4,678 research outputs found

    Cyber Deception for Critical Infrastructure Resiliency

    Get PDF
    The high connectivity of modern cyber networks and devices has brought many improvements to the functionality and efficiency of networked systems. Unfortunately, these benefits have come with many new entry points for attackers, making systems much more vulnerable to intrusions. Thus, it is critically important to protect cyber infrastructure against cyber attacks. The static nature of cyber infrastructure leads to adversaries performing reconnaissance activities and identifying potential threats. Threats related to software vulnerabilities can be mitigated upon discovering a vulnerability and-, developing and releasing a patch to remove the vulnerability. Unfortunately, the period between discovering a vulnerability and applying a patch is long, often lasting five months or more. These delays pose significant risks to the organization while many cyber networks are operational. This concern necessitates the development of an active defense system capable of thwarting cyber reconnaissance missions and mitigating the progression of the attacker through the network. Thus, my research investigates how to develop an efficient defense system to address these challenges. First, we proposed the framework to show how the defender can use the network of decoys along with the real network to introduce mistrust. However, another research problem, the defender’s choice of whether to save resources or spend more (number of decoys) resources in a resource-constrained system, needs to be addressed. We developed a Dynamic Deception System (DDS) that can assess various attacker types based on the attacker’s knowledge, aggression, and stealthiness level to decide whether the defender should spend or save resources. In our DDS, we leveraged Software Defined Networking (SDN) to differentiate the malicious traffic from the benign traffic to deter the cyber reconnaissance mission and redirect malicious traffic to the deception server. Experiments conducted on the prototype implementation of our DDS confirmed that the defender could decide whether to spend or save resources based on the attacker types and thwarted cyber reconnaissance mission. Next, we addressed the challenge of efficiently placing network decoys by predicting the most likely attack path in Multi-Stage Attacks (MSAs). MSAs are cyber security threats where the attack campaign is performed through several attack stages and adversarial lateral movement is one of the critical stages. Adversaries can laterally move into the network without raising an alert. To prevent lateral movement, we proposed an approach that combines reactive (graph analysis) and proactive (cyber deception technology) defense. The proposed approach is realized through two phases. The first phase predicts the most likely attack path based on Intrusion Detection System (IDS) alerts and network trace. The second phase determines the optimal deployment of decoy nodes along the predicted path. We employ transition probabilities in a Hidden Markov Model to predict the path. In the second phase, we utilize the predicted attack path to deploy decoy nodes. The evaluation results show that our approach can predict the most likely attack paths and thwart adversarial lateral movement

    Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

    Get PDF
    Advanced persistent threats (APTs) have emerged as multi-stage attacks that have targeted nation-states and their associated entities, including private and corporate sectors. Cyber deception has emerged as a defense approach to secure our cyber infrastructure from APTs. Practical deployment of cyber deception relies on defenders\u27 ability to place decoy nodes along the APT path optimally. This paper presents a cyber deception approach focused on predicting the most likely sequence of attack paths and deploying decoy nodes along the predicted path. Our proposed approach combines reactive (graph analysis) and proactive (cyber deception technology) defense to thwart the adversaries\u27 lateral movement. The proposed approach is realized through two phases. The first phase predicts the most likely attack path based on Intrusion Detection System (IDS) alerts and network trace, and the second phase is determining optimal deployment of decoy nodes along the predicted path. We employ transition probabilities in a Hidden Markov Model to predict the path. In the second phase, we utilize the predicted attack path to deploy decoy nodes. However, it is likely that the attacker will not follow that predicted path to move laterally. To address this challenge, we employ a Partially Observable Monte-Carlo Planning (POMCP) framework. POMCP helps the defender assess several defense actions to block the attacker when it deviates from the predicted path. The evaluation results show that our approach can predict the most likely attack paths and thwarts the adversarial lateral movement

    Multiscale Bayesian State Space Model for Granger Causality Analysis of Brain Signal

    Full text link
    Modelling time-varying and frequency-specific relationships between two brain signals is becoming an essential methodological tool to answer heoretical questions in experimental neuroscience. In this article, we propose to estimate a frequency Granger causality statistic that may vary in time in order to evaluate the functional connections between two brain regions during a task. We use for that purpose an adaptive Kalman filter type of estimator of a linear Gaussian vector autoregressive model with coefficients evolving over time. The estimation procedure is achieved through variational Bayesian approximation and is extended for multiple trials. This Bayesian State Space (BSS) model provides a dynamical Granger-causality statistic that is quite natural. We propose to extend the BSS model to include the \`{a} trous Haar decomposition. This wavelet-based forecasting method is based on a multiscale resolution decomposition of the signal using the redundant \`{a} trous wavelet transform and allows us to capture short- and long-range dependencies between signals. Equally importantly it allows us to derive the desired dynamical and frequency-specific Granger-causality statistic. The application of these models to intracranial local field potential data recorded during a psychological experimental task shows the complex frequency based cross-talk between amygdala and medial orbito-frontal cortex. Keywords: \`{a} trous Haar wavelets; Multiple trials; Neuroscience data; Nonstationarity; Time-frequency; Variational methods The published version of this article is Cekic, S., Grandjean, D., Renaud, O. (2018). Multiscale Bayesian state-space model for Granger causality analysis of brain signal. Journal of Applied Statistics. https://doi.org/10.1080/02664763.2018.145581

    Distributed Load Testing by Modeling and Simulating User Behavior

    Get PDF
    Modern human-machine systems such as microservices rely upon agile engineering practices which require changes to be tested and released more frequently than classically engineered systems. A critical step in the testing of such systems is the generation of realistic workloads or load testing. Generated workload emulates the expected behaviors of users and machines within a system under test in order to find potentially unknown failure states. Typical testing tools rely on static testing artifacts to generate realistic workload conditions. Such artifacts can be cumbersome and costly to maintain; however, even model-based alternatives can prevent adaptation to changes in a system or its usage. Lack of adaptation can prevent the integration of load testing into system quality assurance, leading to an incomplete evaluation of system quality. The goal of this research is to improve the state of software engineering by addressing open challenges in load testing of human-machine systems with a novel process that a) models and classifies user behavior from streaming and aggregated log data, b) adapts to changes in system and user behavior, and c) generates distributed workload by realistically simulating user behavior. This research contributes a Learning, Online, Distributed Engine for Simulation and Testing based on the Operational Norms of Entities within a system (LODESTONE): a novel process to distributed load testing by modeling and simulating user behavior. We specify LODESTONE within the context of a human-machine system to illustrate distributed adaptation and execution in load testing processes. LODESTONE uses log data to generate and update user behavior models, cluster them into similar behavior profiles, and instantiate distributed workload on software systems. We analyze user behavioral data having differing characteristics to replicate human-machine interactions in a modern microservice environment. We discuss tools, algorithms, software design, and implementation in two different computational environments: client-server and cloud-based microservices. We illustrate the advantages of LODESTONE through a qualitative comparison of key feature parameters and experimentation based on shared data and models. LODESTONE continuously adapts to changes in the system to be tested which allows for the integration of load testing into the quality assurance process for cloud-based microservices

    Adaptive Risk Network Dependency Analysis of Complex Hierarchical Systems

    Get PDF
    Recently the number, variety, and complexity of interconnected systems have been increasing while the resources available to increase resilience of those systems have been decreasing. Therefore, it has become increasingly important to quantify the effects of risks and the resulting disruptions over time as they ripple through networks of systems. This dissertation presents a novel modeling and simulation methodology which quantifies resilience, as impact on performance over time, and risk, as the impact of probabilistic disruptions. This work includes four major contributions over the state-of-the-art which are: (1) cyclic dependencies are captured by separation of performance variables into layers which can have different topologies, (2) temporal dependence is modeled using Bayesian networks to allow for incorporation of evidence-based data over time and produce a dynamic model incorporating risk and resilience behavior over time, (3) a combined approach maps from discrete random variables in the risk network to continuous variables in the system network allowing for the propagation of risk throughout the system, and (4) a decomposable architecture allows various components to be represented at different level of detail and overall system reconfiguration to be explored. Applications are provided in supply chain analysis and port logistics to demonstrate the performance and effectiveness of the methodology

    Survey of Attack Projection, Prediction, and Forecasting in Cyber Security

    Get PDF
    This paper provides a survey of prediction, and forecasting methods used in cyber security. Four main tasks are discussed first, attack projection and intention recognition, in which there is a need to predict the next move or the intentions of the attacker, intrusion prediction, in which there is a need to predict upcoming cyber attacks, and network security situation forecasting, in which we project cybersecurity situation in the whole network. Methods and approaches for addressing these tasks often share the theoretical background and are often complementary. In this survey, both methods based on discrete models, such as attack graphs, Bayesian networks, and Markov models, and continuous models, such as time series and grey models, are surveyed, compared, and contrasted. We further discuss machine learning and data mining approaches, that have gained a lot of attention recently and appears promising for such a constantly changing environment, which is cyber security. The survey also focuses on the practical usability of the methods and problems related to their evaluation
    • …
    corecore