11,063 research outputs found

    Attentional Narrowing: Triggering, Detecting and Overcoming a Threat to Safety.

    Full text link
    In complex safety-critical domains, such as aviation or medicine, considerable multitasking requirements and attentional demands are imposed on operators who may, during off-nominal events, also experience high levels of anxiety. High task load and anxiety can trigger attentional narrowing – an involuntary reduction in the range of cues that can be utilized by an operator. As evidenced by numerous accidents, attentional narrowing is a highly undesirable and potentially dangerous state as it hampers information gathering, reasoning, and problem solving. However, because the problem is difficult to reproduce in controlled environments, little is known about its triggers, markers and possible countermeasures. Therefore, the goals of this dissertation were to (1) identify reliable triggers of attentional narrowing in controlled laboratory settings, (2) identify real-time markers of attentional narrowing that can also distinguish that phenomenon from focused attention – another state of reduced attentional field that, contrary to attentional narrowing, is deliberate and often desirable, (3) develop and test display designs that help overcome the narrowing of the attentional field. Based on a series of experiments in the context of a visual search task and a multi-tasking environment, novel unsolvable problems were identified as the most reliable trigger of attentional narrowing. Eye tracking was used successfully to detect and trace the phenomenon. Specifically, three eye tracking metrics emerged as promising markers of attentional narrowing: (1) the percentage of fixations, (2) dwell duration and (3) fixation duration in the display area where the novel problem was presented. These metrics were used to develop an algorithm capable of detecting attentional narrowing in real time and distinguishing it from focused attention. A command display (as opposed to status) was shown to support participants in broadening their attentional field and improving their time sharing performance. This dissertation contributes to the knowledge base in attentional narrowing and, more generally, attention management. A novel eye tracking based technique for detecting the attentional state and a promising countermeasure to the problem were developed. Overall, the findings from this research contribute to improved safety and performance in a range of complex high-risk domains.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135773/1/jprinet_1.pd

    Surrogate in-vehicle information systems and driver behaviour: Effects of visual and cognitive load in simulated rural driving

    Get PDF
    The underlying aim of HASTE, an EU FP5 project, is the development of a valid, cost-effective and reliable assessment protocol to evaluate the potential distraction of an in-vehicle information system on driving performance. As part of this development, the current study was performed to examine the systematic relationship between primary and secondary task complexity for a specific task modality in a particular driving environment. Two fundamentally distinct secondary tasks (or surrogate in-vehicle information systems, sIVIS) were developed: a visual search task, designed such that it only required visual processing/demand and an auditory continuous memory task, intended to cognitively load drivers without any visual stimulus. A high fidelity, fixed-base driving simulator was used to test 48 participants on a car following task. Virtual traffic scenarios varied in driving demand. Drivers compensated for both types of sIVIS by reducing their speed (this result was more prominent during interaction with the visual task). However, they seemed incapable of fully prioritising the primary driving task over either the visual or cognitive secondary tasks as an increase in sIVIS demand was associated with a reduction in driving performance: drivers showed reduced anticipation of braking requirements and shorter time-to-collision. These results are of potential interest to designers of in-vehicle systems

    What do cyclists need to see to avoid single-bicycle crashes?

    Get PDF
    The number of single-bicycle crash victims is substantial in countries with high levels of cycling. To study the role of visual characteristics of the infrastructure, such as pavement markings, in single-bicycle crashes, a study in two steps was conducted. In Study 1, a questionnaire study was conducted among bicycle crash victims (n = 734). Logistic regression was used to study the relationship between the crashes and age, light condition, alcohol use, gaze direction and familiarity with the crash scene. In Study 2, the image degrading and edge detection method (IDED-method) was used to investigate the visual characteristics of 21 of the crash scenes. The results of the studies indicate that crashes, in which the cyclist collided with a bollard or road narrowing or rode off the road, were related to the visual characteristics of bicycle facilities. Edge markings, especially in curves of bicycle tracks, and improved conspicuity of bollards are recommended. Statement of Relevance: Elevated single-bicycle crash numbers are common in countries with high levels of cycling. No research has been conducted on what cyclists need to see to avoid this type of crash. The IDED-method to investigate crash scenes is new and proves to be a powerful tool to quantify 'visual accessibility'. © 2011 Taylor & Francis

    Safety impacts of in-car navigation systems

    Get PDF

    Designing Auditory Warning Signals to Improve the Safety of Commercial Vehicles

    Get PDF
    Based on four studies, this thesis aims to explore how to design auditory warning signals that can facilitate safer driving by operators of heavy goods vehicles. The first three studies focus on the relationships between certain characteristics of auditory warnings and various indicators of traffic safety. A deeper understanding of these relationships would allow system developers to design auditory signals that are better optimised for safety. The fourth study examines the opinions of both vehicle developers and professional drivers regarding warning attributes. One major conclusion is that meaningful warning sounds that are related to the critical event can improve safety. As compared with arbitrarily mapped sounds, meaningful sounds are easier to learn, can improve drivers’ situation awareness, and generate less interference and less annoyance. The present thesis also supports the view that commercial drivers’ initial acceptance of these sounds may be very high. Annoyance is an especially important aspect of warning design to consider; it can negatively influence driving performance and may lead drivers to turn off their warning systems. This research supports the notion that drivers do not consider that negative experience is an appropriate attribute of auditory warnings designed to increase their situation awareness. Also, commercial drivers seem to report, significantly more than vehicle developers, that having less-annoying auditory warnings is important in high-urgency driving situations. Furthermore, the studies presented in this thesis indicate that annoyance cannot be predicted based on the physical properties of the warning alone. Learned meaning, appropriateness of the mapping between a warning and a critical event, and individual differences between drivers may also significantly influence levels of annoyance. Arousal has been identified as an important component of driver reactions to auditory warnings. However, high levels of arousal can lead to a narrowing of attention, which would be suboptimal for critical situations during which drivers need to focus on several ongoing traffic events. The present work supports the notion that high-urgency warnings can influence commercial drivers’ responses to unexpected peripheral events (i.e., those that are unrelated to the warning) in terms of response force, but not necessarily in terms of response time. The types of auditory warnings that will be developed for future vehicles depend not only on advances in research, but also on the opinions of developers and drivers. The present research shows that both vehicle developers and drivers are aware of several of the potentially important characteristics of auditory warnings. For example, they both recognise that warnings should be easy to understand. However, they do disagree regarding certain attributes of warnings, and, furthermore, developers may tend to employ a “better safe than sorry” strategy (by neglecting factors concerning annoyance and the elicitation of severe startled responses) when designing high-urgency warnings. Developers’ recognition of the potentially important attributes of auditory warnings should positively influence the future development of in-vehicle systems. However, considering the current state of research regarding in-vehicle warnings, it remains challenging to predict the most suitable sounds for specific warning functions. One recommendation is to develop a design process that examines the appropriateness of in-vehicle auditory warnings. This thesis suggests an initial version of such a process, which in this case was produced in collaboration with system designers working in the automotive industry

    In-vitro assessment of coronary artery stents in 256-multislice computed tomography angiography

    Get PDF
    BACKGROUND: The important detection of in-stent restenosis in cardiovascular computed tomography (CT) is still challenging. The first study assessing the in-vitro stent lumen visualization of the state of the art 256-multislice CT (256-MSCT), which was performed by our research group, yielded promising results. As the applied technical approach is not suitable for daily routine, we assessed the capability of the 256-MSCT and its different reconstruction kernels for the coronary stent lumen visualization employing a clinically applicable technique in a phantom study. RESULTS: The XCD kernel showed significantly lower artificial lumen narrowing (ALN) values (overall ALN < 40%) than the other reconstruction kernels (CC, CD, XCB) irrespective of the stent caliber. The ALN of coronary stents with a diameter >3 mm was significantly lower than of stents with a smaller caliber. The ALN difference between stents with a diameter of 3 mm and smaller ones was not statistically significant. Yet, the lumen visualization of the smaller stents was impaired by a halo effect. The XCD kernel showed more constant attenuation values throughout the different stent diameters than the other reconstruction kernels. CONCLUSIONS: The 256-MSCT provides a good lumen visualization of coronary stents with a diameter >3 mm. The assessment of stents with a diameter of 3 mm seems feasible but has to be validated in further studies. The clinical evaluation of smaller stents cannot be recommended so far. The XCD kernel showed the best lumen visualization and should therefore be applied in addition to the standard cardiac reconstruction kernels when assessing coronary artery stents using 256-MSCT

    Top-down effects on early visual processing in humans: a predictive coding framework

    Get PDF
    An increasing number of human electroencephalography (EEG) studies examining the earliest component of the visual evoked potential, the so-called C1, have cast doubts on the previously prevalent notion that this component is impermeable to top-down effects. This article reviews the original studies that (i) described the C1, (ii) linked it to primary visual cortex (V1) activity, and (iii) suggested that its electrophysiological characteristics are exclusively determined by low-level stimulus attributes, particularly the spatial position of the stimulus within the visual field. We then describe conflicting evidence from animal studies and human neuroimaging experiments and provide an overview of recent EEG and magnetoencephalography (MEG) work showing that initial V1 activity in humans may be strongly modulated by higher-level cognitive factors. Finally, we formulate a theoretical framework for understanding top-down effects on early visual processing in terms of predictive coding
    • 

    corecore