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Abstract

Functional Magnetic Resonance Imaging of Breast Cancer
Gabrielle Carmen Baxter

This thesis examines the use of magnetic resonance imaging (MRI) techniques in the
detection of breast cancer and the prediction of pathological complete response (pCR) to
neoadjuvant chemotherapy (NACT).

This thesis compares the diagnostic performance of diffusion-weighted imaging (DWI)
models in the breast using a systematic review and meta-analysis. Advanced diffusion models
have been proposed that may improve the performance of standard DWI using the apparent
diffusion coefficient (ADC) to discriminate between malignant and benign breast lesions.
Pooling the results from 73 studies, comparable diagnostic accuracy is shown using the
ADC and parameters from the intra-voxel incoherent motion (IVIM) and diffusion tensor
imaging (DTI) models. This work highlights a lack of standardisation in DWI protocols and
methodology. Conventional acquisition techniques used in DWI often suffer from image
artefacts and low spatial resolution. A multi-shot DWI technique, multiplexed sensitivity
encoding (MUSE), can improve the image quality of DWI. A MUSE protocol has been
optimised through a series of phantom experiments and validated in 20 patients. Comparing
MUSE to conventional DWI, statistically significant improvements are shown in distortion
and blurring metrics and qualitative image quality metrics such as lesion conspicuity and
diagnostic confidence, increasing the clinical utility of DWI.

This thesis investigates the use of dynamic contrast-enhanced MRI (DCE-MRI) in the
detection of breast cancer and the prediction of pCR. Abbreviated MRI (ABB-MRI) protocols
have gained increasing attention for the detection of breast cancer, acquiring a shortened
version of a full diagnostic protocol (FDP-MRI) in a fraction of the time, reducing the
cost of the examination. The diagnostic performance of abbreviated and full diagnostic
protocols is systematically compared using a meta-analysis. Pooling 13 studies, equivalent
diagnostic accuracy is shown for ABB-MRI in cohorts enriched with cancers, and lower but
not significantly different diagnostic performance is shown in screening cohorts.



vi

Higher order imaging features derived from pre-treatment DCE-MRI could be used to
predict pCR and inform decisions regarding targeted treatment, avoiding unnecessary toxicity.
Using data from 152 patients undergoing NACT, radiomics features are extracted from baseline
DCE-MRI and machine learning models trained to predict pCR with moderate accuracy. The
stability of feature selection using logistic regression classification is demonstrated and a
comparison of models trained using features from different time points in the dynamic series
demonstrates that a full dynamic series enables the most accurate prediction of pCR.
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Chapter 1

Introduction

1.1 Breast cancer and the role of imaging

Breast cancer is the second most commonly diagnosed cancer in the world, accounting for
11% of all cancers, and the most commonly diagnosed cancer in women worldwide [1]. In
the UK, over 55,000 women are diagnosed with breast cancer every year [2]. However,
survival rates are improving with developments in non-surgical treatment, such as neoadjuvant
chemotherapy and radiotherapy, and with early detection and diagnosis through improved
imaging and screening [3].

Mammography is the most commonly used modality in breast cancer screening. While
mammography has significantly reduced mortality, mammographic sensitivity is affected by
breast density as well as tumour subtype [4]. For women with dense breast tissue there is a
reduction in sensitivity from 85% overall to 47.8–64.4% [5, 6]. Ultrasound is often used as
a supplemental screening tool to detect cancers in dense breasts, as well as to characterise
abnormalities on mammograms, measure tumour size, assess nodal metastases or to guide
needle biopsies of tumours.

However, magnetic resonance imaging (MRI) is the most sensitive technique for the
detection of breast cancer (Figure 1.1) and has an established role in the assessment of
response to chemotherapy and overall breast cancer management. MRI is often used as an
adjunct imaging method to investigate equivocal findings on mammography and ultrasound
and is used world wide in the screening of high-risk women (including those with elevated
familial risk of breast cancer or BRCA1 and BRCA2 carriers) [7, 8].

Dynamic contrast-enhanced MRI (DCE-MRI) achieves a high sensitivity of 93% in the
detection of breast cancer [10]. DCE-MRI consists of a series of three-dimensional image
volumes acquired before, during and after the intravenous administration of a gadolinium-
based contrast agent. As well as providing high resolution anatomical and morphological
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Figure. 1.1 Diagnostic indices of imaging methods used alone or in combination for women
at an elevated risk of breast cancer [9]. Mx, mammography; US, ultrasound; MRI, magnetic
resonance imaging

information, it can also provide functional information regarding tumour perfusion and
vascularity. Diffusion-weighted imaging (DWI) is a non-contrast MRI technique that is
sensitive to the random Brownian motion of water molecules in the extracellular space.
Measurement of the apparent diffusion coefficient (ADC) using DWI can quantify the
restriction of molecular diffusion in biological tissues, providing complementary functional
information that reflects tissue cellularity and the integrity of cellular membranes and
structures. DWI is often used as an adjunct to DCE-MRI in the diagnosis of breast cancer to
reduce false-positive results, achieving a combined sensitivity and specificity of 91.6% and
85.5%, respectively [10].

1.2 Imaging the tumour microenvironment

1.2.1 Breast cancer pathology

Breast cancer is a highly heterogeneous disease. It can be characterised by its histopathological
subtype, histologic grade, and the expression of proteins and genes, which can be used to
select appropriate treatment, such as use or choice of chemotherapy and extent of surgery.
Pathologic and molecular characteristics of breast tumours can also be used as prognostic
factors to estimate overall disease outcomes (such as disease-free survival and overall survival
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in the absence of therapy), or predictive factors to estimate the likelihood of response to
specific treatment (such as the PREDICT score [11]).

Figure. 1.2 Breast cancer anatomy

The majority of invasive breast cancers are adenocarcinomas, derived from the epithelial
tissue (the tissue forming the outer layer) of breast ducts or lobules, shown in Figure 1.2. In
situ, or pre-invasive, carcinomas are those in which the cancer cells have not yet infiltrated
tissue surrounding the ducts or lobules, such as ductal carcinoma in situ (DCIS) and lobular
neoplasia (including lobular carcinoma in situ, or LCIS) which originate in and are confined
to the breast ducts and lobules. Invasive carcinomas are those in which the cancer cells have
undergone additional mutations to spread out from the basement membrane and myoepithelial
cells of the ducts and lobules into surrounding tissue and have the ability to metastasise.
Microscopy is used to determine the histopathologic classification from biopsied specimens.

The most common invasive breast carcinoma is invasive ductal carcinoma (IDC), or
invasive carcinoma of no special type (NST), accounting for around 75% of all breast cancers.
Invasive lobular carcinoma (ILC) accounts for 10-15% of all breast cancers and originates
from the lobular epithelium. ILCs have different clinical and prognostic factors to other
cancers and generally have a low histologic grade and low to intermediate cell proliferation
[12, 13]. There are a number of less common subtypes such as tubular, medullary, mucinous,
and papillary carcinoma. While rare subtypes do correlate with prognosis, histopathological
subtype is generally not considered in the clinical management of breast cancer [14].
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The histologic grade of breast cancer, a measure of how different tumour cells are to
normal breast tissue, is strongly correlated with prognosis [15]. A numerical scoring system
with an overall grade of 1-3, known as the Nottingham Grading System, was developed
by Elston and Ellis; cells in grade 1 tumours tend be small and divide slowly whereas
cells in grade 3 cancers are larger and rapidly dividing; patients with grade 1 tumours have
significantly better survival than those with grade 2 or 3 tumours [16]. Grade is determined by
the evaluation of three morphological features: tubule formation (how different tumour tissue
looks compared to normal breast tissue), nuclear pleomorphism (how different tumour cell
nuclei are compared to normal nuclei), and mitotic count (a measure of cellular proliferation).

Hormone receptor status provides important prognostic information and is critical in
the selection of appropriate targeted treatment. The presence of estrogen receptors (ER),
progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) in breast
tumours are determined by immunohistochemistry or multigene assay. Estrogen receptors
are over-expressed (ER+) in 70% of breast cancers [17]. Cumulative exposure of the breast
epithelium to estrogen has been shown to be a risk factor associated with breast cancer
[18]. It has been suggested that the binding of estrogen to estrogen receptors stimulates the
proliferation of mammary cells which elevates the risk of replication errors and produces
genotoxic by-products that damage DNA [19]. The role of PR status in cancer risk and
tumour progression is less clear, though it has been shown that cancers that are progesterone
receptor negative (PR-) are associated with a significant reduction in disease free survival
and overall survival for ER+ breast cancer [20]. HER2, which regulates cell growth and
proliferation, is over-expressed (HER2+) in 20-30% of breast cancers [17]. HER2 positive
cancers have historically been associated with more aggressive disease and poor prognosis
[21], however the development of HER2-targeted therapy has improved outcomes [22].

It has been shown that there are five clinically relevant molecular subtypes based on gene
expression profiling, with distinct clinical outcomes [23, 24] (Table 1.1). Further work by
Curtis et al. [25] has shown there are potentially 10 different subtypes of breast cancer. These
are determined by ER, PR and HER2 status, as well as Ki-67 expression, a marker of cellular
proliferation. Four of the five subtypes can be mapped to an immunohistochemical subtype:
there are two ER positive subgroups (Luminal A and B, with the Luminal B subtype usually
having a higher grade) and two predominantly ER negative subgroups (HER2-enriched with
overexpression of HER2 and related genes and basal-like or triple negative characterised by
high expression of genes associated with myoepithelial/basal cells). Normal-like cancers
share an immunohistochemical subtype with Luminal A cancers and are characterised by
normal breast tissue profiling [24].
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Table 1.1 Features of molecular subtypes of cancer [26].

Subtype ER PR HER2 Ki-67 expression Frequency (%)
Luminal A + + - Low 29
Luminal B + + +/- High 21

Triple-negative/Basal - - - High 16
HER2-enriched - - + Moderate-high 17

Normal-like + + - Low 6

Different molecular subtypes of breast cancer are associated with different outcomes.
Luminal A patients have been found to generally have the best prognosis [27]. HER2-enriched
and triple-negative cancers are associated with a poor prognosis compared to Luminal and
normal-like cancers [23], with triple-negative cancers representing a large proportion of
breast cancer-related deaths due to their aggressive phenotypic characteristics and lack of
targeted therapies [28].

1.2.2 Imaging vascularity and angiogenesis: Qualitative and quantita-
tive assessment of DCE-MRI

Malignant tumours undergo angiogenesis and develop complicated capillary networks to
meet the increased demand for oxygen and nutrients due to increased cell proliferation
[29]. However, tumour vasculature develops differently to normal tissue, where blood is
supplied to tissues from an ordered and efficient mature vascular network. In a tumour, the
population of cells grows aggressively, leading to the development of a disorganised network
of immature, tortuous and hyperpermeable blood vessels [30]. Grubstein et al. studied the
blood supply to a tumour site using DCE-MRI, finding that breast lesions had an altered
general vascular supply, a prominent feeding vessel and increased regional vascularity [31].
Angiogenesis has a direct impact on the uptake of contrast agent and therefore the appearance
of lesions on DCE-MRI due to the density and distribution of blood vessels [32], leading to
the widespread use of qualitative and quantitative DCE-derived features in the diagnosis of
malignant or benign breast cancer. The introduction of the Breast Imaging Reporting and Data
System (BI-RADS) descriptors [33] by the American College of Radiology standardised the
terminology used to report breast MRI, including morphological features (such as shape and
margins) and internal enhancement characteristics for mass and non-mass lesions, assessment
of background parenchymal enhancement and amount of fibroglandular tissue, kinetic curve
assessment, and other associated features.
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Figure. 1.3 Time-signal intensity curves classified as steady (type I), plateau (type II) or
washout (type III) [34].

Acquiring a series of MR images over the time course of an injection of contrast agent
allows a kinetic curve of tissue enhancement to be produced, visualising the dynamic flow of
contrast through tissue. Kuhl et al. developed a classification scheme based on patterns of
contrast uptake that is widely used to differentiate between malignant and benign lesions [34]
(Figure. 1.3)

Type I curves show a steady gradual enhancement over time, type II curves show a rapid
initial enhancement with a plateau, and type III curves show a rapid initial enhancement with
washout. Type I curves were observed in 83% of benign cases and type II and III curves
were observed in 91% of malignant cases (34% type II and 57% type III) [34]. In malignant
lesions, this corresponds to an increased but leaky vasculature where the contrast agent pools
then escapes. In benign lesions with a more normal vasculature, there is a gradual retention of
contrast agent until saturation. These enhancement curves can be used to calculate a number
of heuristic parameters such as signal enhancement ratio, time to peak enhancement, wash-in
and wash-out gradient, and initial area under the time signal curve (iAUC).
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Figure. 1.4 The two compartment Toft’s model. Pharmacokinetic modelling can be used to
fit parameters to time-intensity curves to reflect perfusion and microvessel permeability.

Pharmacokinetic modelling is also used to characterise the circulation of contrast
agent through the vasculature. A simple two-compartment model of the blood plasma
and the extravascular extracellular space (EES) is used to derive parameters to describe
aspects of tumour physiology such as perfusion, intravascular and extravascular volume
fractions, microvessel wall permeability, and microvessel density. The most commonly used
parameters are described by the Toft’s model [35], including the transfer coefficient between
the intravascular and extravascular spaces Ktrans (min-1), the proportion of extravascular
extracellular space ve, and the flux rate constant between the extravascular extracellular space
and the plasma kep (min-1), as shown in Figure. 1.4.

1.2.3 Imaging tumour cellularity and microstructure: Diffusion-weighted
imaging

Unlike homogeneous materials, the diffusion of water in biological tissues is not isotropic
and is restricted due to physical barriers and microstructures. Fluid viscosity, permeability
between intra- and extracellular membranes, and active transport and flow impede or enhance
the diffusion of water in tissue and ordered structures introduce a directional dependence to
diffusion [36]. Blood flow and bulk tissue motion from respiration and cardiac pulsation also
affect the measurement of water diffusion in tissue. As such, the measurement of diffusion
in tissue using DWI was termed the ’apparent’ diffusion coefficient (ADC)(mm2/s). The
uncontrolled proliferation of tumour cells results in a high tumour cellularity, a more restricted
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extracellular environment, and a loss of normal tissue architecture, which has been shown to
be an early indicator of abnormality [37].

Figure. 1.5 Restricted diffusion. The mobility of diffusing water molecules in malignant
breast tumours is decreased due to higher cellularity and a more restricted extracellular
environment.

Significantly lower ADC values are measured in malignant breast tumours compared
to benign lesions and fibroglandular tissue [38], indicating more restricted diffusion, as
shown in Figure 1.5. Initial studies in the breast compared the ADC as measured using DWI
to histological examination of tissues, finding that the ADC was inversely correlated with
cellularity [39, 40]. Hatakenaka et al. suggested that the lower extracellular water content
and increased barrier structures resulted in more restricted diffusion [40]. Choi et al. found
lower ADC values to be significantly correlated with higher cell proliferation measured
using the Ki-67 index [41]. Lower ADC has also been shown to be correlated with tumour
aggressiveness [42] and higher histological grade, larger tumour size and presence of positive
axillary lymph nodes [43].

DWI is increasingly used in breast lesion diagnosis and characterisation. The ADC
achieves a high diagnostic performance in the differential diagnosis of malignant and benign
breast lesions [38]. Marini et al. demonstrated that the ADC of invasive ductal carcinoma
was low compared to other histopathological subtypes due to more densely packed tumour
cells [44]. A number of false negative and false positive findings on DWI can be attributed
to differences in underlying tumour histology. Woodhams et al. showed that the ADC of
mucinuous carcinoma was significantly higher than other malignant tumours due to the low
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cellularity relative to the abundant mucin, as well as high extracellular water content and a
mucin pool [45]. Higher ADC values are also measured for papillary carcinomas due to the
distribution of tumour cell batches within stromal spaces, allowing for more free diffusion in
the interstitium [46]. Central tumour necrosis results in a higher ADC due to a decrease in
overall tumour cellularity. Marini et al. found a statistically significant difference in ADC
between the centre and edges of locally advanced cancers which corresponded a large necrotic
centre and higher cellular density in the edges as seen on histopathology [44]. The most
commonly reported false positive lesions on DWI are complicated cysts and fibroadenomas,
likely due to high cellularity, fibrosis and chronic inflammatory elements [47, 48].

Advanced diffusion models

Other models of diffusion have been proposed that aim to probe aspects of diffusion behaviour
in the complex tumour microenvironment that are not captured by the ADC model. Another
consequence of the complicated capillary network developed through angiogenesis is the
contribution of the perfusion of blood through the capillary network to the microscopic
diffusion measured using DWI. The intra-voxel incoherent motion (IVIM) model of diffusion
was proposed by Le Bihan et al. [49] which separates the contributions from tissue and the
microvasculature into separate parameters as tissue diffusivity, D, and pseudo-diffusivity
from perfusion, D*, and measures the perfusion fraction, f. IVIM is increasingly investigated
in the breast and has been able to distinguish between malignant and benign lesions with a
high accuracy [50]. IVIM has also been used to identify molecular prognostic factors and
predict treatment response [51].

Diffusion kurtosis imaging (DKI) was introduced by Jensen et al. to quantify the
degree to which water diffusion in tissues is non-Gaussian [52]. DKI has been used in the
characterisation of breast lesions as kurtosis has been shown to be higher in malignant lesions
than in benign lesions and fibroglandular tissue [53, 54], suggesting higher microstructural
complexity. Fibroadenoma and fibrocystic changes showed significant differences from
normal tissue only in kurtosis [53]. The stretched exponential model, proposed by Bennett et
al. [55] has also been used to model the non-Gaussian behaviour of diffusion and has been
used in the differential diagnosis of breast tumours with a high sensitivity and specificity
(81% and 82%, respectively) [56], as well as to assess response to neoadjuvant chemotherapy
[57]. While the DKI and stretched exponential models have been shown to achieve a higher
goodness-of-fit to data than IVIM and the ADC [56], these models are not associated with
any physiological phenomena and the sources of non-Gaussian behaviour are unclear.

Tumour microstructures introduce a directional dependence on the restriction of diffusion.
Diffusion tensor imaging (DTI) probes the anisotropy of diffusion by measuring components
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of diffusion in many directions and resolves them into three orthogonal eigenvectors. The
mean diffusivity (MD), the average of the diffusion eigenvalues, is analogous to the apparent
diffusion coefficient and is similarly reduced in malignant lesions compared to benign, and has
been used in the differential diagnosis of breast lesions[58–60]. Measures of anisotropy such
as the fractional anisotropy have also been shown to be indicators of malignancy [59, 61, 62].
While DTI is most commonly used for tractography of white matter in the brain, it has been
used to image the structural organisation of ductal and glandular trees in the breast [63, 64].

Challenges of DWI

While the use of DWI in the assessment of breast cancer has increased, in clinical practice
DWI suffers from poor image quality due to the rapid acquisition using single-shot echo-planar
imaging. Images are limited by spatial distortion and blurring, resulting in a low spatial
resolution and the averaging of tumour volumes with adjacent breast tissue. Performance
is significantly reduced for cancers less than 1cm in size [65, 66]. However, a number
of alternative acquisition strategies have been investigated that attempt to overcome these
limitations and improve the clinical utility of DWI [67]. The physics underlying DWI
acquisition techniques will be discussed in Chapter 2.

1.3 MRI screening

Currently, MRI screening is only recommended for high-risk women (particularly those with
a history of prior thoracic radiotherapy and strong familial risk of breast cancer, especially
BRCA1/2 carriers) who are invited for annual examination from ages 25-50 (continuing
over the age of 50 for women with dense breasts). However, the high cost of MRI, owing to
the capital cost of equipment, long examination times, use of intravenous gadolinium-based
contrast agent (GBCA), the need to check for renal function, and onsite costly medical staff
to manage potential contrast reactions, as well as the increased time taken for the radiologist
to review MRI images compared to mammography, limits the widespread use of MRI as a
screening tool for moderate-risk women with dense breasts. It has been shown that MRI
screening is currently only cost effective in very high-risk women [68, 69].

1.3.1 Abbreviated MRI

The use of abbreviated MRI (ABB-MRI) protocols for the detection of breast cancer has
gained increasing attention. While a full diagnostic MRI protocol (FDP-MRI) includes a
combination of unenhanced sequences (T1, T2, and diffusion-weighted imaging), as well
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as contrast-enhanced sequences (DCE-MRI) acquired in a 30-minute examination time, an
abbreviated protocol generally includes a non-contrast T1-weighted sequence and at least one
contrast-enhanced T1-weighted sequence from which subtraction and 3D maximum-intensity
projection (MIP) images can be generated. This substantially reduces the acquisition time
as well as the radiologist interpretation time. Kuhl et al. reported the first prospective
reader study of an abbreviated breast MRI protocol in a cohort of asymptomatic mild- to
moderate-risk women achieving a sensitivity of 91%, reading MIP images generated from
the first post-contrast sequence with an average reading time of 3 seconds [70]. Abbreviated
protocols have since been increasingly investigated in varied patient populations including
screening cohorts (with low, moderate, and high risk, as well as women with dense breasts),
problem solving and preoperative staging patients, and screening cohorts enriched with
cancers. Furthermore, the reported abbreviated protocols vary by institution, with studies
investigating effect of the addition of a second post-contrast time point [71], T2-weighted
imaging [72] or DWI [73] on diagnostic performance.

As abbreviated MRI is able to reduce the cost, examination time and interpretation time
of MRI, this may enable the use of MRI as a supplemental imaging modality in those women
with dense breasts, for risk-adaptive screening, or allow for the more widespread use of
MRI screening for moderate-risk women. Investigating ABB-MRI in a cohort of mild- to
moderate-risk women, Kuhl et al. found a cancer detection rate similar to that of a routine
full diagnostic protocol in high-risk women (18.2 vs 17-22.1 per 1000) [70, 74, 75]. Given
the reduction in mammographic sensitivity with increased breast density [5, 6], supplemental
MRI screening for women with dense breasts has been investigated, with the DENSE trial
of 40,373 women finding a reduced the number of interval cancers detected than screening
using mammography alone [76]. Abbreviated MRI could provide a lower cost solution for
MRI screening in this population. In a screening cohort of 1444 women with dense breasts,
Comstock et al. found a higher invasive cancer detection rate using ABB-MRI than digital
breast tomosynthesis (DBT) [77]. A similar study by Weinstein et al. found a cancer detection
rate of 24.7 per 1,000 using ABB-MRI in a cohort of 475 women with dense breasts and
negative findings on DBT [78].

1.3.2 Non-contrast-enhanced screening

As well as cost, there are concerns about the repeated administration of gadolinium-based
contrast agents (GBCAs) for contrast-enhanced screening, and the benefits and risks of
screening MRI for high-risk women who are regularly examined over long-term screening
periods must be considered. GBCAs can cause allergic or physiological reactions (such as
nausea or headaches) in a small percentage of patients [79] and the use of contrast agent may
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be an issue for patients with impaired renal function who are at risk for nephrogenic systemic
fibrosis. Recently, studies have also noted the presence of gadolinium deposits in the brain
and body with cumulative dose, though no clinical adverse side effects have yet been reported
[80]. This is of particular interest for high-risk healthy women who undergo routine annual
screening with DCE-MRI up to 40 times in their lifetime.

DWI could provide a non-contrast alternative to screening protocols using DCE-MRI.
DWI has demonstrated a sensitivity and specificity comparable to contrast-enhanced MRI
[50] and has been investigated as a supplemental imaging modality to exclude malignancy in
women with suspicious mammograms [81]. A number of studies have investigated DWI used
independently for screening or assessed the detection of cancers using non-contrast MRI with
DWI through blinded reader studies, reporting sensitivities > 85% [48, 82–84] or a modest
sensitivity (50-77%) and a high specificity > 90% [65, 66, 85]. DWI is also able to overcome
some of the shortfalls of mammography. When compared to mammography, DWI performs
better in the detection of smaller cancers ≤ 2cm [66], non-palpable cancers in asymptomatic
women [85], and cancers in women with dense breasts where lesion visibility was shown to
be significantly superior to mammography using DWI [86]. However, the performance of
DWI is reduced for small cancers less than 1cm in size [65, 66]. For DWI to be clinically
useful in a screening setting it must be able to detect and characterize all cancers, particularly
small cancers. Detecting smaller cancers is crucial in reducing breast cancer mortality, as the
chance of survival at 10 years improves from 60% for cancers detected at 2-5cm at screening
to 85% when detected at 1-2cm [87].

1.4 Neoadjuvant chemotherapy for breast cancer

1.4.1 Therapeutic targets for chemotherapy

There are many approaches for the management of breast cancer including surgery, radio-
therapy, endocrine treatment and chemotherapy. However, breast cancer is a heterogeneous
disease, and treatment plans are chosen depending on a combination of factors such as tumour
size, molecular subtype, axillary node status and existence of metastases. Neoadjuvant
chemotherapy (NACT) is used in the management of breast cancer with a primary aim
to reduce the size of a tumour before surgery. This can allow for less radical procedures,
such as the option of breast conserving surgery for women who had originally required
mastectomy. Axillary nodal response has also been shown to correlate with primary breast
tumour response to neoadjuvant chemotherapy, reducing the need for axillary nodal dissection
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[88]. Chemotherapy regimens are commonly given as a series of treatments, also known as
cycles, with a break between treatments to allow the body to recover from side-effects.

Endocrine therapy is the primary therapy for ER and PR positive cancers. Hormones
are modulated using drugs such as tamoxifen to reduce the effect of estrogen, and aromatase
inhibitors can be used to lower the levels of estrogen in the body. Hormone receptor negative
and HER2 positive breast cancers are treated with monoclonal antibodies targeted against
HER2, such as trastuzumab and pertuzumab, which has improved outcomes and reduced
morbidity [89]. Triple negative breast cancers are difficult to treat as drugs targeted at
downregulating estrogen, progesterone and HER2 are ineffective [90]. Poly-(ADP-ribose)
polymerases (PARP) inhibitors are an emerging class of drugs used to treat triple negative
breast cancers. The inhibition of PARP, an enzyme involved in DNA repair, used in
combination with chemotherapy which induces DNA damage, has been shown to inhibit the
proliferative and angiogenic properties of tumours and promote apoptosis [91], as well as
improve progression-free and overall survival rates [92].

Chemotherapeutic agents are often used in combination regimens comprising: an immune
system suppressant such as cyclophosphamide, platinum compounds such as carboplatin or
cisplatin which interfere with DNA replication, taxanes such as paclitaxel and docetaxel that
cause cell-cycle arrest and apoptosis, and anthracyclines such as doxorubicin and epirubicin
which affect DNA synthesis and repair. A common chemotherapy combination, known
as FEC-T, combines fluorouracil (5-FU, an antimetabolite to prevent cell proliferation),
epirubicin, cyclophosphamide and docetaxel.

1.4.2 Pathological complete response to neoadjuvant chemotherapy

Pathological complete response (pCR) to neoadjuvant chemotherapy is indicative of a good
overall survival [93] and is correlated with long-term outcomes for triple negative and
HER2 positive disease [94]. There is still no consensus in the literature on the definition of
pCR, though the widely used definition specifies no residual invasive tumour on pathologic
assessment in the breast as well as the axillary nodes after surgery [95]. The association of
long-term outcomes (such as event-free survival and overall survival) with pCR is challenging
due to varying definitions of pCR reported in heterogeneous patient populations [94]. A meta-
analysis of 11,000 patients by Houssami et al. showed that though 80% of patients showed
some response to neoadjuvant chemotherapy, only 19% of patients overall achieved complete
pathological response [96]. Molecular subtype was associated with pCR, with the highest
percentages of pCR found in patients with triple negative (31%) and HER2 positive breast
cancers (39%) due to the success of targeted therapy. Patients with hormone-receptor-positive
(ER+, PR+) breast cancer had the lowest percentage of pCR (8%).
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1.4.3 Monitoring response to neoadjuvant chemotherapy

Imaging after neoadjuvant chemotherapy is completed is necessary to assess the extent of
residual disease before surgery, aiding the selection of mastectomy, partial mastectomy or
lumpectomy and reducing the need for surgical re-excision by improving positive margin
rates. Additionally, monitoring response to treatment during the course of chemotherapy also
allows for modification of treatment if a patient is not showing therapeutic response or the
stopping of treatment if the patient has achieved pCR, avoiding unnecessary toxicity and
cost. MRI is the most sensitive technique in the pre-operative assessment of breast cancer
[97] and is also the most accurate modality for the assessment of response to neoadjuvant
chemotherapy [98–102]. A study by Croshaw et al. found that MRI achieved a positive
predictive value (PPV) of 93% and a higher accuracy (84%) than physical breast examination
(57%), mammography (74%) or ultrasound (79%) in predicting response to treatment [103].

Tumour size

Reducing the size of a tumour before surgery is a primary aim of neoadjuvant chemotherapy.
Changes in tumour size are monitored over the course of therapy, most often noting the size
of the longest tumour diameter at each stage. While the gold standard for the assessment
of tumour response is the pathological lesion size determined after surgery, a standardised
method for measuring response to treatment on imaging was described by the Response
Evaluation Criteria for Solid Tumours (RECIST), which defines 4 categories (Table 1.2)
[104]. Measurement of the longest tumour diameter is most accurate on MRI compared to
mammography and clinical examination [105].

Table 1.2 RECIST criteria for tumour response to treatment [104].

Category Definition
Complete Response Disappearance of all target lesions

Partial Response Reduction in tumour diameter of ≥ 30%
Progressive Disease Increase in tumour diameter of ≥ 20%

Stable Disease
Neither sufficient shrinkage to qualify for
partial response, or sufficient increase to

qualify for progressive disease

However, patterns of tumour shrinkage vary depending on a number of factors, compli-
cating the measurement of tumour size on MRI. A proportion of tumours showing almost
complete response do not shrink as a single mass but present as scattered foci of residual
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tumour cells in a sea of fibrous tissue, whereas tumours that show little clinical response
showed similar morphology to prior to treatment [106].

Therapy induced changes can cause significant over- and under-estimation of residual
tumour size. For tumours that exhibit fibrosis and reactive inflammation to treatment, size can
be significantly overestimated on MRI [107]. While the high spatial resolution of MRI allows
for better visualisation of small lesions and foci than other modalities, the size of tumours that
fragment into small foci and scattered residual tumour cells can be underestimated [108]. The
use of a chemotherapy regimen containing taxanes, resulting in a diffuse spread of residual
disease compared to the single nodular residual lesions seen when using a FEC-based regimen,
can lead to an underestimation of residual disease on MRI [108]. The use of antiangiogenic
drugs, inhibiting the delivery of MR contrast agents through the tumour microvasculature,
can also result in an underestimation of the extent of residual disease [109]. Molecular
subtype can impact the determination of residual tumour size and has been shown to be less
accurate for luminal type tumours and most accurate for triple-negative and hormone receptor
negative/HER2 positive tumours [110, 111], most likely due to the lower contrast uptake of
luminal type tumours on MRI [111]. Given the difficulties in accurately determining residual
tumour size and margins on imaging, the pathologic assessment of the extent of tumour
response from surgical specimens remains the gold standard.

The measurement of tumour volume as opposed to diameter is useful for tumours that
have an irregular size and shape, such as invasive lobular carcinomas or tumours with
diffuse patterns. From a systematic review of 13 studies, a higher accuracy was found in the
prediction of tumour response using tumour volume than a uni- or bi-dimensional measure of
tumour size [112]. A study by Hylton et al. found that the strongest predictor of pathologic
response was achieved using a combination of MR imaging and functional tumour volume
[113]. Functional tumour volume, as measured by comparing the signal enhancement in
each tumour voxel from pre-, early and late post-contrast DCE-MRI images, was found to be
more accurate than measurements of the longest tumour diameter, as a well as a predictor of
recurrence free survival [114]. Use of a functional tumour volume is of particular importance
for cases which have no residual disease but a remaining necrotic mass [115], or for mucinous
carcinoma where a responsive tumour will have a low tumour cellularity but retain a mucin
pool visible on imaging [116].

Physiologic Changes

Functional MRI techniques can also be used to monitor physiologic changes which can
indicate early tumour response as these changes will occur before a significant reduction in
tumour size is observed [115]. Changes in qualitative and quantitative DCE-MRI derived
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features indicate changing perfusion characteristics and response to therapy. Woolf et al.
showed that changes in signal time-intensity curves were significantly correlated to clinical
and pathological response [117]. Kim et al. showed that a ratio of lesion enhancement
to background parenchymal enhancement on early-phase DCE-MRI could differentiate
pathological complete response from residual disease after chemotherapy [118]. Changes in
heuristic [119] and pharmacokinetic [120–123] parameters derived from DCE-MRI have also
been found to be significant in the prediction of therapeutic response. The transfer coefficient
Ktrans, a measure of tumour perfusion, has been shown to be a promising early indicator of
treatment response [124].

Cellular Changes

Neoadjuvant chemotherapy induces changes at a cellular level, significantly changing
the histopathologic appearance of tumours [125]. Studies investigating cellular changes to
tumour specimens after chemotherapy found a significant reduction in tumour cellularity
[126] and increased nuclear atypia [127], with one study finding it difficult to distinguish
between residual tumour cells and chemotherapy induced atypia [106]. Combined with a
measurement of residual tumour size, the assessment of response using a measure of tumour
cellularity can be more accurate than using tumour size alone [128].

Changes in tumour ADC as measured using DWI reflect these changes in cellularity.
Response to treatment has been associated with changes in ADC as measured after one
cycle [129, 130], two cycles [129], at mid-treatment [131], and after treatment [131, 132].
Increases in ADC after chemotherapy have also been associated with the presence of necrosis
and increasing cell lysis [67].

DWI can be a useful tool in the early assessment of response to therapy as changes in
ADC have been shown to occur before reduction in tumour size [133, 134]. Studies by Park
et al. and Iacconi et al. found that tumours with lower pre-treatment ADC and high cell
density responded better to neoadjuvant chemotherapy [135, 136]. A meta-analysis by Chu
et al. found a pooled sensitivity of 88% and specificity of 79% for ADC in the prediction of
pCR, though with a higher pooled area under the curve (AUC) when using the change in
ADC during treatment than pre-treatment ADC (0.80 vs 0.63) [137].

Radiomics and Machine Learning

The emerging field of radiomics extracts large numbers of quantitative features from medical
images. Radiomic analysis is increasingly used in the prediction of pathological complete
response in the breast, with studies investigating texture features, shape features, and kinetic
features extracted from DCE-MRI, T2-weighted images and DWI. These features are used in
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combination to create decision support models using machine learning classifiers where the
most predictive features are selected. Texture features can be used to quantify the distribution
of pixel grey-levels within a tumour volume, reflecting intratumoural heterogeneity, a
biomarker of poor prognosis [138]. It has also been shown that the incorporation of radiomics
features from the peritumoural region, the background parenchyma, and the contralateral
breast can improve the accuracy of prediction [139, 140]. Given that different tumour
molecular subtypes respond differently to therapy, studies that carried out separate radiomic
analyses based on receptor status found that dividing patients into a hormone receptor-positive
group and a triple-negative/HER2+ group improved the accuracy of prediction [139]. The
radiomic features most predictive of response have also been shown to vary between different
molecular subtypes [139, 141].

While features derived from mid-treatment imaging or changes in features between
baseline and mid-treatment imaging have been shown to be the strongest predictors of
pathologic response [142, 143], there is growing interest in using baseline imaging to identify
predictive imaging biomarkers pre-therapy to improve treatment stratification and provide
a more individualised patient prognosis. Radiomics features derived from pre-treatment
MRI have been shown achieve a moderate accuracy in predicting treatment response (AUCs
0.69-0.83) [141, 144–147].

Unsupervised machine learning techniques circumvent the need for the extraction of
hundreds of radiomics features and subsequent feature selection. Deep learning methods
such as convolutional neural networks (CNNs) have not been as widely investigated in the
breast for the prediction of treatment response as large datasets are required. Initial studies
have used CNNs to predict pCR with mixed results (AUCs 0.55-0.85) [148–151].

1.5 Thesis aims and outline

This thesis focuses on the use of multi-parametric MRI techniques to improve the detection
of breast cancer and the assessment of response to neoadjuvant chemotherapy. DWI is a
promising non-contrast MRI technique. However, more work is required to improve the
image quality and increase the clinical utility of DWI. In this thesis, emerging diffusion
models and acquisition strategies in the detection and diagnosis of breast cancer will be
assessed. DCE-MRI achieves the highest sensitivity in the detection of breast cancer, though
the widespread use of MRI for breast screening is limited by cost and long examination
and interpretation times. Abbreviated MRI protocols are able to overcome these limitations.
However, a systematic comparison of abbreviated and full diagnostic protocols is required
to demonstrate equivalent sensitivity and specificity. Furthermore, while DCE-MRI is
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increasingly utilised in the prediction of pathological complete response to neoadjuvant
chemotherapy, further investigation is required into the use of radiomics and machine learning
approaches to identify predictive imaging biomarkers of response from pre-treatment MRI.

Therefore, the main objectives of this thesis are:

1. To systematically compare models of diffusion, through a meta-analysis, to establish
which achieves the highest diagnostic accuracy in the differential diagnosis of breast
cancer lesions.

2. To investigate acquisition techniques such as parallel imaging and multi-shot echo-
planar imaging that aim to improve upon the image quality of existing clinical diffusion
MRI protocols.

3. To systematically compare the performance of abbreviated and full diagnostic protocols
in the detection of breast cancer through a meta-analysis.

4. To establish which radiomics features derived from pre-treatment DCE-MRI, using
machine learning modelling, are able to predict pathological complete response to
neoadjuvant chemotherapy.

Chapter 1 has provided an introduction to breast cancer and the role of imaging. The
functional imaging techniques are introduced with reference to the underlying tumour biology
they investigate, and neoadjuvant chemotherapy for breast cancer is discussed.

Chapter 2 outlines the core scientific basis on which this PhD is based. The fundamental
principles of magnetic resonance imaging are explained, and the pulse sequences used in
subsequent chapters are introduced.

Chapter 3 provides a systematic review and meta-analysis of the current models of
diffusion. The diagnostic performance of parameters from each model are compared and the
variations in methodology of each model in the current literature are assessed.

Chapter 4 describes experiments undertaken to compare a multi-shot diffusion-weighted
imaging technique (multiplexed sensitivity encoding, or MUSE-DWI) to conventional
single-shot echo-planar imaging (ss-EPI-DWI), investigating the effect of varying parallel
acceleration factor and number of shots on quantification of the ADC, distortion and blurring.
A refined MUSE protocol is applied to a small cohort of patients and the improvements in
image quality and ADC quantification are compared.
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Chapter 5 presents a systematic review and comparative meta-analysis of abbreviated and
full diagnostic protocol MRI. The diagnostic performances of each protocol are compared
in screening and enriched cohorts separately and the variations in patient population, study
methodology, and abbreviated protocols are assessed.

Chapter 6 assesses the ability of machine learning models trained using shape, histogram,
and texture features extracted from pre-treatment DCE-MRI to predict pathological complete
response to chemotherapy. The features selected by logistic regression classification models
using the least absolute shrinkage and selection operator are compared, and the predictive
performance of features derived from independent time points in the full dynamic series is
investigated.

Chapter 7 summarises the main findings of this work and provides outlines for future
work.





Chapter 2

Magnetic Resonance Imaging

This chapter describes the fundamental physics of nuclear magnetic resonance and magnetic
resonance imaging (MRI). The pulse sequences and acquisition techniques that are used
in later chapters are introduced, and the principles of dynamic contrast-enhanced MRI and
diffusion-weighted imaging are discussed.

2.1 Nuclear magnetic resonance

2.1.1 Nuclear magnetism

MRI is based on the principle of nuclear magnetic resonance (NMR), which describes the
interaction between nuclei and strong external magnetic fields. NMR was first described by
Isidor Rabi in 1938 [152] and later developed by both Felix Bloch at Stanford and Edward
Purcell at Massachusetts Institute of Technology independently in 1946 [153, 154]. Magnetic
resonance has been used for the study of disease since it was discovered by Raymond
Damadian in 1971 that the signal from healthy tissue was different from that of cancerous
tissue [155]. MRI is now widely used as a non-invasive imaging technique for a wide range
of clinical applications.

Atomic nuclei with an odd number of nucleons have a non-zero angular momentum, or
‘spin’. The combination of the spin and positive charge of a nucleus generates a magnetic
field. This results in a small magnetic dipole moment, 𝜇, which is related to the spin angular
momentum, J, by

𝜇 = 𝛾J (2.1)
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where 𝛾 is the gyromagnetic ratio, a proportionality constant that is an intrinsic property
of a nucleus. The magnitude and direction of J are determined by the nuclear spin quantum
number, I. Values of I and 𝛾 for nuclei commonly used in MRI are given in Table 2.1.

Table 2.1 Nuclei used in human MRI studies

Isotope
Abundance

(%)
Gyromagnetic ratio 𝛾

(MHz/T)
Spin quantum

number, I
Relative

sensitivity of MRI
1H 99.99 42.58 1/2 1.000

3He 0.00001 32.43 1/2 0.442
13C 1.108 10.71 1/2 0.016

23Na 100.0 11.26 3/2 0.083
31P 100.0 17.24 1/2 0.066

In the presence of an external magnetic field, B0, nuclei will experience a torque, 𝜏, given
by

𝜏 = 𝜇×B0 (2.2)

perpendicular to both the field and the magnetic moment, as shown in Figure 2.1. This
causes a change in angular momentum perpendicular to the angular momentum, causing the
nuclei to precess at an angle 𝜃 around B0 with a motion similar to a gyroscope. The nuclei
precess at a characteristic resonant frequency, known as the Larmor frequency, 𝜔0.

In the absence of an externally applied magnetic field, the magnetic moments, or ‘spins’,
are randomly oriented. In the presence of a static magnetic field B0, conventionally described
as aligned along the z axis, the component of magnetic moment along the direction of the
magnetic field is

𝜇𝑧 = −𝛾𝐼𝑧 = −𝛾𝑚𝑧ℎ̄ (2.3)

where mz is the magnetic moment quantum number which can take values -I ≤ mz ≤ I
and ℎ̄ is the reduced Planck’s constant. The number of possible spin states for a nucleus with
spin I is equal to 2I + 1. Hydrogen (1H), the most commonly used nucleus in MRI, has I = 1

2
and therefore 2 possible spin states of ±1

2 , spin up (parallel with the magnetic field, the lower
energy state) and spin down (anti-parallel with the magnetic field, the higher energy state).
The energy, E, of each state is given by the vector dot product

𝐸 = −𝝁.B0 = −𝛾I.B0 (2.4)
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Figure. 2.1 The interaction of a nucleus with a magnetic field. A nucleus with charge and an
odd number of nucleons spins about its axis, resulting in a magnetic moment 𝜇. When the
nucleus is placed in a static magnetic field, B0, the magnetic moment experiences a torque, 𝜏,
and will precess around B0 at an angle 𝜃.

The energy difference between the two orientations of spins for I = 1
2 , as shown in

Figure 2.2., is given by

Δ𝐸 =

(
1
2
−−1

2

)
𝛾ℎ̄𝐵0 = 𝛾ℎ̄𝐵0 (2.5)

This energy difference has a corresponding frequency from De Broglie’s wave equation,

Δ𝐸 = ℎ̄𝜔 = 𝛾ℎ̄𝐵0 (2.6)

And therefore the resonant frequency, known as the Larmor frequency 𝜔0, which
corresponds to the only energy at which transitions between the energy levels will be induced,
can be written as

𝜔0 = 𝛾𝐵0 (2.7)

The Larmor frequency can also be given as a scalar frequency, f0 = 𝜔0/2𝜋. At a typical
clinical field strength of 1.5T, the resonant frequency f0 of a hydrogen nucleus is 64MHz. At
3T, the resonant frequency is 128MHz.
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Figure. 2.2 The two possible spin states of nuclei are either oriented spin up (parallel with
the field) or spin down (anti-parallel with the field).

2.1.2 Macroscopic magnetisation

The population of spin states across a large ensemble is described by the Boltzmann
distribution

𝑁𝑖

𝑁
=
𝑒
− 𝐸𝑖

𝑘𝑏𝑇

𝑍
(2.8)

where Ni is the population of state i, N is the total number of protons, Ei is the energy of
the state, kb is Boltzmann’s constant, T is the temperature in Kelvin and Z is the partition
function. The ratio of the number of spins in the up state (𝑁↑) and the down state (𝑁↓) can
then be written as

𝑁↑
𝑁↓

=
𝑒
−

𝐸↑
𝑘𝑏𝑇

𝑒
−

𝐸↓
𝑘𝑏𝑇

= 𝑒
−

(𝐸↑−𝐸↓)
𝑘𝑏𝑇 = 𝑒

−𝛾ℎ̄𝐵0
𝑘𝑏𝑇 (2.9)

At clinically relevant temperatures and magnetic field strengths, 𝛾ℎ̄𝐵0 << 𝑘𝑏𝑇 , and this
can be approximated as

𝑁↑
𝑁↓

≃ 1+ 𝛾ℎ̄𝐵0
𝑘𝑏𝑇

(2.10)
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Therefore, the number of excess spins in the up state is given by

𝑁𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑁↑−𝑁↓ =
𝑁𝑡𝑜𝑡𝑎𝑙

2
𝛾ℎ̄𝐵0
𝑘𝑏𝑇

(2.11)

This creates a net magnetisation M0 which is aligned with the B0 field (Figure 2.3). The
net magnetisation per unit volume can be written as

𝑀0 = 𝜇𝑧 (𝑁↑−𝑁↓) =
𝜌0𝛾

2ℎ̄2𝐵0
4𝑘𝑏𝑇

(2.12)

where 𝜌0 is the proton density, and given that the magnetic moment of a proton is equal to
1
2𝛾ℎ̄. For a magnetic field B0 = 1.5T and temperature T = 37°C, there is an excess number of
spins in the spin up state, leading to macroscopic magnetisation parallel to the applied field.

Figure. 2.3 For a large number of nuclei, the excess of spins in the lower energy state gives
rise to a net magnetisation M0 aligned with the magnetic field B0.

2.1.3 NMR signal generation

To create an MR signal, the spins must be excited out of equilibrium and the net magnetisation
must be displaced out of its equilibrium alignment by an input of external energy into the
nuclear spin system. This energy increases the proportion of spins in the higher energy state.
A radiofrequency (RF) solenoid coil with its axis perpendicular to the static field, B0, creates
an oscillating field, B1 at a frequency 𝜔1. When the RF field is switched on at or near the
Larmor frequency, known as an RF ‘pulse’, the spins and hence the net magnetisation are
rotated into the transverse plane and the net magnetisation will precess. The precession of
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Figure. 2.4 A 90° RF pulse tips the net magnetisation M0 into the transverse plane. After the
RF pulse, the longitudinal component of the net magnetisation recovers to equilibrium and
the transverse component of magnetisation decays.

the net magnetisation is known as nuclear magnetic resonance (NMR). The angle through
which the magnetisation is rotated, known as the flip angle 𝛼, depends on the field strength
B1 and the length of time the field is applied for, t. For a rectangular RF pulse of constant
amplitude, the flip angle is given by

𝛼 = 𝜔1𝑡 = 𝛾𝐵1𝑡 (2.13)

More generally for pulses of different shapes, the flip angle is given by

𝛼 = 𝛾

∫ 𝑡

0
𝐵1𝑑𝑡 (2.14)

If the magnetisation is rotated perpendicularly into the transverse (x,y) plane, a 90°
rotation, this is called a 90° pulse (Figure 2.4). After the RF pulse is switched off, the
magnetisation precesses freely and the transverse component of magnetisation decays to zero,
returning to equilibrium. This induces an exponentially decaying sinusoidally oscillating
voltage in an RF coil (Figure 2.5). This signal is known as the free induction decay (FID).

2.1.4 Mechanisms of relaxation

In his 1946 work, Bloch and his colleagues showed that NMR was a transient phenomenon
and posited that the decaying signal can be attributed to the interaction of the spins that
make up the net magnetisation with each other and their environment as they return to
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Figure. 2.5 A simulated free induction decay (FID). The signal received in the RF coil
oscillates sinusoidally as the net magnetisation precesses at the Larmor frequency and decays
by the T2* relaxation constant as transverse magnetisation decays to zero and the net
magnetisation returns to equilibrium.

thermal equilibrium [153]. The net magnetisation, M, is a vector rotating in space with three
directional components: Mx and My, the transverse components (perpendicular to the static
field), and Mz, the longitudinal component (parallel to the static field). The Bloch equations
are a series of equations using classical mechanics that describe how these three components
evolve in time. M interacts with the magnetic field, B, by

𝑑M
𝑑𝑡

= 𝛾M×B = 𝛾


(𝑀𝑦𝐵𝑧 −𝑀𝑧𝐵𝑦)i
+(𝑀𝑧𝐵𝑥 −𝑀𝑥𝐵𝑧)j
+(𝑀𝑥𝐵𝑦 −𝑀𝑦𝐵𝑥)k

 (2.15)

where B includes both the static field along the z axis

𝐵𝑧 = 𝐵0 (2.16)

and the rotating B1 field given by

𝐵𝑥 = 𝐵1𝑐𝑜𝑠𝜔𝑡 (2.17)
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𝐵𝑦 = 𝐵1𝑠𝑖𝑛𝜔𝑡 (2.18)

The processes by which the longitudinal and transverse components of magnetisation
return to thermal equilibrium are known as T1 and T2 relaxation, respectively. Therefore, the
three directional components of M can be described by

𝑑𝑀𝑥

𝑑𝑡
= 𝛾(𝑀𝑦𝐵0 +𝑀𝑧𝐵1𝑠𝑖𝑛𝜔𝑡) −

𝑀𝑥

𝑇2
(2.19)

𝑑𝑀𝑦

𝑑𝑡
= 𝛾(𝑀𝑥𝐵1𝑐𝑜𝑠𝜔𝑡 −𝑀𝑥𝐵0) −

𝑀𝑦

𝑇2
(2.20)

𝑑𝑀𝑧

𝑑𝑡
= 𝛾(𝑀𝑥𝐵1𝑠𝑖𝑛𝜔𝑡 +𝑀𝑦𝐵1𝑐𝑜𝑠𝜔𝑡) −

𝑀𝑧 −𝑀0
𝑇1

(2.21)

For the example in section 2.1.3 where a 90° pulse is applied, these equations have the
solutions

𝑀𝑥 (𝑡) = 𝑀0 𝑠𝑖𝑛 𝜔0 𝑡 . 𝑒𝑥𝑝

(
−𝑡
𝑇2

)
(2.22)

𝑀𝑦 (𝑡) = 𝑀0 𝑐𝑜𝑠 𝜔0 𝑡 . 𝑒𝑥𝑝

(
−𝑡
𝑇2

)
(2.23)

𝑀𝑧 (𝑡) = 𝑀0

[
1− 𝑒𝑥𝑝

(
−𝑡
𝑇1

)]
(2.24)

where the Mx and My components oscillate at the Larmor frequency 𝜔0 and decay with
time constant T2 and the Mz component recovers back back to M0with the time constant T1.
Calculated T1 and T2 relaxation curves for a malignant breast mass are shown in Figure 2.6.

T1 relaxation, or spin-lattice relaxation, is the process by which the longitudinal component
of magnetisation relaxes back to thermal equilibrium. After excitation, energy is exchanged
between the excited nuclei and the nearby environment of nuclei and molecules (the lattice)
as net magnetisation recovers back to thermal equilibrium, where the spins favour the lower
energy (spin up) state.

T2 relaxation, or spin-spin relaxation, is the process by which the transverse component of
magnetisation relaxes back to thermal equilibrium. As precessing spins approach each other
and other rotating (tumbling) molecules, the local field experienced by the spins is perturbed.
This causes a change in the rate of precession and therefore a loss of phase coherence and
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Figure. 2.6 T1 and T2 relaxation curves simulated for a malignant breast mass after a 90°
pulse [156].

transverse magnetisation decays. In reality, the loss of phase coherence happens more quickly,
decaying with time constant T2* < T2, such that

1
𝑇2∗

=
1
𝑇2

+ 1
𝑇 ′

2
=

1
𝑇2

+𝛾Δ𝐵 (2.25)

where T2’ is the time constant due to field inhomogeneities and ΔB is the field inho-
mogeneity across a voxel. In practice, this can be compensated for using spin echo pulse
sequence, where a refocusing pulse is applied to reverse the effects of inhomogeneities
(section 2.3.1).

The rate of relaxation is dependent on the molecular environment of the tissues. Values
for T1 and T2 for different types of breast tissue are compiled from the literature in Table 2.2.
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Table 2.2 In vivo relaxation times in the breast compiled from the literature

1.5T 3.0T
T1 relaxation
time ± sd (ms)

T2 relaxation
time ± sd (ms)

T1 relaxation
time ± sd (ms)

T2 relaxation
time ± sd (ms)

Fat 296.01 ± 12.94a 53.33 ± 2.11a 366.78 ± 7.75a 52.96 ± 1.54a

Fibroglandular tissue 1266.18 ± 81.8a 57.51 ± 10.15a 1444.83 ± 92.7a 54.36 ± 9.35a

Benign mass 1049.02 ± 40.31b 89.15 ± 8.33b

Malignant mass 876.09 ± 27.83b 74.76 ± 3.90b

a Rakow-Penner et. al [157]
b Merchant et al. [156]

2.2 Magnetic resonance imaging: hardware and image for-
mation

An MRI scanner has three main components: the static magnetic field, the RF system used to
generate and detect MR signals, and the linear gradient coils used to localise the MR signal.
A schematic diagram of the MRI system is shown in Figure 2.7.

Figure. 2.7 Schematic of an MRI scanner. Patients undergoing breast MRI with a dedicated
breast RF coil lie in a prone position.
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2.2.1 Static magnetic field

The main homogenous static magnetic field is generated using a superconducting magnet (at
> 1.0T). A superconductor has zero electrical resistance at very low temperatures, allowing
large electric currents to flow and produce strong magnetic fields. Most commercial clinical
scanners operate at 1.5T or 3T. This produces the net magnetisation required for MRI (section
2.1.2).

Most scanners use a magnet comprised of coils of niobium-titanium (NbTi) filaments
in a copper matrix. As NbTi is superconductive below 9.4K, the magnet is kept below the
critical temperature in a cryostat surrounded by liquid helium (4K) and several insulating and
vacuum layers. Inhomogeneities in the field are reduced by shim coils built into the cryostat,
and shielding coils protect the environment from unwanted external fields.

2.2.2 Radiofrequency (RF) coils: NMR signal generation and detection

Radiofrequency (RF) coils transmit the B1 field, or the RF pulse, that is used to excite spins
within the subject being imaged. An oscillating B1 field is produced perpendicular to the
static B0 field by an oscillating electric current passed through the RF-transmit coil. The field
is only applied for a short amount of time (as a pulse) and the magnitude of the field can be
chosen to change the angle of the rotation of magnetisation into the transverse plane (section
2.1.3). RF transmission is usually carried out using the body coil, a large diameter birdcage
coil within the walls of the scanner that is designed to generate a spatially uniform field.

RF coils are also used to detect the MR signal. By Faraday’s Law, rotating magnetisation
induces a voltage in a receiver coil proportional to the rate of change of magnetic flux. As the
magnetisation precesses in the transverse (x, y) plane, a sinusoidally oscillating current is
induced in the RF-receive coil. Some coils are built to be able to transmit as well as receive
MR signal. In many cases, a smaller coil that is specific to the body part being imaged is
used to detect signal, known as a surface coil, with a high sensitivity to RF over a small area
which improves the signal-to-noise ratio (SNR).

Specialised coils for breast imaging have been developed that consist of an array of
surface coils and are designed to provide bilateral volumetric coverage with a high SNR.
Routine clinical breast MRI tends to use 8-channel coils, however 16-channel coils have
been developed that offer an improvement in SNR due to the reduction in coil element size
compared to an 8-channel coil [158]. Multi-channel coils also allow for the use of parallel
imaging, a temporal acceleration technique that combines the spatial sensitivities of the coils
to reduce acquisition time while maintaining a high spatial resolution (section 2.3.6).
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2.2.3 Gradient coils: spatial localisation

Spatial information in an MR system can be encoded using three orthogonal gradient coils
(in the x, y and z directions) controlled independently to produce variations in the magnetic
field. These gradients are actively shielded to reduce the effect of eddy currents in the magnet
hardware. With only the static magnetic field, all spins in the body precess at the Larmor
frequency, 𝜔0. To achieve spatial localisation, a linear magnetic field gradient is used to vary
the precessional frequency as a function of location along the axis of the gradient.

Slice selection

To achieve slice selection, a linear magnetic field gradient is applied at the same time as the
RF pulse in the direction perpendicular to the slice. This causes the resonant frequency to
vary linearly with position in the slice select direction e.g. in the z direction

𝜔(𝑧) = 𝛾𝐵(𝑧) = 𝛾(𝐵0 +𝐺𝑠𝑠𝑧) (2.26)

where Gss is the magnitude of the slice selective magnetic field gradient. The difference
in resonant frequency across the slice is then

Δ𝜔 = 𝛾Δ𝐵𝑧 = 𝛾𝐺𝑠𝑠Δ𝑧 (2.27)

where Δz is the slice thickness, as shown in Figure 2.8. An RF pulse centred on the
Larmor frequency will excite only the spins in this slice precessing at a frequency within the
range 𝜔0 ±Δ𝜔/2. This range of frequencies is known as the transmitter bandwidth.
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Figure. 2.8 Slice selection. An RF pulse containing a narrow band of frequencies excites a
small band of spins. The thickness of the slice Δz can be modified by changing the strength
of the slice select gradient as well as the bandwidth of the RF pulse.

To produce a rectangular slice profile in the frequency domain, a truncated sinc pulse is
used for the RF pulse. While the slice selective gradient is applied, spins in different positions
in the slice will dephase. To rephase the spins, a rephasing gradient of opposite polarity is
applied after the slice selective gradient to restore the coherence of the spins.

Frequency encoding

Similarly, if a frequency encoding gradient is applied along the x axis, spins will precess at
different frequencies as a function of position along the x axis, creating spatially dependent
frequencies (kx). The frequency encoding ("readout") gradient is applied while the MR signal
is acquired. The MR signal measured in the receiver coil is the sum of all the signals with
different frequencies from all of the pixels in the slice. Each position along the x direction
will correspond to a different frequency, and the amplitude of each frequency is dependent on
the density of nuclei in the type of tissue at that spatial location, as shown in Figure 2.9.
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Figure. 2.9 Frequency encoding gradient. A linear magnetic gradient varies the precessional
frequency as a function of position, creating spatial frequencies (kx).

A one-dimensional inverse Fourier transform can be used to separate the individual
frequencies from the sum, and the corresponding position of where each signal originated
from can be determined in one dimension, as shown in Figure 2.10.

Phase encoding

A phase encoding gradient applied in the y direction is used to encode spatial information in
the other dimension by introducing a phase shift between spins that is dependent on location.
The phase encoding is carried out before the frequency encoding. When the phase encoding
gradient is turned on, the resonant frequencies of the spins temporarily change as a function
of position in the y direction. When the gradient is turned off, the spins return to precessing
at their original frequencies. However, the spins will have gained or lost phase relative to
their state before the gradient was applied, a phase shift 𝜙. The magnitude of the phase shift
at a location along y is related to the strength of the phase encoding gradient applied, GPE,
and the time it is applied for, 𝜏, given by

𝜙(𝑦) =
∫ 𝜏

0
𝛾𝐺𝑃𝐸 (𝑦) 𝑑𝑡 = 𝛾𝐺𝑃𝐸 (𝑦)𝜏 (2.28)

The phase shift will vary as a function of position, creating a pseudo-spatial frequency,
ky, as shown in Figure 2.11.When the frequency encoding gradient is then applied, the MR
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Figure. 2.10 Spatial localisation using frequency encoding. A measured MR signal is the
sum of individual signals with frequencies and amplitudes that depend on the location and
the type of tissue where they originated from (left). The inverse Fourier transform separates
the signals out into spectral lines of specific frequencies which can be mapped back to
location using the frequency encoding gradient (right). The amplitude of each spectral line is
proportional to the proton density in that location.

signal will include the phase encoding spatial information and every pixel in the image will
have a unique combination of frequency and phase. However, it is not possible to separate
both frequency and phase information using a Fourier transform from a single MR signal.
The phase encoding must be repeated with varying phase encoding gradient strengths, as
shown in Figure 2.12, and the different MR signals recorded before a 2D Fourier transform is
used to reconstruct the image.
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Figure. 2.11 Phase encoding. After the phase encoding gradient is switched on and off, a
phase shift, 𝜙, is introduced between neighbouring nuclei that varies as a function of position
in the y direction.

Figure. 2.12 Repeating the phase encoding gradient with different gradient strengths results
in a different phase difference across the nuclei.
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Figure. 2.13 k-space diagram. Each time the phase encoding gradient is repeated, the next
line of k-space is acquired. The number of frequency encoding steps, the number of k-space
data points in the readout direction, determines the number of samples of the MR signal that
are acquired.

2.2.4 Image formation

The MR system is controlled from a workstation, where RF waveforms, gradients and timings
can be chosen by a series of control variables. The chosen RF waveforms and gradients are
passed to a waveform generator then through the respective gradient and RF amplifiers to
generate the required magnetic fields. The signal detected in the receiver coil is amplified,
digitised using an analogue to digital converter (ADC), and transferred to a main computer to
be processed, as shown in Figure 2.7.

The raw data acquired is stored in a matrix known as k-space, representing the spatial
frequency components of the image. One phase encoding step is stored as one row in k-space
(Figure 2.13). The number of data points in k-space is given by the matrix size, NFE x
NPE, where NFE is the number of frequency encoding steps, relating to the sampling of the
MR signal, and NPE is the number of phase encoding steps, the number of times the phase
encoding gradient is repeated. When the frequency and phase encoding gradients have been
repeated NPE times, all of the information in k-space is acquired.
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Following the application of the frequency and phase encoding gradients, the elemental
signal 𝛿𝑆(𝑡) at each sampled point is given by

𝛿𝑆(𝑡) = 𝜌(𝑥, 𝑦)𝑒𝑥𝑝 [−𝑖𝜙(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 (2.29)

where 𝜌(𝑥, 𝑦) is proton density (taking into account T1, T2, and T2* relaxation). The
phase 𝜙(𝑥, 𝑦), according to equation 2.28, is

𝜙(𝑥, 𝑦) = 2𝜋
∫
𝛾𝐺𝐹𝐸𝑥 𝑑𝑡 +2𝜋

∫
𝛾𝐺𝑃𝐸 𝑦 𝑑𝑡 (2.30)

The total signal over the 2D slice is therefore the integral of equation 2.29 with respect to
x and y given by

𝑆(𝑡) =
∬

𝜌(𝑥, 𝑦)𝑒𝑥𝑝 [−2𝜋𝑖(
∫
𝛾𝐺𝐹𝐸𝑥 𝑑𝑡 +

∫
𝛾𝐺𝑃𝐸 𝑦 𝑑𝑡)]𝑑𝑥𝑑𝑦 (2.31)

Substituting 𝑘𝑥 (𝑡) =
∫
𝛾𝐺𝐹𝐸 𝑑𝑡 and 𝑘𝑦 (𝑡) =

∫
𝛾𝐺𝑃𝐸 𝑑𝑡 gives

𝑆(𝑡) =
∬

𝜌(𝑥, 𝑦)𝑒𝑥𝑝 [−2𝜋𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]𝑑𝑥𝑑𝑦 (2.32)

This results shows that the acquired MR signal is the Fourier transform of the proton
density 𝜌(𝑥, 𝑦). Therefore a 2D inverse Fourier transform of k-space can be used to reconstruct
a 2D image in real space, as shown in Figure 2.14. Lower frequencies, containing the basic
contrast information, are stored in the centre of k-space. Higher frequencies, containing
higher level detail and edges, are stored at the periphery of k-space. Every point in k-space
contains frequency and phase information about every pixel in the image. The in-plane voxel
dimensions, Δ𝑥 and Δ𝑦, are governed by the field-of-view (FOV) in each direction and the
number of frequency and phase encoding steps.

Δ𝑥, 𝑦 =
𝐹𝑂𝑉𝑥,𝑦

𝑁𝐹𝐸,𝑃𝐸
(2.33)

2.3 Pulse sequences and acquisition techniques

A single RF pulse that tips the magnetisation into the transverse plane will generate a free
induction decay (FID). The FID oscillates at the Larmor frequency and is damped by an
exponential decay with time constant T2* as the transverse component of the magnetisation
dephases. In an MRI pulse sequence, combinations of gradients are played out to manipulate
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Figure. 2.14 MR image reconstruction. A two-dimensional Fourier transform is used to
reconstruct an image from k-space.

the phase of the spins to form a symmetric echo, that is acquired as MR signal. Pulse-timing
diagrams are used to graphically represent when gradients and RF pulses are applied.

2.3.1 Spin echo

In a spin echo (SE) sequence, spins are first excited using a 90° RF pulse that tips the
magnetisation into the transverse plane. After the 90° pulse, the spins dephase and the
transverse component of magnetisation decays due to T2* relaxation. A 180° pulse is then
applied which flips the magnetisation in the transverse plane, reversing the phase of the spins
and refocusing the magnetisation into a spin echo. The refocusing 180° pulse also reverses
the effect of the dephasing due to B0 field inhomogeneities, static tissue susceptibilities, and
chemical shifts, such that the echo decays with time constant T2 as opposed to T2* and images
will have T2 contrast. The time between the centre of the 90° pulse and the centre of the echo
is known as the echo time (TE). The sequence is then repeated, and the time between the
previous 90° pulse and the next 90° pulse is known as the repetition time (TR). Each repeated
excitation, the amplitude of the phase encoding gradient is changed to acquire a new line of
k-space. A pulse sequence diagram for a SE sequence is shown in Figure 2.15.

Multiple spin echo sequences generate additional echoes without the need for a new 90°
pulse. If another 180° pulse is applied before the transverse magnetisation has fully decayed,
the spins can be rephased and the magnetisation refocused, forming another echo. In a fast
spin echo (FSE) sequence, the 180° pulse is repeated a number of times in one TR period,
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Figure. 2.15 Spin echo pulse sequence. Echo time (TE) is the length of time between the
centre of the first exciting RF pulse and the echo and repetition time (TR) is the length of
time between RF excitation pulses.

creating multiple spin echoes for which a a different phase encoding gradient is applied, such
that multiple lines of k-space can be acquired after one 90° pulse, significantly reducing the
acquisition time. This is particularly useful for T2-weighted images as a long TR period is
required to fully recover the longitudinal magnetisation to reduce T1-weighting, resulting in
long scan times. The number of echoes acquired in one TR period is called the echo train
length (ETL). A pulse sequence diagram for a FSE sequence is shown in Figure 2.16.

2.3.2 Gradient echo

In a gradient echo (GRE) sequence, spins are excited using an RF pulse that tips the
magnetisation into the transverse plane at an angle given by the chosen flip angle, 𝛼
(section 2.1.3). A dephasing frequency encoding gradient is applied that accelerates the
dephasing of the spins. A rephasing frequency encoding gradient is then applied with the
opposite polarity but double the same gradient area that reverses the dephasing, forming an
echo as the signal grows then decays. The pulse sequence diagram for a GE sequence is
shown in Figure 2.17.
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Figure. 2.16 Fast spin echo (FSE) sequence. ESP refers to the echo spacing.

In a gradient echo sequence, only the dephasing of spins due to the applied gradient is
reversed and the dephasing due to field inhomogeneities is not reversed. The transverse
magnetisation therefore decays due to T2* relaxation. For more rapid imaging, flip angles
of less than 90° are used so as not to saturate the longitudinal magnetisation, resulting in a
shorter TR, and such that the image contrast can be controlled by the flip angle, TE and TR,
giving more flexible image contrast. T1-weighted gradient echo is used for sequences that
require rapid acquisition such as dynamic contrast-enhanced imaging (section 2.4).

Spoiled gradient echo

As TR values used in practice are often shorter than T2 relaxation times, there is often some
residual transverse magnetisation at the end of a TR period before the next RF pulse is
applied. Spoiled gradient echo (SPGR) sequences use modifications to the basic gradient echo
sequence such that there is zero transverse magnetisation remaining just before the next RF
pulse. Strong "crusher" gradients are applied in both the slice select and frequency encoding
(readout) directions at the end of a TR period, as shown in purple in Figure 2.17. However, as
the gradients produce spatially varying fields, the spoiling is non-uniform. Gradient spoiling
is used in conjunction with RF-spoiling, where the phase of the RF-carrier is varied each TR
period using a quadratic phase increment [159]. The phase of each subsequent RF-pulse, 𝜙 𝑗
is given by

𝜙 𝑗 =
1
2
𝜙0 ( 𝑗2 + 𝑗 +2) (2.34)
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Figure. 2.17 Gradient echo (GRE) pulse sequence. Gradient spoiling crusher gradients and
varied RF-carrier phase for a spoiled gradient echo (SPGR) sequence are shown in purple.

where 𝜙0 is the initial RF-spoiling phase. SPGR sequences are generally used to produce
T1-weighted images and can be used in 2D and 3D.

2.3.3 Generating image contrast

Echo times, repetition times and flip angles can be chosen to manipulate image contrast.
Different tissues appear brighter or darker on images that are sensitised to proton density
(PD), T1 or T2 due to different longitudinal and transverse magnetisation relaxation times.
On a T1-weighted image, fat is bright as it has a short T1 relaxation time so longitudinal
magnetisation recovers quickly, and it appears hyperintense. On a T2-weighted image,
fluids are bright as they have a longer T2 relaxation time, so transverse magnetisation is
maintained, and it appears hyperintense. On a proton density-weighted image, tissue with
highest concentration of protons (whether it be fat or fluids) will appear hyperintense.

For a spin echo sequence, TR and TE control image contrast. A T1-weighted image can
be generated using a short TE, as this doesn’t give time for T2 decay differences to appear,
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minimising the T2 contrast, and a short TR to maintain sufficient longitudinal magnetisation
to observe T1 relaxation differences between tissues. Conversely, a T2-weighted image can
be generated using a long TE to give sufficient time for differences in T2 decay to appear
and a long TR as longitudinal magnetisation will be fully recovered between excitations,
minimising the T1 contrast. A PD-weighted image can be generated with a short TE to
minimise T2 effects and a long TR to minimise T1 effects.

Similar weighting can be achieved for a gradient echo sequence. However, images
will have T2* contrast as opposed to T2 contrast due to the dephasing effects of field
inhomogeneities. Flip angles much smaller than 90° can be chosen to maintain longitudinal
magnetisation and minimise T2 effects, reducing the length of the TR period. For a spoiled
gradient echo sequence, the signal S can be given by

𝑆 = 𝑘 [𝐻] 𝑠𝑖𝑛𝛼(1− 𝑒−𝑇𝑅/𝑇1)
(1− (𝑐𝑜𝑠𝛼)𝑒−𝑇𝑅/𝑇1)

𝑒−𝑇𝐸/𝑇
∗
2 (2.35)

where [H] is the proton density and k is a scaling factor. By differentiating with respect
to 𝛼, the maximum signal can be achieved at the Ernst angle 𝛼𝐸

𝛼𝐸 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑒−𝑇𝑅/𝑇1) (2.36)

While the Ernst angle will give the highest signal for a TR/T1 combination for a given
tissue, it may not necessarily maximise the image contrast between multiple tissues. Suggested
flip angles, TR and TE values to generate T1-weighted, T2 or T2*-weighted, and PD-weighted
images for spin echo and spoiled gradient echo sequences are summarised in Table 2.3.

Table 2.3 Suggested echo times (TE), repetition times (TR) and flip angles for spin echo and
spoiled gradient echo sequences to generate different image contrasts, relative to T1 and T2
or T2* relaxation times.

Contrast Weighting
Spin Echo

a = 90°, 180°
Spoiled Gradient Echo

(TR short <<T1)
TE TR TE Flip Angle 𝛼

T1
Short (<<T2)

<40ms
Short (<T1)

<750ms
Short (<<T2*)

<5ms
Large (>𝛼𝐸 )

30°-50°

T2 or T2*
Long (>T2)

>75ms
Long (≈ 5T1)

>1500ms
Long (» T2*)

>30ms
Small (<𝛼𝐸 )

<20° )

Proton density
Short (<<T2)

<40ms
Long (≈ 5T1)

>1500ms
Short (<<T2*)

<5ms
Small (<𝛼𝐸 )

<20°
TE: Echo time, TR: Repetition time, 𝛼: flip angle, 𝛼𝐸 : Ernst angle
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2.3.4 Signal and noise

MR images contain a mixture of signal and noise. Noise, primarily thermal noise, arises from
random fluctuations in electrical current, not only in the MR hardware and RF coils used
to measure signal but also in human tissue (from electrically charged ions such as sodium,
potassium, and chloride, which carry electrical currents within the body). The signal-to-noise
ratio (SNR) is defined as the ratio of the signal amplitude to noise level, and is dependent on
a number of sequence parameters

𝑆𝑁𝑅 ∝ 𝐵0
Δ𝑥Δ𝑦Δ𝑧

√
𝑁𝐹𝐸𝑁𝑃𝐸𝑁𝑆𝐴√
𝑅𝐵𝑊

(2.37)

where NSA is the number of signal averages and RBW is the receiver bandwidth. MR
imaging involves choosing imaging options with a trade-off between SNR, contrast-to-noise,
resolution and scan time. In order for images to be diagnostically useful, they must have a
sufficient SNR to observe small changes in voxel intensity, as well as sufficient contrast-to-
noise to observe differences in contrast between different tissues. To improve SNR, k-space
can be sampled multiple times (controlled by the NSA) and the resulting data averaged
together. To improve spatial resolution, the number of frequency encoding and phase encoding
steps can be increased to reduce the voxel size (equation 2.33). However, both of these options
result in an increase in scan time. SNR can also be increased by the use of phased-array coils
(section 2.2.2), which for N independent coils increases the SNR by a factor

√
𝑁 , although in

reality the noise characteristics are not as straightforward.

2.3.5 Fat suppression

MR signal in the body comes from hydrogen nuclei, originating mostly in water and fat.
Hydrogen nuclei in water and fat resonate at different frequencies due to their different
molecular environments. The difference in resonant frequency of water and fat is 3.5 parts per
million (ppm) which corresponds to a frequency difference of 224Hz at 1.5T and 448Hz at
3T. Relative to other tissues, fat has a much shorter T1 and therefore appears as hyperintense
on T1-weighted images. A number of techniques have been developed that can be used
to suppress or separate water and fat contributions to MR signals, exploiting either their
different resonant frequencies, their different T1 times, or both. Fat suppression is particularly
important in the breast due to the large amount of adipose tissue which may obscure pathology
or interfere with contrast enhancement.

Short TI inversion recovery (STIR) [160] is a fat suppression technique that exploits the
short T1 of fat. An inversion recovery sequence uses a 180° RF pulse to invert the longitudinal
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Figure. 2.18 Short TI inversion recovery. An inversion time (TI) is chosen such that fat
signal is nulled. For a STIR sequence that uses magnitude reconstruction, the voxel intensity
depends only on the magnitude of the signal as opposed to its polarity (solid vs dashed lines).
Any tissue with zero magnetisation at time TI appears black in the image.

magnetisation before the rest of the pulse sequence is carried out, where the time between the
inverting pulse and the excitation pulse is known as the inversion time (TI). A short TI is
chosen such that the signal from the fat is nulled at the time the signal generation for the rest
of the sequence takes place (Figure 2.18). Inversion times in the breast are typically 160ms at
1.5T and 250ms at 3T.

Spectrally selective suppression methods, such as Chemical Shift Selective (CHESS)
[161], use 90° RF pulses with a narrow bandwidth centred on the resonant frequency of fat
applied before the rest of the pulse sequence to saturate the signal from fat before the signal is
acquired. Spoiler gradients are then used to dephase the transverse fat magnetisation prior to
signal excitation. CHESS requires a homogeneous B0 field across the FOV such that protons
in the fat molecules resonate at the same frequency.

Hybrid techniques such as SPIR (spectral presaturation with inversion recovery) [162]
and SPAIR (spectral attenuated inversion recovery) [163] combine both frequency selective
and inversion recovery methods. A greater than 90° pulse at the resonant frequency of fat
inverts the longitudinal magnetisation of the protons in the fat molecules and an inversion
time is chosen such that the fat signal is nulled, allowing for T1 recovery between the fat
saturation RF pulse and the rest of the sequence and therefore a better nulling of fat signal.
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Spoiler gradients are also used to destroy the transverse magnetisation of fat. SPAIR uses
an adiabatic 180° inversion pulse which is less sensitive to inhomogeneities in the B1 field,
resulting in more homogeneous fat suppression. Both techniques are still sensitive to B0

inhomogeneities. Hybrid techniques require a longer imaging time than fat saturation or
inversion recovery techniques used alone, and have a higher specific absorption rate (SAR, a
measure of the amount of power (heat) deposited into tissue) as more RF energy is deposited
into tissue than STIR or CHESS.

The Dixon two-point method [164] acquires two images when water and fat nuclei are
precessing in phase and out of phase by using two different echo times. Immediately after an
excitation pulse, water and fat signals are in phase. However, they begin to dephase as they
precess at different frequencies. The difference in frequencies is on the order of 3.4 parts per
million (ppm) or 3.4 x 10-6. This corresponds to a difference in frequency, or chemical shift,
of 224Hz at 1.5T and therefore the signals will cycle between being in phase and out of phase
with a period 1/224Hz = 4.5ms. At 3T where the chemical shift is doubled, the phase cycling
occurs twice as fast with a period of 2.2ms. For an image acquired at an echo time when fat
and water are in phase, the signal Sip is the sum of the water signal, Sw, and the fat signal, Sf,

𝑆𝑖𝑝 = 𝑆𝑤 + 𝑆 𝑓 (2.38)

When the signals are 180° out of phase, the signal Soop is the difference

𝑆𝑜𝑜𝑝 = 𝑆𝑤 − 𝑆 𝑓 (2.39)

By adding and subtracting the two images,

𝑆𝑖𝑝 + 𝑆𝑜𝑜𝑝 = (𝑆𝑤 + 𝑆 𝑓 ) + (𝑆𝑤 − 𝑆 𝑓 ) = 2𝑆𝑤 (2.40)

𝑆𝑖𝑝 − 𝑆𝑜𝑜𝑝 = (𝑆𝑤 + 𝑆 𝑓 ) − (𝑆𝑤 − 𝑆 𝑓 ) = −2𝑆 𝑓 (2.41)

water-only and fat-only images can be generated.
Spectral-spatial water only fat suppression is a technique that is similar to CHESS but

excites only water nuclei [165]. A binomial set of RF pulses are used to select a spatial band
(the slice) and a spectral band (at the resonant frequency of water), such that no protons
in fat or water molecules outside of the slice are excited. The first RF pulse with half the
desired overall flip angle is applied and water and fat are both excited and begin to lose phase
coherence. When the water and fat nuclei are precessing 180° out of phase, a second RF
pulse is applied such that the net effect of the pulses produces a 90° excitation for water and
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a 0° excitation for fat. Water excitation is ideal for rapid imaging sequences as no spoiler
gradients or delays to wait for relaxation are required.

2.3.6 Parallel imaging

Parallel acceleration is an image reconstruction technique that reduces acquisition time by
exploiting the fact that a receiver coil is made up of multiple receiver channels (section 2.2.2).
Lines of k-space are skipped at regular intervals as a function of the acceleration factor R, the
ratio between the number of k-space lines sampled and the number of lines in fully sampled
k-space. For an acceleration factor of 2, every other line of k-space is acquired. This allows
for a reduction the number of phase encoding steps that are acquired per slice and therefore a
reduction in overall acquisition time. Reducing the number of phase encoding steps is also
beneficial for pulse sequences with a long echo train length, such as echo-planar imaging
(section 2.5.1), as this reduces T2* blurring.

Figure. 2.19 The partial sampling of k-space results in an aliased image, where the anatomy
at the edges of the field-of-view is wrapped into the centre of the image. Coil sensitivity
maps are acquired from a low-resolution calibration scan then aliased images are
reconstructed for each individual coil before SENSE reconstruction is carried out to generate
the unaliased full field-of-view image.
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Under-sampling of k-space produces reduced FOV images with aliasing as not enough
information has been acquired to adequately represent the object being imaged. The spatial
variation in the response of each individual coil, the coil sensitivity profiles, are used to
assist reconstructing the full un-aliased images by combining data from separate coils.
Sensitivity encoding (SENSE) [166] is a parallel imaging method that first reconstructs
aliased images from each coil, then uses coil sensitivity maps to separate the superimposed
images to reproduce a full FOV image (Figure 2.19). Coil sensitivity maps are generated
from low-resolution images acquired using each coil before the main pulse sequence, with
intensities normalised using a low-resolution image acquired using the body coil. An image I
with a full FOV can be produced using aliased images P from coils with sensitivity profiles S
using the equation

I = (S𝐻𝚿−1S)−1S𝐻𝚿−1P (2.42)

where 𝚿 is the noise covariance matrix, which describes the correlation of noise in
the receiver channels, and the superscript H indicates the transposed complex conjugate
[166]. Array coil spatial sensitivity encoding (ASSET) is the GE implementation of SENSE
without the acquisition of a body coil calibration image. An alternative parallel imaging
technique, known as generalised auto-calibrating partial parallel acquisition (GRAPPA) or
auto-calibrating reconstruction for cartesian imaging (ARC), combines data from separate
coils in k-space before reconstructing the full FOV image.

2.4 Dynamic contrast-enhanced MRI

Dynamic contrast-enhanced (DCE) imaging is used to acquire a series of T1-weighted images
before, during, and after the administration of a gadolinium-based contrast agent. Gadolinium
based contrast agents shorten the T1 relaxation time of the blood, making the blood vessels
appear brighter on a T1-weighted image. The reduction in T1 is given by

1
𝑇1,𝑝𝑜𝑠𝑡

=
1

𝑇1,𝑝𝑟𝑒
+𝑅1.[𝐶𝐴] (2.43)

where T1,pre is the T1 of blood before the administration of contrast agent, T1,post is the T1

of blood following administration, R1 is the longitudinal relaxivity of the contrast agent and
[CA] is the concentration of the contrast agent in the blood. The contrast agent is administered
via a catheter placed within the antecubital vein followed by a saline flush using a power
injector for accurate timing and consistency. The series of T1-weighted images acquired at
regular time points show the passage of the contrast agent through tissue.



2.4 Dynamic contrast-enhanced MRI 49

While a variety of T1-weighted pulse sequences are used to acquire DCE-MRI, a 3D
spoiled gradient echo sequence with fat suppression, a short TE and TR, a low flip angle,
and parallel acceleration is often used. A trade-off exists between temporal and spatial
resolution. High temporal resolution is required to accurately characterise or quantify contrast
uptake. High spatial resolution is also required to detect small lesions and characterise lesion
morphology. The European Society of Breast Imaging recommends that a typical clinical
protocols should use an acquisition time of 60-120 seconds per volume with a minimum
in-plane resolution of 1mm2 [167]. In order to perform pharmacokinetic modelling, a
temporal resolution of shorter than 16 seconds per volume has been recommended [168].

Fat suppression is vital for breast imaging due to the high proportion of adipose tissue in
the breast. When acquiring DCE-MRI, suppression of fat signal improves the visualisation
of the uptake of contrast agent in the fibroglandular tissue, as well as reducing chemical
shift artefacts. While imaging at higher field strengths increases the separation of water
and fat signal, uniform fat suppression is more difficult due to increased B1 inhomogeneity.
Shimming across both breasts to achieve good B0 homogeneity is also challenging, limiting
the success of conventional fat suppression techniques. Volume image breast assessment
(VIBRANT) is a specialised pulse sequence based on 3D gradient echo with modifications to
optimise the image quality for breast imaging, using bilateral shims to achieve homogeneous
fat suppression across both breasts to enable high quality bilateral imaging.

Three-dimensional imaging

DCE-MRI is often performed in three-dimensional (3D) mode, using an additional phase
encoding gradient in the slice select direction, as shown in red in Figure 2.20.

As the sequence is repeated, both the phase encoding gradients are changed and k-space
lines in the ky and kz direction are acquired, producing a k-space matrix with three dimensions.
The region at the centre of k-space is often acquired first, known as centric filling. The 3D
image can be reconstructed by applying a 3D inverse Fourier transform to the k-space matrix.

2.4.1 Temporal acceleration

The time-resolved imaging of contrast kinetics (TRICKS) technique [169, 170] can be
used to achieve a high temporal resolution by segmenting k-space into a central region and
surrounding concentric regions and interleaving the acquisition of k-space points from central
and peripheral regions, reducing the number of k-space data points acquired at each time
point and therefore reducing the overall acquisition time. Given that the majority of contrast
lies in the centre of k-space, the central region is sampled most frequently, and the peripheral
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Figure. 2.20 A gradient echo pulse sequence adapted for 3D imaging.

regions are sampled periodically, as shown in Figure 2.21. Through a process known as
view-sharing, the k-space data from different time points is combined to reconstruct an image
of high temporal and sufficient spatial resolution. Using TRICKS, a temporal resolution of
10s can be achieved to facilitate pharmacokinetic modelling.

Figure. 2.21 TRICKS acquisition. Before the contrast injection, at least one full set of
k-space data, or one pre-contrast image, is acquired. Directly after the administration of
contrast agent, the centre of k-space is sampled to sufficiently capture the period of maximum
change in contrast enhancement. The other regions of k-space are periodically sampled.
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2.5 Diffusion-weighted imaging

2.5.1 Diffusion-weighted preparation

Diffusion-weighted images (DWIs) are acquired using a pulsed gradient spin echo (PGSE)
sequence (Figure 2.22), developed by Stejskal and Tanner [171], in which a pair of diffusion
sensitising gradient pulses are added to a spin echo sequence on either side of the 180° RF
pulse. The amount of diffusion weighting is determined by the amplitude and timing of the
diffusion gradient pulses, described by the b-value (units s/mm2)

𝑏 = 𝛾2𝐺2𝛿2
(
Δ− 𝛿

3

)
(2.44)

where 𝛾 is the gyromagnetic ratio, G is the gradient amplitude, 𝛿 is the gradient pulse
duration and Δ is the time between the centres of the gradient pulses. In reality, the b-value
will also be affected by slew rate, given by

𝑆𝑙𝑒𝑤 𝑟𝑎𝑡𝑒 =
𝑃𝑒𝑎𝑘 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑅𝑖𝑠𝑒 𝑡𝑖𝑚𝑒
(2.45)

where the rise time is the time taken for the gradient to achieve the maximum gradient
amplitude required (Figure 2.22). The first of these gradient pulses introduces a phase shift
to the water protons dependent on location. The second of the gradient pulses (with the same
magnitude as the first gradient pulse but with an opposing phase shift effect) will completely
re-phase the protons if they remain in the same location. As the water protons move randomly
via Brownian motion and change direction in the time between the diffusion gradients, the
protons will experience a different gradient field and the accumulated phase changes lead to a
loss of signal within each voxel. The signal attenuation is described by

𝑆(𝑏) = 𝑆(0)𝑒𝑥𝑝(−𝑏.𝐴𝐷𝐶) (2.46)

where S(b) is the signal with diffusion weighting, S(0) is the signal without diffusion
weighting, and ADC is the apparent diffusion coefficient. A series of DWIs can be acquired
with two or more b-values by changing the diffusion gradient amplitude and ADC maps
calculated by fitting signal decay for each voxel. In tissue, as well as the Brownian motion of
water protons, there are a number of other biological processes such as blood and lymphatic
flow in the microvasculature and diffusion restriction from microstructures that contribute to
signal attenuation. Bulk flow and motion can also affect measurement of signal, and therefore
the measured diffusion coefficient is referred to as the ’apparent’ diffusion coefficient.
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Figure. 2.22 Diffusion-weighted imaging pulse sequence. The spin echo echo-planar
imaging sequence is modified with a pair of diffusion-weighting gradients either side of the
180° pulse, shown in purple. Diffusion gradients are applied in 3 orthogonal directions,
either individually, simultaneously or in linear combinations of the 3 directions. The gradient
amplitude, G, the gradient pulse duration, 𝛿, and the time between the centres of the gradient
pulses, Δ, are used to control the diffusion weighting.

Diffusion in biological tissues is anisotropic due to restrictions from membranes and
microstructures, and as such the diffusion properties of a tissue can be described as a function
of direction by a diffusion tensor

D =


𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

 (2.47)

where the three orthogonal elements Dxx, Dyy, and Dzz describe the components of
diffusion along each of the three principal directions (x, y, z), and the other six terms describe
the correlation in diffusion between these directions. In a standard DWI acquisition, the PGSE
sequence is repeated with the diffusion gradients applied in the three orthogonal directions to
obtain a directionally invariant measure of diffusion. From the diffusion tensor, the apparent
diffusion coefficient can be found from the three orthogonal elements

𝐴𝐷𝐶 =
1
3
(𝐷𝑥𝑥 +𝐷𝑦𝑦 +𝐷𝑧𝑧) (2.48)
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2.5.2 DWI artefacts

DWIs are normally acquired using single-shot echo-planar imaging (ss-EPI), a modification
of a spin echo sequence where the frequency encoding gradient switches rapidly between
positive and negative amplitude as the phase encoding gradient is repeatedly blipped, as
shown in Figure 2.22. This corresponds to the encoding of one line in k-space, or one phase
encoding step, each time the frequency encoding gradient changes. The number of k-space
lines acquired in one excitation is known as the echo train length (ETL). When all of k-space
is acquired from one single RF excitation this is referred to as a single ’shot’. EPI is often
used for diffusion-weighted imaging (DWI) to maintain a high signal-to-noise ratio (SNR)
efficiency while minimising the effects of patient motion. DWI is prone to many artefacts
due to the EPI readout, particularly at higher field strengths. The main artefacts in DWI are
blurring caused by T2* decay during the readout, geometric distortion, N/2 ghosting caused
by the switching of the bipolar frequency encoding gradient, and chemical shift artefacts.

For an EPI readout with a long echo train, signal decays due to T2* relaxation, reducing
the signal at the edges of k-space that correspond to fine spatial detail, resulting in blurring.
This can be quantified using the point spread function (PSF), which describes the blurring
of signal into surrounding voxels. Geometric distortions occur in areas with local B0

field inhomogeneities caused by poor shimming and variations in magnetic susceptibility,
particularly at the interface between air and tissue. These field inhomogeneities affect the
accuracy of the small phase encoding gradients, resulting in phase errors and signal being
mapped to the wrong location. The size of the susceptibility artefact is given by

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑟𝑡𝑒 𝑓 𝑎𝑐𝑡 𝑠𝑖𝑧𝑒 ∝ Δ𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦.𝐵0.𝑇𝐸

𝐵𝑊𝑃𝐸

(2.49)

where 𝐵𝑊𝑃𝐸 is the phase encoding bandwidth [172]. The rapid switching of the frequency
encoding gradients induces eddy currents in conductive metallic structures of the magnet
which also results in geometric distortions in the image. While gradient pre-emphasis and
specialised hardware (such as secondary coils used to dynamically cancel magnetic flux
changes in the main magnet structure) are often used to mitigate the effect of eddy currents,
these effects are more severe for the strong diffusion-weighting gradients used, particularly at
large b-values where the gradient amplitude is high. Distortion will vary between images of
different b-value, resulting in blurred ADC maps and inaccurate quantification of the ADC.

The back and forth trajectory through k-space can also result in the accumulation of phase
shift from eddy currents, off resonance frequencies and other sources such as inadequate
shimming and gradient nonlinearity that oppositely affect odd and even echoes as the
directionality of the readout is changed. This effect acts as a modulation with a frequency of
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1/2 the phase encode bandwidth, and in the Fourier transformed image appears as a replicate
reduced intensity image in the phase encode direction shifted by half the FOV, known as "N/2
ghosting".

Chemical shift artefacts arise from fat resonating at a slightly lower frequency than water
(section 2.3.5), manifesting as a shift in spatial location in the Fourier transformed image.
This is especially apparent for an EPI readout due to the low bandwidth in the phase encode
direction (around 1kHz). The shift in voxels in the phase encoding direction, Δ𝑦

Δ𝑦 =
Δ 𝑓𝐶𝑆

𝐵𝑊𝑃𝐸

. 𝐹𝑂𝑉𝑃𝐸 (2.50)

where Δ 𝑓𝐶𝑆 is the chemical shift. At 1.5T where the chemical shift is about 220Hz, the
shift in voxels for a FOV of 360mm is 67.2mm. At 3T where the chemical shift is twice as
large, the shift in voxels is twice as large. This is of particular importance for breast imaging
due to the large proportion of fat but can be avoided with good fat suppression.

DWI artefacts are mostly mitigated by shortening the overall readout, which reduces the
length of the echo train and therefore the amount of T2* decay and phase accumulation that
can occur. A number of techniques are used that increase the speed of k-space traversal along
the phase encoding direction, increasing the phase encode bandwidth, which reduces the
size of both susceptibility-related distortions (equation 2.49) and chemical shift artefacts
(equation 2.50). Most commonly, parallel imaging is used to accelerate acquisition and
under-sample k-space, at the cost of a lower SNR (section 2.3.6).

2.5.3 Multi-shot imaging

Multi-shot techniques can also be used to acquire k-space in a number of segments each with
a reduced echo train length and shortened echo spacing. However, there is an increase in
overall scan time and increased sensitivity to physiological motion between shots. Examples
of k-space trajectories for DWI acquisition are shown in Figure 2.23.

DWI is extremely sensitive to patient motion as diffusion-weighting gradients are sensitive
to the diffusion of water on a molecular scale. As such, any bulk patient motion such as
respiration or cardiac pulsation will result in phase errors. Readout-segmented EPI techniques,
such as RESOLVE (readout segmentation of long variable echo trains) [173], segment k-space
in the readout (kx) direction and acquire navigators (unaliased and low-resolution images)
to correct for motion-induced phase errors between shots. The use of navigators reduces
the overall acquisition efficiency as each navigator is acquired in 30-40ms and increases the
specific absorption rate (SAR) of the sequence by 30% [174].
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Figure. 2.23 k-space trajectories used for diffusion-weighted imaging: single-shot
echo-planar imaging (ss-EPI), ss-EPI using parallel imaging with an acceleration factor of 2,
and readout-segmented EPI and segmented EPI with 3 segments.

Phase segmented EPI techniques, such as MUSE [175], acquire interleaved segments
in the ky direction and correct for motion-induced phase errors between shots without the
need for navigators. The MUSE technique is an extension of the parallel imaging technique
SENSE (section 2.3.6), where the sensitivities of the different channels of the receiver coil are
used to help reconstruct the image. After the segments are acquired, navigators are generated
using parallel imaging, combining the k-space data from each receiver coil channel to produce
a full k-space navigator image. The segments are then corrected using the navigator and
combined to produce the full FOV image. While the navigator free method has advantages in
terms of scan efficiency and SAR, it is limited by coil geometry as the number of segments
acquired is constrained by the number of receiver coil channels.

2.5.4 Advanced diffusion models

Advanced diffusion models attempt to describe the processes of diffusion and probe aspects
of the tumour microenvironment not captured by the ADC model, such as perfusion in
the microvasculature and diffusion anisotropy (section 1.2.3). These models are able to
provide more information about the physiological characteristics of a tumour to enable a
better understanding of the mechanisms of cancer and tumour growth.

Non-Gaussian diffusion

Signal decay with b-value has been shown to deviate from the mono-exponential ADC model
of diffusion [176], as shown in Figure 2.24. Various non-Gaussian diffusion models have
been proposed to achieve an improved fitting of signal decay by using additional parameters
to better describe diffusion in biological tissue.
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Figure. 2.24 Non-Gaussian diffusion. Signal attenuation with b-value deviates from the
ADC model at low b-values (< 200 s/mm2) and high b-values (> 1500 s/mm2).

Intra-voxel incoherent motion (IVIM), first proposed by Le Bihan et al. [49], expands
upon the mono-exponential ADC model and fits a bi-exponential model to the signal decay.
While signal decay in DWI can mainly be attributed to diffusion, at lower b-values with
weaker diffusion gradients, microcirculation of blood in the capillaries contributes more
significantly to signal decay. Signal attenuation is described by

𝑆(𝑏) = 𝑆(0) [ 𝑓 .𝑒𝑥𝑝−𝐷∗ + (1− 𝑓 ).𝑒𝑥𝑝−𝐷] (2.51)

where f is the perfusion fraction with values between 0 and 1, corresponding to the
percentage of voxel volume occupied by capillaries. The tissue diffusivity, D, and the
pseudo-diffusivity from the microvasculature, D*, separate tissue into two compartments
with different diffusion coefficients. IVIM modelling requires a wide range of b-values to be
acquired, particularly at low b-values where the IVIM mechanism is more prominent, and
uses a non-linear least-squares fitting to fit parameters to the bi-exponential model.

Diffusion kurtosis imaging (DKI) probes the non-Gaussian behaviour of diffusion. At
high b-values (2000 - 3000 s/mm2), signal attenuation has been shown to behave non-linearly
[53] and can be described by a quadratic order expansion to the ADC model given by
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𝑆(𝑏) = 𝑆(0).𝑒𝑥𝑝
(
−𝑏.𝐴𝐷𝐶 + 1

6
𝑏2.𝐴𝐷𝐶2.𝐾

)
(2.52)

where K is the kurtosis parameter.
The stretched exponential model is also used to determine the non-Gaussianity of diffusion,

modelling deviation from the mono-exponential model as

𝑆(𝑏) = 𝑆(0).𝑒𝑥𝑝(−𝑏.𝐷𝐷𝐶)𝛼 (2.53)

where DDC is the distributed diffusion coefficient and 𝛼 is a stretching parameter,
quantifying the degree of non-Gaussianity.

Diffusion tensor imaging

Diffusion tensor imaging (DTI) measures the anisotropy of diffusion due to restrictions
from membranes and microstructures and requires at least 6 diffusion gradient directions
to probe the extent of diffusion in each direction which are expressed as the diffusion
tensor (equation 2.47). The measured values for each component of the diffusion tensor
are dependent on the frame of reference that they are measured in, the choice of x, y,
and z directions. A spatially invariant alternative co-ordinate system uses the axes of a
diffusion ellipsoid determined by the eigenvectors (representing the directions of diffusion)
and eigenvalues (representing the magnitude of diffusion) of the diffusion tensor. The main
axis of the ellipsoid is parallel to the eigenvector with the eigenvalue of the largest magnitude,
the prime diffusion coefficient 𝜆1. The other eigenvalues are labelled in order of descending
magnitude (𝜆1 > 𝜆2 > 𝜆3). The eigenvalues can be used to calculate parameters such as the
mean diffusivity, MD, given by

𝑀𝐷 =
𝜆1 +𝜆2 +𝜆3

3
(2.54)

and anisotropy indices that represent the differences between the eigenvalues, such as the
maximal anisotropy index, (𝜆1 −𝜆3), and the fractional anisotropy, FA, given by

𝐹𝐴 =

√
1
2

√
(𝜆1 −𝜆2)2 + (𝜆2 −𝜆3)2 + (𝜆3 −𝜆1)2√

𝜆2
1 +𝜆

2
2 +𝜆

2
3

(2.55)





Chapter 3

A meta-analysis of the diagnostic
performance of diffusion MRI for breast
lesion characterisation

Diffusion-weighted imaging (DWI) is increasingly used in the detection and diagnosis
of breast cancer. This chapter systematically reviews the literature of all relevant DWI
techniques used in the breast and a meta-analysis to assess the diagnostic performance of
each technique in the characterisation of breast lesions is performed. Diffusion-weighted
imaging, intra-voxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) are shown
to have a comparable diagnostic accuracy with a high sensitivity and specificity. However, to
date the number of studies investigating advanced DWI techniques are limited and there is a
lack of standardisation in methodology.

Contents of this chapter have been published in Radiology [50] and presented at the
International Society for Magnetic Resonance in Medicine (ISMRM) 2019 (abstract #1853).

3.1 Introduction

MRI has very high sensitivity but lower specificity (93% and 71%, respectively) [10] for the
characterization of breast lesions. In order to improve specificity, the diffusion properties of
breast lesions have been investigated. The apparent diffusion coefficient (ADC), measured
using diffusion-weighted imaging (DWI), is increasingly used as a marker in the detection
and characterization of breast lesions. The ADC of a malignant lesion is lower than that of
a benign lesion due to the restricted diffusion in regions of high cellular density- often the
result of proliferation of glandular tissue. Multiple studies have set a threshold value for ADC
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and assessed the diagnostic utility in distinguishing malignant and benign lesions. Advanced
diffusion models attempt to capture more complex aspects of the tumor microenvironment,
such as diffusion tensor imaging (DTI) which captures diffusion anisotropy, and intra-voxel
incoherent motion (IVIM) which captures deviation from the mono-exponential model due
to perfusion effects (section 1.2.3).

While previous meta-analyses have assessed the performance of the ADC model in
differentiating between benign and malignant lesions [38, 177, 178], more advanced diffusion
techniques aim to improve upon the results of quantitative DWI. This meta-analysis compares
the diagnostic performance of these advanced diffusion techniques including DWI, DTI and
IVIM to assess whether they achieve an improvement in diagnostic performance that justifies
their higher computational complexity and longer scan time which are needed to acquire
the range of b-values or diffusion directions. Due to the lack of standardization in diffusion
imaging, a sub-analysis investigates how acquisition sequence variations affect diagnostic
performance.

3.2 Methods

3.2.1 Literature search

A search of PubMed and EMBASE was performed for studies involving women over the age
of 18 between January 2000 and March 2018. The search terms for ADC studies included:
breast, diffusion, apparent diffusion coefficient, ADC, and mono-exponential. The search
terms for DTI studies included: breast, diffusion tensor imaging, and DTI. The search
terms for IVIM studies included: breast, diffusion, intra-voxel incoherent motion, IVIM,
bi-exponential, and non-mono-exponential. A search of the lists of references from included
studies was also performed.

3.2.2 Study selection

Studies were included if they met the following eligibility criteria: (1) published in a peer
reviewed journal (abstracts and conference proceedings excluded) (2) in English; (3) data
obtained using a 1.5T or 3T MRI scanner, with MRI acquisition information reported; (4)
DWI performed and ADC, DTI or IVIM parameters calculated; (5) the study’s purpose
was for investigating the diagnostic performance of ADC, DTI or IVIM, with criteria for
classifying benign and malignant lesions clearly stated (i.e. threshold value used for a
parameter; a computational method used), (6) Sufficient information was reported to extract
the number of true positives (TP), false negatives (FN), false positives (FP) and true negatives
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(TN) classified using the diagnostic criteria. If the values reported could not be reproduced,
the study was excluded; (7) No limit was defined for age or sample size.

3.2.3 Data extraction

A data extraction spreadsheet was developed. The number of TP, FN, FP and TN using
parameters ADC, MD, 𝜆1, 𝜆1- 𝜆3, FA, D, f, and D* were extracted. For studies that reported
multiple sensitivities and specificities, the method that achieved the highest number of
correctly classified lesions (TP + TN) to avoid overrepresentation of a sample was extracted.
For studies that used both a training set and a test set, the test set values were extracted.
Reader 1 was extracted when studies had multiple readers. For authors with multiple studies
published in the same year, values from only one of the studies were extracted.

Other information extracted included: mean age and range or standard deviation (whichever
reported), study design, MRI scanner and vendor, breast coil used, b-values (s/mm2), repetition
time (TR, msec), echo time (TE, msec), matrix size, slice thickness (mm), field-of-view (FOV,
mm), parallel acceleration (GRAPPA/SENSE and acceleration factor), and fat suppression
method. Corresponding authors were contacted for missing information.

3.2.4 Data quality assessment

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was performed to
assess the quality of studies and likelihood of bias [179]. Risk of bias was assessed in four
domains: patient selection, methodology of the index test (parameter measurement and use
of appropriate threshold to classify lesions), use of histology as a reference standard, and
flow and timing. Funnel plots to visually examine publication bias were constructed. An
asymmetric or skewed funnel plot suggested the presence of a publication bias. Asymmetry
was quantified using Egger’s test [180] with a p-value of < 0.05 indicating publication bias.
The degree of heterogeneity between studies was measured by Cochran’s Q-test and Higgins’
I2 test [181] using Meta-DiSc version 1.4 (Clinical Biostatistics Unit, Hospital Ramon y
Cajal, Madrid, Spain; http://www.hrc.es/investigacion/metadisc_en.htm). A p-value < 0.05
for Cochran’s Q-test or an I2 value of > 50% indicated significant heterogeneity.

3.2.5 Statistical analysis

For each of the parameters (ADC, MD, 𝜆1, 𝜆1-𝜆3, FA, D, f, and D*), forest plots for sensitivity
and specificity were constructed. The bivariate model by Reitsma et al. [182] was used to
estimate pooled sensitivities, specificities and areas under the curve (AUC) for all parameters

http://www.hrc.es/investigacion/metadisc_en.htm)
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and construct summary receiver operating characteristics (sROC) curves. Analysis was
carried out in R (version 3.1.3, R Foundation for Statistical Computing, Vienna, Austria)
using the mada package.

Sensitivities, specificities and AUCs of studies evaluating ADC were compared to study
the effect of b-value (minimum, maximum and number used), as well as other MRI parameters
such as field strength, Vendor, use of partial field-of-view, slice thickness and resolution on
diagnostic performance using a Student’s T-test, Mann-Whitney U test or a one-way analysis
of variance (ANOVA). Method of region of interest (ROI) delineation (use of the whole
lesion, a small ROI or a single slice) was also compared with diagnostic performance using
an ANOVA. A p-value < 0.05 indicated a statistically significant difference. The data was
analysed in R.

3.3 Results

3.3.1 Study selection and data extraction

Using the key words, a search of the PubMed and EMBASE databases returned 515 ADC
studies with 65 meeting the eligibility criteria. A search for DTI returned 71 studies with 6
meeting the eligibility criteria. A search for IVIM returned 80 studies with 9 meeting the
eligibility criteria. 413 studies were excluded after a review of the titles and abstracts. The
full text of the remaining 253 studies was reviewed and 173 excluded that did not meet the
eligibility criteria. A total of 80 studies were included in the meta-analysis [39, 40, 44, 56, 58–
62, 183–203, 176, 204–245]. Six studies evaluated both ADC and IVIM and one study
evaluated both ADC and DTI for all patients included in the study. Figure 3.1 shows a flow
diagram of article exclusion. Details of included studies are provided in Appendix 1. 6791
lesions (3930 malignant and 2861 benign) from 73 eligible studies were included. There
was a large range of reported mean ADC values of malignant (0.66-1.50 x 10-3 mm2/s)
and benign lesions (0.87-2.00 x 10-3 mm2/s). Reported diagnostic threshold ADC values
ranged from 0.87 x 10-3 mm2/s to 2 x 10-3 mm2/s. A number of studies using DTI and IVIM
used a combined thresholds approach. The sensitivities and specificities of these studies
are compiled in Table 3.1. Jiang et al. reported a sensitivity and specificity for D* and f
combined [246] whereas Bokacheva et al. reported a combination of D and f using linear
discriminant analysis [216]. Dĳkstra et al. used all 3 IVIM parameters [188] and Iima et al.
reported a combination of f, ADC and diffusion kurtosis coefficient K [247]. Jiang et al. also
reported a combination of fractional anisotropy and the maximal anisotropy index [59].
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Figure. 3.1 Flow diagram for selection and exclusion of studies.

Table 3.1 Combined approaches using DTI and IVIM parameters

Author Sensitivity Specificity Method
Jiang et al. [246] 80.6% 74.3% Combined thresholds - D*, f
Iima et al. [247] 94.7% 75.0% Combined thresholds - f, ADC, K
Jiang et al. [59] 85.3% 90.9% Combined thresholds – FA and 𝜆1- 𝜆3

Dĳstra et al. [188] 92.2% 52.2% Combined thresholds - D, D* and f
Bokacheva et al. [216] 85.0% 86.0% Linear discriminant analysis (LDA) - D, f

D*: pseudo-diffusion, f: perfusion fraction, ADC: apparent diffusion coefficient, K: diffusion kurtosis
coefficient, FA: fractional anisotropy, 𝜆1 −𝜆3: maximal anisotropy index, D: tissue diffusivity
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3.3.2 Data quality assessment

Figure 3.2 shows the distribution of QUADAS-2 scores for risk of bias. The majority of
studies had a low risk of bias. Some studies were marked as unclear concerning patient
selection due to missing inclusion or exclusion criteria. Common weaknesses included the
lack of justification for diagnostic threshold (n=19), where receiver operating characteristic
curves or other analyses were not used, or the lack of consistent use of histology as the
reference standard for all patients (n=11).

Figure. 3.2 Results of quality assessment for risk of bias and concerns regarding
applicability of included studies. Quality assessment of diagnostic accuracy studies
(QUADAS-2) scores for each category are expressed by percentages of studies that have a
low, high or unclear risk of bias.

The funnel plot for ADC studies has a funnel-shaped distribution and the lack of studies
in the bottom left quadrant indicates publication bias (Figure 3.3). Significant asymmetry
was measured using Egger’s test (p < 0.001). Due to the low number of studies for each of
the other parameters, funnel asymmetry and Egger’s test were not assessed.

3.3.3 Statistical analysis

Table 3.2 shows the results of the pooled analysis of ADC, DTI, and IVIM parameters. High
heterogeneity between studies was measured for most parameters except f. I2 values of 0%
were measured for the specificities of 𝜆1 and FA, however the low number of studies included
in the analysis (n=3 for both) resulted in an undefined I2 value as opposed to significant lack
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Figure. 3.3 Funnel plots for apparent diffusion coefficient (ADC), intra-voxel incoherent
motion (IVIM) and diffusion tensor imaging (DTI) parameters. Log of diagnostic odds ratio
(DOR) is plotted against standard error (SE). The vertical line represents the median. IVIM
parameters include tissue diffusivity (D), perfusion fraction (f) and pseudo-diffusion (D*).
DTI parameters include mean diffusivity (MD), the prime diffusion coefficient (𝜆1), the
maximal anisotropy index (𝜆1 – 𝜆3) and the fractional anisotropy (FA).

of heterogeneity as Cochran’s p-values were measured as 0.59 and 0.61, respectively. The
pooled AUC of the apparent diffusion coefficient (ADC) was 0.92. The highest performing
parameter for DTI was the prime diffusion coefficient (𝜆1) with a pooled AUC of 0.94. The
highest performing parameter for IVIM was tissue diffusivity (D) with a pooled AUC of 0.90.
A forest plot for sensitivity and specificity is presented for all 3 parameters in Figure 3.4.
sROC curves are presented in Figure 3.5.
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Figure. 3.4 Forest plot of sensitivity and specificity with 95% confidence intervals using A)
the apparent diffusion coefficient (ADC), B) tissue diffusivity (D) and C) the prime diffusion
coefficient (𝜆1), ordered from high to low sensitivity and specificity. Vertical lines denote
pooled summary estimates of sensitivity and specificity.
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Figure. 3.5 Summary receiver operating characteristics (sROC) curves using the bivariate
model with 95% confidence regions. The pooled area under the curve (AUC) was 0.92 for
the apparent diffusion coefficient (ADC), 0.90 for tissue diffusivity (D) and 0.94 for the
prime diffusion coefficient (𝜆1).

Table 3.3 shows the results of the sub-analysis. For studies using the ADC, choice
of minimum b-value of 0 s/mm2 (n=56) or 50 s/mm2 (n = 9) had no significant effect on
sensitivity or specificity (p = 0.82 and p = 0.52, respectively). No significant differences (p >
0.05) were found in sensitivity and specificity for maximum b-value, number of b-values,
field strength, vendor, partial field-of view, slice thickness, resolution or method of ROI
delineation.

Table 3.3 Results of sub-analysis comparing studies using the ADC .

Sensitivity p-value Specificity p-value
Minimum b-value (0 or 50 s/mm2) 0.82 0.52

Maximum b-value 0.08 0.71
Number of b-values 0.84 0.94

Field strength (1.5T or 3T) 0.14 0.64
Vendor 0.93 0.78

Partial field-of-view 0.79 0.43
Slice thickness 0.60 0.72

Resolution 0.90 0.65
Method of ROI delineation 0.66 0.57
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3.4 Discussion

While other meta-analyses have assessed the diagnostic performance of the ADC model
[38, 177, 178], this is the first study to systematically compare all relevant advanced non-
Gaussian diffusion techniques with standard DWI for quantitatively distinguishing benign and
malignant lesions. The pooled estimates of sensitivity, specificity and AUC were found to be
comparable for ADC, IVIM and DTI. However, due to the low number of studies included
and large confidence intervals, this meta-analysis lacks the statistical power to conclude that
they are diagnostically equivalent.

The pooled sensitivities and specificities using DWI, IVIM and DTI in this meta-analysis
were comparable to the pooled sensitivity and specificity of dynamic contrast-enhanced
MRI (93% and 71%, respectively)[10]. Other non-Gaussian diffusion models have been
proposed, such as diffusion kurtosis and the stretched exponential model, though these were
not investigated due to a low number of publications to date. A study by Suo et al. found
that kurtosis and stretched exponential achieved a better goodness-of-fit, though the AUCs
for non-mono-exponential models were comparable to the ADC, in accordance with these
findings [56].

DTI lacks standardization in methodology and reporting of parameters. The prime
diffusion direction 𝜆1 and the mean diffusivity achieved a diagnostic accuracy equal to or
greater than the ADC; however, the number of eligible studies included is very low. While
it is suggested that reduced structuring in malignant breast lesions should be reflected by a
reduced diffusion anisotropy [61], anisotropy measures achieved a mixed diagnostic utility,
with some studies finding no significant difference in fractional anisotropy between malignant
and benign lesions [58, 60]. The number of diffusion directions used ranges from 6 to 64,
though the b-value pair of 0 and 1000 s/mm2 was the most commonly used [58–61].

While the increasingly used technique of IVIM in the breast achieves a high diagnostic
accuracy, there is also still a lack of consistent methodology. There is a large variation
in the number and range of b-values used and in the choice of parameters reported, with
studies often using a combined thresholds approach. Variations in MRI technique prevent
determination of generalized threshold values as ADC quantification depends on the choice
of b-values [248]. A number of single-center studies have reported their optimal b-value
combination. Bogner et al. reported optimal ADC determination and DWI quality at b = 50
and 850 s/mm2 [249]. Dorrius et al. found that b = 0 and 1000 s/mm2 were the optimum
values, finding that this b-value combination achieved the highest percentage difference
in ADC of benign and malignant lesions [250]; this was the most commonly used pair of
b-values in this meta-analysis (n = 29). It has been suggested that using more b-values
achieves a better separation of diffusion and perfusion [251], particularly at low b-values
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where the contribution of perfusion to signal decay is strongest [49]. While this may suggest
avoiding low b-values, the precise b-value threshold for minimising perfusion effects has
not been standardized and choice of minimum b-value showed no significant difference in
diagnostic performance in studies in this meta-analysis, though this may be due to the lack of
statistical power. Also, the diagnostic accuracy of D, corresponding to an ADC measurement
with effects of perfusion excluded, was comparable to standard DWI. While there is no
consensus on whether excluding b = 0 or avoiding low b-values constitutes ‘excluding
perfusion effects’, both have been shown to have limited effect on diagnostic performance.
Choice of fat suppression technique, such as short tau inversion recovery (STIR) or spectral
adiabatic inversion recovery (SPAIR), has been shown to influence image quality and ADC
quantification, though diagnostic performance was comparable [252]. These discrepancies
highlight the importance of choosing similar protocols and methods of data analysis to
compare studies across multiple centers.

This meta-analysis has some limitations. First, the low number of studies contributing
to the pooled estimates resulted in large confidence intervals, limiting the conclusions that
can be drawn from the comparable AUCs. Second, overrepresentation of a sample may be a
limitation of pooled estimates since multiple studies were included from the same author
that may have used the same patient population. Third, for studies that did not report TP,
FN, FP and TN, these outcomes were calculated from sensitivity, specificity, and number of
malignant and benign lesions. However, many studies were excluded (n=24) because they
resulted in a non-integer number of lesions. Finally, due to low numbers of publications,
other non-mono-exponential models were not included.

In conclusion, diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and
intra-voxel incoherent Motion (IVIM) are able to discriminate between malignant and benign
lesions with a high sensitivity and specificity. IVIM is diagnostically comparable to apparent
diffusion coefficient (ADC), though the exclusion of perfusion effects using the tissue diffusion
coefficient, D, does not improve upon the results of the ADC model. DTI achieves a higher
accuracy than the ADC, though the number of studies to date is limited. Both IVIM and DTI
lack standardization in methodology and parameters reported.



Chapter 4

Improving the image quality of
diffusion-weighted imaging (DWI) in
breast cancer

In this chapter, a DWI protocol using multiplexed sensitivity encoding (MUSE), a multi-shot
DWI technique, is optimised through a series of phantom experiments and validated in 20
patients. This acquisition technique aims to overcome some of the limitations of conventional
DWI by reducing blurring and distortion. Significant improvements in qualitative and
quantitative image quality metrics are demonstrated. As a result of this work, this protocol
has been adopted as part of the routine clinical breast imaging protocol at Addenbrooke’s
hospital.

Contents of this chapter have been published in the British Journal of Radiology [253]
and presented at the International Society for Magnetic Resonance in Medicine (ISMRM)
2019 and 2020 (abstracts #4121 and #2331).

4.1 Introduction

Diffusion-weighted imaging (DWI) is a promising non-contrast MRI technique in the detection
of breast cancer [51, 67]. However, diffusion-weighted images acquired using single-shot
EPI (ss-EPI) are limited by image artefacts and suffer from blurring due to T2* decay during
readout. The relatively low spatial resolution results in the averaging of tumour volumes with
nearby breast tissues, particularly for small lesions and non-mass enhancements which are
prone to volume-averaging affects due to the large voxel sizes of DWI compared to dynamic
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contrast-enhanced MRI (DCE-MRI) [254]. In order for diffusion MRI to be clinically relevant,
it must be able to detect and characterise all lesions, even small lesions.

Parallel imaging techniques (such as SENSE [166]) aim to reduce artefacts in images
acquired using EPI by reducing the length of the echo train and therefore reducing the T2*
blurring. However, the extent to which parallel imaging can improve image quality is limited
by the coil hardware. Multi-shot techniques also attempt to reduce the length of the echo train
by acquiring k-space in a number of segments. These techniques must account for motion
between shots, often using a ‘navigator’ pulse to acquire a low-resolution image that can be
used to correct for motion-induced phase errors between shots.

Multiplexed sensitivity encoding (MUSE), a multi-shot segmented EPI technique, expands
on existing sensitivity-encoding techniques by acquiring k-space with an interleaved trajectory
with the aim of achieving better spatial resolution and high signal-to-noise ratio (SNR)
without the need for navigator pulses between interleaves [175]. Benefits of a navigator-free
method include an increase in efficiency of acquisition as navigators require 30-40ms per
excitation [174]. Similar to parallel acceleration, MUSE is limited by the design of the
receiver coil and the number of coil components. While MUSE has not yet been investigated
in the breast, a number of studies have investigated the improvement in image quality and
diagnostic performance of RESOLVE, a readout-segmented EPI technique [58, 254–257].

This study aimed to compare the image quality of DWI acquired using ss-EPI and
MUSE, and investigate the effect of MUSE, used in conjunction with parallel acceleration,
on the quantification of the apparent diffusion coefficient (ADC) in a breast phantom and
in malignant, benign and normal breast tissue in a small cohort of patients. In addition, an
optimised parallel acceleration factor and number of shots for MUSE-DWI was determined.

4.2 Methods

4.2.1 Phantom study design

The effect of varying parallel acceleration factor and number of shots was first evaluated in
a phantom. The phantom used in this study was manufactured by QMD (High Precision
Devices, Inc., Boulder, CO), and consisted of two silicon breast inserts designed to investigate
diffusion, distortion and T1 relaxation. The diffusion insert contained 16 vials of solutions
arranged in two concentric rings with diameter and length 15mm x 110mm (inner ring)
and 15mm x 80mm (outer ring) (Figure 4.1). 12 vials contained varying concentrations of
polyvinylpyrrolidone (PVP) in water (0, 10, 14, 18, 25, and 40%) to mimic the apparent
diffusion coefficients of benign and malignant tumours found in the literature and 4 vials
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contained a fat mimic. The interstitial space was filled with a solution of 35% corn syrup in
water to mimic fibroglandular tissue. The phantom was kept in the scanner room at room
temperature (18°C).

Figure. 4.1 Axial MUSE-DWI (2 shots, acceleration factor 1.5) images of the A) T1
relaxation and B) diffusion phantom inserts. The dotted line refers to the coronal slice C)
with contents of the 16 vials labelled. Percentages refer to the percentage of
polyvinylpyrrolidone (PVP) in water.

All phantom acquisitions were performed on a 3T system (Discovery MR 750, GE
Healthcare, Waukesha, WI, USA) using a dedicated bilateral eight-channel phased-array
breast coil. DWI was performed using ss-EPI and 6 permutations of MUSE-DWI with
varying parallel acceleration factors and numbers of shots (see Table 4.1). A T1-weighted
image (TR/TE = 659/15.3ms, matrix = 512x512, slice thickness = 3.5mm) was acquired
using a fast spin echo (FSE) sequence as a geometric reference.

A measurement of blurring was obtained using the Crété-Roffet blur metric [258],
previously adapted from the field of computer vision [259], for a central slice through the
phantom for all acquisitions. The metric is quantified by comparing the perceptible levels of
blurring between the input image and a version of the image which has been further blurred
using a low-pass filter. Values of the blur metric range from 0 (sharp) to 1 (blurry). A
measurement of distortion was obtained by calculating the Mattes Mutual Information (MI)
metric [260] between the b = 800 s/mm2 and T1W images, resampled to the same matrix size
as the DWI images. Values of the MI metric range from 0 (distorted) to 1 (not distorted).
Metrics were calculated for each slice and averaged over the whole image volume.

For each of the 16 vials, regions of interest (ROIs) were drawn on axial images for each of
the diffusion gels using Osirix (version 8.0.1, Pixmeo, Switzerland). Each ROI consisted of 3
rectangles drawn on contiguous slices, avoiding the edges of the vials to minimise partial
volume effects. Generation of ADC maps and diffusion analyses were carried out using
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in-house software developed in MATLAB (The Mathworks, version 2019a). The mean ADC
was measured for each ROI and the coefficient of variation calculated between all acquisitions.

Table 4.1 Scan parameters

Phantom studies Patient studies
ss-EPI-DWI MUSE-DWI ss-EPI-DWI MUSE-DWI DCE-MRI

Slice
Orientation

Axial Axial Axial Axial Axial

b-values
(s/mm2)

0, 800 0, 800 0, 800 0, 800 -

TR/TE (ms)
4000/

51
4000/
54-55

3714-14853/
60.7

8203-16715/
71.3

5.1/
2.4

Matrix size 160 x 160 160 x 160 96 x 128 160 x 160 384 x 384
Field-of-view

(mm2)
360 x 360 360 x 360 360 x 360 360 x 360 360 x 360

Slice thickness
(mm)

3.5 3.5 3.5 3.5 2.0

Acceleration
factor

2 1, 1.5, 2 2 1.5 2.5

Number of
shots

1 2, 3 1 2 -

Acquisition
Time

1 min 8s
1 min 52s,
2 min 48s

6 – 8 min 8 min 9 min

ss-EPI: single-shot echo-planar imaging, DWI: diffusion-weighted imaging, MUSE: multiplexed
sensitivity encoding, DCE: dynamic contrast-enhanced, TR: repetition time, TE: echo time.

4.2.2 Patient study design

Between October 2018 and October 2019, 20 women were scanned under an existing research
ethics protocol. The local institutional review boards and ethics committees approved this
study and written informed consent was obtained from all patients. Patients were recruited
if they had pathologically confirmed invasive breast cancer and had no previous treatment
(such as breast surgery or neoadjuvant chemotherapy).

All clinical acquisitions were performed on a 1.5T system (MR 450W, GE Healthcare,
Waukesha, WI) using an 8-channel breast coil. ss-EPI-DWI and MUSE-DWI were performed.
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High resolution T1W dynamic contrast enhanced (DCE) images were also acquired. Scan
parameters are given in Table 4.1.

4.2.3 Image analysis

Qualitative analysis

Two breast radiologists, each of whom had at least 5 years of experience, independently
reviewed all the images. Both ss-EPI and MUSE images were scored based on three qualitative
image criteria: lesion conspicuity, contrast between lesion and tissue and diagnostic confidence.
All criteria were scored from 1 (poor) to 5 (excellent). Lesions were also assessed for multi-
focality and multi-centricity. The readers were not blinded to the scan type and images were
read consecutively.

Quantitative analysis

The Crété-Roffet blur metric was calculated for ss-EPI and MUSE images, and the MI
distortion metric was calculated between ss-EPI and MUSE images and the corresponding
DCE images, resampled to the same matrix size as the DWI images. Metrics were calculated
for each slice and averaged over the whole image volume.

ADC maps were generated using in-house software developed in MATLAB (version
2019a). Regions of interest were manually drawn on the ss-EPI and MUSE b800 images by
two breast radiologists in consensus with reference to DCE images to aid tumour delineation.
As previously described by Wisner et al. [254], to obtain a measurement of signal in normal
tissue the ROI for each lesion was copied and placed on contralateral fibroglandular tissue.
These ROIs were copied to the ADC maps and mean ADC values were measured for each
lesion (ADClesion) and normal fibroglanduar tissue (ADCtissue) ROI. To account for the
difference in acquired voxel size, the normalised ADC (nADC) was calculated using nADC
= ADClesion/ADCtissue.

Statistical analysis

Qualitative and quantitative image quality metrics for images using ss-EPI or MUSE were
compared on a per-patient basis. ROI sizes and ADC values were compared on a per-lesion
basis. All comparisons used the paired t-test or a Wilcoxon signed-rank test. The inter-
observer agreement of the qualitative scoring criteria was assessed using Cohen’s Kappa. P <
0.05 was considered statistically significant for all statistical tests. All statistical analyses
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were carried out using R (R versions 3.1.3; R Foundation for Statistical Computing, Vienna,
Austria).

4.3 Results

4.3.1 Phantom results

Images acquired using ss-EPI and all permutations of MUSE are shown in Figure 4.2.
ADC values measured using the phantom were consistent with values from the literature
[261]. The variation in ADC for each acquisition is shown in Table 4.2. There was a
low coefficient of variation for measured ADC value (<2%) for all PVP concentrations.
The variation in MI metric and Crété-Roffet blur metric between acquisitions is shown in
Figure 4.3. Both distortion and blurring improved (an increase in the MI metric and a
decrease in the Crété-Roffet blur metric) with an increasing number of shots and acceleration
factor. Increasing the acceleration factor when using 3 shots did not improve distortion. For
clinical implementation, an acceleration factor of 1.5 and 2 shots were chosen as a pragmatic
compromise between acquisition time and image quality.

Figure. 4.2 Axial images of the breast phantom using single-shot echo-planar imaging
(ss-EPI), 2 or 3 shots and acceleration factors of 1, 1.5 and 2. Insertion of the phantom in the
breast coil causes the left phantom insert to bend slightly- this distortion is not caused by
imaging technique.
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Table 4.2 Apparent Diffusion Coefficient values measured for each acquisition for varying
PVP concentrations.

PVP
concentration

(%)

Apparent diffusion coefficient (10-3 mm2/s) Coefficient
of

variation
(%)

Manufacturer ss-EPI

MUSE
2 shots

MUSE
3 shots

Acceleration
Factor

Acceleration
Factor

1 1.5 2 1 1.5 2
0 2.02 2.40 2.39 2.43 2.41 2.42 2.43 2.41 1.2
10 1.66 1.74 1.75 1.79 1.79 1.79 1.81 1.82 1.5
14 1.50 1.58 1.48 1.48 1.48 1.49 1.50 1.51 1.9
18 1.34 1.37 1.29 1.31 1.31 1.31 1.32 1.33 1.8
25 1.08 1.19 1.09 1.10 1.11 1.11 1.12 1.13 1.6
40 0.68 0.67 0.60 0.70 0.69 0.69 0.66 0.67 1.6

PVP: polyvinylpyrrolidone, ss-EPI: single-shot echo-planar imaging, MUSE: multiplexed sensitivity
encoding

Figure. 4.3 Values of A) the Crété-Roffet blur metric and B) the mutual information metric
measured for each phantom acquisition. S1, S2 and S3 refer to the use of 1, 2 and 3 shots.
ACC1, ACC1.5 and ACC2 refer to the use of acceleration factor 1, 1.5 and 2. Circles indicate
the acceleration factor and number of shots used in the clinical protocol.

4.3.2 Patient results

20 patients (median age 51 years, range 28 – 81 years) were imaged. A total of 22 malignant
lesions and 3 benign lesions were identified (median size 16mm, range 10 – 56mm). There
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were 5 patients that had more than one lesion. 2 patients had a second lesion located in the
contralateral breast. 3 patients had a second lesion located in the same breast. Details of the
patient and lesion characteristics are given in Table 4.3. Comparisons of image quality for
an invasive ductal carcinoma, an invasive lobular carcinoma, and a patient with an invasive
carcinoma with mixed ductal and lobular growth patterns and columnar and fibrocystic
changes with benign calcification are shown in Figure 4.4.

Figure. 4.4 Post-gadolinium (Gd) DCE T1W images, DWI using ss-EPI and DWI using
MUSE for a 60 year old woman with invasive ductal carcinoma (top), a 63 year old woman
with invasive lobular carcinoma (middle), and a 51 year old woman with an invasive
carcinoma with mixed ductal and lobular growth patterns (red arrow) and columnar and
fibrocystic changes with benign calcification (orange arrow) (bottom).
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Table 4.3 Patient and lesion characteristics

Mean age in years ± SD (range) 53.8 ± 12.0 (28 - 81)
Total lesions (n = 24)
Lesion size in mm (mean ± SD)
Range

19.58 ± 11.68
10 – 56
N (%)

Malignant lesions (n = 22)
Invasive ductal carcinoma
Invasive lobular carcinoma
Invasive carcinoma with mixed ductal and lobular features
Invasive ductal carcinoma with mucinous differentiation
High grade ductal carcinoma in situ

Benign Lesions (n = 3)
Fibroadenoma
Fibrocystic change with columnar cell changes
Columnar and fibrocystic changes with benign calcification

11 (50.0)
8 (36.4)
1 (4.5)
1 (4.5)
1 (4.5)

1 (33.3)
1 (33.3)
1 (33.3)

Invasive breast cancer grade
Grade 1
Grade 2
Grade 3

3 (14.3)
14 (66.7)
4 (19.0)

ER status
Positive
Negative

20 (95.2)
1 (4.8)

PR status
Positive
Negative

20 (95.2)
1 (4.8)

HER2 status
Positive
Negative

1 (4.8)
20 (95.2)

SD: standard deviation, ER: estrogen receptor, PR: progesterone receptor, HER2: human epidermal growth
factor receptor 2
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4.3.3 Qualitative results

Results of qualitative comparisons are given in Table 4.4. MUSE was superior to ss-EPI
for contrast between lesion and tissue, and significantly superior for lesion conspicuity and
diagnostic confidence criteria. Inter-reader agreement as measured by Cohen’s kappa was
higher for the scoring of MUSE images compared to ss-EPI.

Table 4.4 Qualitative comparisons.

Criteria Score range ss-EPI MUSE p-value 𝜅 ss-EPI 𝜅 MUSE
Lesion

conspicuity
1-5 3.5 ± 1.1 4.1 ± 0.9 <0.001 0.05 0.4

Lesion-tissue
contrast

1-5 3.8 ± 1.2 3.9 ± 1.0 0.86 - 0.007 0.3

Diagnostic
confidence

1-5 3.7 ± 1.1 4.2 ± 1.1 <0.001 0.08 0.2

ss-EPI: single-shot echo-planar imaging, MUSE: multiplexed sensitivity encoding, 𝜅: Cohen’s Kappa
p-values were determined using a Wilcoxon signed-rank test.

4.3.4 Quantitative results

Results of quantitative comparisons are given in Table 4.5. The distributions of blur and
distortion metrics using ss-EPI and MUSE are shown in Figure 4.5. The Crété-Roffet blur
metric was significantly lower for MUSE-DWI than for ss-EPI-DWI (p < 0.001), indicating
less blurring. The MI metric was significantly higher for MUSE-DWI than for ss-EPI-DWI
(p = 0.002), indicating more similarity to DCE images and therefore less distortion.

4.3.5 Comparison of ADC values: ss-EPI versus MUSE

The distributions of ADC values measured using ss-EPI and MUSE are shown in Figure 4.6A.
The mean ADC of malignant lesions was 1.49 ± 0.30 mm2/s using ss-EPI and 1.23 ± 0.27
mm2/s using MUSE. The mean ADC of benign lesions was 1.73 ± 0.27 mm2/s using ss-EPI
and 1.42 ± 0.25 mm2/s using MUSE. ADC values measured using MUSE were significantly
lower than those measured using ss-EPI for malignant lesions but not benign lesions (p <
0.001 and p = 0.21, respectively). ADC values measured were in agreement with those in
the literature [261], though the mean ADC for malignant lesions measured using ss-EPI was
high.
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Table 4.5 Quantitative comparisons

Parameter ss-EPI MUSE p-value
Mean ADC (x 10-3 mm2/s)
Fibroglandular tissue
Benign Lesions
Malignant lesions

2.24 ± 0.45
1.73 ± 0.27
1.49 ± 0.30

1.76 ± 0.32
1.42 ± 0.25
1.23 ± 0.27

<0.001
0.21

<0.001
Mean normalised ADC
Benign Lesions
Malignant lesions

0.79 ± 0.21
0.69 ± 0.24

0.97 ± 0.23
0.72 ± 0.18

0.28
0.62

Crété-Roffet blur metric 0.10 ± 0.02 0.08 ± 0.02 <0.001
Mattes Mutual Information metric 0.19 ± 0.12 0.23 ± 0.10 0.002

ss-EPI: single-shot echo-planar imaging, MUSE: multiplexed sensitivity encoding, ADC: apparent
diffusion coefficient. p-values were determined using a paired t-test

Figure. 4.5 Comparison of A) Crété-Roffet blur metrics and B) Mattes Mutual Information
distortion metrics using ss-EPI and MUSE.

The distributions of nADC values measured using ss-EPI and MUSE are shown in
Figure 4.6B. The mean nADC of malignant lesions was 0.69 ± 0.24 using ss-EPI and 0.72
± 0.18 using MUSE. The mean nADC of benign lesions was 0.79 ± 0.21 using ss-EPI and
0.97 ± 0.23 using MUSE. There was no significant difference in nADC values of malignant
and benign lesions measured using ss-EPI or MUSE (p = 0.62 and p = 0.28, respectively).
The separation of the mean nADC values for malignant and benign lesions was greater using
MUSE (0.25) than using ss-EPI (0.10).
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Figure. 4.6 Comparison of the A) ADC and B) nADC values measured using ss-EPI versus
MUSE for malignant and benign lesions and normal fibroglandular tissue.

4.4 Discussion

In this study we demonstrated through phantom and clinical experiments that the quality of
DWI can be improved using MUSE by significantly reducing blurring and distortion. ADC
values measured in the phantom and in patients were in agreement with those in the literature
[261].

Geometric distortion is prevalent in DWI due to the slow traversal through k-space along
the phase-encoding direction when using ss-EPI. Accelerating the k-space trajectory through
the use of a segmented-EPI technique such as MUSE can improve distortion compared to
ss-EPI, as has been shown in previous studies implementing MUSE in the brain [262, 263].
Distortion has been evaluated in breast DWI by comparing lesion lengths in the anterior-
posterior and left-right directions [255] or by using anatomic landmarks [257]. However, a
more robust technique using the MI metric, a similarity measure often used in the field of
image registration, was used by Teruel et al. when investigating the reduction of distortion
after correction of B0 inhomogeneities [264]. Distortion as measured by the MI metric in
our study significantly improved using MUSE. In phantom studies, the best reduction in
distortion was achieved using MUSE with 3 shots, however this was not clinically feasible
due to the increase in acquisition time. A limitation of the MUSE technique is that the scan
time increases proportional to the number of shots acquired. MUSE-DWI using simultaneous
multi-slice excitation could be employed to reduce the acquisition time. This technique has
been investigated in readout-segmented DWI in the breast [265].
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Blurring is also a limiting factor in the clinical use of ss-EPI DWI, affecting accurate
measurement of the ADC. Low resolution images result in ROIs that are averaged with
adjacent normal fibroglandular tissue, leading to higher measured ADC values. While ADC
values measured in the breast phantom did not vary substantially using ss-EPI or MUSE
when using the same set of ROIs, ADC values measured in patients were lower using MUSE,
suggesting that the difference in ADC may be a result of improved resolution and therefore
improved ROI delineation using MUSE. More accurate quantification of the ADC should
improve the separation of ADC values between malignant, benign and normal fibroglandular
tissue, as is seen by the greater separation of nADC values between malignant and benign
breast lesions. Wisner et al. similarly reported an improved separation of malignant and
benign lesions using RESOLVE [254]. In our study, there were not enough lesions to do an
analysis of diagnostic performance. However, given that readout-segmented techniques have
been shown to have a better diagnostic performance compared to ss-EPI [58, 256], we expect
that MUSE will achieve a better diagnostic performance than ss-EPI.

Less blurring and higher spatial resolution will allow DWI to better detect smaller lesions
and satellite lesions. Adhering to the EUSOBI guidelines [266], the patients included in this
study were referred for MRI for preoperative local staging of ipsilateral and contralateral
newly diagnosed breast cancers where patients had dense breasts or lobular cancers (resulting
in a high number of lobular cancers in this study which does not reflect the natural prevalence
of this type of cancer) as well as for problem-solving (equivocal findings at mammography
and ultrasound). In these cases, the improved image quality of MUSE-DWI can be used
to better assess multi-focality and multi-centricity, which impacts surgical planning [96].
Reduced distortion may also allow for DWI to be used for morphological analysis, increasing
the clinical utility of DWI.

There are limitations to this study. Firstly, low numbers of patients and lesions limit
the conclusions that can be drawn. More benign lesions are required to evaluate diagnostic
performance. Secondly, mostly mass type tumours were included in this study. Further work
with a larger range of histopathological subtypes are required to prove the robustness of
MUSE-DWI. Third, we were not able to acquire our current clinical protocol with a matrix
size of greater than 96 x 128 to match the matrix size used for MUSE as this resulted in a high
level of distortion. This limits the conclusions that can be drawn from the improvement in
blurring. However, phantom images acquired with ss-EPI and MUSE at the same resolution
allowed for more direct comparisons of blurring and distortion. Fourth, the readers were not
blinded to the scan type and the images were read consecutively as opposed to allowing time
between readings to forget the images. Finally, SNR and contrast-to-noise ratio (CNR) were
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not compared due to the varying parallel acceleration factors and SENSE reconstructions
used amongst acquisitions, resulting in different noise characteristics.

In conclusion, the image quality of MUSE-DWI was superior to that of ss-EPI-DWI and
geometric distortion and blurring were significantly reduced, though there was an increase in
acquisition time. MUSE-DWI is a promising technique for the detection and characterisation
of breast lesions, however further work is required to evaluate the diagnostic performance of
this technique using a larger range of histopathological subtypes of breast cancer.



Chapter 5

A meta-analysis comparing the
diagnostic performance of abbreviated
MRI and a full diagnostic protocol in
breast cancer

The use of abbreviated MRI protocols (ABB-MRI) for the detection of breast cancer has
gained increasing attention as these acquire a shortened version of a full diagnostic protocol
(FDP-MRI) in a fraction of the time with comparable or reduced reading times, reducing the
cost of the examination. However, before their adoption into mainstream clinical practice,
equivalent diagnostic accuracy to a full diagnostic protocol must be demonstrated.

This chapter presents a comparative meta-analysis of the diagnostic performance of
abbreviated and full diagnostic protocol MRI in the detection of breast cancer. Studies
reporting abbreviated and full diagnostic protocols are compared in screening and enriched
cohorts separately, and inconsistencies in study methodology are discussed.

Contents of this chapter have been published in Clinical Radiology [267] and presented
at the International Society for Magnetic Resonance in Medicine (ISMRM) 2020 (abstract
#2377).

5.1 Introduction

The use of abbreviated magnetic resonance imaging (ABB-MRI) protocols in the detection
of breast cancer has gained increasing attention as these have substantially reduced image
acquisition and interpretation times. The first prospective reader study of screening patients
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using an abbreviated breast MRI protocol was reported by Kuhl et al. and showed equivalent
diagnostic performance of ABB-MRI to a full diagnostic protocol (FDP) [70]. Initial studies
created a short protocol from an existing dataset of standard breast MRIs and reported
a reading study, generally showing equivalent performance to the standard acquisition
[71, 268, 269]. More recent studies have created enriched cohorts of patients, for whom MRI
has been used for problem solving or pre-operative staging, to assess the diagnostic accuracy
of ABB-MRI in a robust manner with a sufficient number of cancers [270, 271]. Varying
versions of the shortened protocols have been reported in these studies, with the general
definition of an ’abbreviated protocol’ using a non-contrast T1-weighted (T1W) sequence
with at least one post contrast T1W examination. Before the adoption of abbreviated MRI
into mainstream practice it is important to ensure the shortened sequences gives equivalent
diagnostic performance.

From a radiologist’s perspective it is important to assess the use of ABB-MRI in a
screening context and in a problem solving or pre-operative staging context separately. The
advantage of an abbreviated protocol for screening is the ability to reduce healthcare costs, the
time patients spend in the MRI scanner, as well as a reduced reading times for the radiologist.
For problem solving and pre-operative staging, MRI is used extensively, however the case
for abbreviated MRI for this clinical question is less compelling, as a full protocol is more
likely to be more diagnostically useful. In order to adopt abbreviated MRI for screening,
prospective trials need to be undertaken with careful comparison between abbreviated MRI
and standard MRI protocols. However, in order to do this safely, assimilation of the evidence
is required to show equivalence or at least non-inferiority using published data before a
randomised trial is undertaken.

While several review articles have examined the protocols and diagnostic performances
of published ABB-MRI studies [272–278], to date no meta-analysis has been performed
that systematically compares the diagnostic performance of ABB-MRI with full diagnostic
protocol MRI (FDP-MRI). This meta-analysis examines the evidence from screening only
cohorts and separately from enriched cohorts.

5.2 Methods

This meta-analysis was performed according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guidelines [279].
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5.2.1 Literature search

PubMed and EMBASE databases were searched in August 2019 for studies assessing the
diagnostic performance of abbreviated MRI protocols in the detection of breast cancer in
either a screening or an enriched cohort of women. The patient population of screening
studies consisted of screening mild-moderate or high-risk women, including women with a
personal history of breast cancer. The patient population of enriched cohort studies included
either combinations of screening, suspicious and known cancer cases or cases selected by
the authors. The search strategy used was ((breast)) AND abbreviated) AND (MR OR MRI
OR magnetic resonance imaging)). A full manual search of reference lists from all included
studies was also undertaken.

5.2.2 Study selection

Studies were included if they met the following eligibility criteria: (1) published in a peer
reviewed journal (abstracts and conference proceedings excluded), (2) in English, (3) the
patient population was reported and included either a screening cohort or an enriched cohort
of patients, (4) details of the full and abbreviated protocols were reported, (5) the diagnostic
performance of both ABB-MRI and FDP-MRI in the detection of breast cancer was reported.
Studies focusing on the development of an abbreviated protocol or technique were excluded.

5.2.3 Data extraction

The following information was obtained from studies: first author, publication year, prospective
or retrospective study design, number of patients, number of cancers, ABB-MRI and FDP-
MRI protocol sequences, number of readers and experience in years, examination times and
reading times of ABB-MRI and FDP-MRI, and interval of time between reading ABB-MRI
and FDP-MRI. The sensitivity and specificity of ABB-MRI and FDP-MRI protocols for each
study was recorded. The number of true-positive (TP), false-negative (FN), false-positive
(FP) and true-negative (TN) findings using ABB-MRI and FDP-MRI were either extracted
from studies where reported or calculated from the number of included cancers. For studies
that reported multiple readers, the number of TP/FN/FP/TN were extracted from only the
first reader to ensure integer numbers of lesions for the meta-analysis. For studies that
reported multiple ABB-MRI protocols, the diagnostic performance of the protocol that used
a contrast-enhanced sequence and the smallest number of additional sequences was extracted.
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5.2.4 Data quality assessment

The Quality Assessment of Diagnostic Accuracy Studies-2 was used to assess the risk of bias
and concerns regarding applicability to the review question [179]. Risk of bias was assessed
in four domains: patient selection (e.g. mild-, moderate- or high-risk patients for screening
studies), appropriate index test (interpretation of ABB-MRI and FDP-MRI protocols without
knowledge of final diagnosis, appropriate length of time or blinding between reading of
ABB-MRI and FDP-MRI protocols), reference standard (use of histological analysis or
follow-up), and flow and timing. The degree of heterogeneity between studies was assessed
using Cochran’s Q-test and the Higgins I2 test [181]. A p-value of < 0.05 for Cochran’s Q-test
or an I2 value of greater than 50% indicated statistically significant heterogeneity.

5.2.5 Statistical analysis

Forest plots of sensitivity and specificity for included studies were constructed. The bivariate
model of Reitsma et al. [182] was used to estimate pooled sensitivities, specificities and areas
under the curve (AUCs) for ABB-MRI and FDP-MRI on a per-lesion basis, and summary
receiver operating characteristic (sROC) curves were constructed. Screening studies and
enriched cohort studies were pooled separately to avoid bias. Additionally, the exam times,
reading times, for all studies were compared using a paired t-test, with a p-value < 0.05
indicating a statistically significant result. The reported sensitivities and specificities of
ABB-MRI and FDP-MRI for studies in the screening and enriched cohort groups were
compared separately using a paired t-test for each comparison with a p-value < 0.05 indicating
a statistically significant result. Analysis was performed using statistical software (R version
3.1.3; R Foundation for Statistical Computing, Vienna, Austria) using the mada package.

5.3 Results

5.3.1 Study selection and data extraction

The literature search of the PubMed and EMBASE databases returned 63 studies after
removing duplicates. 30 studies were excluded after a review of the titles and abstracts. The
full text of the remaining 33 studies was reviewed and 20 studies excluded as they did not
meet the eligibility criteria. 13 studies (5 screening studies and 8 enriched cohort studies)
were included in the meta-analysis [70–73, 81, 270, 271, 280–285]. One study was excluded
as the patient population contained a subset of patients previously reported by the authors in a
study included in the meta-analysis [286]. The study selection process is shown in Figure 5.1.
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Figure. 5.1 PRISMA flow diagram for study selection and exclusion.

Details of included screening and enriched cohort studies are given in Tables 5.1 and 5.2,
respectively. Screening studies included 2588 patients with 97 cancers. Enriched cohort
studies included 1432 patients with 540 cancers. Technical details of included studies are
given in Table 3. There was a large variation in patient population, study methodology and
ABB-MRI protocols reported in included studies. All studies used at least one pre-contrast
and one post-contrast sequence in their abbreviated protocol. The mean exam time was 7.4
minutes for ABB-MRI and 19.2 minutes for FDP-MRI (p = 0.002). The mean reading time
was 1.4 minutes for ABB-MRI and 3.8 minutes for FDP-MRI (p = 0.01). The time between
reading protocols ranged from immediately after to one month after. The majority of readers
involved in studies had over 6 years of experience.
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5.3.2 Data quality assessment

Figure 5.2 shows the results of QUADAS-2 assessment. For patient selection, some enriched
cohort studies were found to have applicability concerns due to a combination of screening
and patients with known cancers. For index tests, risks of bias found were due to either
lack of reporting of the time between the reading of the ABB-MRI and FDP-MRI protocols
(unclear risk) or the reading of the FDP-MRI directly after the ABB-MRI protocol (high risk).
The use of a reference standard was unclear for one study. Regarding flow and timing, all
studies were considered to have a low risk of bias.

Figure. 5.2 Results of quality assessment using QUADAS-2.
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5.3.3 Statistical analysis

The results of pooled analysis are given in Table 5.4. Low heterogeneity was measured
between studies using enriched cohorts. I2 values of 0% were measured for screening studies
using both ABB-MRI and FDP-MRI, however this was due to an insufficient number of
studies included to use this technique as opposed to lack of heterogeneity.

Forest plots for sensitivity and specificity are shown in Figure 5.3. For screening studies,
the confidence intervals are large, and are much larger for sensitivity than for specificity due
to the very small number of cancers in proportion to normal cases (n = 97 for 2588 patients for
all screening studies combined). For enriched cohort studies with a more balanced number
of cancers and normal cases, the confidence intervals are more similar, though the confidence
intervals are still large overall.

Summary receiver operating characteristic curves are shown in Figure 5.4. FDP-MRI
achieved a higher sensitivity, specificity and AUC than ABB-MRI for both screening and
enriched cohort studies. The difference in diagnostic performance between ABB-MRI and
FDP-MRI was lower for enriched cohort studies. However, the sensitivities and specificities
of ABB-MRI and FDP-MRI were not statistically significantly different for screening studies
or enriched cohort studies (p = 0.18 and 0.27, p = 0.18 and 0.93, respectively). The pooled
AUC for ABB-MRI was the same for screening and enriched cohorts.
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Figure. 5.3 Forest plots of the sensitivity and specificity of full diagnostic protocol MRI
(FDP-MRI) and abbreviated MRI (ABB-MRI) for included A) screening and B) enriched
cohort studies with 95% confidence intervals. Vertical lines denote pooled summary
estimates of sensitivity and specificity.
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Figure. 5.4 Summary receiver operating characteristics (ROC) curves for abbreviated MRI
(ABB-MRI) and full diagnostic protocol MRI (FDP-MRI) protocols using the bivariate
model with 95% confidence regions. The pooled AUCs of ABB-MRI and FDP-MRI for
screening studies were 0.94 and 0.97, respectively. The pooled AUCs of ABB-MRI and
FDP-MRI for enriched cohort studies were 0.94 and 0.95, respectively.

5.4 Discussion

This meta-analysis showed that in a screening setting, the diagnostic accuracy of abbreviated
MRI was lower but not statistically significantly different to the full diagnostic protocol
(pooled AUCs 0.94 and 0.97, respectively). For studies that used enriched cohorts, the
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performance of abbreviated MRI was similar to that of the standard protocol (pooled AUCs
0.94 and 0.95, respectively).

Comparison and pooling of ABB-MRI studies through a meta-analysis is complicated
by the variation in patient populations reported as sensitivity and specificity performance
can be altered by the expected prevalence of cancers in the cohort. It is better not to group
abbreviated protocols used for screening and for other clinical indications together. Amongst
screening studies, Kuhl et al. and Chen et al. reported results from screening mild- or
moderate-risk patients [70, 73], whereas Panigrahi et al. and Dialani et al. reported results
from screening high-risk patients [283, 72]. The effective rate of detected cancers will differ
between these two groups, and therefore it may not be meaningful to pool their diagnostic
performances. Furthermore, though there was a variation in patient populations, an I2 of
0% was measured between screening studies indicating no heterogeneity. However, it has
been shown that conclusions of low heterogeneity for a meta-analysis with a small number
of studies are unjustified as confidence intervals for these heterogeneity estimates are large
[181, 287]. Results from screening studies may also be underpowered due to the large
number of normal cases, where specificity will be inherently comparable for ABB-MRI
and FDP-MRI and the low number of cancer cases results in sensitivity values with large
confidence intervals. Amongst enriched cohort studies, Moschetta et al. reported a cohort of
combined screening, problem solving and preoperative staging patients [270]. Bickelhaupt et
al. reported a cohort of patients with suspicious mammograms [81]. Grimm et al. reported a
cohort of selected cases with a balanced number of cancers and benign and normal cases [71],
though the readers were blinded to the percentage of each case. It is unclear what effect these
combinations of patients within a population would have on reading images. While enriched
cohorts were able to demonstrate equivalent performance to a full diagnostic protocol, they
do not reflect the clinical setting of interest and may not be applicable in a screening setting.

Other than differences in patient population, the assessment of the quality of studies
included in the meta-analysis using QUADAS-2 highlighted other variations in study design.
Given the claims of equivalent diagnostic performance to standard protocols, it is important
to scrutinise the methodology of these reader studies before it is possible to safely adopt
abbreviated MRI into clinical practice. While some studies left up to a month between reading
images from different protocols, some read the full protocol directly after the abbreviated
protocol. This may be appropriate when assessing changes in management with the addition
of extra sequences, however both protocols must be tested equally to robustly compare the
diagnostic performance of ABB-MRI and FDP-MRI. Given that most studies were performed
by readers with many years of experience, it may be that the high diagnostic accuracy and
faster reading times achieved using abbreviated protocols would not be possible with less
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experienced readers. Furthermore, readers in retrospective studies would not be afraid of
misdiagnoses and may perform differently when reading images in a real clinical setting. Only
three of the studies included were prospective studies, and larger prospective and multi-centre
trials with defined inclusion criteria are required to validate the performance of ABB-MRI in
a purely screening setting. The lack of precision in pooled estimates also necessitates large
prospective trials, given that the lower end of the ranges of the sensitivity and specificity of
ABB-MRI in a screening setting (79% and 86%, respectively) are not good enough to be
used in a screening situation and unlikely to be cost-effective. There are multiple ongoing
prospective studies, the largest being the multi-centre EA1141 trial (Comparison of AB-MRI
and DBT in Breast Cancer Screening in Women with Dense Breasts), finding a higher rate of
invasive cancer detection using ABB-MRI compared to digital breast tomosynthesis (DBT)
in a screening cohort of 1444 women with dense breasts and only mild to moderate risk of
breast cancer [288, 77].

The various reported ABB-MRI protocols have been previously reviewed [272, 275, 277].
In this meta-analysis, only one set of reported sensitivity and specificity values were extracted
from each study to avoid overrepresentation of a sample, although many studies have compared
the diagnostic performance of multiple combinations of sequences to investigate the added
value of extra sequences in increasing specificity and confidence in diagnosis. Overall,
studies have dropped the full dynamic time course in order to save time, opting for one
pre-contrast and one post-contrast time point. Grimm et al. found that the addition of a second
post-contrast time point did not improve diagnostic accuracy [71]. Different studies added
either a T2-weighted (T2W) sequence or a diffusion-weighted examination to complement
the contrast examination. Dialani et al. found that the addition of a T2W sequence did not
result in a significant change in management [72]. A second abbreviated protocol including a
diffusion-weighted imaging (DWI) sequence was used by Bickelhaupt et al. which performed
better than the protocol using only contrast-enhanced images, matching the accuracy of the full
diagnostic protocol [81]. Chen et al. also found that the addition of DWI improved sensitivity
and specificity [73]. There is a growing interest in non-contrast-enhanced screening and DWI
is increasingly used in the detection of breast cancer, with advanced DWI techniques showing
a high sensitivity and specificity in the characterisation of breast lesions [67, 50].

This study has several limitations. Firstly, there were a low number of studies contributing
to the pooled estimates resulting in relatively wide confidence intervals, particularly for
screening studies. Second, there were many studies that investigated the diagnostic perfor-
mance of ABB-MRI but did not perform a reader study for the full diagnostic protocol and
were therefore not included in the meta-analysis. It has been shown that different results are
obtained when pooling non-comparative studies (evaluating only one test) and comparative
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studies (evaluating both tests equally) [289]. As such, robustly designed comparative studies
where all patients received both tests under the same conditions were preferred. Third, while
separate pooled analysis was carried out for screening and enriched cohort studies, there were
still variations in patient populations within these groups. Fourth, it was unclear if there was
an overlap between patient populations in two studies (both by Chen et al. [280, 73]) which
could result in overrepresentation of a sample in pooled estimates, though the full protocols
reported were sufficiently different. The authors could not be contacted for clarification.
Fifth, as each study population could be used only once, the meta-analysis did not incorporate
the potential added value of additional sequences that were investigated in some studies.

In conclusion, this meta-analysis of 13 studies found that abbreviated MRI had an overall
high diagnostic performance in the detection of breast cancer. The diagnostic performance
was similar to that of a full diagnostic protocol amongst enriched cohorts and was lower but
not significantly different in a screening setting. While acquisition and interpretation times
were significantly reduced compared to a full diagnostic protocol, there was a variation in
study methodology and sequences chosen, limiting the conclusions that can be drawn. Further
large prospective multicentre trials are required to validate ABB-MRI in a real screening
environment.



Chapter 6

Predicting pathological complete
response to neoadjuvant chemotherapy
in breast cancer: machine learning-based
analysis of radiomics features derived
from pre-treatment DCE-MRI

In this chapter, machine learning models trained on radiomics features derived from pre-
treatment dynamic contrast-enhanced MRI (DCE-MRI) are used to predict pathological
complete response (pCR) to neoadjuvant chemotherapy. The stability of feature selection
using logistic regression classification with the least absolute shrinkage and selection operator
(LASSO) is assessed and the ability of features derived from individual time points in the
dynamic series to predict pCR is investigated.

Contents of this chapter have been presented at the International Society for Magnetic
Resonance in Medicine (ISMRM) 2020 (abstract #0573).

6.1 Introduction

Neoadjuvant chemotherapy (NACT) is used in the management of breast cancer to reduce the
size of tumours before surgery, improving the rate of breast conservation surgery and reducing
the extent of axillary surgery [290]. The best outcome from NACT is pathological complete
response to chemotherapy (pCR), defined as the absence of residual invasive carcinoma in
the breast or lymph nodes, which has been shown to be an indicator of long-term survival
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and is associated with an 80% reduction in recurrence rate [291, 292]. MRI is the most
accurate technique for the assessment of response to treatment [103, 293]. In particular,
dynamic contrast-enhanced MRI (DCE-MRI) can be used to measure levels of contrast
enhancement in different types of tissue that reflect changes in tumour vascularity, as well
as providing high resolution anatomical information to assess morphology and accurately
measure changes in tumour volume. Assessment of response during treatment is crucial to
avoid unnecessary toxicity and cost by stopping treatment or changing to a more effective
regime if a patient is not showing therapeutic response or if a patient has achieved pCR.
Early prediction of response at the start of chemotherapy could provide a more personalised
approach to treatment, allowing for better timing of surgery, choice of treatment regimen and
a more individualised prognosis.

Radiomics involves the extraction of a large number of quantitative features from images
used to train a machine learning model for classification and is increasingly used in the
prediction of pCR in breast cancer. DCE-MRI is commonly used for radiomics analysis as the
high spatial resolution is ideal for the extraction of texture features that quantify the distribution
of voxel grey levels in a tumour volume, providing a measure of intratumoural heterogeneity
which is an established biomarker of poor prognosis [138]. Combining the kinetic, textural,
and morphological features derived from DCE-MRI, as well as clinicopathological features,
using machine learning approaches can provide a more sophisticated method of predicting
pCR. Studies investigating the prediction of pCR from pre-treatment MRI using radiomics
analysis to date have achieved a moderate accuracy (AUCs 0.69-0.83) [141, 144–147]. As
well as accurately predicting pCR, there is interest in finding a stable set of informative and
predictive radiomics features that add to our understanding of tumour response and could
inform decisions about types of treatment. However, the link between texture features and
underlying tumour pathology is not well understood. Where traditional statistics approaches
look for associations between imaging features and outcomes, a machine learning model
trained on large quantities of data aims to predict outcomes without focusing on the predictors
used, limiting the information that can be gained from interpreting the features used in the
model.

This study aimed to investigate the use of different types of image-derived features
extracted from pre-treatment DCE-MRI, using machine learning techniques, to predict pCR
in breast cancer. In addition, the predictive performance of features derived from different
time points through the DCE-image series were compared to investigate the effect of dynamic
contrast enhancement on the selection of radiomics features.
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6.2 Methods

Patient selection

The local institutional review boards and ethics committees approved this prospective study
and written informed consent was obtained from all patients (National Research Ethics
Committee number 13/LO/0411). Patients were eligible if they had pathologically confirmed
invasive breast cancer and neoadjuvant chemotherapy was planned as the first line of treatment.
Between February 2014 and March 2019, 172 females were recruited to this study. 4 patients
withdrew from the study and 11 patients did not receive neoadjuvant chemotherapy and went
directly to surgery. 3 patients were excluded as they did not receive a consistent MRI protocol
and 2 patients were excluded due to having rare types of invasive carcinoma (invasive spindle
cell carcinoma and a cystic invasive ductal carcinoma) that made it difficult to either outline
their lesion or the lesion was not suited for radiomics feature extraction. After exclusions, a
total of 152 patients were included in the analysis (mean age 51.2 ± 10.7 years, range 28-75
years).

MRI acquisition

All MR examinations were performed before the start of neoadjuvant chemotherapy using a
3T system (MR750, GE Healthcare, Wakesha, WI) with a dedicated eight-channel breast array
coil. Dynamic contrast-enhanced (DCE) MRI was acquired using a three-dimensional fast
spoiled gradient echo technique with k-space data sharing (volume image breast assessment-
time-resolved imaging of contrast kinetics, or VIBRANT-TRICKS) [169, 170]. DCE-MRI
was performed with TR/TE = 7.1/3.8ms, field-of-view = 350 mm, image matrix = 512 ×
512, section thickness = 1.4mm (interpolated), voxel size = 0.6 × 0.6 × 1.4mm3, flip angle
= 12°, array spatial sensitivity encoding factor = 2.5 (phase direction), fat suppression =
spatial-spectral water excitation, acquisition time = 8 minutes and 7 seconds.

Contrast agent was delivered using a catheter placed in the antecubital vein. A dose of
0.1mml of gadopentetate dimeglumine (Magnevist, Bayer Schering, Berlin, Germany) per
kilogram of body weight was administered using an automated injector at a rate of 3.0ml/s
and was followed by a 25ml saline flush. 5 baseline volumes were acquired before contrast
injection, followed by 43 contrast-enhanced volumes with a nominal temporal resolution of ∼
10 seconds. 5 subtraction volumes were generated by subtracting pre-contrast volumes from
post-contrast volumes acquired approximately 1 min, 2.5 mins, 4 mins, 5.5 mins and 7 mins
after contrast injection.
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Histological analysis and response assessment

Tumour type, histological grade, hormone receptor status and HER2 expression were obtained
from pathology reports of core biopsies performed before the start of chemotherapy. Histo-
logical grade was assessed using the Nottingham grading system [16]. As the progesterone
receptor status was not assessed for a number of patients in this study (n = 62), patients were
grouped into 4 immunohistochemical (IHC) molecular subtype groups given by Onitilo et al.
based on hormonal receptor status (ER and PR) and HER2 expression: ER+PR+/HER2+,
ER+PR+/HER2-, ER-PR-/HER2+, or ER-PR-/HER2- (i.e. triple negative) [294]. Histopatho-
logical assessment of response to chemotherapy was performed by expert pathologists after
surgical excision following the last cycle of chemotherapy. Tumour response was classified
using one of three categories given by Pinder et al. : 1) pathological complete response (pCR)
either i) no residual carcinoma or ii) no residual tumour with the presence of DCIS, 2) partial
response with either i) minimum residual disease (<10% of tumour remaining) or ii) 10-50%
residual tumour cellularity with evidence of response to therapy or iii) >50% residual tumour
cellularity with some features of response to therapy, or 3) no evidence of response [295].
Lesions achieving partial response and no response were grouped as incomplete pathological
response (non-pCR) for the purposes of this study. 60 patients achieved pCR and 92 patients
did not achieve pCR (non-pCR).

Region of interest analysis

Regions of interest were manually delineated slice by slice on the non-subtracted second
post-contrast time point volume by three breast radiologists (1, 4, and 5 years experience in
breast imaging) using Osirix (version 8.0.1, Pixmeo, Switzerland) and propagated to other
time points. One pathologically confirmed breast lesion was included per patient to avoid
inter-lesion correlation that may confound results. For multi-focal and multi-centric lesions,
the largest single index lesion was used. Volumes were registered to the second post-contrast
time point using the simple ITK toolbox (http://www.simpleitk.org) [296, 297] if patient
motion between time points was observed.

Radiomics feature extraction

The radiomics analysis workflow is shown in Figure 6.1. Before radiomics features were
extracted, bias correction was performed for all MRI images to correct for low frequency
intensity non-uniformity [298]. A total of 384 features were extracted for each lesion. For
each of the 5 subtraction volumes, 74 features were calculated (18 first order histogram
features, 24 Grey Level Co-occurrence Matrix (GLCM) features, 16 Grey Level Run Length
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Matrix (GLRLM) features and 16 Grey Level Size Zone Matrix (GLSZM) features). 14
shape features were also extracted from each region of interest. Feature extraction was carried
out using the PyRadiomics toolbox [299].

Figure. 6.1 Radiomics analysis workflow.

Machine learning predictive modelling

Data was split in a patient-wise fashion into 80%/20% independent training and test sets,
maintaining the proportion of pCR and non-pCR cases in each set. Radiomics features were
normalised using z-score standardisation before training. Logistic regression classification
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Table 6.1 Features sets used to train logistic regression models

Feature set Features Included N features
Shape + Histogram

(S+H)
14 Shape features

18 Histogram features per subtraction 104

Shape + Histogram + Texture
(S+H+T)

14 Shape features
18 Histogram features per subtraction

56 Texture features per subtraction
384

Shape + Histogram + Pathology
(S+H+P)

14 Shape features
18 Histogram features per subtraction

4 Clinicopathological features
108

Shape + Histogram + Texture +
Pathology

(S+H+T+P)

14 Shape features
18 Histogram features per subtraction

56 Texture features per subtraction
4 Clinicopathological features

388

models using the least absolute shrinkage and selection operator (LASSO) to enable feature
selection [300] were trained with a 5-fold stratified cross-validation scheme. Grid search was
used to tune the regularisation hyperparameter, C. The predictive performance of models was
then evaluated on the test set using receiver operating characteristic curve (ROC) analysis.
The model that achieved the highest cross-validation area under the curve (AUC) score in the
training set in predicting pCR was reported.

Feature sets

To compare the ability of different types of radiomics features to predict pCR, models
were trained using feature sets containing the shape (S), histogram (H), texture (T) and
clinicopathological (P) features. The combinations of features in each feature set are
summarised in Table 6.1. The 4 clinicopathological variables included age, grade, tumour
subtype, and molecular IHC subtype group.

Feature reduction and selection

To reduce the dimensionality of the data before training, redundant correlated features were
removed from feature sets as LASSO can be unstable when features are strongly correlated,
and for several correlated variables, LASSO might select one of them randomly [300].
A correlation matrix was generated for all 388 radiomics features using Spearman’s rank
correlation coefficient (𝜌). For each pair of features that were strongly correlated (a value of
|(𝜌)| > 0.95), ROC analysis was performed for each feature independently in the prediction of
pCR and the redundant feature with the lower AUC was removed from the feature set. To
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assess the ability of LASSO to handle collinearity, the features selected by models trained on
full feature sets and reduced feature sets were compared.
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Comparison of time points

To investigate the ability of each post-contrast time point to predict pCR, models were trained
using image-derived features from each time point individually (88 features per time point)
as well as the image-derived features plus the 4 clinicopathological features (92 features
per time point). The performances of the models and the features selected were compared.
To investigate the added value of each post-contrast time point, models were trained using
features from the first two time points, the first three time points and the first four time points.
The performances of the models were compared to the best performing models trained using
features from only the first post-contrast time point and features from the full dynamic series.

Statistical analysis

The Mann-Whitney U-test was used to compare differences in all radiomics features between
the pCR and non-pCR groups. Correction for multiple comparisons was performed using the
Benjamini-Hochberg correction with a false discovery rate of 0.05 [301]. Clinicopathological
variables were compared in pCR and non-pCR groups using the Mann-Whitney U-test
for continuous variables and the 𝜒2 test for categorical variables. p-values < 0.05 were
considered statistically significant. 95% confidence intervals for cross-validation scores and
test scores were calculated using bootstrapping with 1000 samples. All analysis was carried
out using python 3.7.0 (https://www.python.org) and the software modules numpy, pandas,
scipy, matplotlib, and sklearn [302].

6.3 Results

Clinical characteristics

Patient and lesion characteristics for the training and test sets are given in Table 6.2.

Predictive modelling

A summary of the 18 models trained using different combinations of features and post-contrast
time points is given in Figure 6.2. Figure 6.3A shows the change in cross-validation score
for each feature set with regularisation parameter, C. For models trained using S+H features,
the cross-validation score reached a maximum at 19 features then the performance of the
models decreased with increasing number of features included in the model. For models
trained using S+H+P, S+H+T, and S+H+T+P features, the cross-validation score reached a
maximum then remained stable with increasing number of features included in the model.
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Table 6.2 Patient and lesion characteristics

Training set
(n = 121)

Test set
(n = 31) p-value*

Mean age in years ± SD
(range)

51.2 ± 10
(28-75)

51.2 ± 12
(28 - 72) 0.49

N (%)
Pathological response
pCR
non-pCR

48 (39.7)
73 (60.3%)

12 (38.7)
19 (61.3)

0.91

Tumour histology
Invasive ductal carcinoma
Invasive lobular carcinoma
Invasive micropapillary carcinoma
Invasive ductal carcinoma with micropapillary features
Metaplastic carcinoma
Mixed ductal and lobular carcinoma
Pleomorphic invasive lobular carcinoma
Mixed invasive ductal and mucinous carcinoma
Invasive mucinous carcinoma
Metaplastic carcinoma with squamous differentiation

108 (89.3)
3 (2.5)
2 (1.7)
2 (1.7)
1 (0.8)
1 (0.8)
1 (0.8)
1 (0.8)
1 (0.8)
1 (0.8)

29 (93.6)
1 (3.2)
1 (3.2)

0.57

Histological grade
2
3

29 (24.0)
92 (76.0)

6 (19.4)
25 (80.6)

0.76

Molecular subtype group
ER+PR+/HER2+
ER+PR+/HER2-
ER-PR-/HER2+
ER-PR-/HER2-

33 (27.3)
30 (24.8)
14 (11.6)
44 (36.3)

7 (22.6)
6 (19.3)
5 (16.1)
13 (42.0)

0.77

SD: standard deviation, pCR: pathological complete response, ER: estrogen receptor, PR: progesterone
receptor, HER2: human epidermal growth factor receptor 2, + : positive, - : negative * Clinicopathological
variables were compared in training and test sets using the Mann-Whitney U-test for continuous variables
and the 𝜒2 test for categorical variables.

The models trained using feature sets including clinicopathological features both had a
peak in cross-validation score with 1 feature selected (molecular subtype group) with the
same performance (cross-validation score 0.70), however a higher cross-validation score was
achieved using the S+H+P feature set by including 18 additional features.

The cross-validation scores, test scores, and number of features selected by models
trained on each set of features are shown in Table 6.3. The cross-validation score of models
trained on S+H features was higher than those trained on S+H+T features. The highest
cross-validation and test score was achieved using a model trained on S+H+P features. 19
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Figure. 6.2 Summary of the models trained using different combinations of features and
post-contrast time points.

features were selected including 3 clinicopathological features, 4 shape features, and 12
histogram features. The model with the highest performance trained using S+H+T+P features
selected only one feature, molecular subtype group. The test scores for models trained
without clinicopathological features were low, suggesting overfitting. The 95% confidence
intervals for the cross-validation scores were large for all feature sets. ROC curves for the
model with the best performance for each feature set are shown in Figure 6.3B.

Feature reduction

The correlation matrix for all radiomics features is shown in Figure 6.4. In the S+H feature
set, 60 strongly correlated features were removed including 4 shape features and 56 histogram
features. In the S+H+T feature set, 284 strongly correlated features were removed including
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Figure. 6.3 Cross-validations scores for models trained using A) all feature sets and C) all
feature sets with redundant features removed with varied regularisation, and receiver
operating characteristic (ROC) curves for models trained using B) all feature sets and D) all
feature sets with redundant features removed. Area under the curve (AUC) in the test set is
given for each feature set.

4 shape features, 60 histogram features, 87 GLCM features, 75 GLRLM features, and 58
GLSZM features. The highest proportion of redundant features was found in the GLRLM
group (93.8% of features removed). No clinicopathological features were significantly
correlated with any other feature.

Figure 6.3C shows the change in cross-validation score for each reduced feature set with
regularisation parameter, C. The trends were similar to the models trained using the unreduced
feature sets, though the models were more unstable with increasing numbers of features
included. As before, the models trained using feature sets including clinicopathological
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Table 6.3 Performance of models trained on each of the feature sets with 95% confidence
intervals, and the number of features selected by the models.

CV AUC
(95% CI)

Test AUC
(95% CI)

N features selected
(Features available)

Shape + histogram 0.67
(0.50 - 0.93)

0.58
(0.50 - 0.75)

19
(104)

Shape + histogram + texture 0.62
(0.55 - 0.97)

0.67
(0.48 - 0.75)

47
(384)

Shape + histogram + pathology 0.72
(0.55 - 0.96)

0.73
(0.57 - 0.83)

19
(108)

Shape + histogram + texture +
pathology

0.70
(0.44 - 0.92)

0.71
(0.53 - 0.78)

1
(388)

Redundant Features Removed

Shape + histogram 0.67
(0.49 - 0.93)

0.51
(0.51 - 0.77)

14
(44)

Shape + histogram + texture 0.65
(0.54 - 0.96)

0.55
(0.49 - 0.76)

30
(100)

Shape + histogram + pathology 0.73
(0.55 - 0.96)

0.69
(0.57 - 0.85)

17
(48)

Shape + histogram + texture +
pathology

0.71
(0.58 - 0.97)

0.78
(0.56 - 0.85)

30
(104)

CV: cross-validation, CI: confidence intervals, AUC: area under the curve

features had a similar peak in cross-validation score at 1 feature (molecular subtype group)
with the same performance (cross-validation score 0.70), but both achieved higher cross-
validation scores with additional features included in the model. The test scores for models
trained without clinicopathological features were low.

The models trained on feature sets with redundant features removed achieved a higher
cross-validation score but a worse test score than those trained on the full feature sets
(Table 6.3). The highest cross-validation score was achieved using a model trained on S+H+P
features, however the highest test score was achieved using a model trained on S+H+T+P
features. The 95% confidence intervals for the cross-validation scores were large for all
feature sets. ROC curves for the model with the best performance for each reduced feature
set are shown in Figure 6.3D.

Feature selection

Features selected by all the models are given in Appendix 2. 7 features were selected by all
models except the S+H+T+P model: 3 shape features (sphericity, maximum 2D diameter
columns, and least axis length) and 4 histogram features (1st post-contrast kurtosis, 2nd
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Figure. 6.4 The correlation matrix for all 388 features using Spearman’s rank correlation
coefficient.

post-contrast skewness, 3rd post-contrast kurtosis, and 5th post-contrast kurtosis), shown
in Figure 6.5. For models trained on feature sets that included texture features, 7 texture
features were selected by all models except the S+H+T+P model: 3 GLCM features (1st post-
contrast informational measure of correlation (Imc2), 4th post-contrast maximal correlation
coefficient (MCC), and 5th post-contrast MCC), 1 GLRLM feature (3rd post-contrast long
run low grey level emphasis), and 3 GLSZM features (3rd post-contrast large area high
grey level emphasis, 4th post-contrast small area emphasis, and 5th post-contrast size zone
non-uniformity normalised).

The models trained using just shape and histogram features (S+H and S+H with redundant
features removed) selected 12 of the same features (out of 19 and 14 total features selected,
respectively). The models trained using feature sets including texture features (S+H+T and
S+H+T with redundant features removed) selected 24 of the same features (out of 47 and 30
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Figure. 6.5 Visualisation of shape and histogram features commonly selected by the models.
The A) least and B) most spherical tumours (sphericity = 0.20 and 0.76, respectively). C) A
representation of maximum 2D diameter column, which gives the largest pairwise Euclidean
distance between tumour surface mesh vertices in the coronal place. D) The least axis length
is the smallest axis length of the ellipsoid that encloses the three-dimensional tumour ROI. E)
The histogram of voxel values in the 2nd post-contrast subtraction image with the highest
skewness (-1.64). Skewness measures the asymmetry of the distribution of voxel values
about the mean value. F) The histogram of voxel values in the 1st post-contrast subtraction
image with the highest kurtosis (5.72). A distribution of voxel values with a high kurtosis
implies that the majority of the voxels are concentrated in the tails of the distribution as
opposed to around the mean value.

total features selected, respectively) of which 13 were texture features. The models trained
using shape, histogram, and clinicopathological features (S+H+P and S+H+P with redundant
features removed) selected 11 of the same features (out of 19 and 17 features, respectively),
of which 3 were clinicopathological features (age, grade, and molecular subtype group). The
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models trained using all types of features (S+H+T+P and S+H+T+P with redundant features
removed) selected only one feature that was the same (molecular subtype group).

After Benjamini-Hochberg correction, no shape, histogram, or texture features were
statistically significantly different between pCR and non-pCR groups. There was a statistically
significant difference in pCR and non-pCR groups based on molecular subtype (p < 0.001)
and grade (p = 0.01) but not histopathological type (p = 0.24) or age (p = 0.16).

Comparison of post-contrast time points

Figures 6.6A shows the change in cross-validation score for models trained using image-
derived features from each time point individually with regularisation parameter, C. All
models reached a maximum cross-validation score then performance decreased with additional
features included in the model. The cross-validation scores, test scores, and number of
features selected by models trained using each time point are shown in Table 6.4. The highest
cross-validation score was achieved using features from only the 3rd post-contrast time point
and the highest test score was achieved using features from only the 1st post-contrast time
point. The 95% confidence intervals for the cross-validation scores were large for all time
points. ROC curves for the model with the best performance for each time point are shown in
Figure 6.6B.

Figures 6.6C shows the change in cross-validation score for models trained using
image-derived features from each time point individually plus clinicopathological features
with regularisation parameter, C. For the 1st, 4th, and 5th post-contrast time points, models
reached a maximum cross-validation score using only one feature (molecular subtype group)
then performance decreased with additional features included in the model. For the 2nd and
3rd post-contrast time points, the cross-validation score improved with additional features
included in the model up to a maximum at 5 features and 26 features, respectively, before
performance decreased with additional features included. The cross-validation scores, test
scores, and number of features selected by models trained using each time point are shown in
Table 6.4. The highest cross-validation score was again achieved using features from only the
3rd post-contrast time point and the highest test score was achieved using only molecular
subtype group (1st, 4th, and 5th post-contrast time points). The 95% confidence intervals for
the cross-validation scores were large for all time points. ROC curves for the model with the
best performance for each time point are shown in Figure 6.6D.

Features selected by all the models are given in Appendix 2. For models trained using
only image-derived features, 8 features were selected by the models at every time point: 4
shape features (flatness, least axis length, maximum 2D diameter column, and sphericity),
1 histogram feature (skewness), and 3 texture features (correlation, MCC, and large area
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low grey level emphasis). Kurtosis was selected by all models except the model trained
using features from the 1st post-contrast time point. For models trained using image-derived
features and clinicopathological features, molecular subtype group was the only feature
selected at all post-contrast time points.

Figure. 6.6 Cross-validations scores for models trained using each time point individually
using A) shape, histogram, and texture features and C) shape, histogram, texture, and
clinicopathological features with varied regularisation, and receiver operating characteristic
(ROC) curves for models trained using B) shape, histogram, and texture features and D)
shape, histogram, texture, and clinicopathological features. Area under the curve (AUC) in
the test set is given for each time point.

The cross-validation scores, test scores, and number of features selected by models trained
using combinations of features from different time points are shown in Table 6.5. The highest
cross-validation score was achieved using features from the full dynamic series (S+H+P with
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Table 6.4 Performance of models trained using features from each time point with 95%
confidence intervals, and the number of features selected by the models.

Time point CV AUC
(95% CI)

Test AUC
(95% CI)

N features selected
(Features available)

Image-derived features

1st post-contrast 0.57
(0.47 - 0.92)

0.68
(0.47 - 0.77)

26
(88)

2nd post-contrast 0.63
(0.49 - 0.93)

0.63
(0.43 - 0.74)

19
(88)

3rd post-contrast 0.68
(0.50 - 0.93)

0.59
(0.49 - 0.75)

19
(88)

4th post-contrast 0.63
(0.51 - 0.94)

0.55
(0.46 - 0.73)

26
(88)

5th post-contrast 0.60
(0.46 - 0.91)

0.55
(0.50 - 0.80)

18
(88)

Image-derived features and clinicopathological features

1st post-contrast 0.70
(0.44 - 0.91)

0.71
(0.54 - 0.79)

1
(92)

2nd post-contrast 0.70
(0.49 - 0.94)

0.68
(0.51 - 0.79)

5
(92)

3rd post-contrast 0.71
(0.55 - 0.96)

0.66
(0.52 - 0.81)

26
(92)

4th post-contrast 0.70
(0.44 - 0.92)

0.71
(0.53 - 0.79)

1
(92)

5th post-contrast 0.70
(0.44 - 0.92)

0.71
(0.58 - 0.79)

1
(92)

CV: cross-validation, CI: confidence intervals, AUC: area under the curve

correlated features removed). The models trained using features from each combination of
time points achieved the same cross-validation score. From the model trained using only
features from the 1st post-contrast time point which achieved a cross-validation score of 0.70
using only molecular subtype group, there was no additional improvement in performance
with features from each additional time point added. The features selected by the models are
given in Appendix 2.

6.4 Discussion

In this study, we demonstrated that machine learning models trained on shape, histogram, and
texture features derived from pre-treatment MRI are able to predict pathological complete
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Table 6.5 Performance of models trained using features combinations of time points with
95% confidence intervals, and the number of features selected by the models.

Time point CV AUC
(95% CI)

Test AUC
(95% CI)

N features selected
(Features available)

1st post-contrast 0.70
(0.44 - 0.91)

0.71
(0.54 - 0.79)

1
(92)

1st + 2nd post-contrast 0.70
(0.49 - 0.93)

0.68
(0.52 - 0.80)

5
(180)

1st + 2nd + 3rd post-contrast 0.70
(0.46 - 0.93)

0.68
(0.52 - 0.79)

6
(268)

1st + 2nd + 3rd + 4th post-contrast 0.70
(0.44 - 0.93)

0.71
(0.50 - 0.77)

1
(356)

All time points (S+H+P with
correlated features removed)

0.73
(0.55 - 0.96)

0.69
(0.57 - 0.85)

17
(48)

CV: cross-validation, CI: confidence intervals, AUC: area under the curve, S: shape, H: histogram, P:
clinicopathological

response to neoadjuvant chemotherapy in breast cancer with a moderate accuracy. The
addition of clinicopathological variables improved the performance of the models, though a
high accuracy was achieved using molecular subtype group independently without the use of
image-derived features. While a number of studies have used logistic regression classification
to predict pCR from pre-treatment MRI with a similar performance [141, 303, 304], this is
the first study to evaluate the stability of the features selected using logistic regression with
the LASSO and to interrogate the ability of the LASSO to handle collinearity in the feature
set.

The training of machine learning models differs from traditional regression where the
goal is to understand the impact of independent features on a dependent variable; this is
not possible for feature sets with strong multicollinearity as is the case with a large set of
radiomics features, particularly texture features. Logistic regression classification models
using the LASSO are appealing due to the automatic variable selection which offers a sparse
solution compared to other regression techniques [300, 305]. However, Zou and Hastie
showed that for a group of features among which the pairwise correlations are very high, the
regression coefficients of the variables tend to be equal and therefore LASSO tends to select
one of the features randomly [306]. In this study, redundant strongly correlated features were
removed before model training, aiming to improve prediction and feature selection. While the
cross-validation scores overall improved after feature reduction, the lower test scores suggest
more overfitting, though the features selected were similar to those selected by models trained
on the full feature sets with there being a stable subset of selected features. Strong collinearity
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in the feature set did not affect the stability of the performance of the models, in fact removing
correlated features made the cross-validation performance more unstable for different degrees
of regularisation. The elastic net is another regularisation technique proposed by Zou and
Hastie to better handle the selection of strongly correlated features [306]. This technique
should be used when the number of features is much greater than the number of data points (p
» n), as is the case for radiomics studies using a greater number of radiomics features derived
from multiparametric MRI but was not the case in this study (388 features and 152 patients).
Furthermore, if p > n, LASSO can at most select n features before it saturates.

The low test scores observed in this study can be attributed to the large number of features
selected by each model. The ’one in ten’ rule is used as a rule of thumb for how many
predictors can be fitted reliably in a regression [307, 308] and suggests that in this study, for
a training set with 48 patients achieving pCR, a model that selects more than 5 features will
likely overfit on the training data and will not perform well on test data. Given the large
number of features selected by each model, they cannot be interpreted as a radiomic signature.
However, there was a stable subset of 7 features that were selected by all models trained using
features from all time points. Of the 3 shape features selected by the models, sphericity has
been shown to be associated with pCR [309] and least axis length and maximum 2D diameter
column are three-dimensional measures of tumour size, which have been shown to be more
accurate in predicting tumour response than uni- or bi-dimensional measures of tumour
size [112]. Of the histogram features selected, the kurtosis [146, 310, 311] and skewness
[140, 312] of the enhancement of tumour voxels are well established parameters associated
with tumour response. This demonstrates the ability of logistic regression classification
using the LASSO to identify key features associated with response. Molecular subtype
group had a high predictive performance when used independently, suggesting that pCR
could be predicted with a high accuracy from just a core biopsy. However, the addition of
imaging features in feature sets that included molecular subtype generally incrementally
improved the performance of models. While some studies have found an improvement in
performance when separating patients into groups by subtype [141, 313] or achieved a high
predictive accuracy in a study of only triple negative breast cancers [119, 304], there were
not enough cancers in each subtype group in this study to train machine learning models on
each group independently. For models trained using feature sets including texture features,
texture features make up a large proportion of features selected. The addition of texture
features to feature sets generally did not improve the performance of models, and the feature
selection was less stable given that a smaller proportion of the same features were selected by
different models. The model with the highest cross-validation score in this study was trained
on a feature set that did not include any texture features. Given the low test scores observed



120 Machine learning prediction of pathological complete response to chemotherapy

this study, the models require validation on external test data sets to assess their ability to
generalise to a larger target population.

Abbreviated MRI protocols are gaining widespread attention in the detection and diagnosis
of breast cancer, where only one pre-contrast and one post-contrast time point are acquired.
To date there have been no studies that have investigated an abbreviated protocol for the
assessment of tumour response to chemotherapy. In this study, the model trained on image-
derived features from the 1st post-contrast time point had a poor performance, and when
clinicopathological features were included in the model, the performance improved but no
image-derived features were included in the model. When comparing time points used
independently, the model trained using features from the 3rd post-contrast time point achieved
the best cross-validation score, suggesting that more than one post-contrast time point is
necessary in a dynamic protocol for the prediction of pCR. The highest cross-validation score
of any model was achieved using features from all time points. However this was only an
incremental improvement from the use of molecular subtype as a univariate predictor of pCR,
and this model had a lower test score.

When using features extracted from each post-contrast time point individually to train
models, mostly shape and texture features were similarly selected. While tumour volume
was not selected as a predictive feature by the models, functional tumour volume (calculated
from the sum of voxels meeting a threshold for percentage enhancement using pre-contrast,
early post-contrast, and late post-contrast images) has been shown to be a strong predictor of
pCR and recurrence-free survival [113, 114]. The functional tumour volume could be used
to generate a more sophisticated ROI from which to extract radiomics features that better
encapsulates the tumour voxels of interest. Though the use each of the post-contrast time
point individually was useful for the assessment of feature selection, it may be more useful
from a clinical perspective to compare features extracted from quantitative maps of heuristic
parameters that measure changes in enhancement between the post-contrast time points. A
study by Loo et al. found that parameters derived from the early (10s after contrast injection)
and late (450s after contrast injection) enhancement of tumours were associated with response
to therapy [314]. The 1st post-contrast subtraction in this study captures the enhancement of
voxels 1 minute after contrast injection; a time point acquired sooner after contrast injection
may better capture rapidly enhancing voxels and demonstrate increased vascularity which is
related to tumour aggressiveness. Parameters of wash-out, which measures the difference
between peak enhancement and late enhancement, have been shown to be associated with
tumour response [315–318] and could provide a more informative measure of contrast kinetics
than using late post-contrast time points independently.
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This study had some limitations. First, the ROIs were delineated by three radiologists
independently. A study by Granzier et al. found a high spatial overlap (mean dice score
0.81) for ROIs delineated by observers of varying expertise, but only 32.8% of radiomics
features extracted were found to be robust between observers [319]. As the radiomics
features will be affected by the ROI definition, ROIs should be automatically segmented
or delineated in consensus. Second, only logistic regression classification models were
trained in this study. Studies have achieved a higher accuracy using other machine learning
algorithms for radiomics analysis such as support vector machines [141, 313], random forests
[143, 320] and XGB boost [321]. The performance of these models trained on the different
feature sets should be compared. Third, only features extracted from DCE-MRI were used.
Additional features extracted from other MRI sequences such as T2-weighted images and
diffusion-weighted images could be included in the analysis, though increasing the number
of features significantly (such that p » n) may be problematic when using the LASSO. Fourth,
the proportions of patients that achieved pCR and the proportion of patients with triple
negative breast cancer were higher than average, and therefore this patient population may not
be representative of a general breast cancer population. Finally, the patients included in this
study received a range of types of chemotherapy (information not provided). The type and
duration of chemotherapy regimen should in future be included as a feature in the models, as
this will affect the rate of pCR.

In conclusion, while machine learning models trained using radiomics features derived
from pre-treatment DCE-MRI were able to predict pCR with a moderate accuracy, tumour
molecular subtype used independently was able to predict pCR with a similar accuracy.
Logistic regression classification using the LASSO was able to handle collinearity in a feature
set and a stable set of predictive features of response were selected. Although abbreviated
protocols are increasingly used in the detection of breast cancer, this study has shown that a
full dynamic series provides the most accurate prediction of pCR. Further work is required to
validate these results on external test data sets.





Chapter 7

Future work and conclusions

7.1 Contributions to knowledge

This thesis has investigated the use of magnetic resonance imaging (MRI) in the detection of
breast cancer and the prediction of pathological complete response to chemotherapy (pCR).
The major contributions to knowledge of this thesis include a thorough systematic review
and meta-analysis of the literature of diffusion-weighted imaging (DWI) techniques used
in the detection of breast cancer, the optimisation and implementation of a multi-shot DWI
protocol that improves upon the image quality of standard DWI, a comparative meta-analysis
of abbreviated and full diagnostic protocol MRI in the detection of breast cancer, and the
assessment of the performance of machine learning models trained using radiomic features
derived from dynamic contrast-enhanced MRI (DCE-MRI) in the prediction of pCR.

The systematic review and meta-analysis presented in chapter 3 has demonstrated the
comparable performance of DWI and DCE-MRI in the differential diagnosis of breast cancer.
As non-contrast alternatives to DCE-MRI are increasingly sought out, this work contributes
to the increasing evidence of DWI as a clinically equivalent diagnostic technique. This work
also established that there is no reliable evidence to suggest that advanced DWI techniques
offer superior clinical value in the differential diagnosis of breast lesions compared to standard
assessment using the apparent diffusion coefficient (ADC). The conclusions of this study
have been cited by the international DWI working group of the European Society of Breast
Imaging in their consensus and mission statement [322].

The optimisation and validation of a DWI protocol using multiplexed sensitivity encoding
(MUSE) in chapter 4 has demonstrated the superior image quality of multi-shot DWI compared
to standard DWI acquired using single-shot echo-planar imaging (ss-EPI) by improving
spatial resolution and reducing blurring and geometric distortion. As a result of this study,
MUSE-DWI has replaced ss-EPI-DWI as part of the routine clinical breast MRI protocol
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at Addenbrooke’s hospital. This work will contribute to a growing literature showing the
potential of advanced DWI acquisition techniques to increase the clinical utility of DWI.

The meta-analysis presented in chapter 5 has demonstrated the comparable diagnostic
performance of abbreviated and full diagnostic MRI protocols in the detection of breast cancer.
By undertaking a separate pooling of accuracy measures for studies reporting screening
and enriched patient cohorts, this work has highlighted the difference in the performance of
abbreviated protocols investigated in cohorts with a different prevalence of cancers. Given the
increasing number of studies in the literature reporting abbreviated protocols, this work has
provided a necessary interrogation of abbreviated MRI study methodology and emphasised
the need for prospective trials to be undertaken in a large screening population with sufficient
statistical power to demonstrate diagnostic equivalence to full diagnostic protocol MRI.

The radiomics analysis presented in chapter 6 has contributed to the evidence that
radiomics features derived from pre-treatment DCE-MRI can be informative in the prediction
of pathological complete response to chemotherapy. As well as confirming that machine
learning techniques can be used to identify well established markers of response to treatment,
namely immunohistochemical subtype, morphological features, and measures of irregular
enhancement, this work has interrogated the ability of logistic regression classification using
the least absolute shrinkage and selection operator (LASSO) to handle collinearity in a
feature set and demonstrated the stability of feature selection. While the cross-validation
performance of machine learning models trained using these features was moderate, it should
be noted that the poor performance of the models tested on an internal hold-out validation
dataset suggests the generalisability of these models to external test data may be limited.
By comparing the features selected at different time points in the dynamic series, this work
highlights a gap in the literature for the comparison of abbreviated and full dynamic protocols
in the assessment of response to therapy.

7.2 Future work

Since the publication of the meta-analysis presented in Chapter 3, other advanced DWI
techniques are increasingly investigated in the breast. A number of studies have investigated
diffusion kurtosis imaging (DKI) (Section 1.2.3), which allows for a measurement of the
non-Gaussianity of diffusion without the need for definition of tissue compartments or
complex model fitting. Given the high diagnostic performance of DKI parameters [323–325],
this technique should be systematically compared with other DWI models. While advanced
DWI models offer limited additional improvement in cancer diagnosis compared to ADC
assessment, in a research setting they can provide functional information about the cellular
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and perfusion properties of breast tumours. One such application is sodium MRI (23Na-
MRI), which was investigated alongside this thesis (Appendix 3) and is ongoing research in
the department.23Na-MRI can measure intra- and extra-cellular sodium concentrations in
breast tumours, with DWI providing complementary physiological information about tumour
cellularity and the integrity of cellular membranes and structures.

Currently, DWI is often used as an adjunct to DCE-MRI to improve specificity and reduce
false positive results and recall rates for the screening of high-risk women. However, the high
cost of MRI and concerns of gadolinium retention with repeated administration of contrast
agent limit the widespread use of DCE-MRI as a screening tool for moderate-risk women.
DWI has been shown to achieve a diagnostic accuracy similar to DCE-MRI without the need
for intravenous contrast agent, though significant improvements in image quality and spatial
resolution are required before a non-contrast DWI screening protocol can be implemented
clinically. While the MUSE-DWI technique has been shown to improve image quality,
further improvements come at the expense of increased scan time with additional numbers of
’shots’. Studies have demonstrated a reduction in acquisition time of multi-shot techniques
by implementing simultaneous multi-slice techniques [265], however these techniques often
require breast coils with a higher number of receiver coils (≥ 16) which are not widely used
for routine clinical scanning.

Future work should focus on delivering high quality DWI in a clinically feasible acquisition
time that could be used for screening. MUSE is just one of a number of promising techniques
including readout-segmented EPI [254, 257, 326], partial-FOV DWI [327, 328], axially
reformatted simultaneous multi-slice imaging [326], and double echo steady state (DESS)
DWI [329], that attempt to overcome the limitations of conventional DWI acquisition in
the breast. In order to ascertain which is the best technique, a head-to-head comparison is
required. A spatial resolution of close to 1mm to distinguish lesions <10mm (as the detection
of these small lesions has been shown to reduce breast cancer mortality [87]) acquired within
a 5-minute examination time is required for DWI to be clinically feasible as a screening
technique. Furthermore, these techniques require validation in large patient cohorts that
are representative of a true screening population. To date, preliminary studies lack the
statistical power required to prove equivalent diagnostic performance of these techniques
with DCE-MRI.

MRI as a supplemental screening modality is of interest in cohorts more at risk than the
general population (such as gene carriers and those with a previous history of breast cancer)
and in populations where existing screening techniques are insufficient, such as women with
dense breasts. The Breast Screening- Risk Adaptive Imaging for Density (BRAID) trial is
large prospective multi-centre study currently underway led by the University of Cambridge
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[330], comparing supplemental imaging using abbreviated MRI, automated whole breast
ultrasound (ABUS), and contrast enhanced spectral mammography (CESM) with standard
of care (no supplemental imaging) in women with dense breasts. This study will enable a
measure of the diagnostic performance of abbreviated MRI in a target population of thousands
of women.

Radiomics and machine learning are rapidly growing fields of breast MRI research
given the advances in computational power and development of specialised programming
packages (such as scikit-learn, PyTorch, and TensorFlow [302, 331–333]) for the application
of machine learning and deep learning techniques. While there were issues related to access
of images during the course of this work, the dataset used for radiomics analysis also includes
T2-weighted images and diffusion-weighted images acquired at multiple b-values, as well as
B1 and T1 mapping sequences to generate quantitative T1 maps. The same set of radiomics
features should be extracted from these images and machine learning models trained on
a larger and more diverse set of features that make the most of this multiparametric MRI
dataset. High resolution DWI such as MUSE-DWI would also be ideal for the extraction of
texture features to better measure the intratumoural heterogeneity of diffusion. The features
selected by machine learning models trained on DCE-MRI, DWI, and both DCE-MRI and
DWI features should be compared. These features could better our understanding of imaging
biomarkers of tumour aggressiveness and inform the use of DWI for screening, where the use
of informative radiomics features may improve sensitivity.

While we have shown a reasonable accuracy of predictive pCR models on hold-out
test data within our study, this work requires validation on external test datasets. The
ISPY1 (ACRIN 6657) trial is a publicly available multicentre breast MRI dataset with lesion
segmentations, pathological information, and pCR outcomes that would be suitable for this
purpose [334]. Multicentre data sets are particularly crucial to compile test data that is
fully representative of a population of women with breast cancer. The limited availability
of such data sets is driving the creation of imaging repositories for testing of machine
learning algorithms, though issues surrounding the reproducibility of radiomics features
arising from the variation in image acquisition protocols must be addressed [335, 336]. The
Image Biomarker Standardisation Initiative (IBSI) has been formed to address the lack of
consistency in radiomics analyses by establishing mathematical definitions for commonly used
radiomics features, suggested methodology for image pre-processing and feature calculation,
reference datasets for calibration of software implementations (including digital phantoms),
and standardised reporting guidelines for studies involving radiomic analyses [337]. The
next stage of this work should ensure that the radiomics analysis workflow adheres to these
guidelines.
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In contrast to use of radiomics features, convolutional neural networks (CNNs) are
increasingly used in the prediction of pCR, eliminating the need for the choice of features
and the time-consuming manual delineation of breast lesions by breast radiologists. Given
the performance of three-dimensional shape features in the prediction of response, a three-
dimensional network should be developed to predict pCR from pre-treatment DCE-MRI.
This is a novel area of research given that neural networks using breast MRI to predict NACT
response have been developed using network architecture with 2D inputs to date.

7.3 Conclusions

1. Diffusion-weighted imaging (DWI), intra-voxel incoherent motion (IVIM), and diffusion
tensor imaging (DTI) are able to discriminate between malignant and benign breast
lesions with a high accuracy comparable that of dynamic contrast-enhanced MRI
(DCE-MRI).

2. IVIM is diagnostically comparable to the apparent diffusion coefficient (ADC). DTI
achieves a higher diagnostic accuracy than the ADC. However, given that the number
of studies that have investigated these techniques to date is limited, there is insufficient
statistical power to conclude equivalent or superior performance.

3. ADC, IVIM and DTI lack standardisation in reported methodology and acquisition
parameters.

4. Multi-shot echo-planar imaging using multiplexed sensitivity encoding (MUSE) im-
proves the image quality of DWI compared to single-shot echo-planar imaging by
significantly reducing geometric distortion and blurring.

5. The diagnostic performance of abbreviated MRI is equivalent to that of a full diagnostic
protocol amongst enriched cohorts and was lower but not significantly different in a
screening cohort.

6. The diagnostic performance of abbreviated MRI varies in cohorts with a different
prevalence of cancers. Evidence of diagnostic equivalence from prospective trials
with sufficient statistical power is required before abbreviated MRI can be confidently
adopted into clinical practice.

7. Machine learning models trained using radiomics features derived from pre-treatment
DCE-MRI can predict pathological complete response (pCR) with a moderate accuracy.
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8. Logistic regression classification using the least absolute shrinkage and selection
operator (LASSO) can be used to find a stable set of radiomics features that are
predictive of response to chemotherapy.

9. The most commonly selected features in the prediction of pCR are molecular subtype
group, three-dimensional shape features (least axis length, sphericity, and maximum
2D diameter column) and histogram features (skewness and kurtosis).

10. Using machine learning models, a full dynamic series enables the most accurate
prediction of pCR.
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Reduced feature sets 
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Time points: Image-derived features 
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