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Abstract: 

Measuring the functional status of the tumour vasculature, including blood flow fluctuations 

and changes in oxygenation is important in cancer staging and therapy monitoring. Current 

clinically approved imaging modalities suffer long procedure times and limited spatio-temporal 

resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that 

overcomes these challenges; by acquiring data at multiple wavelengths, OT can interrogate 

haemoglobin concentration and oxygenation directly, and resolve contributions from injected 

contrast agents. To establish the potential for OT to be used for rapid, multi-parametric, non-

invasive assessment of the tumour vasculature, we tested whether two dynamic OT 

techniques, oxygen enhanced (OE) and dynamic contrast enhanced (DCE)-OT, could provide 

surrogate biomarkers of tumour vascular function, hypoxia and necrosis. We found that 

vascular maturity leads to changes in vascular function that affect tumour perfusion, 

modulating the DCE-OT signal. Perfusion in turn regulates oxygen availability, driving the OE-

OT signal. In particular, we demonstrate for the first time a strong per-tumour and spatial 

correlation between imaging biomarkers derived from these in vivo techniques and tumour 

hypoxia quantified ex vivo. Our findings suggest that OT may in the future offer significant 

advantage for localised imaging of tumour response to vascular targeted therapies when 

compared to existing clinical DCE methods. 
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Introduction: Angiogenesis, the growth of new blood vessels from surrounding host 

vasculature, can be a rate limiting process in tumour development and progression. The 

resulting tumour vasculature is often chaotic and tortuous, leading to high intra-tumoural 

heterogeneity in vascular density and function (1). A high density of tumour vasculature does 

not necessarily translate into efficient oxygen and nutrient transport (2). Diffusion-limited 

hypoxia emerges early in tumour development, as rapidly proliferating cancer cells experience 

a gradient of hypoxia with increasing distance from the nearest perfused blood vessel (3). 

Perfusion-limited (or ‘cycling’) hypoxia occurs in cells close to blood vessels that experience 

rapid spatio-temporal fluctuations in local oxygen delivery due to highly variable blood flow (4). 

Hypoxia in solid tumours has been associated with both chemo- and radio-resistance (4), as 

well as poor prognosis (5,6). Furthermore, anti-angiogenic and vascular disrupting therapies 

are under active clinical development, with highly variable rates of success (7,8). A rapid test 

to probe the functional status of the tumour vasculature, including blood flow fluctuations and 

changes in oxygenation, could therefore improve cancer patient management, for example: in 

distinguishing benign from malignant tumours; in monitoring response to chemo- and radio-

therapy; and in aiding development of novel vascular targeted therapies (1).  

Non-invasive imaging of tumour vascular function in the clinic usually requires 

administration of an exogenous untargeted contrast agent followed by longitudinal imaging of 

wash-in and wash-out kinetics, referred to as Dynamic Contrast Enhanced (DCE) imaging (9). 

DCE magnetic resonance imaging (MRI) has been broadly applied to interrogate tumour 

perfusion by tracking the dynamics of an injected Gadolinium-based small molecule contrast 

agent (10). Unfortunately, an increasing number of reports suggesting long-term toxicity of 

Gadolinium chelates (11) may limit future use and typical voxel sizes of ~2 x 2 x 4 mm3 (12) 

limit interrogation of spatial heterogeneity (5). To avoid the use of contrast agents, label-free 

MRI techniques that are sensitive to perfusion such as arterial spin labelling (ASL) may be 

used,  however, ASL can suffer from low signal-to-noise ratio, typically requiring voxel sizes 

of over ~3 x 3 x 4 mm3 in patients (13). A more established MRI technique is blood oxygen 
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level dependent (BOLD) MRI, sensitive to deoxyhaemoglobin content, which can reach sub-

milimetre in-plane spatial resolution and temporal resolution of < 10 secs clinically (14). The 

BOLD signal appears to reflect tumour perfusion and hypoxia, based on correlations with 

immunohistochemistry (15)and can be applied, for example, to indicate prognosis in chemo- 

and radio- therapy (14,16). Despite this promise, attempts to directly correlate the BOLD and 

DCE-MRI signals have shown no significant relationship(17) and it has been suggested that 

some ambiguity remains in the biological interpretation of the BOLD signal (14,18).   

Considering other clinical imaging modalities, positron emission tomography (PET) 

contrast agents are available clinically for visualisation of vascular function (e.g. H2
15O) and 

hypoxia (e.g. 18F-MISO). While these approaches benefit from the exquisite sensitivity of PET, 

difficulties arise from the fundamental spatial resolution limits(19) and the requirement to 

administer a radiopharmaceutical, which is a particular challenge for short-half-life agents 

such as 15O (t1/2 ~ 2 min)(20). A more cost-effective option may be possible with diffuse optical 

spectroscopic imaging, which measures concentrations of oxy- and deoxy-haemoglobin as 

surrogate markers of hypoxia and is in clinical trials (21), though this all-optical imaging 

approach suffers from very poor spatial resolution (~1 cm). A cost-effective and high-resolution 

solution could be available using DCE ultrasound with gas-filled microbubbles as an 

exogenous contrast agent(22), yet safety concerns related to injection of microbubbles have 

been raised in patients(23). Thus, there remains a need for cost-effective, non-invasive 

imaging of tumour vascular function with high spatio-temporal resolution, ideally available 

without contrast agent administration.  

 Optoacoustic Tomography (OT) is an emerging imaging modality (24) that is currently 

in clinical trials (25). OT reveals the distribution of tissue optical absorption in real time (26). 

Since the optical absorption spectra of oxy- and deoxy-haemoglobin are distinct, acquiring OT 

data at multiple wavelengths makes it possible to derive imaging biomarkers that relate to total 

haemoglobin concentration (THb) and oxygenation (SO2). These imaging biomarkers provide 

complementary haemodynamic information to those measured clinically with DCE-based 
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techniques and also the label-free MRI-based techniques introduced above. OT has been 

shown to monitor the evolution of tumour vasculature during disease development (27,28) and 

to detect response to vascular targeted therapies (29,30). OT has also been combined with 

DCE ultrasound (31,32) showing relationships between haemoglobin parameters and 

perfusion metrics. For these reasons, OT has already been deployed in clinical studies in 

breast, ovarian and prostate cancers among others, achieving localised imaging at depths of 

up to 7 cm with spatial resolution of 500 μm or better and wavelength tuning rates of up to 100 

Hz (25). Importantly, numerous clinical trials are underway world-wide, which are beginning to 

show great promise for the technology (despite the aforementioned depth limitations) for 

detecting tumour vascularisation and differentiating benign and malignant lesions, particularly 

in the breast (33–35).  

 In addition to the ‘static’ measurements of haemoglobin concentration and oxygenation 

available with existing OT, new techniques have recently emerged that directly report on 

vascular maturity and function. Inspired by clinically approved Oxygen Enhanced (OE) MRI 

methods, OE-OT(36) measures the change in haemoglobin oxygenation following a change 

in respiratory gas from air to 100% oxygen. Contrary to the static measurement of 

oxygenation, these ‘dynamic’ OE-OT biomarkers have been shown to correlate with 

histopathological analysis of tumour vascular function and substantially outperform the static 

biomarkers in terms of robustness and repeatability(36). DCE-OT is also available, using the 

clinically approved fluorescent agent Indocyanine Green (ICG) as an untargeted blood pool 

agent(37). Taking multi-wavelength OT data over time makes it possible to separate ICG 

signals from oxy- and deoxy-haemoglobin, giving the potential to extract spatially resolved 

relationships between tumour oxygenation and tumour perfusion in a clinical setting using non-

toxic, non-invasive OT imaging.  

The purpose of the present study was to evaluate the potential of OT to be used for 

rapid, multi-parametric, non-invasive assessment of tumour vascular function, hypoxia and 

necrosis. Here, we perform co-registered OE-OT and DCE-OT in two tumour models, showing 
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for the first time a quantitative spatial per-pixel correlation between OT metrics derived in vivo 

and the histopathological assessment of vascular maturity and tissue hypoxia ex vivo. 

Furthermore, we resolved the key determinants of OE-OT response in terms of oxygen 

delivery via the blood supply and oxygen demand in the tissue. Our findings suggest that OE-

OT and DCE-OT derived imaging biomarkers can be used as surrogate measures of tumour 

perfusion and hypoxia. We also note that OE-OT may provide a label-free alternative to DCE 

approaches for evaluating tumour perfusion that can be readily implemented into the imaging 

protocol of the emerging clinical optoacoustic technology thanks to its negligible toxicity risk.  
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Materials and Methods: 

Animal Experiments 

All animal procedures were conducted in accordance with project (70-8214) and 

personal licenses (IDCC385D3) issued under the United Kingdom Animals (Scientific 

Procedures) Act, 1986 and were approved locally under compliance form number CFSB0671. 

Subcutaneous tumours were established in male BALB/c nude mice (Charles River). 1.5x106 

PC3 prostate adenocarcinoma cells suspended in a mixture of 50µL phosphate buffered saline 

(PBS) and 50µL matrigel (354248, Corning) were inoculated subcutaneously in both lower 

flanks of n=9 mice (resulting in n=18 tumours). 1x106 K8484 mouse pancreatic 

adenocarcinoma cells suspended in 100 µL PBS were inoculated subcutaneously in both 

lower flanks of a further n=4 mice (resulting in n=7 tumours). The K8484 cells(38) were derived 

from a pancreatic adenocarcinoma of a transgenic mouse model(39,40) and were kindly 

donated by Prof. Duncan Jodrell’s lab at the CRUK Cambridge Institute, providing validation 

of the findings in a model of distinct morphology to the prostate tumours. Authentication of 

PC3 cells using Genemapper ID v3.2.1 (Genetica) by STR Genotyping (1/2015) showed 94% 

match. No authentication was performed in K8484 cells. Both cell types were mycoplasma 

tested by RNA-capture ELISA prior to use (PC3, 13/03/2017); K8484, 05/09/2017). Cells were 

used at 4 passages from thawing from frozen stocks. Tumour growth was monitored by 

callipers and imaging was performed when tumours reached ~8mm in any linear dimension.   

To investigate the effect of vascular disruption on the optoacoustic measurements and 

evaluate its relationship with vascular maturity, 1.5x106 PC3 prostate adenocarcinoma cells 

were inoculated as described above in a further n=8 mice (resulting in n=16 tumours). In 4 

animals both tumours could not be visualised in a single imaging slice, resulting in 4 tumours 

being excluded, leaving n=12 tumours for analysis. Combretastatin 4A Phosphate (CA4P, 

C7744, Sigma-Aldrich), a potent Vascular Disrupting Agent with well-established efficacy in 

preclinical models was used (30,41,42) . When tumours reached ~8mm linear dimension, mice 

were randomly allocated into two groups: treated (CA4P, 8 mL/kg of 12.5mg/mL solution 
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dosed intraperitoneally to achieve a dose of 100mg/kg, n=7 tumours, 4 mice), and vehicle 

(PBS 8ml/kg intraperitoneally, n=5 tumours, 4 mice).  

Optoacoustic Tomography (OT) 

A commercial multispectral optoacoustic tomography (MSOT) system (inVision 256-

TF, iThera Medical GmbH) was used for this study(43). Briefly, a tunable optical parametric 

oscillator pumped by an Nd:YAG laser provides excitation pulses with a duration of 9ns for 

wavelengths ranging from 660nm to 1300nm at a repetition rate of 10Hz, wavelength tuning 

speed of 10ms and a peak pulse energy of 90mJ at 720nm. Ten arms of a fibre bundle provide 

uniform illumination of a ring-shaped light strip of approximately 8mm width. For ultrasound 

detection, 256 toroidally focused ultrasound transducers with a centre frequency of 5MHz 

(60% bandwidth), organized in a concave array of 270 degree angular coverage and a radius 

of curvature of 4cm, are used. 

 Mice were prepared for OT according to our standard operating procedure(44). Briefly, 

mice were anaesthetised using <3% isoflurane, placed on a heat pad, and a catheter (home-

made with 30G needle) was placed in the tail vein and fixed in place using tissue glue 

(TS1050071F, TissueSeal). The mouse was subsequently moved into a custom animal holder 

(iThera Medical) wrapped in a thin polyethylene membrane, with ultrasound gel (Aquasonic 

Clear, Parker Labs) used to couple the skin to the membrane. The holder was placed within 

the imaging chamber of the MSOT system filled with degassed heavy water (617385, Sigma-

Aldrich) maintained at 36°C, with the end of the catheter line available outside of the imaging 

chamber for contrast agent injection. Heavy water was used due to other studies performed 

in parallel on the MSOT system and is not essential to the study described here since the 

optical absorption of water and heavy water is similar in the spectral range interrogated.    

Mice were allowed to stabilise their physiology for 15 minutes within the system prior 

to initialisation of the scan and their respiratory rate was then maintained in the range 70-

80bpm with ~1.8% isoflurane concentration for the entire scan. The respiration rate was 
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monitored by observing the breathing motion of the animal using a video feed from an optical 

camera positioned within the imaging chamber and counting the breaths over a minute using 

a stopwatch. We first performed Oxygen Enhanced Optoacoustic Tomography (OE-OT) (36), 

in which the breathing gas was switched manually from medical air (21% oxygen) to pure 

oxygen (100% oxygen) using separate flow meters (according to the schedule in 

Supplementary Figure S1). A single slice was chosen for imaging showing the largest cross-

sectional area of the tumours on both flanks where possible. Images were acquired in the 

single slice using 10 wavelengths (700, 730, 750, 760, 770, 800, 820, 840, 850, 880 nm) and 

an average of 6 pulses per wavelength; an entire single slice multi-wavelength data acquisition 

was 5.5s in duration. In the CA4P and vehicle treated mice, where imaging was performed 

twice, the imaging slice in the second session was chosen to be as close as possible to the 

first one by visual alignment to the reconstructed images of the first scan. 

Following OE-OT, the breathing gas was switched back to medical air and after 10 

minutes allowed for equilibration, the Dynamic Contrast Enhanced (DCE) OT was initiated in 

the same imaging slice. Images were acquired using 5 wavelengths (700, 730, 760, 800, 850 

nm) and an average of 10 pulses. After 1 minute of continuous imaging to establish the 

baseline signal, a bolus of Indocyanine Green (ICG, 40nmol/20g mouse in PBS)(45) was 

injected intravenously through the catheter, followed by a pulse of PBS to flush the line. OT 

was continued for a further 15 minutes to sample the enhancement curve.  

All mice underwent the full OT procedure at least once. Mice receiving CA4P or vehicle 

were imaged at 48h before treatment to ensure clearing of the injected contrast agent and 

then again at 4h after treatment.  

Histopathologic Tumour Staining 

Following the last OT procedure, mice were immediately sacrificed by cervical dislocation 

while still under anaesthesia. The tumours were then excised, taking care for the orientation 

to be preserved, and cut in half along the imaging plane. The top and left hand side of the 
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tumours were marked with green and red tissue marking dyes (RCD-0727-3, RCD-0727-5, 

Cell Path) to later indicate the orientation of histopathologic sections relative to the in vivo 

imaging procedure. One half was then fixed in neutral buffered 10% formalin for 24h prior to 

paraffin embedding. Fixed blocks were sectioned at 3µm thickness at 4 separate levels within 

the tumour spaced by 500µm apart. Haematoxylin and eosin (H&E) staining and 

immunohistochemistry were performed. Adjacent sections from each of the 4 levels were 

stained with: CD31 (anti-mouse, BD Biosciences, 553370) to indicate vessel density; alpha 

smooth muscle actin (ASMA) (anti-mouse, Abcam, ab5694) to indicate smooth muscle 

coverage; and CAIX (anti-human, BioScience Slovakia, AB1001) to indicate hypoxic regions. 

We also performed pimonidazole staining for hypoxia in a representative tumour to 

qualitatively assess the reliability of CAIX staining for hypoxia visualisation in the PC3 model. 

60mg/kg pimonidazole hydrochloride (Hypoxyprobe) in PBS was injected intraperitoneally 60 

minutes before sacrifice. IHC staining (Mab-1 antibody, 4.3.11.3, Hypoxyprobe) was 

performed on the sections. Spatial co-localisation between CAIX and pimonidazole staining 

was observed (Supplementary Figure S2). All immunostainings were performed with DAB as 

substrate. All sections were digitized at 20x with an Ariol System (Aperio Technologies Ltd).  

Optoacoustic Tomography Image Analysis 

All OT analysis was performed in MATLAB 2017b (Mathworks) using custom software. 

OT images were reconstructed using an acoustic backprojection algorithm (iThera Medical) 

with an electrical impulse response correction, to account for the frequency dependent 

sensitivity profile of the transducers(46), and a speed-of-sound adjustment, to focus the 

images. Images were reconstructed with a pixel size of 75μm x 75μm, which is approximately 

equal to half of the in-plane resolution of the InVision 256-TF, to facilitate region drawing. It 

should be noted that the out-of-plane resolution of this system is approximately 0.9mm (47). 

Regions of Interest (ROIs) were drawn manually around the tumour area (excluding the skin) 

and a healthy, well vascularised tissue region around the spine, in the 800nm (isosbestic) 



 12 

image taken from the first frame of the OE-OT scan. The reconstructed images were 

downsampled to 200μm x 200μm pixel size for further analysis, to improve response 

classification, as described below. 

For OE-OT analysis, a pseudoinverse matrix inversion (pinv function in MATLAB 

2017b) was used for spectral unmixing of the relative weights of oxy- [HbO2] and deoxy-

haemoglobin [Hb] independently in each pixel. Since OT is not able to accurately measure the 

absolute SO2 without the precise knowledge of optical energy distribution, we denote the 

approximate oxygenation metric derived in this study as the apparent SO2
MSOT rather than 

absolute SO2. SO2
MSOT was computed as the ratio of HbO2 to total haemoglobin 

THb=[HbO2+Hb]. Average SO2
MSOT was calculated in each pixel for air and oxygen breathing 

periods and denoted SO2
MSOT (Air) and SO2

MSOT (O2) respectively. The amplitude of response 

to the oxygen gas ΔSO2
MSOT=SO2

MSOT (O2) - SO2
MSOT (Air) was calculated for each pixel 

(illustrated in Figure 1A). The variability of the signal was also assessed by calculating the 

standard deviation SDOE of the SO2
MSOT values between the individual scans acquired during 

air breathing. Each pixel was classified as responding to the oxygen challenge if ΔSO2
MSOT 

exceeded 2 x SDOE (see Supplementary Figure S3). A small fraction of pixels showed 

artefactual negative Hb or HbO2 levels due to low signal and were classified as non-

responding. The OE Responding Fraction (OE RF) was subsequently calculated for each 

tumour and scan as the ratio of the number of tumour pixels classified as responding to the 

total number of pixels in the tumour ROI. 

DCE-OT analysis was performed similarly. The same ROIs as for the corresponding 

OE-OT scans were used, since the imaging was performed in the same slice and the 

movement of the anaesthetised animal between the scans was negligible. After down-

sampling the reconstructed image, linear spectral unmixing as above was performed for HbO2, 

Hb and ICG. The amplitude of ICG enhancement, ΔICG, was quantified as the difference 

between the average baseline ICG signal and the maximum signal recorded in the first 3 
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minutes after injection (illustrated Figure 1A) to capture the perfusion rather than accumulation 

effect of the dye. Variability of the ICG signal was also measured as the standard deviation of 

the individual images acquired before contrast agent injection (SDDCE). Each pixel was then 

classified as enhancing when ΔICG exceeded 2 x SDDCE (see Supplementary Figure S3) with 

artefactual, negative pixels classified as non-enhancing. DCE Responding Fraction (DCE RF) 

was computed accordingly for each tumour.  

Correlations between OE and DCE signals were calculated for each tumour on a per-pixel 

basis. The results presented are from all mice (n=12+18 tumours). The small fraction of pixels 

showing artefactual SO2
MSOT or ICG signal values were excluded from the correlation analysis. 

Spearman rank correlation coefficient was calculated (MATLAB) and quoted, due to the 

apparent non-linear monotonic relationship between the metrics.  

Histopathologic Image Analysis and Data Co-registration  

For each tumour, 4 sections were analysed (see ‘Histopathologic Tumour Staining’). 

Necrosis was identified from H&E sections using a Convolution Neural Network (CNN) 

approach. The schematic of the CNN layer architecture is presented in Supplementary Figure 

S4. The viable and necrotic patches of H&E sections for training the model were identified 

manually. A threshold of 0.5 was applied to the necrosis score maps to discriminate the 

necrotic from viable regions as the probabilistic output had a range from 0 to 1, meaning that 

values below or above 0.5 have a higher likelihood of being viable or necrotic tissue 

respectively. The necrotic fraction was quantified as the ratio of the total necrotic area to total 

tumour area across a whole section. Model performance was assessed by qualitative 

comparison to H&E sections, an example of which is demonstrated in Supplementary Figure 

S5, and quantitative comparison to results of manual segmentation, performed in Imagescope 

(Aperio Technologies Ltd). A strong, significant correlation was observed between the model 

and manual quantification (r=0.75, p<0.0001, see Supplementary Figure S6).  
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Haemorrhagic areas were identified in H&E sections based on their colour. 

Quantification of haemorrhagic fraction was performed automatically using Halo (Indica Labs) 

image analysis software. Analysis of CD31 and ASMA coverage was also performed using 

Halo software, quantifying the CD31 positive area (to measure the amount of vasculature), as 

well as the CD31 positive areas that were also positive for ASMA in adjacent sections to 

identify mature vasculature with smooth muscle coverage(2). The fraction of area positive for 

both CD31 and ASMA to the CD31 positive area was quoted as a metric. CAIX analysis was 

performed using custom code written in MATLAB. The areas of CAIX positive staining were 

identified based on colour deconvolution(48) of the antibody, cell nuclei and background. The 

correct colours for the 3 classes were computed by manually outlining example areas in two 

sections. CD31/ASMA analysis was performed in the CA4P/vehicle treated cohort (n=12), to 

increase the vascular maturity range probed. The CAIX and necrosis analysis was performed 

in the other cohort only (n=18), as the different experimental protocol (2 imaging sessions for 

CA4P cohort, 1 for untreated cohort) made the histology datasets not eligible to be combined. 

To evaluate the relationship between OT metrics of vascular function and 

histopathologic assessment of tissue hypoxia, point set registration was performed with points 

determined by the applied tissue marking dyes(49).  

The ΔSO2
MSOT and ΔICG OT images were then compared spatially to CAIX sections. 

Kernel density estimation, assuming a bimodal intensity distribution with low and high values, 

was applied on pooled CAIX stain intensity values across all tumours to obtain a discriminative 

threshold for binarisation of stain intensity in individual sections. The binarised CAIX and 

necrosis maps were overlaid, and the necrotic areas were excluded from the analysis. Mean 

ΔSO2
MSOT and ΔICG values in CAIX positive and negative viable regions were then calculated. 

The differences between the ΔSO2
MSOT and ΔICG values in the CAIX positive and negative 

regions were then extracted for each tumour, with a value significantly different from 0 taken 

as a measure of differential response. This informed on spatial co-localisation and co-

occurrence of high/low ΔSO2
MSOT with negative/positive CAIX regions. It should be noted that 
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this approach to image co-registration is subject to human error in tissue handling and 

sectioning, which leads to a high rate of exclusion for the analysis. Out of the 18 tumours 

analysed in the cohort, 8 had to be excluded due to failure of the registration, arising from 

distorted or torn tissue sections, resulting in misplaced tissue marking dyes, which in turn 

obstructed accurate registration of the image pairs. 

Statistical Analysis 

All errors are quoted as the standard error on the mean unless otherwise stated. All 

statistical analyses were performed in OriginPro 9 (OriginLab). Paired two-tailed t-test 

compared different metrics in each tumour and changes in parameters due to CA4P treatment; 

unpaired two-tailed t-test assuming equal variances compared between cohorts. One-tailed t-

test was used to assess whether the differences in OT parameters between low and high CAIX 

staining regions are significantly above 0 for the co-registered histopathology and OT image 

analysis. Only the last scan immediately before sacrifice was used for correlations with 

histology, and Pearson rank test was performed to assess the significance. p<0.05 was 

considered statistically significant.  

  



 16 

Results: 

Oxygen Enhanced (OE) and Dynamic Contrast Enhanced (DCE) OT responses are 

strongly correlated. 

Using our intrinsically co-registered OE-OT and DCE-OT data, we first sought to 

examine the spatial correlations between the tumour OE and DCE responses. The amplitudes 

of these responses, ΔSO2
MSOT (Figure 1A, C) and ΔICG (Figure 1B, D) respectively, were 

compared on a per-pixel basis. Highly significant correlations (p value <10-6 in all cases) were 

observed between these two metrics (Figure 1E). The correlation deviates from linearity for 

the extreme values, suggesting Spearman rank correlation coefficient as a more informative 

estimate of the relationship (Figure 1E). While very strong correlations between OE and DCE 

response were observed in both tumour cohorts (Spearman r=0.64±0.02, n=30 PC3 tumours; 

Spearman r=0.65±0.07, n=7 K8484 tumours), no correlation was observed to the static metrics 

of SO2
MSOT(Air) or SO2

MSOT(O2) measured at baseline, indicating that these metrics are not 

sensitive to tumour perfusion (Spearman r=-0.16±0.05 and r=-0.11±0.05 for SO2
MSOT (Air) and 

SO2
MSOT (O2) respectively for PC3, n=30 PC3 tumours, r=-0.04±0.09 and r=0.25±0.09 

respectively for K8484). The correlations for all tumours analysed are summarised in Figure 

1F. 

ICG retaining pixels in DCE-OT show weak or no OE-OT response. 

Examining the DCE-OT data in greater depth, it was clear that two classes of pixels 

showing distinct ICG kinetics were present. The first such group, referred to as ‘clearing’ 

consistently showed an obvious enhancement peak followed by exponential clearance of the 

contrast down to a plateau (Figure 2A and 2B, blue). The second such group, referred to as 

‘retaining’ showed an enhancement after injection, but displayed no clearance; the level of 

signal either remained high and stable over the duration of the experiment, or even increased 

gradually (Figure 2A and 2B, red). As might be expected based on established differences in 

vascular maturity(36), clearing regions tended to be more prevalent in the rim than the core of 
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the tumour, with the fraction of the rim occupied by clearing pixels being significantly higher 

than the corresponding fraction of the core (0.51±0.04 vs. 0.39±0.05, p=0.002, n=30 PC3 

tumours. 0.44±0.13 vs. 0.16±0.06, p=0.01, n=7 K8484 tumours).  

 Interestingly, the OE-OT responses of these two distinct classes of DCE response also 

showed significant differences (Figure 2C). Retaining regions demonstrate weaker OE 

response (Figure 2D) and have a significantly lower OE Responding Fraction than Clearing 

regions (0.55±0.05 vs. 0.25±0.02, p<10-5, n=30 PC3 tumours). The retaining regions also 

show a weaker correlation between the ΔSO2
MSOT and ΔICG (Figure 2E) than the clearing 

regions (0.57±0.03 vs. 0.44±0.04, p=0.007).  

Tumour DCE-OT signal is driven predominantly by vascular maturity while OE-OT is 

also strongly related to hypoxia and necrosis. 

The relationships observed between OE-OT and DCE-OT suggested that similar 

vascular characteristics may underpin their responses. We next broadly explored the 

correlations between the in vivo OT responses and the ex vivo histopathological analysis 

relating to vascular maturity (ASMA coverage of CD31 positive blood vessels), hypoxia (CAIX 

positivity) and tumour viability (necrosis assessed with H&E) on a per-tumour basis in PC3 

tumours, where our study was sufficiently well powered to identify significant correlations. 

Vascular maturity (Figure 3A) showed a significant positive correlation with both OE 

Responding Fraction (OE RF, r=0.58, p=0.048, n=12 PC3 tumours) and DCE Responding 

Fraction (DCE RF, r=0.78, p=0.002, n=12 PC3 tumours) (Figure 3B, C). As could be expected 

given the direct influence of vascular maturity on vessel function and subsequently on 

perfusion, a higher and more significant correlation was observed for DCE RF than for OE RF.  

A significant negative correlation was found between hypoxia (based on CAIX positive 

area fraction) and OE RF (Figure 4A, Supplementary Figure S7; r=-0.68, p=0.002, n=18 PC3 

tumours). The negative correlation between hypoxia and DCE RF was weaker (Figure 4A, 

Supplementary Figure S7; r=-0.49, p=0.04, n=18 tumours). A negative correlation was also 
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observed between OE RF and the tumour necrotic fraction (Figure 4B, Supplementary Figure 

S8; r=-0.56, p=0.016, n=18 tumours), however, no significant relationship was seen for DCE 

RF (Figure 4B, Supplementary Figure S8; r=-0.42, p=0.08, n=18 tumours).  

Given the strong relationship between hypoxia and OE-OT response, we investigated 

further by examining the spatial co-localisation of high ΔSO2
MSOT and low CAIX signals. Taking 

each CAIX stained section (Figure 5A) and H&E stained section (Figure 5B), we performed 

an image co-registration and down-sampled the spatial resolution of the CAIX image 

(binarised into high and low staining regions) to match that of the in vivo OT image (Figure 

5C). The resulting co-registered CAIX data was then compared to ΔICG (Figure 5D) and 

ΔSO2
MSOT (Figure 5E) on a per-pixel basis. Where successful co-registration was possible 

(n=10 PC3 tumours, see Methods), the analysis revealed that areas of low CAIX staining 

(considered to reflect low tissue hypoxia) were associated with a notably higher mean 

ΔSO2
MSOT level than the areas of high CAIX staining (Figure 5E). The difference between 

average ΔSO2
MSOT taken in low CAIX compared to that in high CAIX regions was significantly 

higher than 0 when compared across all tumours (difference=0.014±0.005 vs. 0, p=0.007, 

n=10 PC3 tumours). The average ΔICG was also significantly higher in normoxic than in 

hypoxic tumour regions in line with the per-tumour findings (difference=0.42±0.17 vs. 0, 

p=0.018, n=10 PC3 tumours). 

OE-OT and DCE-OT are highly sensitive to treatment with a vascular disrupting agent 

 Having established relationships between OE-OT and DCE-OT imaging biomarkers 

with vascular function, hypoxia, and necrosis, we then sought to evaluate their utility in 

detecting response to a vascular disrupting agent. Imaging studies were performed both 

before and 4h after administration of the vascular disrupting agent Combretastatin A4 

Phosphate. The 4h time point was chosen so as to observe the induced vascular disruption 

prior to the development of substantial tumour necrosis (30). 
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The dramatic effect of the treatment on tumour vasculature was confirmed 

histologically (Supplementary Figure S9). As desired, this was not followed by induction of 

significant necrosis in the treated tumours (necrotic fraction=0.28±0.09, n=6 vs. 0.18±0.06, 

n=5 treated vs. vehicle, p=0.38). The induced vascular disruption was qualitatively observed 

in maps of ΔSO2
MSOT and ΔICG (Supplementary Figure S10A) as well as in the quantification 

of the kinetic responses in both cases (Supplementary Figure S10B,C). As expected, treated 

tumours were dominated by ICG retaining areas (as defined in Fig. 2). Clear changes in the 

spatial distribution of responding pixels could be observed in both OE-OT and DCE-OT images 

in drug treated tumours (Figure 6A), but not in the vehicle treated ones (Supplementary Figure 

S11). These changes were reflected in the responding fractions in vehicle and CA4P treated 

tumours (Figure 6B). OE RF showed a significant decrease between 48h before and 4h after 

treatment (0.47±0.05 vs. 0.16±0.03, p=0.0005, n=7 PC3 tumours). No significant change was 

seen in vehicle treated control animals (0.38±0.06 vs. 0.30±0.05, p=0.44, n=5 PC3 tumours). 

Similarly, DCE RF showed a significant decrease (0.63±0.05 vs. 0.32±0.02, p=0.0001, n=7 

PC3 tumours), while control did not (0.74±0.06 vs. 0.68±0.05, p=0.34, n=5 PC3 tumours). 
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Discussion: 

The balance of oxygen supply and demand in solid tumours can be a key determinant of 

prognosis and response to therapy. The aim of this work was to evaluate the potential of imaging 

biomarkers accessible using OT to be used in rapid, multi-parametric and non-invasive 

assessment of tumour vascular function and monitoring response to therapy. 

We first examined the relationship between the two OT imaging biomarkers under study: 

ΔSO2
MSOT, accessible without the introduction of a contrast agent using OE-OT; and ΔICG, 

requiring administration of the clinically approved and non-toxic contrast agent indocyanine green 

and imaged through a DCE-OT technique. These dynamic biomarkers were strongly spatially 

correlated in both tumour models examined, suggesting that perfusion is a strong determinant of 

response in both techniques. The kinetics of the DCE-OT response also showed strong 

differences between ‘clearing’ and ‘retaining’ regions, the latter of which have been previously 

described as associated with the enhanced permeability and retention effect in areas of immature 

and leaky vasculature(50,51). These regions also showed distinct OE-OT responses, with greater 

ΔSO2
MSOT seen in clearing regions. 

We then established how these OT imaging biomarkers were connected with ex vivo 

measurements of vascular function, as well as tumour hypoxia and necrosis; these relationships 

are summarised in Figure 7. Vascular maturity leads to changes in vascular function that affect 

tumour perfusion, modulating the DCE-OT signal. Perfusion in turn regulates oxygen availability, 

driving the OE-OT signal. Insufficient oxygen supply leads to tissue hypoxia and eventually 

necrosis (4) (Figure 7, bottom row). These relationships, and hence our understanding of the OE 

and DCE-OT signals, were directly confirmed by the correlations observed between our in vivo 

OT and ex vivo histopathological measurements (Figure 7, middle row). The strength of the 

correlation reflected how closely the individual measurement is linked with the underlying 

physiological process (Figure 7, top row), overall revealing a complex, yet consistent network of 

relationships in the tumour vascular microenvironment. These findings indicate that the response 

for DCE-OT is driven most strongly by perfusion and vascular function, which would be expected 
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given that ICG shows strong serum binding in vivo. The response for OE-OT appears to also be 

governed strongly by perfusion and vascular function but is further modulated by the tumour 

oxygen demand. The strong and significant relationships observed between the OE responding 

fraction and hypoxia area on a per-tumour basis were also confirmed on a spatial per-pixel basis.  

Treatment with a potent vascular disrupting agent, Combretastatin A4 Phosphate, was 

used to induce vascular shutdown, causing a dramatic perfusion drop, resulting in a significant 

decrease in DCE RF, as expected. Interestingly, the OE RF showed equally high sensitivity to the 

vascular shutdown, indicating that it could be used as an alternative to the contrast agent-based 

DCE methods for detecting response to vascular targeted therapies. Both of our surrogate 

biomarkers were able to sensitively detect response to the vascular targeted therapy. 

In line with our previous findings(36), static OT biomarkers such as SO2
MSOT(O2) and 

SO2
MSOT(Air) showed little relationship to perfusion or hypoxia. Similar relationships were 

examined previously comparing tumour oxygenation assessed using static OT with DCE 

ultrasound(31,32) or pimonidazole staining(52).  While some spatial relationships were noted, 

particularly in relation to the necrotic tumour core, these studies were limited respectively by a lack 

of histological validation, poor sensitivity of the optoacoustic imaging approach applied and small 

numbers of biological replicates. 

 There remain some limitations to the presented work that must be addressed in future 

studies. From a biological perspective, vascularisation of subcutaneous models differs from 

that of orthotopic xenografts and spontaneous tumours(53) and may not be entirely 

representative of the vascular function found clinically in solid tumours. These findings should 

therefore be validated in orthotopic and transgenic tumour models prior to application of 

dynamic OT metrics in studies of cancer biology or in the clinic. In our subcutaneous PC3 

model, good co-localisation was observed between CAIX and pimonidazole staining, which 

we took as an indication that CAIX staining indeed reflected hypoxia in this model. While CAIX 

staining is well-documented to be regulated by the activation of Hypoxia Inducible Factor (HIF-

1)(54) and has been widely used for ex vivo hypoxia identification, non-specific effects can be 
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observed in some models, therefore if our findings are to be further validated in other tumour 

models, it would be prudent to use multiple methods to assess hypoxia ex vivo.  

Some further limitations exist in the efficient clinical translation of OT and associated 

imaging biomarkers. Penetration depths of up to 3-7cm (25) have been reported in patients, 

enabling access to superficial cancer sites, such as those in the breast or head and neck. With 

the ongoing development of endoscopic probes, imaging organs such as the prostate (55) is 

also expected to be possible, yet access to some deep seated organs will remain limited even 

with these technological advances. The localised nature of OT means that it would be most 

appropriately placed in the patient management pathway after diagnosis or identification of a 

suspicious lesion using another imaging technique. Light attenuation at depth in tissue poses 

an additional challenge for signal quantification. Methods available to perform light fluence 

correction of OT data have received only limited validation in vivo (47). Future work is required 

to directly relate OT data to absorbed optical energy density and enable absolute quantification 

if desired. However, qualitative features derived from clinical optoacoustic images have also 

shown significant prognostic value (56). 

In summary, we have shown that non-invasive and non-toxic OE-OT and DCE-OT 

techniques can be used to interrogate tumour vascular function, hypoxia and necrosis. The 

comprehensive histopathological validation of the OT imaging biomarkers presented here 

indicates that despite the aforementioned technical challenges that face the technology, OT 

is capable of providing a unique and rapid insight into the tumour vascular microenvironment. 

While DCE-OT requires administration of a contrast agent, OE-OT provides a completely non-

invasive, label-free measurement; our findings indicate that the oxygen challenge approach 

could be used as a safe alternative for exogenous contrast injection as it has been used 

clinically with no associated risk(57). OT is already being tested, with promising results in 

numerous clinical trials in cancer patients(33–35), despite some technical limitations of the 

technology. In the future, the low cost, portability and simplicity of OT may offer significant 
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advantage for localised imaging of tumour response to vascular targeted therapies when 

compared to existing clinical DCE methods, particularly in the neo-adjuvant setting. 
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Figures with legends: 

Figure 1. Tumour oxygen enhanced optoacoustic tomography (OE-OT) and dynamic 

contrast enhanced (DCE)-OT responses are strongly correlated. A strong spatial 

relationship was observed between the response maps for OE-OT (A) and DCE-OT (B) in 

both PC3 (top) and K8484 (bottom) tumours. OE and DCE kinetic curves (C,D) were used to 

quantify metrics as denoted that were then compared in correlation analyses on a per-pixel 

basis in each tumour. (E) Exemplar per-pixel correlations for each tumour type. (F) When 

comparing correlations extracted from the entire tumour cohort (each data point represents 

one tumour), significantly stronger correlations were observed to the dynamic OE-OT metric 

ΔSO2
MSOT than either static metrics of SO2

MSOT (Air) and SO2
MSOT(O2). No correlation 

(correlation coefficient of 0) is indicated with a red dashed horizontal line. Data in (A-E) are 

exemplars taken from one representative tumour for each type. Data in (F) are taken from the 

entire tumour cohort (n=30 PC3, n=7 K8484). *** p<0.001 by paired two-tailed t-test. Boxes 

between 25th and 75th percentile, line at median. 
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Figure 2. Two distinct classes of DCE kinetics also possess different OE kinetics. 

Spatially distinct regions were segmented showing ICG clearance or retention (A) following 

injection, according to the DCE-OT response kinetics (B). The retaining regions show little or 

no OE-OT response (C), reflecting the poorer vascular function in the area. Response maps 

of OE-OT (D) and DCE-OT (E) are also shown, with the Clearing, Retaining and non-

enhancing regions denoted in light blue, red and black regions of interest respectively. These  

further indicate that the strongest OE response occurs in Clearing regions, as suggested in 

(C). Data shown are from a representative PC3 tumour. 
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Figure 3. OE-OT and DCE-OT responses show a significant positive correlation with 

vascular maturity. (A) Overlaid CD31 and ASMA stained sections were used to evaluate the 

fraction of blood vessels positive for ASMA (red on CD31 stained section). The OE 

Responding Fraction (B) and DCE Responding Fraction (C) both show a significant correlation 

to tumour vascular maturity (B), with DCE showing a stronger relationship. The analysis 

includes tumours treated with Combretastatin-A4-Phosphate (red points, n=7 PC3 tumours), 

which show clearly lower ASMA coverage than vehicle treated tumours (black points, n=5 PC3 

tumours). * p<0.05, ** p<0.01 shows the strength of the correlation assessed using a Pearson 

rank test. Line of best fit with 95% confidence intervals are also shown in the graphs.  
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Figure 4. OE-OT is also strongly related to tumour hypoxia and necrosis. (A) 

Representative CAIX stained sections were used to quantify the extent of tumour hypoxia, to 

which OE-OT response shows a strong inverse correlation, while the DCE-OT response 

shows a weaker relationship. (B) H&E stained sections were used to quantify the extent of 

tumour necrosis (green line outlines necrotic area), to which OE-OT again showed a strong 

inverse correlation, while DCE-OT response was not significant. Analysis shown from n=18 

PC3 tumours. n.s. not significant, * p<0.05, ** p<0.01. Line of best fit with 95% confidence 

intervals are shown in the graphs where significant relationships are identified. 
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Figure 5. Spatial co-registration allows comparison of OE-OT and DCE-OT response in 

hypoxic tumour tissue. CAIX stained sections (A) were binarised into low and high stain 

areas. This information was overlaid with necrosis map obtained from H&E sections (B) then 

co-registered and down-sampled (C) for comparison with the optoacoustic images. DCE-OT 

ΔICG (D) and OE-OT ΔSO2
MSOT (E) could then be compared to the degree of CAIX staining in 

viable areas. The box plots show that for the analysed tumours the difference between ΔICG 

(D) and ΔSO2
MSOT (E) between areas of low and high CAIX hypoxia staining, is significantly 

higher than 0 (indicated with red dashed line). Images in (A-C) from a representative PC3 

tumour. Analysis in (D,E) presented from n=10 PC3 tumours. * p<0.05, ** p<0.01 by one-tailed 

t-test (deviation from 0). Box between 25th and 75th percentile, line at median. 
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Figure 6. OE and DCE enhancement show similarly high sensitivity in detecting changes 

in vascular function. Both OE Responding Fraction and DCE Responding fraction show a 

drastic drop due to vascular shutdown caused by the treatment, as seen in representative 

enhancement maps from a PC3 tumour (A) and in box plot (n=7 treated, n=5 vehicle PC3 

tumours). n.s. not significant, *** p<0.001 by paired two-tailed t-test. Box between 25th and 

75th percentile, line at median. 

 

 

 

 



 38 

Figure 7. Summary of the relationships governing tumour physiology that have been 

established with Optoacoustic Tomography imaging biomarkers. The physiological 

relationships underpin the correlations that we observed between the in vivo and ex vivo 

measurements of physiological processes. As indicated with the colour bar, the more 

disconnected the physiological parameters are from each other, the weaker the observed 

correlations. * p<0.05, ** p<0.01. 

 

 


