868 research outputs found

    The future of hybrid imaging—part 3: PET/MR, small-animal imaging and beyond

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises in three parts the state of the art of dual-technique imaging with a focus on clinical applications. We will attempt to highlight selected areas of potential improvement of combined imaging technologies and new applications. In this third part, we discuss briefly the origins of combined positron emission tomography (PET)/magnetic resonance imaging (MRI). Unlike PET/computed tomography (CT), PET/MRI started out from developments in small-animal imaging technology, and, therefore, we add a section on advances in dual- and multi-modality imaging technology for small animals. Finally, we highlight a number of important aspects beyond technology that should be addressed for a sustained future of hybrid imaging. In short, we predict that, within 10 years, we may see all existing multi-modality imaging systems in clinical routine, including PET/MRI. Despite the current lack of clinical evidence, integrated PET/MRI may become particularly important and clinically useful in improved therapy planning for neurodegenerative diseases and subsequent response assessment, as well as in complementary loco-regional oncology imaging. Although desirable, other combinations of imaging systems, such as single-photon emission computed tomography (SPECT)/MRI may be anticipated, but will first need to go through the process of viable clinical prototyping. In the interim, a combination of PET and ultrasound may become available. As exciting as these new possible triple-technique—imaging systems sound, we need to be aware that they have to be technologically feasible, applicable in clinical routine and cost-effective

    Correction of arterial input function in dynamic contrast‐enhanced MRI of the liver

    Full text link
    Purpose: To develop a postprocessing method to correct saturation of arterial input function (AIF) in T1‐weighted dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) for quantification of hepatic perfusion. Materials and Methods: The saturated AIF is corrected by parameterizing the first pass of the AIF as a smooth function with a single peak and minimizing a least‐squares error in fitting the liver DCE‐MRI data to a dual‐input single‐compartment model. Sensitivities of the method to the degree of saturation in the AIF first‐pass peak and the image contrast‐to‐noise ratio were assessed. The method was also evaluated by correlating portal venous perfusion with an independent overall liver function measurement. Results: The proposed method corrects the distorted AIF with a saturation ratio up to 0.45. The corrected AIF improved hepatic arterial perfusion by −23.4% and portal venous perfusion by 26.9% in a study of 12 patients with liver cancers. The correlation between the mean voxelwise portal venous perfusion and overall liver function measurement was improved by using the corrected AIFs (R 2 = 0.67) compared with the saturated AIFs (R 2 = 0.39). Conclusion: The method is robust for correcting AIF distortion and has the potential to improve quantification of hepatic perfusion for assessment of liver tissue response to treatment in patients with hepatic cancers. J. Magn. Reson. Imaging 2012;36:411–421. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92374/1/23636_ftp.pd

    Infrared thermography and image analysis for biomedical use

    Get PDF
    Infrared thermography is used for measuring and analyzing physiological functions and pathology related to the body’s thermal homeostasis and temperature. This review provides an overview of the technological advantages of infrared imaging, with the focus on new advances in and opportunities for infrared imaging, as a reliable medical diagnostic tool. The review has four main parts. Firstly, a short history of thermography development in medicine is given. Secondly, an overview on the clinical and biomedical research results and methodological improvements in established applications of infrared thermography is provided. Thirdly, the details of published research and development results and activities of the last 3 years for time and frequency domain analysis of infrared video thermography recordings to study some vital functions of human physiology are discussed. Analysis of infrared video thermography streams resulted in important information on microvascular (arteriolar) function of the skin and of vital organs when exposed during an operation. This new set of parameters of microvascular function enhances the assessment of the cardiovascular system in chronic diseases e.g. in hypertension and diabetes. Infrared thermography provides valuable information when an organ’s suitability for transplantationmust be assessed based on quantifiable parameters of organ function and viability. Fourthly, a brief overview on a separate, exciting area of infrared imaging is provided as well: the development of a touchless polygraph system. It enables the study of the psychophysiological parameters of stress, by the assessment of breathing and pulse wave patterns by noncontact methodology, for lie detection purposes. In conclusion, infrared imaging is a non-invasive, non-radiative, low cost detection tool, and its application area is constantly growing, along with technical improvements and advances

    Adaption in Dynamic Contrast-Enhanced MRI

    Get PDF
    In breast DCE MRI, dynamic data are acquired to assess signal changes caused by contrast agent injection in order to classify lesions. Two approaches are used for data analysis. One is to fit a pharmacokinetic model, such as the Tofts model, to the data, providing physiological information. For accurate model fitting, fast sampling is needed. Another approach is to evaluate architectural features of the contrast agent distribution, for which high spatial resolution is indispensable. However, high temporal and spatial resolution are opposing aims and a compromise has to be found. A new area of research are adaptive schemes, which sample data at combined resolutions to yield both, accurate model fitting and high spatial resolution morphological information. In this work, adaptive sampling schemes were investigated with the objective to optimize fitting accuracy, whilst providing high spatial resolution images. First, optimal sampling design was applied to the Tofts model. By that it could be determined, based on an assumed parameter distribution, that time points during the onset and the initial fast kinetics, lasting for approximately two minutes, are most relevant for fitting. During this interval, fast sampling is required. Later time points during wash-out can be exploited for high spatial resolution images. To achieve fast sampling during the initial kinetics, data acquisition has to be accelerated. A common way to increase imaging speed is to use view-sharing methods, which omit certain k-space data and interpolate the missing data from neighboring time frames. In this work, based on phantom simulations, the influence of different view-sharing techniques during the initial kinetics on fitting accuracy was investigated. It was found that all view-sharing methods imposed characteristic systematic errors on the fitting results of Ktrans. The best fitting performance was achieved by the scheme ``modTRICKS'', which is a combination of the often used schemes keyhole and TRICKS. It is not known prior to imaging, when the contrast agent will arrive in the lesion or when the wash-out begins. Currently used adaptive sequences change resolutions a fixed time points. However, missing time points on the upslope may cause fitting errors and missing the signal peak may lead to a loss in morphological information. This problem was addressed with a new automatic resolution adaption (AURA) sequence. Acquired dynamic data were analyzed in real-time to find the onset and the beginning of the wash-out and consequently the temporal resolution was automatically adapted. Using a perfusion phantom it could be shown that AURA provides both, high fitting accuracy and reliably high spatial resolution images close to the signal peak. As alternative approach to AURA, a sequence which allows for retrospective resolution adaption, was assesses. Advantages are that adaption does not have to be a global process, and can be tailored regionally to local sampling requirements. This can be useful for heterogeneous lesions. For that, a 3D golden angle radial sequence was used, which acquires contrast information with each line and the golden angles allow arbitrary resolutions at arbitrary time points. Using a perfusion phantom, it could be shown that retrospective resolution adaption yields high fitting accuracy and relatively high spatial resolution maps

    Adaption in Dynamic Contrast-Enhanced MRI

    Get PDF
    In breast DCE MRI, dynamic data are acquired to assess signal changes caused by contrast agent injection in order to classify lesions. Two approaches are used for data analysis. One is to fit a pharmacokinetic model, such as the Tofts model, to the data, providing physiological information. For accurate model fitting, fast sampling is needed. Another approach is to evaluate architectural features of the contrast agent distribution, for which high spatial resolution is indispensable. However, high temporal and spatial resolution are opposing aims and a compromise has to be found. A new area of research are adaptive schemes, which sample data at combined resolutions to yield both, accurate model fitting and high spatial resolution morphological information. In this work, adaptive sampling schemes were investigated with the objective to optimize fitting accuracy, whilst providing high spatial resolution images. First, optimal sampling design was applied to the Tofts model. By that it could be determined, based on an assumed parameter distribution, that time points during the onset and the initial fast kinetics, lasting for approximately two minutes, are most relevant for fitting. During this interval, fast sampling is required. Later time points during wash-out can be exploited for high spatial resolution images. To achieve fast sampling during the initial kinetics, data acquisition has to be accelerated. A common way to increase imaging speed is to use view-sharing methods, which omit certain k-space data and interpolate the missing data from neighboring time frames. In this work, based on phantom simulations, the influence of different view-sharing techniques during the initial kinetics on fitting accuracy was investigated. It was found that all view-sharing methods imposed characteristic systematic errors on the fitting results of Ktrans. The best fitting performance was achieved by the scheme ``modTRICKS'', which is a combination of the often used schemes keyhole and TRICKS. It is not known prior to imaging, when the contrast agent will arrive in the lesion or when the wash-out begins. Currently used adaptive sequences change resolutions a fixed time points. However, missing time points on the upslope may cause fitting errors and missing the signal peak may lead to a loss in morphological information. This problem was addressed with a new automatic resolution adaption (AURA) sequence. Acquired dynamic data were analyzed in real-time to find the onset and the beginning of the wash-out and consequently the temporal resolution was automatically adapted. Using a perfusion phantom it could be shown that AURA provides both, high fitting accuracy and reliably high spatial resolution images close to the signal peak. As alternative approach to AURA, a sequence which allows for retrospective resolution adaption, was assesses. Advantages are that adaption does not have to be a global process, and can be tailored regionally to local sampling requirements. This can be useful for heterogeneous lesions. For that, a 3D golden angle radial sequence was used, which acquires contrast information with each line and the golden angles allow arbitrary resolutions at arbitrary time points. Using a perfusion phantom, it could be shown that retrospective resolution adaption yields high fitting accuracy and relatively high spatial resolution maps

    Focal Spot, Fall/Winter 1989

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1053/thumbnail.jp

    Focal Spot, Fall/Winter 1992

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1062/thumbnail.jp

    Registration of serial sections: An evaluation method based on distortions of the ground truths

    Get PDF
    Registration of histological serial sections is a challenging task. Serial sections exhibit distortions and damage from sectioning. Missing information on how the tissue looked before cutting makes a realistic validation of 2D registrations extremely difficult. This work proposes methods for ground-truth-based evaluation of registrations. Firstly, we present a methodology to generate test data for registrations. We distort an innately registered image stack in the manner similar to the cutting distortion of serial sections. Test cases are generated from existing 3D data sets, thus the ground truth is known. Secondly, our test case generation premises evaluation of the registrations with known ground truths. Our methodology for such an evaluation technique distinguishes this work from other approaches. Both under- and over-registration become evident in our evaluations. We also survey existing validation efforts. We present a full-series evaluation across six different registration methods applied to our distorted 3D data sets of animal lungs. Our distorted and ground truth data sets are made publicly available.Comment: Supplemental data available under https://zenodo.org/record/428244
    corecore