogroups
is in the speed and the length of the performed locomotor actions. The normal walking action
is a forward movement with clearly de ned steps (at least 3 of them) executed in a continuous
manner. The Forward walk can be inferred from location data based on movement velocity.
Already during the rst step of normal walk people achieve linear speed of at least 0.3-0.4 m/s.
During a FOG episode, the linearmovement speed of patients is expected to be lower than this
threshold. If we know when the person is walking and when not, we can eliminate FP FOG
detections related to three of the walking-related cases from Table 3.1, i.e start walking, nor-
mal walking, stop walking. Recognizing the fourth walking-related case, conditioned walking,
requires higher levels of perception and contextual cognition (e.g. where does a person hold
hands) than planned for the current system, so we do not aim to recognize it.

The activities with the word steps contain non-regular intermittent steps that can go in any
possible direction. In some cases it is very di cult to spot the di ference between small steps
and FOG, even for to a trained observer. It is natural to expect that our position tracking based
system will have the same di culties. When a person moves forward with small steps, his/her
movement speed is very low. Hence, the accelerometer signal and the speed of the observed per-
son are similar to the ones of the person that is advancing forward while experiencing shu ing
FOG. Because it is not possible to distinguish well between FOG and the action which negates
it (small intentional steps), we realized that tracking the forward small steps actionwould just in-
troduce additional confusion in activity recognition. Unlike forward directed small steps, back-
wards/sideways steps are exceptional occurrences, Thus, they can be easily distinguished, but
only if the person’s egocentric movement direction is known. We uni ed backwards/sideways
steps into the Non-forward move class, which is the nal targeted action class added into the
activity set.
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Figure 8.3: Decision tree with 4 classifier types.

8.2.2 D T S

The hierarchy of the classi ers in the decision tree arises from the relation between the activi-
ties that wewant to recognize and the types of contextual information provided by the sensors.
The decision tree that is used for seven-activity classi cation is presented in Figure 8.3. On the
top of the decision tree is Posture FSM. The output of Posture FSM is taken as into a bi-
nary decision between SIT vs. all other classes (STD, SIT STD, STD SIT). On the next level,
the STD class is separated from the postural transition classes (SIT STD, STD SIT) based on
the classi cation by the Bend SVM classi er. Positive detection of Bending directs towards
probable postural transition, while the negative detection means that the person is in the up-
right posture, and either moving or standing on the spot. On the third level of the decision
tree structure, when there is a con rmed STD (upright) posture class, the decision is made
about the direction of the movement of the person. Possible directional classes are Forward,
Non-forward and Stand (in place with some minimal movement). Due to unique egocentric
velocities during the non-forward movement (negative forward velocity, high lateral velocity),
theMove SVM classi er should not have any problems to detect this particular class. In com-
bination with the Turn SVM classi er, a classi cation output from the Move SVM leads to
detection of either Forward walk or Wide turning activity, depending whether Turn SVM
had a positive turn detection or no. Similarly, in the case when the Move SVM classi er de-
tects Stand class, the distinction between Stand and Spot turn classes depends on the output of
the Turn SVM classi er.
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8.2.3 F V

The multi-modal contextual data for recognition of FOG related activities consists out of raw
accelerometer and gyroscopicmeasurements from IMU, estimated 2D orientation on the oor
plane, position coordinates, estimated linear velocity and height. This data has to be trans-
formed into the selected set of features for activity classi cation presented in Table 8.2.

The primary requirement for the extraction of features frommulti-modal data in our system
is the concurrent access to IMU and TrackDatamessages. The activity recognition algorithm
needs the estimation of the patient’s 2D orientation during the process of formation of feature
vectors. Since the algorithm for the estimation of 2D orientation also needs synchronized data
from IMU andTrackData (as seen in Chapter 6), feature extraction and the hierarchical activ-
ity classi cation algorithm are conveniently placed in the same callback function as the orien-
tation estimation algorithm (in Context node). The synchronization of IMU andTrackData
message streams in the callback function sets the sampling rate of the input data for activity
recognition to 30 Hz.

Table 8.2: Features for activity recognition

Feature Limits Unit
Avg. forward velocity [-0.75, 1.5] m
Avg. lateral velocity [-0.75, 1.5] m

Avg. acceleration magnitude [0, 5.0] m/s2

Avg. rotation velocity around vertical axis [0, 2.5] rad/s
Avg. rotation velocity around transversal axis [0, 2.5] rad/s

Displacement (position di ference) [0, 1.0] m
Height di ference [0, 0.6] m

Std. dev. forward velocity [0, 0.3] m
Std. dev. lateral velocity [0, 0.3] m

Std. dev. acceleration magnitude [0, 2.0] m/s2

Std. dev. rotational velocity around vertical axis [0, 0.6] rad/s
Std. dev. rotation velocity around transversal axis [0, 0.6] rad/s

Avg. - Average (Mean)

Std. dev. - Standard deviation

A xed-width sliding window, with 50 overlap, is used for feature extraction. Three types
of feature calculations are utilized: mean value, standard deviation and sample di ference of the
signal. Features based on mean value and standard deviation are calculated using the window
length of 16 samples. Under the 30 Hz sampling rate this window length corresponds to a
time period Δt = 0.53 s. We choose such short window time because we need to analyse the
direction of a person’s movement in each step. For example, when a person is standing, he/she
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can go backward for just a step and then stop. Furthermore, before a person starts to turnwhile
walking, usually he/she will make straight steps until the rst step at the start of the turn. This
rst step contains signi cant body rotation and it is possible to detect it right away. Our goal is

to use the shortest possible window length in which all selected FOG-related activities can be
recognized. Based on the collected activity data, window duration close to half a second was
enough to capture even the fastest of the walking steps.

Some of the features in Table 8.2 request additional processing of data provided by the per-
ception system:

Forward and lateral velocity
These velocities re ect the movement relatively to the person’s own coordinate system.
To obtain the velocities, the original velocity vector of the person calculated in the cam-
era base coordinate system ( ~v cb) has to be transformed into the person’s velocity ex-
pressed in the egocentric 2D coordinate system ( ~v ego). The velocity transformation is
performed using 2D orientation angle φ between the person and the camera base frame
with the following equation: ~v ego = cb

egoT(φ)× ~v cb.

Acceleration magnitude
The accelerometer measures a body motion acceleration component and the gravita-
tional acceleration component. The accelerometer signal has to be conditioned before
it can be used in feature calculations. Only the dynamic component of the body mo-
tion acceleration is used and it is obtained by employing the 3rd order high-pass Butter-
worth filter with a cut-o f frequency of 0.3 Hz (Anguita et al., 2013). The lter design
was performed similarly to the process already explained in Section 5.2.3. The magni-
tude of acceleration M is calculated from the ltered signal using the formula M =√

Ax +Ay +Az, whereAx,Ay andAz are acceleration components.

Displacement
Displacement is the position change that happened since the last activity classi cation.
The displacement valueD is calculated every Δt asD =

√
x2diff + y2diff, where xdiff, ydiff

are position di ferences in meters along the principal axes of the camera base frame.

The rest of the features is calculated directly from the acquired signals. The absolute height
di ference is calculated asH = abs(ht − ht−Δt). Features for rotational velocities are extracted
from the gyroscopic signal. Two gyroscopic channels of the smartphone are used: Gx for ver-
tical rotations andGz for transversal rotations, under the presumption that the IMU sensor is
xed accordingly to the reference position shown in Figure 6.1.a in Chapter 6. The nal phase

of the feature preparation includes normalization. Usually, normalization of features is per-
formed to balance their contribution to the objective function of the classi er. The simplest
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method for normalization is to rescale the feature range by applying

x′ = x−min(x)
max(x)−min(x) (8.2)

where min(x) and max(x) are upper and lower limits for the speci c feature value. The limit
values used for normalization are given in Table 8.2. The limits were set on the basis of feature
ranges observed in the training dataset, that we describe in the next section.

8.3 T C C

8.3.1 D

The dataset for training and testing the decision tree component classi ers (Turn SVM,Bend
SVM,Move SVM)was collectedusing a smartphone andoneKinect camera. The smartphone
was placed at the lef hip according to the convention that was previously described in Chapter
6 (Figure 6.1.b). The smartphone was xed on the participant’s body using the elastic belt that
is worn under the clothes. The elastic belt has a sewn-in pocket in which the smartphone can
be placed. This xation method ensures that the device is strongly attached against the body
and minimizes the possibility of undesired sensor movement. This method is a standard way
of xing sensors in user experiments performed in the CETpD laboratory.

The experiment involved8participantswithout gait problems, thatwewill refer to as “healthy”
participants in the rest of the chapter. The age of the participants ranged from 27 to 32 years
(μ = 29.2, σ = 2.0) and their height from 159 cm to 190 cm (μ = 167.8, σ = 12.0). A session
for each participant lasted around 15 minutes and consisted of three trials. Each trial targeted a
speci c set of activities:

Turning
The primary target of this trial was to collect data while people are making di ferent
types of turns. A walking trajectory was designed to involve an interchange of straight
walking and turning in a limited space in front of the camera. The Turning trial was
done in two series of four short walks. In each short walk the participant would enter
the camera FOV, walk from one side of the camera scene to another while following a
trajectory with 3 di ferent types of turns, and exit the camera FOV on the opposite side
thanhe/she entered. Af er that a newwalkwasmade from the current side of the camera
scene, by entering again and following a slightly di ferent trajectory.

To facilitate normal walking behaviour of the participants, an obstacle was added on
each side of the scene. Also, a rectangle on the oor of size 0.5 x 0.5 m at the distance
2 m centrally from the camera was marked as the basic reference for the place where
turning should be executed. The image of the scenewith twoobstacles and the reference
rectangle is visible in Figure 8.4a, while thewalking trajectories thatwere assigned for the

131



P A R

(a) Image of the scene. (b) Image of the scene.

13

(c)Walking trajectories for spot turns.
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(d)Walking trajectories for U-turns.

1

3
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13

10

16

Step type:
lateral right
lateral left
backward
forward

(e)Walking trajectories for stepmoves. (f)Walking trajectories for bending.

Figure 8.4: Trajectories for the collection of data for activity recognition.
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turning trial are sketched in Figures 8.4c and 8.4d. Figure 8.4c shows the rst and the
third walk in the series, which involve the combination of a 90◦ turn, a 180◦ spot turn
and a 90◦ turn in the opposite direction than the rst 90◦ turn. Figure 8.4d shows the
second and the fourth walk in the series, composed of two 90◦ turns, with one 180◦
wide turn in between. The second walk starts from the right side of the camera, while
the fourth walk starts from the lef side.

Besides collecting data for training the Turn SVM classi er, the secondary objective of
the Turning trial was to collect data to train the recognition of the forward walking ac-
tivity, regardless of walking speed. This is the main reason why the trial was split into
two series of 4 walks. In the rst series the participants walked with their normal walk-
ing speed, while in the second series they reduced speed to half of their normal walking
speed.

Movement direction
In the second trial we targeted the collection of data for recognizing the movement di-
rection. We took into account even the movements that last as short as it takes to make
one step. To collect the speci c training data, the participants were asked to perform
discrete steps in four basic directions on the oor plane.

Upon approaching the referent spot, participants were asked to face the camera and
make a series of 16 discrete steps. The orientation of the participant always remained
with the face towards the camera. The series of steps is illustrated in Figure 8.4e. Starting
from the reference rectangle, the participant had to make 2 lateral steps on his right,
followed by 4 lateral steps to his lef side and two additional lateral steps towards the
right side, in order to return to the starting rectangle. From there the participant did
4 separate steps backwards, followed by 4 steps forward. The 16 step combination was
repeated 2 times by each participant.

Bending
For the last trial, a chair was placed at the distance of 2.5 m from the camera (just behind
the referent marked rectangle). Each participant started with normal walking outside
of the camera FOV and walked until he/she reached the place in front of the chair (see
Figure 8.4b). The participants were instructed to repeat 4 identical series of stand-sit-
stand actions, once they reached the reference rectangle.

Af er entering the reference rectangle, the participant rst had to wait 4 s before sitting
down on the chair. Af er he/she sat on the chair, he/she was to stay seated for 4 s, before
getting up from the chair. Upon getting up, a participant was instructed to simulate
“restless standing” for 4 s, and then repeat everything 3 more times starting with a new
sit action.

The collection of “restless standing” data was part of the secondary objective of the trial,
that was not directly related with trainingBend SVM classi er. The data collected dur-
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ing “restless standing”was intended for training theStand class in theMove SVM classi-
er, so that the classi er can achieve robustness to possible FOGandbradykineticmove-

ments of PD patients. The instructions for achieving ”restless standing” required from
a participant to shif hi/hers weight from one leg to another, and/or to produce small
position changes bymoving the upper part of the body while being inside the reference
rectangle.

RawKinect video and depth data, alongwith the smartphone inertial data for each trial, was
recorded in the .rosbag format. Af erwards, the captured rawdatawas replayed as the input into
Vision node in order to extract TrackDatamessages from person tracks. Between each entry
and exit of a person in/from the active tracking area in front of the camera, the tracking algo-
rithm produced a trajectory segment belonging to the person’s track that is called tracklet. The
rst trial (Turning) produced eight tracklets per person, while the second trial (Movement direc-

tions) and the third trial (Bending) produced two tracklets per person each. For each 2D point
in a tracklet its TrackDatamessage was read with its synchronized IMU message, transformed
into the feature vector presented in Table 8.2, and saved into a SQL database.

Once the feature vectors were available in the database to be used for training and testing,
the nal step was to assign the ground truth activity labels to video data. The start and the
duration of activities in the labelled data were observed with the time precision expressed in
hundreds of milliseconds.

8.3.2 T M

The rst step towards the completion of the seven-class hierarchical activity classi er was to
separately train SVM classi ers. Each SVM classi er was trained with data from the trials in
which the participants performed the activity that the particular classi er is targeting, and the
activity that can easily confuse the same classi er. For example, in the case of the Turn SVM
classi er, the data for training was taken from the Turning trial and from the Bending trial.
The reason for using data from two trials is that the position of xing the smartphone and its
exact 3D orientation may indirectly in uence a correct detection of turning, by classifying it as
bending. If it happens that the smartphone is not perfectly positioned, having itsX-axis parallel
to the vertical axis of the person’s trunk and Z-axis parallel to the person’s transversal axis, the
Z-axis will measure some rotational velocity when the person is turning. Proportionally to
the angle of deviation of these axes from the ideal position, the confusion between turning
and bending will becomemore probable. Data that contains examples of bending movements
with false labels are used during theTurn SVM classi er training, to make the classi er able to
di ferentiate better between turning and bending.

Similarly, for training of the Move SVM classi er we used feature vectors from all three
trials. The trajectories from the Turning trial contain data with samples of di ferent walking
speeds. In the trajectories from the Bending trial we can nd samples that are able to con-
fuse the classi cation for direction of movements in theMove SVM classi er. The critical fea-

134



8.3. Training of Component Classi ers

ture for detecting movement direction is the change in a person’s 2D position. If the detection
of movement direction is based primarily on the 2D position, the sitting down action can be
mistaken for backward movement and getting up action for the forward movement. Hence,
Bending trial data is used inMove SVM training as the negative example for those classes. The
Bend SVM classi er was trained only with the data from Bending trial.

The goal of the experiment with the healthy participants was to obtain the average classi -
cation results in terms of sensitivity, speci city and accuracy for each component classi er. To
calculate the average results, the classi ers had to be trained and tested several times. We had to
de ne amethod to divide the available dataset into training and testing parts in order to achieve
a su cient generalization of the statistical results. Usually “leave-one-out” or a similar method
can be used to make the dataset division. Another good option is to split the dataset so that
70 of the available data is used for training and 30 for testing.

To get average results, the training of the SVM component classi ers was repeated 8 times.
For each training repetition,we split the dataset from8participants randomly into trainingdata
(taken from 5 participants), and test data (taken from 3 participants). Table 8.3 shows which
participants provided data for which training repetition, and what was the distribution of the
ground truth labels for each class in the training data. Similarly, Table 8.4 shows which par-
ticipants provided data for testing of which trained model and the distribution of the ground
truth labels for each class in the test data.

Table 8.3: Distribution of ground truth labels for feature vectors that were used in each of 8 training repetitions.

Training ID Person IDs Turn [0, 1] Bend [0, 1] Move [0, 1, 2, 3]
1 1,2,4,5,6 [3917, 796] [2347, 577] [2956, 2289, 161, 336]
2 2,3,5,6,8 [3650, 749] [2318, 581] [3136, 1968, 170, 334]
3 1,3,4,5,7 [4059, 879] [2384, 600] [2951, 2377, 185, 284]
4 3,4,6,7,8 [3805, 879] [2146, 632] [3050, 2343, 181, 346]
5 1,2,5,7,8 [4071, 797] [2546, 551] [3011, 2179, 158, 288]
6 1,2,3,4,8 [4196, 807] [2512, 624] [3046, 2323, 188, 291]
7 1,4,6,7,8 [3876, 874] [2181, 573] [2913, 2437, 166, 353]
8 2,3,4,6,8 [3781, 789] [2356, 607] [3287, 2029, 171, 328]
μ [3919, 821] [2349, 593] [3044, 2243, 173, 320]
σ [180, 49] [140, 27] [121, 169, 11, 28]

Turns: 0-Straight walk, 1-Turning

Bend: 0-Upright, 1-Bending

Move: 0-Stand/Move slow, 1-Walk forward, 2-Walk backward, 3-Move lateral

µ - Average (Mean),

σ - Standard deviation
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Table 8.4: Distribution of ground truth labels for feature vectors that were used in testing each of 8 trained

model sets.

Training ID Person IDs Turn [0, 1] Bend [0, 1] Move [0, 1, 2, 3]
1 3,7,8 [3923, 558] [4065, 375] [1910, 1303, 115, 179]
2 1,4,7 [3989, 609] [4190, 363] [1722, 1652, 103, 182]
3 2,6,8 [3809, 486] [3943, 352] [1918, 1215, 92, 232]
4 1,2,5 [3731, 475] [3888, 314] [1800, 1247, 92, 173]
5 3,4,6 [3968, 573] [4087, 400] [1861, 1416, 118, 220]
6 5,6,7 [3670, 573] [3878, 324] [1820, 1271, 89, 219]
7 2,3,5 [3864, 477] [3964, 377] [1966, 1153, 108, 162]
8 1,4,8 [3736, 566] [3959, 339] [1575, 1562, 102,190]
μ [3919, 821] [2349, 593] [3044, 2243, 173, 320]
σ [180, 49] [140, 27] [121, 169, 11, 28]

The procedure used for training each of the three component classi ers was the same. We
used OpenCV trainSVM() function with 10-fold cross-validation and the following parame-
ters: C-SVM type classi er, RBF kernel, maximum iteration number 5000 and ε = 0.00001.

8.3.3 R

For each training repetition (a row in Table 8.3), all three SVM component classi ers were eval-
uated using the same test data (the same row in Table 8.4). The test data contained activities
from the three trials (Turning, Movement directions and Bending). The evaluation for each
SVM classi er was done based on the comparison of its output class and the ground truth la-
bel. The output class for the SVMclassi er is obtained by invoking theOpenCV predictSVM()
function with a new feature vector input every 0.25 s, since average values that form feature
vectors are calculated with that speci c rate (every 8 samples at 30 Hz). For each prediction
of the classi er, its output class and accompanying label were added to their respective vectors
(output vec and label vec). The addition to these two speci c vectors was done for every classi-
cation of the feature vectors produced for all the persons in the evaluation data. From these

two vectors we produced a confusion table with actual and predicted values. A confusion table
was subsequently used for direct calculation of statistical results. The tables with complete sta-
tistical results obtained in this way can be found in Appendix C (Table C.1 - Table C.10). In the
discussion of the experiment results, we will present only average values extracted from those
tables that depict how the classi cation method behaves in general.

The detection of turns achieved a moderate sensitivity of [76.0 ± 8.3] , and a very good
speci city of [97.0± 1.0] (see Table 8.5). The visual inspection of turning behaviour shows
that turn as an event is always detected, but the di ference exits in the exact period of matching
between the time when a turn is detected and its corresponding ground truth label. A charac-
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Table 8.5: Averaged results forTurn SVM classifier on 8 healthy people dataset. Extracted from Table C.1.

Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
76.0± 8.3 97.0 ± 1.0 78.7 ± 3.5 96.6 ± 1.3 94.4 ± 1.0 76.9 ± 3.6

PPV: Positive predictive value - TP/(TP+FP)

NPV: Negative predictive value - TN/(TN+FN)

F1 score - 2TP/(2TP+FP+FN)

teristic situation is depicted in Figure 8.5, which shows the case of a participant (ID=3) making
a walk at low speed and with a wide 180◦ turn. The trajectory starts from the right side of the
scene. Usually, the turn classi er recognizes the start or the end of the turn for one (0.25 s) or
two (0.5 s) classi cation periods sooner than it is marked in the label. The way in which the
data is labelled directly in uences the result. Each turn was manually labelled, based on video
observation, as the period from the rst step when the person evidently started rotating their
hips, until the rst stepwhen the person started towalk straight again. We observed the average
rotational velocity around the vertical axis as the main feature for turning. We noticed that the
trained classi er is actually more sensitive to a change in the person’s orientation than a human
annotator. There seems to be a learned threshold of rotational velocity inside the Turn SVM
classi er with the value of around 0.6 - 0.7 rad/s.

A lower sensitivity of turning detection causes a drop in rotational velocity during a wide
180◦ turn. This error is the outcome of the way in which the turn is labelled, and the fact that
turning during data collection was not completely constrained. A wide turn is de ned by two

Figure 8.5: Classification of turning behaviour for one tracklet.
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oor markers at the distance of 0.5 m. When going around those oor markers, a person can
make awide turn by slightly rotating during every step (similarly towalking on the perimeter of
the circle), or he/she can make a turn with an almost 90◦ angle, followed by a straight step and
another 90◦ angle turn (similarly to circumventing a rectangle). In the later case, a wide turn
is practically broken into two smaller turns, which get separately detected by the Turn SVM
classi er. Since we labelled a wide turn as one ensemble, there is a period between two detected
smaller turns when turning is not registered. An example of this can be seen at the 7 second
mark in Figure 8.5. These false negatives in uence the expressed sensitivity.

Statistical results for thebinary SVMclassi er targeting the recognitionofbendingbehaviour
are given in Table 8.6.

Table 8.6: Averaged results forBend SVM classifier on 8 healthy people dataset. Extracted from Table C.14.

Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
88.2 ± 4.5 98.6 ± 0.7 85.3 ± 6.5 98.9 ± 0.4 97.8 ± 0.8 86.6 ± 4.4

In Table 8.6 we can observe a very high average speci city of [98.9±0.4] , alongwith a bit
lower average sensitivity and PPV of around 85 . Both sensitivity and PPV are dependent on
the recognition of true positives, whichmeans that the reason for the non-optimal performance
lies in failed TP detections. Detailed comparison of the classi er output and its ground truth
labels, shows that the lower TP detection performance has the same set of causes as the turn
classi er. The situations pertaining to these causes are depicted in Figure 8.6, which shows a
part of the tracklet captured during a bending trial.

Figure 8.6: Classification of bending behaviour for one tracklet.
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Figure 8.7: Classification of movement directions.

In Figure 8.6 we notice the sequence in which a person sits down, sits for a several seconds
and stands up. The displayed data is the measured height, the measured transversal velocity,
the bend label and the classi er output.

Forwardbending andbackward leaningduring apostural transition are considered as a joint,
singular target class that needs to be detected. The main dependent feature is the average ro-
tational velocity around the transversal body axis. Similarly to turning, bending always gets
detected as an event. However, there is a slight mismatch between the start and the nish of
the bending event detected by the classi er and the manually set bend label. Figure 8.6 shows
examples of a late start, late stop and earlier start which are all±0.25 s displaced in time towards
their labels. All these events can be related with the average rotational velocity and its implicit
threshold that is set about 0.5 - 0.6 rad/s. This implicit threshold value is also responsible for
a missed detection in duration of one classi cation period that is visible at around the 19 sec-
ond mark. The misdetection happens due to the transversal rotational velocity drop present
between forward and backward bending during the sit-to-stand postural change.

The nal component classi er is a 4 class SVMclassi er for recognition of planarmovement
directions. Its statistical results are given in Table 8.7. TheMove SVM classi er achieves very
good average sensitivity (> 96 ) in the recognition of Stand and Forward class, while lower
sensitivity is achieved for Lateral and Backward movement classes. The original confusion ta-
ble (Appendix C, Table C.11) reveals that Stand class is of en detected instead of Lateral and
Backward movements. The graph with overlaying output classes and labels (see Figure 8.7)
shows that similarly to the Turn SVM and Bend SVM classi er, Move SVM always detects
the events of going backward or moving lateral, but the start and the end of these events are
usually detected one classi cation iteration (0.25 s) too late or too early. The reason why non-
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forward movements mostly gets confused with the Stand class is due to the nature of the test
data. The test data contains non-forwardmovements collected only as discrete directional steps
during theMovement directions trial. These steps always started and nished with a still stand-
ing. Due to small directional velocities at the beginning and the end of step movements, steps
can not be detected exactly when they start. This produces a delay in the detection.

Table 8.7: Averaged results forMove SVM classifier on 8 healthy people dataset. Extracted from Table C.3.

Class Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
(0) Stand 96.7 ± 0.9 93.5 ± 1.2 94.2 ± 1.4 96.3 ± 0.7 95.2 ± 0.7 95.4 ± 0.9
(1) Forward 96.6 ± 1.5 98.1 ± 0.4 97.0 ± 0.7 97.7 ± 1.3 97.5 ± 0.7 96.8 ± 0.7
(2) Backward 82.4 ± 6.2 99.7 ± 0.1 98.4 ± 4.4 99.5 ± 0.2 99.3 ± 0.1 85.5 ± 2.5
(3) Lateral 70.2 ± 6.0 99.2 ± 0.3 84.6 ± 5.4 98.2 ± 0.4 97.6 ± 0.4 76.5 ± 3.8

Each time af er all the three SVM component classi ers were trained with one of the train-
ing datasets, the hierarchical activity classi er was also evaluated. The statistical results for the
seven-class hierarchical activity classi er are given in Table 8.8.

Table 8.8: Averaged results for seven-class hierarchical activity classifier on 8 healthy people dataset. Extracted

from Table C.4 and C.5.

Class Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
Stand/Slow walk (0) 93.8± 0.9 94.4 ± 0.9 92.1 ± 1.1 95.7 ± 0.6 94.2 ± 0.4 92.9 ± 0.7
Forward walk (1) 85.6 ± 3.9 96.0 ± 1.7 84.4 ± 3.1 96.6 ± 0.7 94.1 ± 1.1 84.9 ± 1.1
Non-forward (2) 66.0 ± 6.5 98.7 ± 0.3 80.1 ± 3.3 97.4 ± 0.5 96.4 ± 0.6 72.2 ± 4.0
Wide turn (3) 71.8 ± 11.5 97.5 ± 0.8 76.3 ± 3.2 96.8 ± 1.4 94.8 ± 1.0 73.4 ± 5.6
Spot turn (4) 73.5 ± 1.8 99.2 ± 0.2 69.1 ± 3.4 99.4 ± 0.1 98.6 ± 0.2 71.2 ± 1.8

Bend (5) 63.9 ± 3.7 98.9 ± 0.4 84.4 ± 4.9 96.7 ± 0.4 95.9 ± 0.5 72.7 ± 3.3
Sit (6) 98.5 ± 1.1 96.9 ± 0.3 81.1 ± 2.4 99.8 ± 0.2 97.1 ± 0.3 88.9 ± 1.5

The hierarchical classi er has lower average sensitivities in relation to the component classi-
ers, while speci cities and accuracies are on the similar levels. Very high level of sensitivity (98.5
) was achieved for the detection of the Sit class, which justi es putting Posture FSM as the

top level node. The interaction of the Posture FSM and theBend SVM classi er at the second
level of hierarchy, results with diminished sensitivity in the detection of the Bend class (63.9
inside the hierarchical classi er vs. 88.2 when it was tested independently). The table of con-
fusion (Appendix C, Table C.12) shows that the decrease in sensitivity comes from the mistake
of the Bend for the Sit class. Figure 8.8 illustrates this mistake. The inability of Posture FSM
to recognize the forward leaning phase during the sit-to-stand is the main cause of the error.
Posture FSM can not recognize forward leaning because during this motion the value of the
person’s height stays in between the upper and the lower threshold for sitting. Hence, SIT class
is given as the output ofPosture FSM. Figure 8.8 shows that theBend SVM classi er correctly
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Figure 8.8: Classification of activity for stand-sit-stand sequence.

recognizes theBend class during postural transitions. However,Posture FSMovershadows the
correct detections of bending, because of the con guration of the hierarchical classi er.

The detection of Standing/on-the-spot move remains at the similar level of sensitivity as it
was for the Move SVM classi er (93.8 vs. 96.7 ). The Non-forward move class generates
the same problem of confusion with the Standing class, which was explained for backward
and lateral movements in the Move SVM classi er. The results for Wide turning and Spot
turning classes are based on the logical conjunction of outputs ofTurn SVM andMove SVM
classi ers. Since both turning and forward walking (or standing) need to be recognized at the
same moment, these classes are detected with 3-5 less sensitivity (71.8 , 73.5 ) compared to
the Turning only in Turn SVM (76.0 ).

The evaluation of the hierarchical activity classi er on healthy people gives us information
about the sensitivity and speci city levels for each activity that can be expected from the con g-
urationof this particular decision tree. In the following section,we explore how thehierarchical
activity classi er performs on the movement data of PD patients.

8.4 E P ’ D P

8.4.1 T U G T

The Timed Up and Go (TUG) (Podsiadlo and Richardson, 1991) is a widely used clinical test
for assessment of mobility and balance in elderly persons. The test consist of rising from a
chair, walking the distance of 3 m with the preferred speed, turning for 180◦, walking back to
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the chair and sitting. Total duration of the time that a person needed to execute the test is the
single measurement used as the indication of the person’s locomotor performance. Because of
its simplicity, the TUG test is of en performed in the clinic setting to detect di ferences in per-
formance between people with PD and elderly people without PD (Morris et al., 2001b). The
test is an accurate assessment tool for quanti cation of gait and dynamic balance abilities. In
the clinical setting, themedical personnel can obtainmore information about the advancement
of the PD of the patient by performing periodical TUG tests. Also, TUG is a good tool for the
estimation of the risk from falls among the PD patients (Nocera et al., 2013).

For PD patients su fering from FOG, the TUG test contains several critical situations that
can provoke a FOG episode (e.g. start of walking, turning). In fact, the TUG test contains
almost the same activities as the ones that are recognized in our hierarchical activity classi er.
The exceptions are backward and lateral movements. Thismakes clinical TUG tests a good op-
portunity to collect the data for evaluation of the activity classi er on its primary target group,
the PD patients.

8.4.2 C D

In cooperationwith theUnit for Parkinson’s andMovementDisorders (esp. Unidaddel Parkin-
son y Trastornos del Movimiento) of Teknon Hospital in Barcelona, we performed data collec-
tion duringTUG tests with PDpatients with diagnosed FOG.The participants pool consisted
from 4 PD patients (3 male, 1 female) with the average H&Y score [μ = 2.35, σ = 0.38]. The
average age of participants was [μ = 67.8, σ = 6.9] years, and their height [μ = 162, σ = 5.4]
cm.

Red tape markers were put on the oor of the experiment venue (see Figure 8.9) to label the
start, themiddle and the turning point for the 3mwalking path. TwoKinects were used for the
experiment, along with a smartphone. The use of multiple Kinects in the clinical environment
was a good opportunity to test the behaviour of our distributed system as a portable multi-
modal data collection platform. The Kinects were positioned in such a way that one of them
was set close to the chair to have a good overview of the postural transitions (Figure 8.9a), while
the other was set to have the visibility over the whole walking path (Figure 8.9b).

The position, orientation and xationmethod of the smartphone on the patient’s body was
the same as itwas during the collectionof the activity datasetwith healthypeople (Section 8.3.1).
A recording session for each participant lasted around 10minutes and consisted out of 3 normal
Up and Go walks in length of 3 m, and 3Up and Go walks with the stop at the middle marker
when going in each direction.

Raw video and depth data from the Kinects, along with the smartphone inertial data for
each session, were recorded in the .rosbag format. The processing of recorded data in order
to extract tracklets and obtain feature vectors, was done in the identical way as for the activity
classi er for healthy persons.
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(a) Image of the scene for TUG test from the view-

point of the first camera.

(b) Image of the scene for TUG test from the view-

point of the first camera.

Figure 8.9: Viewpoints of two cameras set in the space for clinical rehabilitation.

8.4.3 T M

The collected number of samples of activities in the clinical dataset was not big enough too
support both training and testing of the classi er with the same data. Thus, the training of the
SVMclassi ers was performed using the dataset of 8 healthy people that was obtained earlier in
the laboratory (Section 8.3.1), while evaluation of the classi ers was done with the PD patient
data. The complete distribution of the labels in the training dataset that includes all 8 persons
is given in Table 8.9.

Table 8.9: Distribution of labels in the whole dataset of 8 healthy persons.

Training ID Person IDs Turn [0, 1] Bend [0, 1] Move [0, 1, 2, 3]
1 1,2,3,4,5,6,7,8 [6271, 1314] [3758, 949] [4870, 3589, 276, 512]

The overall methods and SVMparameters for training each SVMcomponent classi er were
kept identical to the ones that were described in Section 8.3.2.

8.4.4 R

Af er we trained all the three component SVM classi ers, we evaluated each of them separately
on the TUG data of each of the 4 PD patients. The distribution of the labels in the patient
data is shown in Table 8.10. The last two columns of the table, lled with zeros, demonstrate
that none of the patients executed backward or lateral movements during TUG tests. It was
not possible to calculate sensitivity for these two types of activities, since we did not have true
positive classi cations.

Table 8.11 demonstrates a decrease in the average sensitivity of detection of turning.This de-
crease is the consequence of FOG being experienced by one of PD patients (see Appendix C,
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Table 8.10: Distribution of labels in PD patient data.

Patient ID Turn [0, 1] Bend [0, 1] Move [0, 1, 2, 3]
1 [532, 97] [590, 39] [265, 204, 0, 0]
2 [746, 95] [764, 77] [323, 205, 0, 0]
3 [694, 83] [704, 73] [150, 221, 0, 0]
4 [728, 133] [720, 60] [195, 336, 0, 0]
μ [675, 102] [695, 62] [233, 244, 0, 0]
σ [98, 22] [74, 17] [76, 63, 0, 0]

Table C.6, 2nd row). The patient su fered FOG episodes when performing 180◦ turns. Two
types of behaviour that caused errors were observed. His turns were sometimes broken into
discrete short turning segments. In between the turning segment the patient was standing still
trying to unfreeze. Short turning segments lasted too short to be detected by the Turn SVM
classi er. Another type of FOG involved turning very slowly while simultaneously perform-
ing shu ing steps. During these turns the measured rotational velocity was too low for the
correct turn detection in the classi er. Individual results of other patients who did not have
a turn-speci c FOG are at a similar level (approx. 70-75 ) as the results for healthy people in
Table 8.5.

Table 8.11: Averaged results forTurn SVM classifier on 4 patient clinical dataset. Extracted from Table C.6

Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
65.3 ± 23.7 98.40 ± 1.7 84.8 ± 13.7 95.3 ± 2.4 94.3 ± 2.6 71.8 ± 20.1

The evaluation of theBend SVM classi er on PD patient data (Table 8.12) gives a 17 lesser
average sensitivity in comparison to previous results with healthy people (Table 8.6) Detailed
classi cation results per patient (Appendix C, Table C.7) revealed that the lower average re-
sults are not caused by any patient in particular. We compared the graphs betweenBend SVM
outputs and ground truth labels. We noticed the reasons for the poorer performance. The oc-
currence of the bending posture change was always recognized. The sensitivity is lost because
of the mismatch in timing of the start of the detected bending event and the label for the start
of the labelled postural transitions. Each postural transition that contained both the forward
and the backward leaning, was labelled as one Bend class event. The speed of postural transi-
tions in PD patients is lower than the speed of postural transitions in healthy people used for
Bend SVM training.

In Table 8.13 the Forward class is detected with a very high sensitivity ( > 96 ), but with a
somewhat lesser speci city ( > 84 ). The confusion table for theMove SVM classi er (Ap-
pendix C, Table C.13) reveals that in around 14 of the cases the Stand class gets confused for
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Table 8.12: Averaged results forBend SVM classifier on 4 patient clinical dataset. Extracted from Table C.7.

Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
70.8 ± 6.9 97.1 ± 1.7 70.8 ± 15.6 97.2 ± 1.0 94.8 ± 1.1 69.7 ± 7.4

the Forward class. Besides the usual error of having the start and the stop of the forwardmove-
ment detected one classi cation period later, the forward movement was also detected when
FOG manifested as shuffling. The patient movement during shuffling is a border line case be-
tween the Stand class and the Forward class, for which it is very di cult to set the correct label.

Table 8.13: Averaged results forMove SVM classifier on 4 patient clinical dataset. Extracted from Table C.8.

Class Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
(0) Stand 83.3 ± 7.3 98.5 ± 1.2 98.4 ± 0.8 86.6 ± 4.1 91.6 ± 2.3 90.1 ± 4.3
(1) Forward 96.2 ± 2.0 84.7 ± 6.8 87.3 ± 3.8 95.1 ± 3.3 91.0 ± 1.6 91.5 ± 1.3
(2) Backward - 99.9 ± 0.1 0.0 ± 0.0 99.5 ± 0.0 100.0 ± 0.1 -
(3) Lateral - 98.1 ± 1.4 0.0 ± 0.0 100.0 ± 0.0 98.1 ± 1.4 -

Table 8.14 depicts the behaviour of the complete activity classi er. The Sit class retains a
very high sensitivity (> 94 ). The relation between the Sit class and the Bend class during
postural transition stays unchanged, for the same reason that was already explained when we
interpreted Table 8.8. Average sensitivities for the Stand and Forward walk classes are 5-7
percent bellow sensitivities achieved for the same classes in the Move SVM classi er (Table
C.13). The confusion table (Appendix C, Table C.14) shows that close to 7 of the actual Stand
class events were mistaken for the Spot turning class. We conclude that the reduction in the
sensitivity is caused by the con guration of the decision tree. TheTurn SVM classi er changes
the nal output class from Stand to Spot turning when it makes an incorrect prediction. A
similar explanation is valid for lower sensitivity and higher speci city of the Forward walk class.
The detection of theForward walk class is directly in uenced by theBend SVM classi er (2.4
error), which is positioned closer to the top of the decision tree.

Table 8.14: Averaged results for seven-class hierarchical activity classifier on 4 PD patient dataset. Extracted

from Table C.9 and C.10.

Class Sensitivity [ ] Speci city [ ] PPV [ ] NPV [ ] Accuracy [ ] F1 score
Stand/Slow walk (0) 74.0 ± 10.5 95.1 ± 2.3 78.4 ± 5.7 94.3 ± 1.7 91.8 ± 2.0 76.0 ± 7.9
Forward walk (1) 91.4± 3.2 92.9 ± 1.4 82.7 ± 4.7 96.5 ± 1.7 92.5 ± 1.0 86.7 ± 2.5
Non-forward (2) - 99.2 ± 0.6 0.0 ± 0.0 100.0 ± 0.0 99.2 ± 0.6 -
Wide turn (3) 37.1 ± 13.0 97.6 ± 1.4 37.7 ± 7.0 97.5 ± 1.6 95.3 ± 2.7 36.8 ± 8.7
Spot turn (4) 41.3 ± 23.1 98.2 ± 0.5 64.1 ± 24.3 94.1 ± 2.4 92.8 ± 2.0 49.0 ± 24.4

Bend (5) 64.4 ± 7.8 96.4 ± 1.4 63.1 ± 15.2 96.7 ± 0.4 93.7 ± 1.4 63.6 ± 11.4
Sit (6) 94.3 ± 4.3 96.5 ± 0.2 91.2 ± 3.3 97.6 ± 1.7 96.0 ± 0.9 92.7 ± 3.4
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For both turning classes, the sensitivity is bellow 50 . This is a signi cant decline in perfor-
mance in relation to the detection rates that were achieved with healthy people. The 3rd row of
the activity classi er confusion table (Appendix C, Table C.14), shows that inmore than 58 of
cases, the Wide turning class was confused for the Forward walk class. This happens because
the Turn SVM classi er did not execute correct positive detection at the exact times when it
was expected. The deterioration in performance of Turn SVM on the clinical dataset a fects
activity the classi cation even more negatively, if we add the constraint of logical conjunction
with a correct classi cation fromtheMove SVM classi er. In the 4th rowof the confusion table
(Table C.14), we can see that the detection of the Spot turn class is partially in uenced by the er-
rors originating from all SVM classi ers that are closer to the top the decision tree;Turn SVM
(21.1 error), Move SVM (18.1 error) and Bend SVM (10.5 error). The reasons for these
errors are speci cs of turning under FOG, but also the speci cs of the TUG test dataset. In
the collected TUG data, turning for 180◦ always came before bending and was sometimes even
executed simultaneously.

8.5 S

In this chapterwedescribed the complete implementation and evaluationof algorithms/methods
for fast and timely recognition of the chosen set of activities. The most distinctive features of
our activity recognition approach are:

• The inclusion of speci c activities related to FOG (e.g. backward and lateralmovement,
“restless standing”, di ferent walking speeds);

• The use of multi-modal data that combines 2D positions from video tracker with wear-
able inertial sensor data;

• Very short bu fer for activity recognition of length 0.5 s, with a very fast processing loop
of 0.25 s.

During the systematization of the activity types (presented in Section 4.1.3), we made the
distinction between static postures, dynamic postural transitions, actions and activities. Fol-
lowing this systematization, rst we implemented the classi er for the detection of static pos-
tures and postural transitions based exclusively on video data. The developed video-based pos-
ture classi er complements the operation of the posture classi er based on inertial data that
was developed by Rodriguez-Martin et al. (2013). Our expectations are that the two classi ers
could be used together for improved postural identi cation, as well as for the improved person
re-identi cation between cameras. We implemented the posture classi er as a nite state ma-
chine. The FSM uses as the input person’s height data and has three height thresholds as the
parameters.

The FSM for posture identi cation was the rst building block necessary for the develop-
ment of the hierarchical activity classi er. The decision tree for the hierarchical classi er was
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built using two binary SVMs and onemulti-class SVM as decision functions on its nodes. The
method for training each of the SVM component classi ers was presented and evaluated on a
laboratory dataset of 8 healthy participants. The results of the evaluation vary between classes,
from very good (e.g. Sit, 98.5 sensitivity, 96.9 speci city) to moderate (e.g. Non-forward
move, 66.0 sensitivity, 98.7 speci city). These results are satisfying, having inmind the very
short bu fer time used in the algorithm.

The second evaluation of the newmulti-modal activity recognition method was performed
using the data from the clinical TUG tests by 4 PD patients. Reduced performance was no-
ticed in comparison with the results of the activity recognition with the data from the healthy
participants. The main factor for the decline in performance was that the component SVM
classi ers were trained with the data of healthy people. Healthy people generally have faster
and more uid movements than PD patients, both in postural transitions and walking. This
fact is especially re ected on the results of one PD patient (ID = 2) that experienced several
severe episodes of FOG during the clinical data collection.

We conclude that thebetter classi cation results for aPDpatientmight, naturally, be achieved
if the data of the same patient was used for training. To test this, it is necessary to gather a lot
of very diverse data from the same patient by a long-term observation. Since the TUG trials in
a clinic had a very short duration, there was no opportunity for such data collection.

An encouraging realization is that the events for each activity still get recognized in the ma-
jority of cases, even on the clinical patient data. The reported errors are caused by the o f-timing
in detection of the start and the stop for the particular activity events. However, the order of
the events recognized by the classi er and the resulting activity pro le are very similar to the ac-
tivity pro le formed by the ground truth labels. In the next chapter we will examine to which
extent the errors in the exact timingof an event detection in uence the contextually-basedFOG
detection.
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9
Using Context for Improved Freezing of

Gait Detection

In this chapter we present the nal FOG contextualization algorithm and its evaluation. The
contextualization algorithmcombines FOGdetections fromtheMoore-Bächlin algorithmwith
the activity detections from the hierarchical activity classi er. Hence, the rst section of the
chapter is dedicated to the description of the exact implementation of Moore-Bächlin algo-
rithm in our system, while the FOG contextualization algorithm is introduced af erwards. The
bene ts of the FOG contextualization were evaluated on the data collected in the homes of the
PDpatients. Unlike the trials done in a laboratory or a clinic, which normally use the same kind
of walking trajectories and the same number of repetitions for all the participants, during the
home visits it was not possible to replicate the identical trial conditions. Data collection trials
had to be tailored taking into account the uniqueness of PD, FOG and home environment of
each patient. In the section about the experiment description, we provide some of our insights
and experiences with such process. The collected data, along with the clearly de ned evalua-
tion method allows us to nally evaluate the new FOG contextualization algorithm. We use a
patient-speci c approach where each patient is treated as a speci c case. The results presented
at the end of this chapter are representing the nal results of the thesis.
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9.1 M -B¨ A I

In the implementation of the Moore-Bächlin algorithm there has to be a balance between the
sampling frequency, the analytic window length, and the resolution of the FFT. To set the
parameters for the Moore-Bächlin algorithm, we use the results of the most recent study by
Moore et al. (2013). This study explored the e fects of the freeze threshold and the window size,
as well as the use of a multi-segmental sensor placement, on sensitivity and speci city of the
FOG detection.

Themost relevant results presented inMoore et al. (2013) in relation to our own FOGdetec-
tion setup are the ones for a single acceleration sensor placed on the lumbar back region of the
body. The authors used four di ferent analytic window lengths of 2.5, 5, 7.5 and 10 s. For each
window length they varied the freezing threshold (FThr) in the range between0.5 and 7.0, with
the step of 0.5. As the experiment outcome, the sensitivity of the sensors to FOG events was
related inversely to the size of the analytic window. The single lumbar sensor exhibited robust
sensitivity and speci city (70-80 ) inside theFThr range 3.5-5, when the larger analyticwindow
sizes (7.5 and 10 s) were used. With the smallest window size (2.5 s,) the sensitivity was very high
(90-100 ) for all FI values between 0.5 and 7. With the same window length, the speci city
was very low, rising linearly from 0 to around 40 for the same FThr range between 0.5 and
7. The smallest window length value in the experiment (of 2.5 s) o fers the best guarantee that
the algorithmwill be able to achieve high sensitivity. The additional bene t is also the reduced
latency of detection that is the result of using a shorter analytic window. Therefore, with the
assumption that the problem of low speci city can be solved by eliminating FPs with activity
context, we targeted to use of the 2.5 s analytic window length in our implementation.

We implemented the Moore-Bächlin algorithm in the FOG Algorithm node. The node
takes as input the IMU data provided by ROS Android node with 100 Hz. By leaving out
every second sample, we arti cially reduce the sampling frequency from 100Hz to 50 Hz. The
50 Hz frequency or less was used in other works (Moore et al., 2013; Rodríguez-Martín et al.,
2014), and it is su cient to properly capture the FOG-relevant characteristics of movement.
Furthermore, a smaller frequency reduces the number of samples necessary to ll the bu fer of
the certain time length, consequently reducing the FFT calculation processing requirements.

The accelerometer data are extracted from the IMUmessages and are used in the calculation
of the FFT.The subsequent calculation of the freeze threshold (FThr) and the power threshold
(PThr) is done according to Equation 3.1 in Section 3.2.1. The output rate of the node is de-
nedwith the time length of the analytic window and the window overlap (50 ). The analytic

window time length was set to the exact value of Twin = 2.56 s. This length is the closest that
we can approach to the target length of 2.5 s, when using the sampling frequency fsample = 50
Hz and the number of samples for the FFT algorithmNFFT = 128. The described parameter
setup, results in the FOG Algorithm node output frequency fout = 0.8 Hz. The output from
the node is formatted into messages of type FOGData (see Appendix E).
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Figure 9.1: Temporal relation between activity and FOGmessages.

9.2 A C FOG D

Two inputs for the FOG detection algorithm are the activity class calculated every ΔTAct =
0.25 s by the algorithm described in Chapter 8 and the FOGData messages calculated every
ΔTMB = 1.25 s as described in Section 9.1. To describe the temporal relation between the
two outputs, we use Figure 9.1. The example on the gure shows a typical sit-to-stand postural
transition. Aperson starts in theSit posture (2 detections), gets upwhich causes the recognition
of the Bend class (3 detections) and nishes in the Stand posture (2 detections).

Between the two updates of the Moore-Bächlin algorithm, there is on average 6 outputs
of the hierarchical activity classi er. These outputs are recorded in the code sequence inside
the activity buffer eld. With the newest calculation of FI (designated FOG T inFigure 9.1)
the sequence of stored activities in the activity buffer), can be queried to check if the activities
recorded since the last output update of the Moore-Bächlin algorithm support or reject the
newest predicted FOG class.

The sequences that support FOG are called “whitelisted”, while the sequences that reject
FOG are called “blacklisted”. Some of the examples of possible “blacklisted” and “whitelisted”
sequences are presented in Table 9.1.

Table 9.1: Example of some of the possible “whitelisted” and “blacklisted” activity sequences.

Blacklisted Whitelisted
Sequence code Description Sequence code Description

1-1-1-1-1-1 Forw. walk 0-0-0-0-0-0 Stand
0-0-1-1-3-3 Stand - Forw. walk - Turn wide 6-6-5-5-0-0 Sit - Bend - Stand
6-6-5-5-5-1 Sit - Bend - Walk 1-1-0-0-4-4 Forw. walk - Stand - Turn spot
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At rst, our intention was to implement all the possible “whitelisted” and “blacklisted” se-
quences. However, the activity bu fer with r =6members, where eachmember can have n =7
di ferent activity codes, gives the total of nr = 117649 possible permutations. It was necessary to
simplify the approach, since it is impossible to completely ll the database with all the possible
sequences of activities.

We aim to improve the speci city of theMoore-Bächlin algorithm byminimizing the num-
ber of the FP detections. One way to con rm that the newest FOG detection is indeed TP,
and not FP, is to validate that the current activity of the patient allows for FOG to be hap-
pening at the moment of detection. We take that a positive FOG detection is true only when
the patient was upright and did not make any signi cant movement in the last 0.5 s. Hence,
when forming the mask for the “whitelisted” activity sequence only the last two activity codes
in the sequence have to be taken into consideration. Two possible activities that signal poten-
tial FOG are Stand(0) and Spot turn(1). The examples of four possible masks produced with
combination of these two activities are presented in Table 9.2.

Table 9.2: Masks for “whitelisted” activity sequence.

Mask sequences
x-x-x-x-0-0 x-x-x-x-0-4 x-x-x-x-4-0 x-x-x-x-4-4

With the known “whitelisted” activity sequence masks, the algorithm for contextualized
FOG detection executes as presented in Algorithm 1.

9.3 E FOG C

The main objective of the experiment was to test the operation of the complete distributed
system in various home environments and to accurately determine sensitivity and speci city
for the new algorithm using home collected patient data.

9.3.1 P

The experimental study included 3 male PD patients experiencing FOG. The patients volun-
tary accepted to join the study, and to allow the researchers to setup the system and to record
the data in their homes.

The characteristics of the patients were as follows: mean age [μ=68.4, σ=7.4], disease du-
ration [μ=12.3, σ 8.7] years, H&Y stage [μ=2.8, σ=0.7]. None of the patients described any
increase in the freezing behaviour following the administration of their usual dopaminergic
therapy.
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Data: boolmoore fog class, double[ ] feature vector, int[ ] sequence mask
Result: bool final fog class
while patient track exists do

hierarchical activity classi er.predict activity(feature vector[ ] )→
activity buffer[last] ;
if moore fog class == new message then

if (activity buffer[ ] ∧ sequence mask[ ]) then
context fog class = True;

else
context fog class = False;

end
if moore fog class ∧ context fog class then

nal fog class = True;
else

nal fog class = False;
end

else
continue;

end
end

Algorithm 1: FOG contextualization algorithm in the Context node.

9.3.2 H V P

A home visit for data collection was scheduled to last up to 4 hours for each participant. This
time period granted enough time to researchers to install and remove the sensor equipment,
record sensor data during walking trials, and interview the patient twice (once before and once
af er the trials). Af er the arrival to the patient’s home, the patient was familiarized with the ex-
periment via the description in the participant information sheet. Prior to any data collection,
the patient and his caretaker signed a consent form. Before the walking trial the researchers had
to nd outmore about the patient, his PDhistory, the characteristics of his FOG, and his life in
the home. To facilitate this step, the patient was asked to answer the custom questionnaire (see
AppendixD). Besides the usual questions about the PDand the FOGmanifestations, the ques-
tionnaire included the sections about the indoor FOG triggers, the methods that the patient
uses to exit from a FOG state, and technology acceptance.

9.3.3 H E L

The information from the questionnaire and the initial interview helped us to detect the po-
tential places in the home where a FOG might occur and to choose optimal positions for the
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placement of cameras in the patient’s living space. Figure 9.2 shows two scenes from homes of
each of the three participants.

The participants reported that at home they spend the majority of the time in the living
room. Their preferred micro-locations are usually a sofa or the chairs around the dining table.
Themost of en used trajectories involve going to the kitchen and to the toilet. We identi ed the
potential FOG triggering places in the home of each patient. In Figure 9.2a we can see Patient1
standing between the living room and the kitchen doorway. This is a high risk situation for
FOG occurrence, since both doorways are FOG triggers. An additional FOG trigger is the 90◦
turn when going from one door to another. The living room in Figure 9.2b provides several
narrow passages and tight spots. One narrow passage is between the dinning table and the
red sofa chair. The patient mentioned that FOG episodes occur at that spot more of en when
there is another person sitting in the sofa chair. The small table in the middle of the room
creates two narrow passages: between the small table and the sofa, and between the corner of
the small table and the chair next to the dining table. If the chair is pulled outward from the
table because someone is sitting in it, the passage gets too narrow for normal walking.

Similarly, in the living room of Patient2 (see Figure 9.2c) a narrow passage is formed by the
small table and the corner sofa. When the patient approaches the sofa from the kitchen, he
can go straight in the longer narrow passage, or he can go around the table and turn into the
shorter narrow passage. Both passages are potential FOG triggers. Besides the narrow passages,
Patient2 reported open space hesitation at the location near the open part of the lowwall (prior
to approaching the sofa). The wall opening is the beginning of the stairs leading to the ground
oor. Several walking tests during the data collection showed that the missing part of the wall

has in uence only when the patient walks close to it ( < 1 m distance). On the other part of the
same living room (see Figure 9.2d), the space between the two doorways and the beginning of
the stairway to the upper oor is anothermicro-locationwith a high risk for FOG. The kitchen
and the living room are connectedwith a straight line path, while all the other trajectories, such
as going from the kitchen to the bathroom or from the living room to the stairway, require
additional 90◦ turn.

In the living roomofPatient3 (see Figure 9.2e) the con guration of the furniture in the space
is set to facilitate movement and to minimize the number of FOG zones. When the patient
wants to go from his usual sitting spot on the sofa to the kitchen, he needs to make a 90◦ turn
around the corner of the dinning table. The space for turning is not limited on the side away
from the table and the turn does not have to be sharp, which considerably helps to avoid FOG.
The critical spot in this environment is the sliding kitchen door (Figure 9.2f). With the presence
of the sliding door, the doorway passage becomes even narrower. Just af er the doorway and
inside the kitchen, there is a fridge on the lef side, requiring an additional 90◦ turn on the spot
when the patient wants to use it. The FOG episodes occur with the equal tendency on either
side of this kitchen doorway.
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(a) Patient1. Camera1. Hall with doors towards living

room (straight) and kitchen (right).

(b) Patient1. Camera2. Living room.

(c) Patient2. Camera1. Living room. (d) Patient2. Camera2. Living room connection to

stairs (left), kitchen (straight), and bathroom (rigth).

(e) Patient3. Camera2. Living room connection to

kitchen (door left) and hall towards bedrooms.

(f) Patient3. Camera1. Living room.

Figure 9.2: Home environment coverage with Kinects.
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9.3.4 D C

The prototype of the monitoring system consisting of two Kinects and a Galaxy Nexus smart-
phonewas used to record raw sensor data.Thewearable sensor positioning and the data record-
ing parameters were the same as in the clinical experiment described in Section 8.4.2.

During the data collection the patients were in the clinically-de nedOFF state that follows
the withdrawal of dopaminergic therapy. They executed a version ofUp-and-Go/FOG Provo-
cation Test that was adapted to their living environment. Instead of walking along the straight
5 m path and passing through an arti cially created FOG zone at 2.5 mark, the patients were
instructed to follow their usual walking trajectories inside the home. The trajectories that pass
through natural FOG trigger zones were repeated more of en. A sofa in the living room was
usually used as a starting point, with sitting as a starting posture. The patient was instructed to
go to the kitchen, to the bathroom, or any other location of interest in his usual manner of lo-
comotion. A variation of this approach involved setting an additional seat in the kitchen. This
seat was sometimes used as a secondary starting point towards the living room, the bathroom
or the hall.

Even with several di ferent trajectories, af er some time the walking trial can become too
repetitive for the patient. Multiple postural transitions and a lot of movement in a short time
span are very cumbersome, especially in the OFF state. To counter these e fects, the patients
were encouraged to take rest as much as they wanted. Although the data collection sessions
were usually 2 hours long, we collected on average around 15 minutes of movement data per
patient, while for the rest of the time the patient was sitting.

9.3.5 G T L

Aclinician experienced in FOGusedhis best clinical judgement to identify FOGepisodes based
on the video recordings. The editing tools from theROS rxbag package enabled slowing down,
pausing and rewinding of videos in order to conduct a detailed observation. The onset of a
freeze was tagged by value ‘1’ and the end of the episode was tagged by value ‘0’. The episode
duration was observed with the time resolution in hundreds of milliseconds (e.g. 1.27 s, 3.29 s).
Besides FOG labels provided by the clinician, it was necessary to obtain the ground truth labels
for patients’ postures and activities. The labelling of the postures and activities did not require
special medical personnel.

9.3.6 E M

The evaluation was done by comparing on the same dataset the sensitivity and speci city of
the FOG contextualization algorithmwith the sensitivity and speci city of theMoore-Bächlin
algorithm. To ensure optimal results, the FThr and PThr parameters were optimized for each
patient separately.
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The raw sensor data from the home experiments was replayed with the monitoring system
simulating a real-time operation. For each tracklet we merged the patient’s contextual data
(position, orientation, detected activity), raw IMUdata, the output of theFOG Algorithm and
the ground truth labels into a .rosbag le with a newmessage type -ContextData (SeeAppendix
E). A dedicated application was produced to automatically read all ContextData messages for
one patient in a batch mode, to nd optimal threshold parameters, to compare the output of
the optimized FOG algorithm against the ground truth label, and to calculate the statistical
results for the classi cation.

We used a window-based approach to compare the detection algorithm outputs and the
ground truth labels. For each activity windowwith a duration of 1.25 s, there was a new binary
FOG value. For the same timestamp, we compared the new binary FOG value and the corre-
sponding ground truth label. Table 9.3 shows the total number of processed analytic windows
for each of the three patients and the distribution of the analytic windows with the positive
and negative FOG ground truth labels.

Table 9.3: Distribution of FOG labels and average episode duration for each patient.

Experiment Duration [s]/[min] # Windows # True FOG # False FOG # FOG episodes Avg. ep.duration [s]
Home 1 890/14.8 712 10 702 6 2.11 ± 0.52
Home 2 860/14.3 688 143 545 34 6.51 ± 5.41
Home 3 716/11.9 573 13 560 13 1.33 ± 0.89
Total 2466/41.1 1973 166 1807 53 -

To nd the optimal FThr andPThr parameters, we used the grid search optimization. Dur-
ing the grid search, a pair of sensitivity and speci city values (Sens, Spec) is obtained for each
pair of the threshold parameters (FThr, PThr). The nal result of this process is a pair of tables
(such asTables 9.4 and 9.5), that contain the calculated sensitivity and speci city as the function
of the threshold parameters.

Table 9.4: Values of sensitivity forMoore-Bächlin algorithm for Patient2 as the function of threshold parame-

ters.

FThr
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

PT
hr

0.0 100.0 100.0 97.2 90.2 80.4 65.0 55.2 47.6 38.5
0.5 88.8 88.8 87.4 82.5 74.1 61.5 51.7 44.1 35.7
1.0 70.6 70.6 69.9 67.8 60.8 50.3 43.4 37.1 29.4
1.5 53.8 53.8 53.1 52.4 49.0 40.6 35.0 30.1 25.2
2 30.8 30.8 30.1 30.1 29.4 24.5 21.7 17.5 14.7
2.5 22.4 22.4 21.7 21.7 21.7 16.8 16.1 12.6 10.5
3.0 15.4 15.4 14.7 14.7 14.7 11.2 11.2 9.1 7.0
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Table 9.5: Values of specificity forMoore-Bächlin algorithm for Patient2 as the function of threshold parame-

ters.

FThr
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

PT
hr

0.0 0.0 3.5 10.5 20.7 35.4 50.1 61.1 68.4 77.1
0.5 52.5 55.2 59.1 64.8 70.8 77.1 81.3 85.3 90.1
1.0 69.0 70.6 72.7 75.6 79.3 82.9 86.4 8 9.4 92.7
1.5 80.6 81.8 82.9 84.8 86.6 89.2 91.4 93.9 96.1
2 89.4 90.3 90.5 91.6 92.1 93.2 94.7 96.7 98.0
2.5 93.8 93.9 93.9 94.5 94.9 95.4 96.7 97.8 98.9
3.0 96.1 96.1 96.1 96.3 96.7 97.1 98.0 98.9 99.4

Rodríguez-Martín et al. (2014) proposed that the optimal solution in terms of balance of
sensitivity and speci city, can be found using the information from a pair of the obtained grid
search result tables and the rule of geometrical mean according to the following equation:

(PThr, FThr)optimal = max (
√

Sensitivity(PThr,FThr) × Specificity(PThr,FThr) )

Subject to : Sensitivity > 0.7, Specificity > 0.7
(9.1)

In Tables 9.4 and 9.5 we highlighted the optimal sensitivity and speci city values of the
Moore-Bächlin algorithm Patient2, that are obtained af er the equation 9.1 has been applied.
We can note that PThr = 0.5 and FThr = 2.0 are the optimal threshold parameters in this par-
ticular case.

9.4 R

For each patient we found the optimal threshold parameters for the originalMoore-Bächlin al-
gorithm and the optimal threshold parameters for the FOG contextualization algorithm. Each
of the two algorithms were separately evaluated using the window-based approach to produce
statistical results in a form of the sensitivity, speci city and general accuracy. Table 9.6 shows
the results for the rst patient.

For the rst patient we captured only 6 separate FOG episodes spread over 10 analytic win-
dows. Out of 6 instances of freezing, 3 of them were a hesitation af er getting up from a sofa,
while the other 3manifested as a shu ing gait during turns. TheMoore-Bächlin algorithm suc-
cessfully detected FOG in 9 out of 10 analytic windows. The contextualized FOG algorithm
missed one additional TP detection, which lowered its sensitivity for an additional 10 . Af er
we have reviewed the video and compared the FOG contextualization output signals with the
ground truth labels, we noticed that this additional error happened due to a falsely detected
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Table 9.6: Patient1: Comparison of the best results ofMoore-Bächlin algorithm and our newmethodwith

added activity context.

Algorithm FThr PThr TP FP FN TN Sens. [ ] Spec. [ ] Acc. [ ] F1 score
Moore-Bächlin 1.0 1.0 9 180 1 522 90.0 74.4 74.6 0.09
Added context 0.5 1.0 8 23 2 670 80.0 96.7 96.4 0.39
Difference - - - -157 +1 +157 -10.0 +22.3 +21.9 +0.30

Forward walk (1) activity at the moment when the patient was still experiencing a start hesi-
tation. A 10 decrease in the sensitivity of the new algorithm was compensated with a 22.3

improvement of the speci city. The speci city raised because the number of FP detections
was reduced from 180 to 23 instances. The positive in uence of the contextualization on a such
high portion of the FP detections re ected also positively on the improvement of the overall
algorithm accuracy (+21.9 ) and the F1-score (+0.30).

During the data collection with Patient2, we recordedmany various examples of a domestic
FOG.The FOG episodes were longer andmore pronounced. The type and the intensity of the
episodes also re ected on the classi cation results for Patient2 that are presented in Table 9.7.

Table 9.7: Patient2: Comparison of the best results ofMoore-Bächlin algorithm and our newmethodwith

added activity context.

Algorithm FThr PThr TP FP FN TN Sens [ ] Spec [ ] Acc [ ] F1 score
Moore-Bächlin 2.0 0.5 106 159 37 386 74.1 70.8 71.5 0.52
Added context 0.5 0.5 108 113 35 432 75.5 79.3 78.5 0.59
Difference - - -10 -79 +10 +79 +1.4 +8.4 +7.0 +0.07

The freezing episodes in this dataset take a f h of the time that the patient spent walk-
ing (143/688 detections). Various types of FOG manifestation were captured: leg trembling in
narrow passages and doors, shu ing and suddenly stopping in front of passages, and suddenly
stopping in the middle or in the end of a 90◦ turn. Such data provide much better statistical
support for sensitivity calculation, compared to the previous case. The results show that the
contextualization algorithm achieved slightly better sensitivity (+1.4 ), while at the same time
it also improved the speci city for additional 8 . In Table 9.7 besides the statistical results,
we can also observe the di ference between the chosen optimal threshold parameters for the
two algorithms. The Moore-Bächlin algorithm achieves the balance of speci city and sensitiv-
ity by using the parameter pair with values FThr = 2.0 and PThr = 0.5. The algorithm with
added context is able to use lowered parameter values (FThr = 0.5, PThr = 0.5) and to still
provide better results. In all the three home experiments the contextualization algorithm used
comparably lower values for one or both thresholds parameters,than the ones used for by the
Moore-Bächlin algorithm.

The third patient experienced very short FOGepisodes that lasted 1.33 s on average (seeTable

159



U C I F G D

9.3). These episodes usually manifested as a very short starting hesitation with trembling af er
postural change, or as a shu ing gait while turning towards the fridge (and away from it) af er
entering through the kitchen door. A relatively small number of episodes (13) was observed.
Each episode was labelled by one analytic window.

Table 9.8: Patient3: Comparison of the best results of theMoore-Bächlin algorithm and our newmethodwith

added activity context.

Algorithm FThr PThr TP FP FN TN Sens [ ] Spec [ ] Acc [ ] F1 score
Moore-Bächlin 3.5 2.0 11 52 2 508 84.6 90.7 90.6 0.29
Added context 1.0 1.5 9 21 4 539 69.2 96.3 95.6 0.42
Difference - - -2 -31 +2 +31 -15.4 +5.5 +5.1 +0.13

Table 9.8 shows the results for Patient3. The percentage di ference for sensitivity is -15.4 for
the contextualization algorithm. The contextualization introduced two additional false nega-
tive detections: a short hesitation was recognized as a forward movement, and a FOG that
manifested as a forward shu ing was falsely detected as Forward walk. The Moore-Bächlin
algorithm for Patient3 uses higher values of the optimal threshold parameters, in comparison
with the threshold parameter values used for the other two patients. Higher thresholds values
result with a high speci city (> 90 ). By adding context, even so high speci city got improved
for an additional 5 .

9.5 S

In this chapter we presented experiments conducted in the homes of three PD patients with
FOG. We setup the system according to the spatial conditions in each home. The collected
datawere analysedwith the newly introduced FOGcontextualization algorithmand the results
were comparedwith theMoore-Bächlin algorithm. The FOG contextualization algorithmwas
designed speci cally to target the elimination of the false positive detections and to increase
the speci city. The secondary goal of the contextualization was to increase the sensitivity, by
enabling the use of lower values for the freezing and the power thresholds in theMoore-Bächlin
algorithm.

The results from the analysed data indeed indicate the clear improvement in the speci city.
The potential for the speci city improvement was measured as an increase between 5 and
22 , based on the optimal threshold parameters calculated speci cally for each patient. When
the collected data contained a low number of episodes with very short FOG durations, there
was around 10 -15 decrease in the sensitivity. For the data from the patient who experienced
a high number of longer FOG episodes, the sensitivity was slightly improved (+1 ) over the
the Moore-Bächlin algorithm.
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Conclusion

Technical innovations of the information age will soon allow us to continually collect vast
amounts of data about our bodies. Such trends are expected to have a favourable impact on the
future treatment of chronic diseases; long-lasting health conditions that can be controlled, but
not cured. The availability ofminiaturized sensors, processing units and automaticmedication
dispensers enables a newway for the management of the chronic conditions, and facilitates the
realization of the concept of advanced health monitoring system. Parkinson’s disease (PD) is
one of the chronic diseases for which such monitoring systems can be extremely bene cial, by
enabling a continuous control of the desired medication dosage and the elimination of some
of its most unpleasant symptoms.

The main goal of this thesis is to improve the detection of Freezing of Gait (FOG), a dis-
abling symptom that commonly occurs in the later stages of Parkinson’s disease. As a novelty,
the approach taken in the thesis relies on using the information about the situation and the
location of the patient, the two of the aspects of the patient’s overall context that have a special
relationwith FOG.To observe the context and tomonitor themotor impairment, we needed a
system capable of a synchronous capture, replay, storage and fusion ofmulti-modal sensor data
collected from the patient and his environment. To answer these requirements, we developed
a completely new context-aware system that targets to monitor the PD patients at their home.
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10.1 R O C

In this section, we re ect on the committed work and the realized contributions during the
ful lment of each of the three objectives described in the thesis introduction in Chapter 1.

O 1©: D FOG

To design a system that solves a speci c medical problem and becomes the permanent part
of a person’s life, we need to understand both the essence of the medical problem and the fu-
ture user. In Chapter 1 we gave a general description of all the major symptoms of PD and we
focused our attention towards the investigation of the properties of the FOG symptom. FOG
is characterized by brief episodes of inability to step, or by extremely short steps that typically
occur during gait initiation or when turning while walking. Out of all PD symptoms, FOG
is the symptom with most peculiarities. Its unpredictability directly a fects the quality of life
of the individual. There are three di ferent manifestations of FOG: trembling, shu ing, and
complete freeze; and a set of distinctive situations that perspire it, known as triggers. The trig-
gers havemany in uences, both internal (e.g. stress, anxiety) and external (e.g. narrowpassages,
turning). A distinctive trait of FOG, that makes its management quite di cult, is its resistance
to the parkinsonianmedications. Alternatively, FOG can be alleviated by external stimuli, such
as lines on the oor or rhythmic sounds, which can in uence the attention of the person expe-
riencing an episode, and help him/her to initiate gait. Such approach is known as the sensory
cueing. The optimal e fectiveness of the cueing can be achieved through a timely activation of
a cueing device, triggered by the accurate detection of a FOG episode. The timely activation
depends on a correct and timely detection, which is still an open problem.

The chronological analysis of the state-of-the-art in Chapter 2 recognized the algorithm for
FOG detection invented by Moore, and later perfected by Bächlin, as the state-of-the art al-
gorithm. We recognized the important parameters and requirements of the wearable FOG
detection systems: the capability for online processing, minimal latency, minimal number of
sensors, and the optimal position for xing the sensor on the body. We observed the nature of
the datasets used in the evaluation of the already existing FOG detection algorithms and sin-
gled out the fact that there have not been any datasets that used natural home environments
to trigger the FOG episodes. Our conclusions on the state-of-the-art were about the necessity
to collect the patient data in their homes, and the realization of the untapped potential for the
FOG detection improvement that exists in capturing the unused aspects of the FOG context.

The database of the FP7 REMPARK project o fers an excellent opportunity to get a high
quality input for the design of the future home monitoring system. In Chapter 3 we made
a conclusive analysis of the video and inertial data from 17 PD patients in the database. The
data was captured from the PD patients wearing one accelerometer sensor in their homes. The
analysis focused on the e fects that the home environment and the patient activity have on the
onset of FOG. We categorized 11 activities as the instigators for false positive detections by the
Moore-Bächlin algorithm. It became clear that one of the ways to improve the speci city of
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the existing algorithm would be to recognize these activities, and use them to eliminate incor-
rect detections. Besides false positives, we also observed false negative detections by the same
detection algorithm. We related false negatives with the necessity to track the person’s loca-
tion in an indoor environment in order to correct them. To nd the exact relations between
FOG and indoor locations, we analysed videos in the database and categorizedmicro-locations
and macro-locations in relation with the types of FOG manifestation. This analysis provided
su cient information to set the requirements and the concept of the system.

In Chapter 4, we presented the requirements for the system and we introduced the sof -
ware and the hardware platform on which the new system will be developed. We set the pa-
tient’s location, orientation, and activity as the main context information types that have to be
tracked. We designed the future system to be distributed, real-time, modular, portable, and
scalable. Physically, the systemwas envisioned as a network ofMicrosof Kinect cameras placed
in the patient’s home, that interactswith awearable inertial sensor on the patient (smartphone).
Sincewewanted to use the commercial of the-shelf hardware, we foresaw the production of the
sof ware modules (for position tracking, orientation tracking, activity recognition) as the main
objective during the system development. We aimed to speed up the development process with
the use of the middle-ware and open source libraries.

O 2©: D

The main functionality of the monitoring system depends on the ability to track the pa-
tient’s location. The location data is provided by multiple person tracking based on the Kinect
data. The implementation of the tracking was described in Chapter 5. Video tracking was im-
plemented with the requirements to extend the nominal working range of the Kinect depth
sensor to 5.5 m and to keep the same level of tracking accuracy over the whole scene in front of
the camera. Besides the algorithm for the multiple person position tracking, we implemented
several additional algorithms for the extraction of relevant information from image and depth
data. The extracted information includes the person’s height, the person’s height image fea-
tures, and the color image features necessary to learn the person’s appearance.

The second major functionality of the system, presented in Chapter 6, is the tracking of
the orientation based on the information from the smartphone. We developed a new method
which combines image features (person’s height patterns) with the gyroscopic data and pro-
vides the absolute 2D orientation in reference to the camera. The accuracy of the orientation
estimation was evaluated in the experiment, along with the accuracy of the position tracking.
We con rmed that the new method is able to provide the general orientation of the tracked
person with the su cient accuracy. Using such orientation estimation, it can be easily inferred
if the person is facing some obstacle in the environment.

Chapter 7 presented the identity recognitionmethod that is capable to learn the appearances
of a small set of people and to classify between the people inside the set. The classi cation
method is based on the classi er cascade that employs a one-class Support VectorMachine clas-
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si er followed by a Naive Bayes classi er. The main challenge of this method is to optimally
train the OCSVM without performing the cross-validation step. We proposed the use of the
second independent gallery of appearances in the training stage. We train the OCSVM on the
target set of appearances with the condition of achieving the targeted minimal detection accu-
racy on one another, independent appearance gallery. With this method it is also possible to
train OCSVM using the appearance data of only one person, the patient. This last feature of
the proposed identi cation method enabled us to easily recognize, and automatically track the
patients in the video data collected during clinical and home experiments.

InChapter 8wepresented the algorithmfor the recognitionof the chosen set of FOG-related
activities. First, we implemented a vision-based posture classi er in the formof a nite statema-
chine. The posture classi er uses height information as input, and has 5 postural states that are
achieved through 13 internal state transitions. A hierarchical decision tree was used to com-
bine the posture nite state machine with three additional movement SVM classi ers. The
SVM classi ers were trained to detect turning and bending behaviour, and to recognize the
four main movement directions on the oor plane. All three SVM classi ers use as the input
both the data produced by video tracking (position, height and orientation data) and the data
captured by the smartphone (accelerometer and gyroscope signals). The particular property of
the presented activity classi cation is a very short duration of the activity data bu fers (only 0.5
s). By employing such very short bu fers, we ensured that the detection of activities will be per-
formed with a small latency. The training of the movement SVM classi ers was executed with
the dataset of 8 healthy people captured in laboratory conditions. The primary evaluation on
laboratory data was expanded with the results of activity recognition for 4 PD patients doing
the Timed Up and Go trials in a clinic. The results showed that for some activities, such as
standing or sitting, the activity recognition method achieves excellent classi cation, while for
some other activities, like turns, there is still space for a signi cant improvement.

O 3©: C FOG

InChapter 9wedescribed theFOG contextualizationmethod,whichuses theMoore-Bächlin
algorithm to con rm or disprove the detected FOG, by including the recognized activity of the
patient into the decision process. A dataset with home data of 3 PD patients was produced
by two Kinect cameras and a smartphone in synchronous recording. The improvement po-
tential of our context-based detection method was strictly proven by the comparison with the
unchanged Moore-Bächlin algorithm on the same dataset. The context-based algorithm very
positively in uenced the reduction of false positives, which was expressed through a higher
speci city. In some cases, the context-based algorithm also eliminated true positives, reducing
sensitivity to a lesser extent. The nal comparison between the two algorithms on the basis of
their means of the sensitivity, speci city, accuracy and the F1-score showed improvement in the
overall FOG detection achieved with the new system.

164



10.2. Limitations and Future Work

10.2 L F W

Theworkdescribed in this thesis required knowledge fromseveral scienti c and technical elds,
such as medicine, industrial design and computer science, with the special focus on computer
vision, sensor fusion and machine learning. A great amount of the project time was spent on
the sof ware engineering, developing and implementing themajor system sof waremodules. A
good overview and awareness of the state-of-the art in video tracking, data fusion, people re-
identi cation and activity recognition was essential. The diverse set of subjects and the limited
development time lef certain aspects of the system open for future improvements.

Since every major functionality of the system was tested with the participant data collected
in laboratory experiments, there are some limitations in the methods of evaluation, algorithm
parametrization and the size of the datasets, that should be mentioned. For example, the accu-
racy of the position and the orientation tracking algorithmswas evaluated by having the partic-
ipants stand on themarkers on the oor. If we had on our disposal another more sophisticated
and accurate tracking system,wewould be able to conduct amore rigorous evaluation based on
the dynamic trajectories. The evaluation of the re-identi cation was conducted only with the
gallery size of 3 persons, whichwe took as the average number of people in a PDpatient’s house-
hold. Although the chosen number of persons represents a more complicated case, it would
be relevant to verify the results for galleries containing 2 or only 1 person. In the clinical and
the home experiments, where we were collecting the data for evaluation of activity recognition
and FOG detection, we wanted to collect a lot of positive FOG examples. Unfortunately, the
nature of the research on the FOG phenomenon is such that it is extremely di cult to obtain
high quantities of positive examples by conducting only short term experiments.

There are several ways in which the implemented algorithms could be improved in the fu-
ture. For the activity classi cation, we opted to use a hierarchical classi cation based on one
particular decision tree con guration. The possible improvements in the activity recognition
algorithm could come from the use of a di ferent decision tree con guration, other types of
internal node classi ers, or even a di ferent type of classi er instead of the decision tree (e.g.
multi-class SVM, Bayesian network). Furthermore, in the activity classi cation, the perfor-
mance improvements should be sought by varying the length of the activity bu fer, and by
adding new elements to the feature vector that is used at the input of the SVM component
classi ers. The FOG contextualization algorithm could bene t from exploring the in uence
of the temporal sequences of activities on FOG. Modelling the temporal relation between the
activities and FOG in a Bayesian Network type of approach might be an elegant solution.

The biggest space for a future development, we nd in the use of the patient location data
for the detection of false negatives, especially in relation to the akinetic type of freezing. We im-
plemented scenemapping tool and context-zone editor with the clear intention to handle such
problem. However, in our home data sets we did not collect enough data for the development
of the algorithm dedicated to this problem. The future work in this direction demands that
themonitoring system is permanently installed in the homes of PD patients, in order to collect
data during long periods of time. That is a challenging feat, that can be performed only by the
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big multi-institutional projects that have a high number of researchers and adequate logistics
support.

Finally, there are non-functional aspects of the system that also require additional research.
Usability is key in the acceptance of a clinical monitoring technology by its users, and it is nec-
essary to con rm it by the usability testing (Daniels et al., 2007). During the home experiments
we used the Home Experiment Questionnaire (Appendix D) to pose to our participants a few
basic questions about the technology acceptance. Their replies on how they perceive our sys-
tem were mainly positive. However, for a more conclusive usability testing, it is necessary to
have a longer period of use of the system, and to use a recognized usability questionnaire such
as the System Usability Scale (Brooke, 1996).

With this thesis we brought the system to a functional prototype stage and demonstrated
the feasibility of the proposed approach based on context. We believe that our system is a highly
valuable tool, not only for use in the freezing of gait management, but also for the application
in the management of other types of chronic diseases, where location and activity play an im-
portant role.
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Table C.1: Statistical results forTurn SVM classifier on 8 healthy people dataset. Detailed data for each

training repetition.

Training ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score
1 460 177 98 3746 0.82 0.95 0.72 0.97 0.94 0.77
2 408 98 201 3891 0.67 0.98 0.81 0.95 0.93 0.73
3 382 85 104 3724 0.79 0.98 0.82 0.97 0.96 0.80
4 369 90 106 3641 0.78 0.98 0.80 0.97 0.95 0.79
5 403 97 170 3871 0.70 0.98 0.81 0.96 0.94 0.75
6 489 167 84 3503 0.85 0.95 0.75 0.98 0.94 0.80
7 398 110 79 3754 0.83 0.97 0.78 0.98 0.96 0.81
8 356 85 210 3651 0.63 0.98 0.81 0.95 0.93 0.71

μ[ ] - - - - 76.0 97.0 78.7 96.6 94.4 76.9
σ [ ] - - - - 8.3 1.0 3.5 1.3 1.0 3.6

Sens. - Sensitivity

Spec. - Specificity

Acc. - Accuracy

Table C.2: Statistical results forBend SVM classifier on 8 healthy people dataset. Detailed data for each

training repetition.

Training ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score
1 343 40 32 4025 0.91 0.99 0.90 0.99 0.98 0.91
2 298 44 65 4146 0.82 0.99 0.87 0.98 0.98 0.85
3 326 41 26 3902 0.93 0.99 0.89 0.99 0.98 0.91
4 289 32 25 3856 0.92 0.99 0.90 0.99 0.99 0.91
5 326 40 74 4047 0.82 0.99 0.89 0.98 0.97 0.85
6 296 71 28 3807 0.91 0.98 0.81 0.99 0.98 0.86
7 332 53 45 3911 0.88 0.99 0.86 0.99 0.98 0.87
8 292 119 47 3840 0.86 0.97 0.71 0.99 0.96 0.78

μ[ ] - - - - 88.2 98.6 85.3 98.9 97.8 86.6
σ [ ] - - - - 4.5 0.7 6.5 0.4 0.8 4.4

180



Table C.3: Statistical results forMove SVM classifier on 8 healthy people dataset. Detailed data for each

training repetition.

Class Training ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score

(0) Stand

1 1857 106 53 1491 0.97 0.93 0.95 0.97 0.95 0.96
2 1647 137 75 1773 0.96 0.93 0.92 0.96 0.94 0.94
3 1863 87 55 1452 0.97 0.94 0.96 0.96 0.96 0.96
4 757 80 43 1432 0.98 0.95 0.96 0.97 0.96 0.97
5 1811 149 50 1605 0.97 0.92 0.92 0.97 0.94 0.95
6 1737 83 83 1496 0.95 0.95 0.95 0.95 0.95 0.95
7 1915 112 51 1311 0.97 0.92 0.94 0.96 0.95 0.96
8 1511 108 64 1746 0.96 0.94 0.93 0.96 0.95 0.95

μ[ ] - - - - 96.7 93.5 94.2 96.3 95.2 95.4
σ [ ] - - - - 0.9 1.2 1.4 0.7 0.7 0.9

(1) Forward

1 1256 46 47 2158 0.96 0.98 0.96 0.98 0.97 0.96
2 1517 39 108 1968 0.93 0.98 0.97 0.95 0.96 0.95
3 1195 50 20 2192 0.98 0.98 0.96 0.99 0.98 0.97
4 1219 24 28 2041 0.98 0.99 0.98 0.99 0.98 0.98
5 1357 34 59 2165 0.96 0.98 0.98 0.97 0.97 0.97
6 1231 50 40 2078 0.97 0.98 0.96 0.98 0.97 0.96
7 1122 36 31 2200 0.97 0.98 0.97 0.99 0.98 0.97
8 1509 44 53 1823 0.97 0.98 0.97 0.97 0.97 0.97

μ[ ] - - - - 96.6 98.1 97.0 97.7 97.5 96.8
σ [ ] - - - - 1.5 0.4 0.7 1.3 0.7 0.7

(2) Backward

1 95 7 20 3385 0.83 1.00 0.93 0.99 0.99 0.88
2 91 14 12 3515 0.88 1.00 0.87 1.00 0.99 0.88
3 73 11 19 3354 0.79 1.00 0.87 0.99 0.99 0.83
4 75 7 17 3213 0.82 1.00 0.91 0.99 0.99 0.86
5 98 8 20 3489 0.83 1.00 0.92 0.99 0.99 0.88
6 78 14 11 3296 0.88 1.00 0.85 1.00 0.99 0.86
7 75 3 33 3278 0.69 1.00 0.96 0.99 0.99 0.81
8 89 17 13 3310 0.87 0.99 0.84 1.00 0.99 0.86

μ[ ] - - - - 82.4 99.7 89.4 99.5 99.2 85.5
σ [ ] - - - - 6.2 0.1 4.4 0.2 0.1 2.5

(3) Lateral

1 113 27 66 3301 0.63 0.99 0.81 0.98 0.97 0.71
2 139 48 43 3402 0.76 0.99 0.74 0.99 0.97 0.75
3 160 18 72 3207 0.69 0.99 0.90 0.98 0.97 0.78
4 131 19 42 3120 0.76 0.99 0.87 0.99 0.98 0.81
5 137 21 83 3374 0.62 0.99 0.87 0.98 0.97 0.72
6 169 37 50 3143 0.77 0.99 0.82 0.98 0.97 0.80
7 107 19 55 3208 0.66 0.99 0.85 0.98 0.98 0.74
8 137 14 53 3225 0.72 1.00 0.91 0.98 0.98 0.80

μ[ ] - - - - 70.2 99.2 84.6 98.2 97.6 76.5
σ [ ] - - - - 6.0 0.3 5.4 0.4 0.4 3.8
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Table C.4: Statistical results for hierarchical activity classifier on 8 healthy people dataset.

Class Training ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score

(0
)S

ta
nd

1 1685 147 98 2350 0.95 0.94 0.92 0.96 0.94 0.93
2 1500 146 99 2741 0.94 0.95 0.91 0.97 0.95 0.92
3 1699 127 120 2210 0.93 0.95 0.93 0.95 0.94 0.93
4 1639 111 103 2209 0.94 0.95 0.94 0.96 0.95 0.94
5 1648 181 101 2399 0.94 0.93 0.90 0.96 0.93 0.92
6 1556 122 126 2281 0.93 0.95 0.93 0.95 0.94 0.93
7 1796 152 93 2099 0.95 0.93 0.92 0.96 0.94 0.94
8 1367 119 111 2562 0.92 0.96 0.92 0.96 0.94 0.92

μ[ ] - - - - 93.8 94.4 92.1 95.7 94.2 92.9
σ [ ] - - - - 0.9 0.9 1.1 0.6 0.4 0.7

(1)
Fo

rw
ar
d
str

aig
ht

w
alk

1 629 95 150 3406 0.81 0.97 0.87 0.96 0.94 0.84
2 932 191 119 3244 0.89 0.94 0.83 0.96 0.93 0.86
3 615 116 81 3344 0.88 0.97 0.84 0.98 0.95 0.86
4 647 116 89 3210 0.88 0.97 0.85 0.97 0.95 0.86
5 763 177 99 3290 0.89 0.95 0.81 0.97 0.94 0.85
6 584 73 152 3276 0.79 0.98 0.89 0.96 0.94 0.84
7 549 85 113 3393 0.83 0.98 0.87 0.97 0.95 0.85
8 1 843 217 110 2989 0.88 0.93 0.80 0.96 0.92 0.84

μ[ ] - - - - 85.6 96.0 84.4 96.6 94.1 84.9
σ [ ] - - - - 3.9 1.7 3.1 0.7 1.1 1.1

(2
)B

ac
kw

ar
d/

lat
er
al

m
ov

e

1 181 47 112 3940 0.62 0.99 0.79 0.97 0.96 0.69
2 222 64 70 4130 0.76 0.98 0.78 0.98 0.97 0.77
3 203 60 124 3769 0.62 0.98 0.77 0.97 0.96 0.69
4 193 35 77 3757 0.71 0.99 0.85 0.98 0.97 0.78
5 211 44 125 3949 0.63 0.99 0.83 0.97 0.96 0.71
6 213 70 98 3704 0.68 0.98 0.75 0.97 0.96 0.72
7 151 32 119 3838 0.56 0.99 0.83 0.97 0.96 0.67
8 207 46 90 3816 0.70 0.99 0.82 0.98 0.97 0.75

μ[ ] - - - - 66.0 98.7 80.1 97.4 96.4 72.2
σ [ ] - - - - 6.5 0.3 3.3 0.5 0.6 4.0

(3
)W

id
et

ur
n

1 332 137 84 3727 0.80 0.96 0.71 0.98 0.95 0.75
2 276 83 206 3921 0.57 0.98 0.77 0.95 0.94 0.66
3 291 77 84 3704 0.78 0.98 0.79 0.98 0.96 0.78
4 288 83 94 3597 0.75 0.98 0.78 0.97 0.96 0.76
5 282 74 176 3797 0.62 0.98 0.79 0.96 0.94 0.69
6 377 146 70 3492 0.84 0.96 0.72 0.98 0.95 0.78
7 308 97 68 3667 0.82 0.97 0.76 0.98 0.96 0.79
8 259 69 199 3632 0.57 0.98 0.79 0.95 0.94 0.66

μ[ ] - - - - 71.8 97.5 76.3 96.8 94.8 73.4
σ [ ] - - - - 11.5 0.8 3.2 1.4 1.0 5.6
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Table C.5: Statistical results for hierarchical activity classifier on 8 healthy people dataset – continuation from

the previous page.

Class Training ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score

(4
)S

po
tt

ur
n

1 90 45 29 4116 0.76 0.99 0.67 0.99 0.98 0.71
2 84 35 32 4335 0.72 0.99 0.71 0.99 0.99 0.71
3 68 29 22 4037 0.76 0.99 0.70 0.99 0.99 0.73
4 56 21 23 3962 0.71 0.99 0.73 0.99 0.99 0.72
5 76 41 30 4182 0.72 0.99 0.65 0.99 0.98 0.68
6 80 40 27 3938 0.75 0.99 0.67 0.99 0.98 0.70
7 63 32 23 4022 0.73 0.99 0.66 0.99 0.99 0.70
8 70 24 25 4040 0.74 0.99 0.74 0.99 0.99 0.74

μ[ ] - - - - 73.5 99.2 69.1 99.4 98.6 71.2
σ [ ] - - - - 1.8 0.2 3.4 0.1 0.2 1.8

(5
)B

en
d

1 246 27 124 3883 0.66 0.99 0.90 0.97 0.96 0.77
2 211 32 162 4081 0.57 0.99 0.87 0.96 0.96 0.69
3 239 43 120 3754 0.67 0.99 0.85 0.97 0.96 0.75
4 210 41 110 3701 0.66 0.99 0.84 0.97 0.96 0.74
5 245 37 150 3897 0.62 0.99 0.87 0.96 0.96 0.72
6 220 38 112 3715 0.66 0.99 0.85 0.97 0.96 0.75
7 247 46 124 3723 0.67 0.99 0.84 0.97 0.96 0.74
8 213 77 135 3734 0.61 0.98 0.73 0.97 0.95 0.67

μ[ ] - - - - 63.9 98.9 84.4 96.7 95.9 72.7
σ [ ] - - - - 3.7 0.4 4.9 0.4 0.5 3.3

(6
)S

it

1 515 104 5 3656 0.99 0.97 0.83 1.00 0.97 0.90
2 571 139 2 3774 1.00 0.96 0.80 1.00 0.97 0.89
3 476 113 14 3553 0.97 0.97 0.81 1.00 0.97 0.88
4 521 101 12 3428 0.98 0.97 0.84 1.00 0.97 0.90
5 418 132 5 3774 0.99 0.97 0.76 1.00 0.97 0.86
6 468 98 2 3517 1.00 0.97 0.83 1.00 0.98 0.90
7 471 111 15 3543 0.97 0.97 0.81 1.00 0.97 0.88
8 525 123 5 3506 0.99 0.97 0.81 1.00 0.97 0.89

μ[ ] - - - - 98.5 96.9 81.1 99.8 97.1 88.9
σ [ ] - - - - 1.1 0.3 2.4 0.2 0.3 1.5
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Table C.6: Statistical results forTurn SVM classifier on 4 patient clinical dataset. Detailed data for each

patient.

Patient ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score
1 83 4 14 528 0.86 0.99 0.95 0.97 0.97 0.90
2 30 6 65 740 0.32 0.99 0.83 0.92 0.92 0.46
3 56 29 27 665 0.67 0.96 0.66 0.96 0.93 0.67
4 102 6 31 722 0.77 0.99 0.94 0.96 0.96 0.85

μ[ ] - - - - 65.3 98.4 84.8 95.3 94.3 71.8
σ [ ] - - - - 23.7 1.7 13.7 2.4 2.6 20.1

Table C.7: Statistical results forBend SVM classifier on 4 patient clinical dataset. Detailed data for each pa-

tient.

Patient ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score
1 31 30 8 560 0.79 0.95 0.51 0.99 0.94 0.62
2 51 25 26 739 0.66 0.97 0.67 0.97 0.94 0.67
3 47 13 26 691 0.64 0.98 0.78 0.96 0.95 0.71
4 60 9 22 720 0.73 0.99 0.87 0.97 0.96 0.79

μ[ ] - - - - 70.8 97.1 70.8 97.2 94.8 69.7
σ [ ] - - - - 6.9 1.7 15.6 1.0 1.1 7.4
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Table C.8: Statistical results forMove SVM classifier on 4 patient clinical dataset. Detailed data for each

patient.

Class Patient ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score

(0) Stand

1 240 6 25 198 0.91 0.97 0.98 0.89 0.93 0.94
2 279 4 44 201 0.86 0.98 0.99 0.82 0.91 0.92
3 110 2 40 219 0.73 0.99 0.98 0.85 0.89 0.84
4 162 1 33 336 0.83 1.00 0.99 0.91 0.94 0.91

μ[ ] - - - - 83.3 98.5 98.4 86.6 91.6 90.1
σ [ ] - - - - 7.3 1.2 0.8 4.1 2.3 4.3

(1) Forward

1 192 23 12 242 0.94 0.91 0.89 0.95 0.93 0.92
2 201 41 4 282 0.98 0.87 0.83 0.99 0.91 0.90
3 216 37 5 113 0.98 0.75 0.85 0.96 0.89 0.91
4 319 30 17 166 0.95 0.85 0.91 0.91 0.91 0.93

μ[ ] - - - - 96.2 84.7 87.3 95.1 91.0 91.5
σ [ ] - - - - 2.0 6.8 3.8 3.3 1.6 1.3

(2) Backward

1 0 1 0 468 - 1.00 0.00 1.00 1.00 -
2 0 0 0 528 - 1.00 - 1.00 1.00 -
3 0 1 0 468 - 1.00 0.00 1.00 1.00 -
4 0 0 0 532 - 1.00 - 1.00 1.00 -

μ[ ] - - - - - 99.9 0.0 100.0 99.9 -
σ [ ] - - - - - 0.1 - 0.0 0.1 -

(3) Lateral

1 0 7 0 462 - 0.99 0.00 1.00 0.99 -
2 0 3 0 525 - 0.99 0.00 1.00 0.99 -
3 0 6 0 365 - 0.98 0.00 1.00 0.98 -
4 0 20 1 511 - 0.96 0.00 1.00 0.96 -

μ[ ] - - - - - 98.1 0.0 100.0 98.1 -
σ [ ] - - - - - 1.4 0.0 0.1 1.4 -
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Table C.9: Statistical results for hierarchical activity classifier on 4 patient dataset.

Class Patient ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score

(0
)S

ta
nd

1 153 25 33 410 0.82 0.94 0.86 0.93 0.91 0.84
2 182 47 36 562 0.83 0.92 0.79 0.94 0.90 0.81
3 64 22 39 639 0.62 0.97 0.74 0.94 0.92 0.68
4 56 20 26 732 0.68 0.97 0.74 0.97 0.94 0.71

μ[ ] - - - - 74.0 95.1 78.4 94.3 91.8 76.0
σ [ ] - - - - 10.5 2.3 5.7 1.7 2.0 7.9

(1)
Fo

rw
.s

tra
ig
ht 1 157 24 23 417 0.87 0.95 0.87 0.95 0.92 0.87

2 189 40 10 588 0.95 0.94 0.83 0.98 0.94 0.88
3 153 48 14 549 0.92 0.92 0.76 0.98 0.92 0.83
4 269 46 24 495 0.92 0.91 0.85 0.95 0.92 0.88

μ[ ] - - - - 91.4 92.9 82.7 96.5 92.5 86.7
σ [ ] - - - - 3.2 1.4 4.7 1.7 1.0 2.5

(2
)B

ac
k/

lat
er
al

1 0 4 0 617 - 0.99 0.00 1.00 0.99 -
2 0 2 0 825 - 1.00 0.00 1.00 1.00 -
3 0 4 0 760 - 0.99 0.00 1.00 0.99 -
4 0 14 0 820 - 0.98 0.00 1.00 0.98 -

μ[ ] - - - - - 99.2 0.0 100.0 99.2 -
σ [ ] - - - - - 0.6 0.0 0.0 0.6 -

(3
)W

id
et

ur
n

1 8 13 7 593 0.53 0.98 0.38 0.99 0.97 0.44
2 3 6 10 808 0.23 0.99 0.33 0.99 0.98 0.27
3 14 30 31 689 0.31 0.96 0.32 0.96 0.92 0.31
4 18 20 26 770 0.41 0.97 0.47 0.97 0.94 0.44

μ[ ] - - - - 37.1 97.6 37.7 97.5 95.3 36.8
σ [ ] - - - - 13.0 1.4 7.0 1.6 2.7 8.7

(4
)S

po
tt

ur
n

1 55 9 24 533 0.70 0.98 0.86 0.96 0.95 0.77
2 12 13 67 735 0.15 0.98 0.48 0.92 0.90 0.23
3 12 19 25 708 0.32 0.97 0.39 0.97 0.94 0.35
4 52 10 57 715 0.48 0.99 0.84 0.93 0.92 0.61

μ[ ] - - - - 41.2 98.2 64.1 94.1 92.8 49.0
σ [ ] - - - - 23.1 0.5 24.3 2.4 2.0 24.4
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Table C.10: Statistical results for hierarchical activity classifier on 4 patient dataset – continuation from the

previous page.

Class Patient ID TP FP FN TN Sens. Spec. PPV NPV Acc. F1 score

(5
)B

en
d

1 21 28 18 554 0.54 0.95 0.43 0.97 0.93 0.48
2 55 19 21 732 0.72 0.97 0.74 0.97 0.95 0.73
3 49 16 26 673 0.65 0.98 0.75 0.96 0.95 0.70
4 54 36 27 717 0.67 0.95 0.60 0.96 0.92 0.63

μ[ ] - - - - 64.6 96.4 63.1 96.7 93.7 63.6
σ [ ] - - - - 7.8 1.4 15.2 0.4 1.4 11.4

(6
)S

it

1 108 16 14 483 0.89 0.97 0.87 0.97 0.95 0.88
2 238 21 4 564 0.98 0.96 0.92 0.99 0.97 0.95
3 317 16 20 411 0.94 0.96 0.95 0.95 0.95 0.95
4 217 22 8 587 0.96 0.96 0.91 0.99 0.96 0.94

μ[ ] - - - - 94.3 96.5 91.2 97.6 96.0 92.7
σ [ ] - - - - 4.3 0.2 3.3 1.7 0.9 3.4

Table C.11: Confusion table forMove SVM classifier for 8 healthy people dataset. Table contains averaged

numbers of classified events calculated from evaluation of 8 trainedmodels. Parentheses hold average value

expressed as the percentage of actual class.

Predicted
(0) Stand (1) Forward (2) Backward (3) Lateral

A
ct
ua

l (0) Stand 1762 (96.7) 32 (1.7) 10 (0.5) 18 (1.5)
(1) Forward 42 (3.1) 1301 (96.4) 0 (0.0) 7 (0.5)
(2) Backward 18 (17.1) 0 (0.0) 84 (82.3) 1 (0.6)
(3) Lateral 49 (25.0) 9 (4.6) 0 (0.2) 137 (70.2)
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Table C.12: Confusion table for hierarchical activity classifier for 8 healthy people dataset. Table contains av-

eraged numbers of classified events calculated from evaluation of 8 trainedmodels. Parentheses hold average

value expressed as the percentage of actual class.

Predicted
(0) Stand (1) Forw. str. (2) Back./Lat. (3) Wide turn (4) Spot turn (5) Bend (6) Sit

A
ct
ua

l

(0) Stand 1611 (93.8) 26 (1.5) 44 (2.5) 1 (0.1) 10 (0.6) 27 (1.5) 0 (0.0)
(1) Forw. str. 26 (3.2) 695 (85.9.4) 3 (0.4) 81 (10.0) 0 (0.0) 5 (0.6) 0 (0.0)
(2) Back./Lat. 83 (27.7) 8 (2.5) 198 (66.0) 2 (0.5) 5 (1.5) 5 (1.7) 0 (0.0)
(3) Wide turn 2 (0.6) 100 (23.5) 2 (0.4) 302 (71.1) 19 (4.4) 0 (0.0) 0 (0.0)
(4) Spot turn 10 (9.5) 1 (1.0) 1 (1.4) 12 (12.3) 73 (73.6) 2 (2.3) 0 (0.0)

(5) Bend 14 (4.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 229 (63.8) 115 (32.1)
(6) Sit 3 (0.6) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (0.8) 496 (98.5)

Table C.13: Confusion table forMove SVM classifier for 4 patient clinical dataset. Table contains averaged

numbers of classified events calculated from evaluation on 4 patients with one trainedmodel. Parentheses hold

average value expressed as the percentage of actual class.

Predicted
(0) Stand (1) Forward (2) Backward (3) Lateral

A
ct
ua

l (0) Stand 198 (84.9) 33 (14.0) 0 (0.0) 3 (1.3)
(1) Forward 3 (1.2) 232 (96.1) 0 (0.0) 7 (2.9)
(2) Backward 0 (0.0) 0 (0.0) 84 (0.0) 0 (0.0)
(3) Lateral 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Table C.14: Confusion table for hierarchical activity classifier for 4 patient clinical dataset. Table contains aver-

aged numbers of classified events calculated from evaluation on 4 patients with one trainedmodel. Parentheses

hold average value expressed as the percentage of actual class.

Predicted
(0) Stand (1) Forw. str. (2) Back./Lat. (3) Wide turn (4) Spot turn (5) Bend (6) Sit

A
ct
ua

l

(0) Stand 114 (77.6) 17 (11.6) 2 (1.4) 1 (0.7) 11 (7.5) 3 (2.0) 0 (0.0)
(1) Forw. str. 7 (3.3) 192 (91.4) 4 (1.9) 2 (1.0) 1 (0.5) 5 (2.4) 0 (0.0)
(2) Back./Lat. 0 (0.0) 0 (0.0) 10 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
(3) Wide turn 1 (3.4) 17 (58.6) 0 (0.0) 11 (37.9) 0 (0.0) 1 (3.4) 0 (0.0)
(4) Spot turn 16 (21.1) 5 (6.6) 0 (0.0) 14 (18.4) 33 (43.4) 8 (10.5) 1 (0.0)

(5) Bend 3 (4.4) 1 (1.5) 0 (0.0) 0 (0.0) 1 (1.5) 45 (66.2) 18 (26.5)
(6) Sit 2 (0.9) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 9 (3.9) 220 (94.8)
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DEFROST: Home System for Monitoring Freezing of Gait in Parkinson's Disease
[Home Experiment Questionnaire]

QUESTIONAIRE NUMBER: DATE:

NAME: IDENTIFYING LABEL:
SURNAME:
PHONE NUMBER:
ADDRESS:

INFORMATION:
The object of the study is to develop algorithms able to detect FoG episodes using contextual
information of the patients. To do so, we will construct the database of ambulatory movement
of Parkinson's disease patients. Data collection consists of recording the signals from two Kin-
ect cameras and the inertial sensor (smartphone on waist) in order to obtain examples of
Freezing of Gait (FoG) symptom episodes in the patient's home environment. Recorded video
data will also be used in the labelling process to achieve the golden standard.
INTERVIEWER

□ I have informed the patient of the study procedures
□ I have left a copy of the patient information sheet

INCLUSION CRITERIA:
I.1. Did he/she sign the consent form?

□ No
□ Yes

A. SOCIODEMOGRAPHIC AND HOME INFORMATION
A.1. Sex: □ Male □ Female
A.2. Age …............ years old
A.3. Height …..........meters
A.4. Marital Status: 1) Single 2) Married 3) Living with partner 4) Separated

5) Widowed
A.5. How many rooms is there in the house?
….................................................................................................................................................
A.6 How long do you live here? ….............................. years
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B. ON-OFF STATES AND TREMOR
B.1. Are “off” periods predictable?

□ Yes
□ No

B.2. Are “off” periods unpredictable?
□ Yes
□ No

B.3. Do “off” periods come suddenly?
□ Yes
□ No

B.4. What proportion of the walking day is the patient “off” on average?
□ None
□ 1-25% of a day
□ 26-50% of a day
□ 51-75% of a day
□ 76-100% of a day

B.4. Do you experience tremor during the day? If, so, where?
□ None
□ Yes. Lower parts. Legs
□ Yes. Upper parts. Arms.

C. FREEZING OF GAIT - General
All answers except in response to item 3, should be based on the experience over the last
week.
This questionnaire should be completed by the researcher after asking and demonstrating
freezing phenomenon if necessary.
C.1. During your worst state - do you walk:

□ normally
□ almost normally..somewhat slow
□ slow, but fully independent
□ need assistance or walking aid
□ unable to walk

C.2. Are you gait difficulties affecting your daily activities and independence?
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□ not at all
□ mildly
□ moderately
□ severely
□ unable to walk

C.3. Do you feel that your feet get glued to the floor while walking, making a turn or when
trying to initiate walking (freezing)?

□ never
□ very rarely: about once a month
□ rarely: about once a week
□ often: about once a day
□ always: whenever walking

C.4. How long is your longest freezing episode?
□ never happened
□ 1-2 seconds
□ 3-10 seconds
□ 11-30 seconds
□ unable to walk for more than 30 seconds

C.5. How long is your typical start hesitation episode (freezing when initiating the first step)?
□ none
□ takes longer than 1 second to start walking
□ takes longer than 3 seconds to start walking
□ takes longer than 10 seconds to start walking
□ takes longer than 30 seconds to start walking

C.6. How long is your typical turning hesitation: (freezing when initiating the first step)?
□ none
□ resume turning in 1 to 2 seconds
□ resume turning in 3 to 10 seconds
□ resume turning in 11 to 30 seconds
□ unable to resume turning for more than 30 seconds

D. FREEZING OF GAIT – Indoor triggers
D.1. Do you experience freezing more often indoors or outdoors?

□ indoor
□ outdoor

192



D.2. Is there a specific spot in the house where you always have freezing? If yes what is it?
□ No
□ Yes Place:...............................................................

D.3. In what room in the house would you say that you experience freezing of gait most
often?

□ living room
□ kitchen
□ bathroom
□ bedroom(s)
□ hall

D.4. Do you have more problem with high or with low obstacles? I.e. is it easier to pass 
through the door or between the chair and the table?

□ no difference
□ high obstacles are harder
□ low obstacles are harder

E. FREEZING OF GAIT – Exit methods
E.1. How do you usually get out of your freezing episode?

□ just by waiting
□ using some of the self discovered methods
□ using some of the methods others trained me in
□ by direct help of someone else

E.2. Have you been trained in sensory cueing (visual, audio)? If so, do you find it helpful?
□ No
□ Yes Found useful: No/Yes

F. TECHNOLOGY ACCEPTANCE
F.1. Would you use a belt with the sensor like you did today every day, if it could help you get
out of the freezing episodes faster?

□ No
□ Yes
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F.2. Would you agree of having cameras in your living room and hall, if it could help you get
out of the freezing episodes faster?

□ No
□ Yes

F.3. Would you agree of both wearing a belt with the sensor and having cameras in your living
room and hall, if it could help you get out of the freezing episodes faster?

□ No
□ Yes

F.4. Out of the two technologies, which one do you find more acceptable for helping you every
day?

□ Cameras
□ Belt with the sensor

G. USUAL ACTIVITIES DURING THE DAY
The participant will describe what he/she usually does in a day.
Morning
1.-.................................................................................................................................................
2.-.................................................................................................................................................
3.-.................................................................................................................................................
4.-.................................................................................................................................................
5.-.................................................................................................................................................
Afternoon
1.-.................................................................................................................................................
2.-.................................................................................................................................................
3.-.................................................................................................................................................
4.-.................................................................................................................................................
5.-.................................................................................................................................................
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TrackData.msg
Header header Header with timestamp information
oat64 original ts Original timestamp
oat32 x Position in x coordinate of camera base frame
oat32 y Position in y coordinate of camera base frame
oat32 z distance from center of camera base frame
oat32 height Un ltered height

int32 orientation class Output orientation from NN classi er
oat32 orientation probability Probability for NN class

int32 scene id Unique numeric identi cation for camera
int32 person id Unique numeric identi cation for track
string camera name User given camera name
oat32 movement speed Speed as scalar value
oat32 velocity x Velocity in x coordinate of camera base frame
oat32 velocity y Velocity in y coordinate of camera base frame

string posture Classi cation output of posture FSM
oat64[] height ltered Filtered height
oat64[] height velocity Velocity from ltered height
oat32 height standing Estimated standing height

PersonModel.msg
int32 action type Filtered height
uint32 pid Unique numeric identi cation for person
string camera name Camera which took person model
int32 identity state Information whether identity is con rmed
oat32[] marker color Color assigned to person

sensor msgs/Image MCD rgb Scaled image of person
sensor msgs/Image
MCD mask upper

Mask for the up part of body

sensor msgs/Image
MCD mask lower

Mask for the down part of body

uint32 update count Counts appearance updates
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FOGData.msg
Header header Header with timestamp information
oat32 freeze power FFT power in freezing band
oat32 loco power FFT power in locomotor band
oat32 total power FFT power in all bands
oat32 freezing index Freezing index

int32 fog label Ground truth label for FOG
sensor msgs/Imu imu The raw sensor data from IMU

ContextData.msg
Header header Header with timestamp information
oat32 x Position in x coordinate of camera base frame
oat32 y Position in y coordinate of camera base frame
oat32 displacement Di ference of positions
oat32 forward velocity Forward velocity of a person
oat32 lateral velocity Lateral velocity of a person
oat32 velocity x avg Average forward velocity
oat32 velocity y avg Average lateral velocity
oat32 velocity x std Std. deviation of forward velocity
oat32 velocity y std Std. deviation of lateral velocity
oat32 movement speed Movement speed
oat32 height Person height (latest)
oat32 height stand Person height (standing)
oat32 height di f Height di ference

int32 posture Posture class code
oat32 freeze power FFT power in freezing band
oat32 loco power FFT power in locomotor band
oat32 total power FFT power in all bands
oat32 rotation angle Angle of rotation in camera base frame
oat32 rotation velocity Velocity of rotation in camera base frame
oat32 freezing index Freezing index
oat32 calculated value1 Space for additional calculation results
oat32 calculated value2 Space for additional calculation results
oat32 imu acc x Raw acceleration x axis
oat32 imu acc y Raw acceleration y axis
oat32 imu acc z Raw acceleration z axis
oat32 acc magn avg Average magnitude of acceleration
oat32 acc magn std Std. deviation magnitude of acceleration
oat32 imu ang vel x Raw angular velocity around x axis
oat32 imu ang vel y Raw angular velocity around y axis
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oat32 imu ang vel z Raw angular velocity around z axis
oat32 rot vel x avg Average velocity around vertical axis
oat32 rot vel z avg Std. deviation velocity around vertical axis
oat32 rot vel x std Average velocity around transversal axis
oat32 rot vel z std Std. deviation velocity around transversal axis

int32 bend class Output class of SVM Bend classi er
int32 turn class Output class of SVM Turn classi er
int32 move class Output class of SVM Move classi er
int32 activity class Output class of activity classi er
int32 moore fog class Output class of Moore-Bächlin algorithm
int32 context fog class Possibility for FOG based on context only
int32 fog class Output class of contextualized M-B algorithm
int32 bend label Ground truth label for bending
int32 turn label Ground truth label for turns
int32 move label Ground truth label for movement direction
int32 activity label Ground truth label for activity
int32 fog label Ground truth label for FOG
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