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ABSTRACT

CYBER DECEPTION FOR CRITICAL INFRASTRUCTURE RESILIENCY

Md Ali Reza Al Amin
Old Dominion University, 2022

Director: Dr. Sachin Shetty

The high connectivity of modern cyber networks and devices has brought many improve-

ments to the functionality and efficiency of networked systems. Unfortunately, these benefits have

come with many new entry points for attackers, making systems much more vulnerable to intru-

sions. Thus, it is critically important to protect cyber infrastructure against cyber attacks. The

static nature of cyber infrastructure leads to adversaries performing reconnaissance activities and

identifying potential threats. Threats related to software vulnerabilities can be mitigated upon

discovering a vulnerability and-, developing and releasing a patch to remove the vulnerability.

Unfortunately, the period between discovering a vulnerability and applying a patch is long, of-

ten lasting five months or more. These delays pose significant risks to the organization while

many cyber networks are operational. This concern necessitates the development of an active de-

fense system capable of thwarting cyber reconnaissance missions and mitigating the progression

of the attacker through the network. Thus, my research investigates how to develop an efficient

defense system to address these challenges. First, we proposed the framework to show how the

defender can use the network of decoys along with the real network to introduce mistrust. How-

ever, another research problem, the defender’s choice of whether to save resources or spend more

(number of decoys) resources in a resource-constrained system, needs to be addressed. We de-

veloped a Dynamic Deception System (DDS) that can assess various attacker types based on the

attacker’s knowledge, aggression, and stealthiness level to decide whether the defender should

spend or save resources. In our DDS, we leveraged Software Defined Networking (SDN) to dif-

ferentiate the malicious traffic from the benign traffic to deter the cyber reconnaissance mission

and redirect malicious traffic to the deception server. Experiments conducted on the prototype

implementation of our DDS confirmed that the defender could decide whether to spend or save

resources based on the attacker types and thwarted cyber reconnaissance mission. Next, we ad-

dressed the challenge of efficiently placing network decoys by predicting the most likely attack

path in Multi-Stage Attacks (MSAs). MSAs are cyber security threats where the attack campaign

is performed through several attack stages and adversarial lateral movement is one of the critical

stages. Adversaries can laterally move into the network without raising an alert. To prevent lateral

movement, we proposed an approach that combines reactive (graph analysis) and proactive (cyber



deception technology) defense. The proposed approach is realized through two phases. The first

phase predicts the most likely attack path based on Intrusion Detection System (IDS) alerts and

network trace. The second phase determines the optimal deployment of decoy nodes along the

predicted path. We employ transition probabilities in a Hidden Markov Model to predict the path.

In the second phase, we utilize the predicted attack path to deploy decoy nodes. The evaluation re-

sults show that our approach can predict the most likely attack paths and thwart adversarial lateral

movement.



iv

Copyright, 2022, by Md Ali Reza Al Amin, All Rights Reserved.



v

To the memory of my father, Md. Liakat Ali

My beloved mother, Mrs. Rowshan Ara

My dear wife, Suborna Islam

My dear sons, Mehmet Amin & Arfaan Amin



vi

ACKNOWLEDGEMENTS

First and foremost I am extremely grateful to my supervisor Dr.Sachin Shetty for his in-

valuable advice, continuous support, and patience during my Ph.D. journey. He is the person from

whom I learned how to do good research in terms of reading, writing, and presentation skill. Dur-

ing this journey, I learned to think independently as researcher. I am truly honored that I have him

as my Ph.D. supervisor.

I would like to thank my committee members Dr.Yuzhong Shen, Dr.Hong Yang, and

Dr.Chunsheng Xin for their valuable comments and time during this journey. I also want to ac-

knowledge the support and assistance of the Virginia Modeling, Analysis, and Simulation Center

(VMASC) at Old Dominion University. I am thankful to my Bangladeshi community friends and

family for their support during my hard time in my Ph.D. journey. I would like to express my

gratitude to my wife and children. Without their tremendous understanding and encouragement in

the past few years, it would be impossible for me to complete my study.

Finally, I would like to acknowledge the support and love from my parents.



vii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 BACKGROUND AND MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 OUR CONTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 ORGANIZATION OF THE DISSERTATION REPORT . . . . . . . . . . . . . . . . . . . . . . . 8

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 EXPLOIT DEPENDENCY GRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 POMDP APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 POMCP FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 HIDDEN MARKOV MODEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 THE FORWARD-BACKWARD ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 VITERBI ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 THE BAUM-WELCH ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. ONLINE CYBER DECEPTION SYSTEM USING PARTIALLY OBSERVABLE MONTE-
CARLO PLANNING FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 SECURITY MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 DEFENDER’S ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 ONLINE DECEPTION ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 EXPERIMENTAL RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. ATTACKER CAPABILITY BASED DYNAMIC DECEPTION MODEL FOR LARGE-
SCALE NETWORKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 THREAT MODEL AND ASSUMPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 SYSTEM ARCHITECTURE OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 EVALUATION AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5. HIDDEN MARKOV MODEL AND CYBER DECEPTION FOR THE PREVENTION
OF ADVERSARIAL LATERAL MOVEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 PRELIMINARIES AND ASSUMPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 SYSTEM ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 THREAT MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



viii

5.4 PREDICTION VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 DEFENSE POLICY ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6. DECEPTION FOR CHARACTERIZING ADVERSARIAL STRATEGIES IN COMPLEX
NETWORKED SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 METRICS TO CAPTURE ATTACKER’S CAPABILITY . . . . . . . . . . . . . . . . . . . . . . 87
6.4 ATTACK DEFENSE STRATEGY EVOLUTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 CONTROL OVER ATTACKER’S DECISION-MAKING PROCESS . . . . . . . . . . . . 92
6.6 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



ix

LIST OF TABLES

Table Page

1 Quantitative performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Deception’s system performance evaluation table for real network . . . . . . . . . . . . . . . . . . 28

3 Deception’s system performance evaluation table for decoy network . . . . . . . . . . . . . . . . 29

4 Four attacker types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Probability of detection for each of the attacker types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Use Case I: Deception system performance evaluation table for real network . . . . . . . . . 41

7 Use Case I: Deception system performance evaluation table for decoy network . . . . . . . 41

8 Use Case II: Deception system performance evaluation table for real network . . . . . . . . 43

9 Use Case II: Deception system performance evaluation table for decoy network . . . . . . 43

10 Use Case III: Deception system performance evaluation table for real network . . . . . . . . 44

11 Use Case IV: Deception system performance evaluation table for real network . . . . . . . . 46

12 Overall deception system performance statistics for all attacker types . . . . . . . . . . . . . . . 46

13 Symbols and their description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

14 Hosts configuration and vulnerabilities information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

15 Assessments of vulnerability exploitability probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

16 Attack states description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

17 Description of attack behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

18 Possible attack paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

19 Probability of detection for estimated attacker’s capability . . . . . . . . . . . . . . . . . . . . . . . . 81

20 Attacker types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



x

LIST OF FIGURES

Figure Page

1 Life cycle of cyber deception [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 A Bayesian network representing a first-order HMM. The hidden states are shaded in
gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Security model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Sample evolution (real network) of the security state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 An illustration of POMCP in an environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 A sample Exploit Dependency graph with real network (left) and fake network (right). . 26

7 Sample evolution of deception policy when attacker is in real network. . . . . . . . . . . . . . . 27

8 Sample evolution of deception policy when attacker is in fake network. . . . . . . . . . . . . . 28

9 Discounted cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Dynamic security Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

12 Experimental exploit dependency graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

13 Average vulnerable host detection rate in minutes for the scanning strategies Prefer-
ence Parallel, Local Preference, Preference Sequential, Non- Preference Sequential
with and without our DDS system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

14 Typical stages of APT attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

15 System model architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

16 Attack path prediction framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

17 A sample Exploit Dependency Graph with a real network (left) and a fake network
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

18 Sample evolution of the security state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

19 An illustration of the search tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



xi

20 The generative model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

21 Experimental network topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

22 Attack graph of the experimental network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

23 Exploit dependency graph of the experimental network. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

24 Exploit dependency graph of the experimental network with decoy nodes. . . . . . . . . . . . 82

25 Sample evolution of deception policy and attacker’s lateral movement for use case A. . 83

26 Sample evolution of deception policy and attacker’s lateral movement for use case B. . . 84

27 A toy example of network with machines running different OSes, software without
deception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

28 Attacker’s win percentage when the number of decoy increases. . . . . . . . . . . . . . . . . . . . . 97

29 The number of steps required for the attacker to win as a function of the number of
decoys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

30 Attacker’s win percentage when the number of decoy increases. . . . . . . . . . . . . . . . . . . . . 98

31 The number of steps required for the attacker to win as a function of the number of
decoys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



1

Chapter 1

INTRODUCTION

This chapter provides the background and motivation for the dissertation followed by the

main goals of the research. Finally, the basic outline of this dissertation is presented.

1.1 BACKGROUND AND MOTIVATION

1.1.1 BACKGROUND

Given the growing number of cyber attacks, it is imperative to design resilient cyber in-

frastructure. Organizations face substantial financial losses and challenges in maintaining core

public services due to the increasing rate of cyber attacks rate. According to McAfee’s recent

report in 2018, [2], cybercrime has reached nearly $600 billion. In addition, a recent Verizon Data

Breach Investigation Report (DBIR) points out that currently deployed protection mechanisms

are not adequate to address current threats [3]. The report states that 66% of the breaches took

months or years to discover, rising from 56% in 2012. Furthermore, 84% of these attacks only

took hours or less to infiltrate computer systems [3]. Moreover, the report states that only 5% of

these breaches were detected using traditional intrusion detection systems (IDSs) while 69% were

detected by external parties [3]. These numbers represent the attacks that were discovered. Only

5% of the attacks are discovered using traditional security tools [4], so, it is likely that the number

of undiscovered and unreported attacks is significantly higher. It is evident from these findings

that the organization’s current security posture is not enough to address current threats.

The static nature of any organization’s IT system leads to adversaries performing recon-

naissance activities and identifying potential threats. The reconnaissance phase aims to collect

critical information about the network, including network topology, open ports and services run-

ning, and unpatched vulnerabilities. Having that critical information maximizes the intruder’s

chance of penetrating a system and gaining a foothold successfully. Patching a vulnerability will

lower the possibility of being attacked where vulnerability patching depends upon discovering a

vulnerability and developing a patch for that specific weakness. Unfortunately, sometimes this

period (a vulnerability exposure window) often lasts a long time. This extended period puts the

cyber network at higher risk. To address this, one needs an active defense system to thwart cyber
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attacks while considering attack information and providing appropriate defense actions. However,

there is an issue with developing such a system as an attacker considers a series of exploit to deep

dive into the network. Very few targeted cyber attacks consist of only a single vulnerability. It is

always beneficial for the defender to know how the intruder can infiltrate the network and capture

the attacker’s progression throughout the network. With the help of one of the cyber deception

technologies (by introducing fake networks), we can alter the view of a system with a mix of

real and fake information and make the network more secure when unpatched vulnerabilities are

present in the cyber network. Figure 1 shows the life cycle of cyber deception at the conceptual

level.

Figure 1: Life cycle of cyber deception [1].

Among all cyber attacks, Advanced Persistent Threat is the most sophisticated cyber at-

tacks. Adversaries have lately resorted to using Advanced Persistent Threats (APT) to conduct

cybercrime. APT allows attackers to stay undetected in the network for long periods and steal

organizations’ data without being caught. In an APT attack, the attackers use social engineer-

ing, spear-phishing email, or vulnerability exploitation to gain the network’s initial entry. After

the network’s initial entry, they maintain a low footprint and slowly gain their foothold by com-

promising one host to another within the organization’s network. Lateral movement is the most

critical step in the APT attack to maintain presence in the network. Early detection of adversarial

lateral movement can deter an ongoing APT attack. With early detection, when a host is discov-

ered as compromised, there are several forensic requirements we need to answer: What will be

the end goal? What route can the attacker use to reach the end goal? To reach the end goal, the

attacker may need to take several related attack steps (compromising hosts) and the identification

of these steps can be used as an attack paths prediction process based on mathematical methods.
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Predicting the most likely attack path is an important technique that enables the defender to react

before the attacker reaches the end goal by executing proactive responses.

Defense methods to deter lateral movement are sometimes cost-effective in patching and

resetting all suspicious entities. Moreover, patches are not available all the time, and sometimes

it takes an extended period to develop the patch. Cyber deception techniques can help the cy-

ber defender mitigate lateral movement without disrupting the organization’s core services. Cy-

ber deception has attracted attention from security researchers and practitioners as an approach

for designing secure cyber infrastructure. Deception-based techniques provide significant advan-

tages over traditional security controls. Cyber-deception has attracted attention from security

researchers and practitioners as an approach for designing secure cyber infrastructure. Cyber-

deception can provide two advantages: a) reduce the likelihood of adversarial success and cost

of cyber defense, b) provide insights into attacker’s strategies, tactics, capabilities, and intent.

Typically, an attacker has apriori knowledge of the infrastructure they are targeting. In a cyber-

deception approach, the defender can exploit this apriori knowledge to mislead the adversary in

expending their resources and time by deploying a network of decoy targets, leading to attack

paths that do not lead to a successful goal. The success of a cyber-deception strategy hinges

on adversaries taking on more fake attack paths than actual attack paths that would increase the

adversary’s resources in distinguishing between real and fake assets.

1.1.2 MOTIVATION FROM LITERATURE REVIEW

Researchers have proposed cyber deception approaches that introduce fake networks by

varying system characteristics [5], manipulating attacker’s probes [6, 7] and introducing virtual

network interface controllers and route mutation [8] . These approaches are focused on introducing

fake nodes from an attacker’s point of view and assume a static environment and attacker and

defender strategies. In [5], authors introduce systems that change the view of a cyber network by

obscuring some system characteristics where [6] alters the system view by manipulating attackers’

probe. Trassare et al. [7] use a traceroute function to deceive the network reconnaissance attack.

Dunlop et al. [9], propose a mechanism where to hide IPv6 packets to achieve anonymity. They

added a virtual network interface controller and shared a secret with all hosts.

All these approaches in cyber deception tend to change the network view from an attacker’s

point of view. However, they all failed to answer the question of what if the attacker enters the

network where unpatched vulnerabilities are present, and patches are not released yet. A network

administrator cannot just let the attacker compromise the system. As we mentioned earlier, the
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attacker always has time-advantage over unpatched vulnerability the where rvulnerability expo-

sure window is high. A defender has to take defensive action while making a tradeoff between

availability and security. Our approach not only changes the network view but also influence

the attacker to take the path toward fake networks while keeping availability and security at a

satisfactory level.

The work described in [10], [11], [12], and [13] uses hidden states for characterizing risk.

These approaches learn a single HMM model for any attack type. In [12], authors computed

probability matrices, but they did shed details on the probability matrices’ computation. Authors

in [13] propose a model based on HMM, but there is no indication of model training, and the

model uses random values for the transition matrix. In contrast, we define specific algorithms to

train the model and use alert sequences in the model training. We also use the alert sequence to

compute the probability matrices for prediction.

S.Zonouz et al. [14] propose a security-oriented cyber physical state estimation (SCPSE),

based on the attack graph, to predict the attack paths that an attacker can traverse by exploiting

vulnerabilities. In their methods, each state transition is achieved by exploiting vulnerabilities

in the hosts. The AG is converted to an HMM, which is used to determine the attacker’s attack

path. The execution time increases as the network grows and is not practical in the real world. In

contrast, we also use the attack graph in our model and handle the execution time by incorporating

an exploit dependency graph, which reduces execution time.

Attack graphs were proposed as the first method for predicting cyber attacks [15]. To

predict a cyber-attack using an attack graph required traversing the graph and searching for a

successful attack path or using probability values of edges in the graph. Probability values can

give the most probable attack path, but they do not consider the underlying different attack steps

the attacker can take. Ramaki et al. [16] proposed a framework for multi-step attack scenarios

detection and prediction. Despite proposing an attack graph in their work, the authors extensively

use causal correlations to predict the attack path. The attack graph alone can not predict the

most probable attack; instead, it can project all possible attack paths. Our model uses HMM

and Bayesian Attack Graph (BAG) to reduce searching space, thereby substantially improving

computational efficiency.

In [17], the authors proposed a Hidden Colored Petri-Net (HCPN) model to predict the

attacker’s next goal. However, their model suffers from performance issues as preconditions and

postconditions significantly grow as actions are added to the HCPN. The action set was refereed

there based on different IDS alert set from a specific attack scenario. We handle the performance

issue using the POMCP framework. The POMCP algorithm requires a sample region to construct
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the entire state space, allowing one to avoid the state space explosion problem.

The finite states machine (FSM) model is used in [18] to design a multi-attack response

system. The model sends an alert only after there is a state change without predicting the whole

attack path. The authors also define a weight for each state but not for any specific multi-step

attack scenario. In contrast, we define a probabilistic model to predict the most likely attack path

from the lateral movement stage. The work described in [19] is closely related to our work as

their prediction model is based on the IDS database, National Vulnerabilities Database (NVD),

and attack graph data sources. The authors’ model assigns every state’s weight manually, whereas

we use the HMM model to automatically train the parameters and assign the weight in each state.

The authors did not provide any results for their proposed model.

The authors in [20] addressed the insider threat problem with a deception-based approach.

They deploy decoy data in the network to confuse and confound the attacker and make it difficult

to differentiate between original and decoy data. These decoy data are automatically created and

placed on a decoy system to entice the attacker with fake credentials and triggers an alert when the

attacker access those decoy data. Additionally, the authors also embedded a beacon in the decoy

documents that signal a remote website when accessed. However, the authors did not mention how

the decoy systems should be deployed in the system. It is very costly for an enterprise network to

distribute the decoy system all over the network to entice the attacker.

Game-theoretical approaches are used in cyber deception to mix true and false information

to thwart the attacker’s cyber reconnaissance mission. In [21], the authors presented a Cyber

Deception Game (CDG) model on how the defender can benefit the most from determining a mix

of true, false, and obscure responses to deceive the attackers. The Cyber Deception Game (CDG)

model captures the strategic interaction between the defender and an adversary in network security.

The authors use a zero-sum Stackelberg game between the defender (e.g., network administrator)

and an adversary (e.g., hacker). Game-theory can not directly apply to predict the multi-step

attack prediction as the game solution in game theory is not explicit. The most commonly used

solution concept is the Nash Equilibrium. However, finding the Nash Equilibrium of a game is

often computationally intractable [22].

Urias et al. [23] proposed an unpredictable and adaptable deception-based framework

using virtualization and software-defined networking. The proposed framework can provide better

insights into an adversary’s actions by correlating the network’s endpoint behavior data.

Considering all of the above-discussed drawbacks in different models, in this dissertation

proposal, we are proposing a cyber deception approach where the defender can push the adversary

towards deployed fake networks. While the adversary in the fake networks, the defender can learn



6

different techniques, tools, and strategies used by the attacker. These information can help to

design more secure cyber network.

1.2 PROBLEM STATEMENT

Three problem statements stem from the above-discussed literature review and motive us

to solve by our develop and algorithm to make critical infrastructure more resilient. The main

contributions of this dissertation are listed below:

• Given a cyber network where multiple unpatched vulnerabilities are present, how to develop

a framework where the cyber administrator can secure the network while balancing the

trade-off between the availability cost and security cost.

• Having the deception framework, how to incorporate attacker capabilities into the model so

that the defender can decide where to spend resources and save resources.

• How to develop a system where the network defender can predict the likely attack path

beforehand so that the decoy networks can be placed along the predicted path to prevent

adversarial lateral movement.

• Having the predicted path framework, how to develop a deception-based system to charac-

terize adversarial strategies in a complex networked system to decrease the attacker’s win

percentage and increase resource usage.

1.3 OUR CONTRIBUTION

Our research starts with developing a deception framework in which a network adminis-

trator can deploy a network of decoy assets with the aim to expend adversaries’ resources and

time and gather information about the adversaries’ strategies, tactics, capabilities, and intent. The

key challenge in this cyber deception approach is the design and placement of network decoys to

ensure maximal information uncertainty for an attacker. State-of-the-art approaches to addressing

this design and placement problem assume a static environment, and apriori strategies are taken

by the attacker. In this paper, we propose the design and placement of network decoys consider-

ing scenarios where a defender’s action influence an attacker to change their strategies and tactics

during the attacker’s progression while maintaining the trade-off between availability and security.

The defender maintains a belief consisting of security state, and the resultant actions are cast as

Partially Ob- servable Markov Decision Process (POMDP).
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Table 1: Quantitative performance comparison

Key criteria Our work Jajodia et al.[24] Chungang et
al.[25]

State space >100 million <100 million <100 million
Execution time online solver offline solver offline solver
Security cost low high high

In modern days, cyber networks need continuous monitoring to keep the network secure

and available to legitimate users. Cyber attackers use reconnaissance missions to collect critical

network information and using that information, they make an advanced level cyber-attack plan.

To thwart the reconnaissance mission and counterattack plan, the cyber defender needs to come up

with a state-of-the-art cyber defense strategy. In this paper, we model a dynamic deception system

(DDS) which will not only thwart reconnaissance missions but also steer the attacker towards a

fake network to achieve a fake goal state. In our model, we also capture the attacker’s capability

using a belief matrix which is a joint probability distribution over the security states and attacker

types.

Advanced persistent threats (APTs) have emerged as multi-stage attacks that have targeted

nation-states and their associated entities, including private and corporate sectors. Cyber decep-

tion has emerged as a defense approach to secure our cyber infrastructure from APTs. Practical

deployment of cyber deception relies on defenders’ ability to place decoy nodes along the APT

path optimally. This paper presents a cyber deception approach focused on predicting the most

likely sequence of attack paths and deploying decoy nodes along the predicted path. Our pro-

posed approach combines reactive (graph analysis) and proactive (cyber deception technology)

defense to thwart the adversaries’ lateral movement. The proposed approach is realized through

two phases. The first phase predicts the most likely attack path based on Intrusion Detection Sys-

tem (IDS) alerts and network trace, and the second phase determines optimal deployment of decoy

nodes along the predicted path.We employ transition probabilities in a Hidden Markov Model to

predict the path. In the second phase, we utilize the predicted attack path to deploy decoy nodes.

However, it is likely that the attacker will not follow that predicted path to move laterally. To

address this challenge, we employ a Partially Observable Monte-Carlo Planning (POMCP) frame-

work. POMCP helps the defender assess several defense actions to block the attacker when it

deviates from the predicted path.

For the last research problem, we developed a set of metrics that will provide insights into

the level of complexity a sequence of events will impose on an opponent. A set of mixed true and
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false information increases an aspect of the complexity of the environment in a way that makes it

more difficult for an opponent to make decisions or shape conditions in one’s favor. If the attacker

believes that all the information received is accurate, the probability that the attack campaign will

fail is very high. On the other hand, if the attacker knows that the information is mixed with

true and false information, attackers need to spend more time differentiating that information. In

summary, we provided the following contributions:

• Developed a suite metrics that quantify the opportunity and capability of the adversary based

on based on aggression, knowledge, and stealthiness.

• To quantify more effective evolutionary strategy to aid in selecting effective deception action

by using an autonomous cyber attacker agents.

We presented the quantitative comparison of our contributions with the existing cyber

deception in Table 1. Our approach can efficiently process state space for more than 100 million.

Furthermore, our approach is an online solver for response time, which means the defender can

engage with the attacker in real-time and make the defense decision. We also demonstrated that

our model can trade-off between availability cost and security cost.

1.4 ORGANIZATION OF THE DISSERTATION REPORT

The rest of this dissertation is organized as follows: in Chapter 2 presents the preliminary

concept. The implementation of the initial cyber deception framework is presented in Chapter 3.

In Chapter 4, how the attacker capabilities are incorporated into the initial model to decide when

the network defender should spend resources and save resources is presented. It is also shown that

the model can thwart cyber reconnaissance mission using Software Defined Networking (SDN).

The model of preventing adversarial lateral movement by predicting the most likely attack path is

discussed in Chapter 5. Finally, how the adversarial strategies can be characterized in the complex

networked system is discussed in Chapter 6.
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Chapter 2

PRELIMINARIES

In this section we briefly discuss the background of different models and how technology

has been leveraged.

2.1 EXPLOIT DEPENDENCY GRAPH

The concept of attack trees and graphs were developed with a goal in mind that one can

study all possible sequences of exploits that an intruder can take to infiltrate a network and reach its

goal(s) state. An attack graph consists of vertices (system states) and edges (transition relations)

where each vertex connects each other via exploits. To generate an attack graph, one has to

enumerate all system states. In this process, the attack graph quickly grows exponentially. There

are several attack graph applications in network security such as vulnerability analysis, intrusion

alert correlation, and attack response system. An attack graph can be applied in both penetration

testing and network hardening.

Significant progress has been made in generating attack graph automatically [26], [27],

[28]. Along with the network size, attack graphs grow exponentially which makes the visualiza-

tion nearly impossible for a human to understand what’s going on. To deal with this complexity,

[29] proposed a system where one can reduce the attack graph information without loss of any

generality and create a graph which grows quadratically. Authors in [30] made an assumption

regarding the attacker’s behavior which allows to simplify the attack graph and also reduce the

attack information. The assumption named as monotonicity [30], states that the success of one

exploit does not interfere with the attacker’s future ability to exploit. With the help of this as-

sumption, one does not need to enumerate all security states, rather can create exploit dependency

graph describing how security conditions relate to exploit. The advantage of exploit dependency

graph is that it can be easily generated for a large network where the corresponding attack graphs

would be obstinately very large to generate. In [30], the authors construct a graph where nodes

represent security condition, and edges represent exploit, which termed as exploit dependency

graph. Security conditions are the atomic fact that they can be either true or false and exploits re-

late to security conditions via preconditions and postconditions. The approach taken by Ammann

et al. in [30] is similar we adopt in this paper to do the modelling of attack pathways using exploit



10

dependency graph. The edges in exploit dependency graph relates security conditions in such a

way where a single exploit might have multiple preconditions and multiple postconditions. Such

edges which are connects two sets of nodes rather than a pair of nodes we called it hyperedges.

The security conditions present in [30] are a mix of different attributes which is true under nor-

mal network configurations termed as initial conditions. During an attack, attributes can be made

true which is attack conditions. With this issue, the initial conditions are set to be always true

whether a network is subject to be an attack or not. For this reason, we take a slightly modified

definition from [31] where it does not include conditions representing the normal network con-

figuration explicitly rather assume that the set of conditions solely consists of attack conditions.

This modification allows setting the conditions of a network false which has not been subject to

an attack.

2.2 POMDP APPROACH

A partially observable Markov decision process (POMDP) is a process which connects

unobservant system states to observations. POMDP is a combination of a Markov decision process

(MDP) to model system dynamics with a hidden Markov model. The reward from the POMDP

approach depends on an agent’s action and sequence of system state where the agent cannot see

the system state directly rather, the agent makes an observation. Based on the observation agent

construct a belief state which is a probability distribution over system states. Based on the belief

matrix agent call the optimal action for each belief state. The advantage of POMDP is that its

general enough to model different kinds of real-world problem such as robot navigation problem,

cybersecurity, machine maintenance, and planning issue with uncertainty.

2.3 POMCP FRAMEWORK

In large and fully observable domains, Monte-Carlo Tree Search (MCTS) has tremendous

performance in online planning [31]. MCTS is a new approach to do online planning. It overcomes

the curse of dimensionality by taking only sample states instead of taking the whole possible

system states. MCTS requires a black box to simulate where the problems are too complicated

or too large to represent the probability distribution. It has another advantage in terms of prior

domain knowledge. In estimation the potential, MCTS uses the random simulation for long-term

reward where it plans over the long horizon and often effective in estimation the potential where

any prior domain knowledge or heuristics search is not present [32].

The authors in [31] extended MCTS to partially observable environments (POMDPs).

Other planning algorithms, i.e., value iteration [8] suffers from two important issues referred to
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as scaling and history. For example, for n-states value iteration algorithm creates n-dimensional

belief state, and it must evaluate all history which is exponential in the horizon. The search algo-

rithm in [31] constructs a search tree of histories which is online-based. The value of history is

estimated by the node of the search tree using Monte-Carlo simulation. The start space in each

simulation is sampled from the current belief state, and transition and observations are sampled

from the black-box simulator. The authors in [31] showed that for correct belief state the planning

algorithm converges to the optimal policy for any finite horizon POMDP. Monte-Carlo simulation

also can be used in updating the agent belief state. The important feature of Partially Observable

Monte-Carlo Planning (POMCP) algorithm is that it uses the same set of Monte- Carlo simulation

for both trees search and belief state.

2.4 HIDDEN MARKOV MODEL

Hidden Markov Model is proposed to increase the usability of the Markov chain. A

Markov chain states the probability of sequences of random variables. There is a strong assump-

tion in the Markov chain that we need to only rely on the current state if we want to predict future

states in the sequences. The previous state of the current state has no impact on the future state.

Figure 2: A Bayesian network representing a first-order HMM. The hidden states are shaded in
gray.

A Markov chain is applicable when we need to compute the probability for a sequence

of observable events. That means the events we are interested in need to be directly observable.

However, in many cases, we can not observe them directly, which are called hidden states. HMM

allows us to compute the probability of both observed events and hidden states. Figure 2 shows a

Bayesian network representing the first-order HMM, where the hidden states are shaded in gray.

In this model, an observation st at time t is produced by a stochastic process, but the state ht of

this process cannot be directly observed, i.e., it is hidden [33].

Three fundamental problems such as training(learning), decoding, and evaluation need to

be solved when a set of observations and the HMM are given:(1) Compute the probability of

given observation sequence, (2) Compute the optimal (hidden) state sequence, and (3) Determine

the optimal state transition probabilities and observation probabilities. The Forward-Backward
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algorithm can use to solve the problem (1) [34], Viterbi algorithm solves the problem [34] (2), and

Baum-Welch algorithm solves the problem (3) [35].

2.5 THE FORWARD-BACKWARD ALGORITHM

In the HMM, the actual state sequence is hidden, leading to considering all path probabil-

ities to determine the observation probability. For N hidden states and T observations, there are

NT possible hidden sequences, leading to exponentially increasing possible paths. However, this

complexity can be reduced by using Markov property and dynamic programming to efficiently

compute values required to obtain the posterior marginal distributions in two passes. The first

pass goes forward in time while the second goes backward in time. The Forward Algorithm (FW)

computes the observation probability by summing over the probabilities of all possible state paths

that could generate the observation sequence [35].

2.6 VITERBI ALGORITHM

The Viterbi algorithm is a dynamic programming algorithm used to find the most probable

state sequence, also known as the decoding algorithm. The most probable state sequence can be

computed by calculating the probability of the observation sequence for each possible path based

on the Forward algorithm. In this approach, the most likely sequence is determined by tracing

back the path with the highest likelihood value starting from the most likely state at the end of

observation.

• The initialization step (t = 1):

δ1(i) = πibi(o1) (1)

ψ1(i) = 0

• The recursion step:

δt( j) = max
1≤i≤N

[δt−1(i)ai, j]b j(ot) ,1≤ j ≤ N (2)

ψt( j) = arg max
1≤i≤N

[δt−1(i)ai, j] ,1≤ j ≤ N (3)

• The termination step (t = T ):

P(T ) = max
1≤i≤N

δT (i) (4)
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qT = arg max
1≤i≤N

δT (i) (5)

qt = ψt+1(qt+1) (6)

The terms πi and bi in Eq. 1 defined as the initial probability and the probability of an

observation, respectively. The Viterbi algorithm uses the δ parameter, where it considers only

the maximum likelihood value in Eq. 2. It also uses another parameter ψ to keep track of the

argument, which maximized δ for each t and j defined in Eq. 3. The term P(T ), qT , and qt in

the Eq. 4, 5, and 6 are defined as maximum probability, best last state, and previous best state,

respectively.

2.7 THE BAUM-WELCH ALGORITHM

The BW algorithm is also known as the Forward-Backward algorithm. It is a dynamic

programming approach and a special case of the expectation-maximization (EW) algorithm. The

EW algorithm is an iterative method to find the maximum likelihood estimates of parameters in

statistical models. The BW algorithm’s main purpose is to tune the parameters of HMM, the state

transition matrix A, the emission matrix B, and the initial probability distribution πi. There are

three phases in the BW algorithm: the initial phase, the forward phase, and the backward phase.

The BW algorithm first uses the forward-backward algorithm parameters α and β . Then

using Bayes’ theorem and expectation-maximization [35] introduce two parameters. We start with

the parameter ξt(i, j) which defines the probability of being in state i at time t, transitioning to state

j at time t +1, given the model and observation sequence:

ξt(i, j) = P(qt = si,qt+1 = s j|OT ,Λ)

=
αt(i)ai, jb j(ot+1βt+1( j)

∑
N
i=1 ∑

N
j=1 αt(i)ai, jb j(ot+1)βt+1( j)

(7)

Now, the marginal probability over j:

γt(i) =
N

∑
j=1

ξt(i, j)

=
αt(i)βt(i)

∑
N
i=1 αt(i)βt(i)

(8)



14

Using the above formulas, we can reestimate the parameters of HMM. A set of reasonable rees-

timation formulas for (A,B,π) are with π̄i being the expected frequency spent in-state si at time

1.

π̄i = γ1(i) (9)

Next, āi, j is the expected number of transitions from state i to state j over the overall number of

transitions from state i,

āi, j =
∑

T−1
t=1 ξt(i, j)

∑
T−1
t=1 γt(i)

(10)

b̄i(ok) is defined by the number of expected transition from state i, when observation is ot = ok,

over the number of expected transitions.

b̄i(ok) =
∑

T−1
t=1 γt(i),when ot = ok,else 0

∑
T−1
t=1 γt(i)

(11)
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Chapter 3

ONLINE CYBER DECEPTION SYSTEM USING PARTIALLY

OBSERVABLE MONTE-CARLO PLANNING FRAMEWORK

In this chapter, we propose the design and placement of network decoys considering sce-

narios where defender’s action influence an attacker to change its strategies and tactics dynami-

cally while maintaining the trade-off between availability and security. The defender maintains

a belief consisting of security state and the resultant actions are modeled as Partially Observable

Markov Decision Process (POMDP). Our simulation results illustrate the defender’s increasing

ability to influence the attacker’s attack path to comprise of fake nodes and networks.

Figure 3: Security model.

3.1 SECURITY MODEL

The proposed security model provides a way how a defender can deceive an attacker with

the fake network to prevent the real network infiltration. Throughout the paper Figure 3 will serve

as the reference to describe the cyber deception approach. In this section, we demonstrate the char-

acterization of attacker’s progression using exploit dependency graph and our model framework.

3.1.1 EXPLOIT DEPENDENCY GRAPH

Exploit dependency graph have been used to model multi-stage attack scenarios that an

attacker can launch to compromise services or applications. The exploit dependency graph char-

acterizes exploits in terms of a set of preconditions and postconditions. For a given network,
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exploit dependency graph can be generated using TVA (Topological Vulnerability Analysis) [36].

In an exploit dependency graph, nodes represent the security pre/post conditions and edges repre-

sent exploits.

3.1.2 DEPLOY FAKE NODES

We deploy fake nodes/networks along with the real nodes/networks whenever a reconnais-

sance alert is received from IDS. Attacker can certainly differentiate real nodes from fake nodes

by analyzing round trip times or measured bandwidth on the link. We follow delay and bandwidth

handler methods to ensure consistency of the network measurements collected during reconnais-

sance mission [37].

3.1.3 POMDP MODEL

State Space: An exploit dependency graph[38], a directed acyclic hypergraph (H), con-

sists of nodes and hyperedges where nodes represent a set of security conditions (c) and hyper-

edges render a set of exploits (e).The security condition of the hypergraph have two options either

true or false where true means attacker have certain capability and opposite. The node which de-

fender wants to protect termed as goal node denoted by Ng
r ⊆ N , Ng

f ⊆ N where Ng
r and Ng

f are

real network goal node and fake network goal node respectively. Defender’s goal is to protect the

goal nodes (real nodes) and drive the attacker towards the fake nodes. Each hyperedge has two

conditions in terms of exploits (ei) termed as pre (N−i ) and post (N+
i ). It is assumed that attacker

can exploit ei if all preconditions j ∈ N−i are enabled [38]. There will be entry points for the at-

tacker to penetrate the network without having the prior capabilities termed as initial exploits. An

attacker can increase the capability set by exploiting more vulnerabilities. Whenever an exploit’s

attempt is successful all the postconditions of the exploit become successful.

A security state, s⊆ N, is called a feasible security state if for every condition c j ∈ s, there

exists at least one exploit ei = (N−i , N+
i ) ∈ E such that c j ∈ N+

i and N−i , N+
i ⊆ s [38] and set S =

{s1,...,sn} represents the state space for this model.

Action: Defender’s action influence an attacker to choose a network path. So, we as-

sume that the defender can change its network configuration on the fly based on attacker’s action

to prevent vertical movement. A simple mean of network configuration can be blocking a port

from further communication, which will inhibit the attacker to progress. Another way to prevent

attacker’s progression is to apply countermeasure of any discovered exploit.

The space of defender’s available action set is represented by U = {u0, u1,...,un}. Here,

u0 represents defender’s null action which eventually means defender will not block any exploit.
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The remaining actions from the set U , signifies the network changes which will induce a set of

blocked exploits. Each action associated with the set of blocked exploit influence the attacker to

seek the available paths. Again, defender can not block any individual vulnerability rather it must

select a defense action which will induces a set of blocked exploits.

Threat Model: We construct the model based on a single attacker who is attempting to

penetrate the network. An attacker can only increase its capability by exploiting more vulnera-

bilities, on the other hand, it also increases the chance of being detected. Defender’s goal is to

prevent the exploitation of a vulnerability on the real network by allowing the exploitation on the

fake network. The set of available exploits for real and fake network at a given state s can be

defined as [38]:

E(st = s) = {eri = (N−i ,N+
i ) ∈ |N−i ⊂ s,N+

i ̸⊆ s} (12)

E(st = s) = {e fi = (N−i ,N+
i ) ∈ |N−i ⊂ s,N+

i ̸⊆ s} (13)

There are two important requirements that must be satisfied for an exploit ei = (N−i ,N+
i )

to be available :(1) N−i ⊂ s, i.e. all of the exploit’s preconditions must be satisfied :(2) N+
i ̸⊆ s, i.e.

the exploit’s postconditions must not all be satisfied [38].

The attack probability which defines attacker will attempt each real network exploits while

security state st and defense action ut for a given exploit erk ∈ E is given by,

Perk(st ,ut) =


Perk when erk ∈ E(st)\B(ut)

Perk
when erk ∈ E(st)∩B(ut)

0 when erk /∈ E(st)

 (14)

similarly for fake network,

Pe fk(st ,ut) =


Pe fk when e fk ∈ E(st)\B(ut)

Pe fk when e fk ∈ E(st)∩B(ut)

0 when e fk /∈ E(st)

 (15)

In above equations, Perk & Pe fk represents the probability of attack when there is no action and

Perk
& Pe fk defines the attack probability when defender’s action block exploits. To block any

vulnerabilities defender will choose the action, u ∈U , from the set of accessible defense actions

represented by U for any given iteration. Attacker always try to create a set of available initial

exploits from reconnaissance state to penetrate the network. There will be a conditional proba-

bility of success for each the exploit attacker attempted So, for any given exploits, erk & e fk, the
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probability of success is given by,

αerk(st ,ut) =

{
αerk when erk /∈ B(ut)

0 when erk ∈ B(ut)

}
(16)

similarly for the fake network,

αe fk(st ,ut) =

{
αe f k when e fk /∈ B(ut)

αe f k
when e fk ∈ B(ut)

}
(17)

As soon as, the exploit attempts are successful it enables all the postconditions which eventually

form the updated security state as shown in Figure 4.

Figure 4: Sample evolution (real network) of the security state.

Defender’s lack of information regarding the current security state and attacker true strat-

egy which can be learned from noisy security alerts. In the next section, we describe how defender

uses those information to construct the belief by getting security alerts from Intrusion Detection

System (IDS). These security alerts are mixed of false positive and false negative alerts. For

defender, it is important to differentiate those mixed alerts for better defense actions.
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Defender’s Observation: Defender’s efficiency in terms of choosing actions to limit the

attacker progression can be improved by correlating the alert with exploit activity. On the other

hand, defender’s efficiency can be degraded in the presence of a high rate of false alarm. To get

rid of false alarm and precisely quantify attacker progression from the dependency graph we used

state-based approach. From the security state, defender can create an available set of exploits to

the attacker using Eq. 12 where defender can update the belief state with new security information

by weighing the likelihood of individual security state. If we consider an example, for the belief

matrices b,b
′
ε∆S, some security state, stεS and assumed attacker type let one single exploit is

available E(st) = {e} and assumed that if the attacker attempt to exploit e it will create a unique

security alert z where no other alert will match with alert z. So, if the defender posses belief b

and see the alert z, then the belief update allows for the possibility of generated alert is coming

from exploit e. Otherwise, if the defender’s belief reflects b
′
and get the alert z it will immediately

discard the alert as a false alarm.

Let Z = {z1,z2, ...,zn} and Z
′
= {z′1,z

′
2, ...,z

′
n} represent the finite set of security alerts, real

and fake network respectively, generated by the IDS which is eventually the observation set for

the defender. Each of the alert from real nodes set and fake nodes set can be generated by the IDS,

given by the set Z(eri) = {zAi(1),zAi(2), ...,zAi(ai)} ∈ P(Z) and Z(e f i) = {zDi(1),zDi(2), ...,zDi(di)} ∈
P
′
(Z) where P(Z) and P

′
(Z
′
) are the power set of Z and Z

′
. Using this security alerts defender

constructs a belief, bt ∈ ∆S, where ∆S is the space of probability distribution over security state.

The belief state specifies the probability of being in each state given the history of action and

observation experienced so far, starting from an initial belief b0 and belief update procedure is

given in the next section.

Defender’s Belief Update: For any defense action ut = u and observation yt+1 = yk, the

belief update is defined as bt+1 = [Tj(bt ,yk,u)]s j∈S where ( j),th is the update function, Tj(bt ,yk,u)=

P(St+1 = s j |Ut = u,Yt+1 = yk,Bt = bt) is given by [38],

b j
t+1 = Tj(bt ,yk,u) =

pu
j(bt)ru

jk(bt)

ρ(bt ,yk,u)
(18)
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The above terms are defined below,

pu
j(bt) = P(St+1 = s j |Ut ,Bt) = ∑

si∈S
bi

t pu
i j (19)

ru
jk(bt) = P(Yt+1 | St+1 = st ,Ut ,Bt) = ∑

si∈S
bi

t ru
i jk (20)

ρ(bt ,yk,u) = P(Yt+1 |Ut ,Bt) = ∑
s j∈S

ru
jk(bt) pu

j(bt) (21)

where pu
i j is the transition probability from state si to s j under defense action u, and ru

jk(bt) =

P(Yt+1 | St+1 = st ,Ut = u,Bt = bt) is the probability that IDS will generate observation vector yk

when transitioning from state si to state s j under a defense action u. Eq. 19 defines the trajectory

of beliefs based on security alerts termed as observations and series of actions. Under a defense

action u, transition probability si to s j is controlled by a set of exploit events. For the available

set of exploits from Eq. 21, each event in the set of exploit is in binary form (successful and

unsuccessful).

The belief update procedure is a controlled Markov Chain where control is defender’s ac-

tion [38]. The majority of POMDP planning methods operate under Bayes theorem [39]. For

a large scale cyber network, a single Bayes update procedure could be computationally infeasi-

ble. To plan efficiently for large-scale POMDP, we adopted the model described in [31] for the

approximation of the belief state.

3.2 DEFENDER’S ACTIONS

As soon as the attacker progress through the network defender will take action to limit the

attacker’s progression. Selection of action step can be improved if defender have some domain

knowledge beforehand. To aid with the domain knowledge, we introduce the utility function.

Before taking any defensive action it is also necessary to measure the impact on availability and

security cost.

3.2.1 UTILITY FUNCTION

Attacker build an array of node utility function based on the base score metrics for ex-

ploiting vulnerabilities [40]. For every exploit, the attacker uses the metrics to justify the attack

success probability which is illustrated in Eq. 24 and serves as the attacker’s initial knowledge

about the network and vulnerability. Defender also create the same utility array. From [40], we
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borrow the impact (I), and exploitability (V) metrics to define the defender’s utility.

I = a∗ (1− (1−CI)∗ (1− II)∗ (1−AI)) (22)

Vi = b∗AC ∗AI ∗AV (23)

The above terms are defined as CI = ConfImpact, II= IntegImpact, AI = AvailImpact, I = Impact,

Vi = Exploitability, AC = AccessComplexity, AI = Authentication and AV = Accessvector, a, b are

the constant parameters and the values are 10.41 and 20 respectively. The range of the Eq. 22 and

Eq. 23 value is 0 to 10 where 0 represents low and 10 represents high. Similarly, the range for the

utility array function, Eq. 24 is 0 to 100 where 100 means high score. The utility array function is

defined below

Ua(r, f ) = I ∗Vi (24)

Example 1: Consider a scenario where there are five nodes and attacker sends scan queries to

the neighbors of node 1. Defender needs to respond the scan queries deceptively by mixing of

true/false information at random. Here, 2, 3 are real nodes and 4, 5 are fake nodes having following

vulnerabilities vul(n2), vul(n3), vul(n4) and vul(n5). Defender wants to drive the attacker towards

node 4 and 5. We are assuming that using above utility array equation defender come up with

following values Ua(n2) = 15, Ua(n3) = 5, Ua(n4) = 30, and Ua(n5) = 50. A true rational attacker

will go after node 5.

3.2.2 COST FUNCTION

In cyber-deception, it is possible to leverage the availability cost over the security cost.

There are two benefits when the attacker is in the fake network: 1) defender can collect as much

as intelligence information on the adversary which helps to derive the attacker’s capability, inten-

tions, and targets etc., 2) defender can maximize the network availability to the trusted user during

a cyber attack. An availability cost ca for each action defender could take to drive the adversary

towards the fake network. For some defense actions there will be no impact on the availability,

and sometimes there will be a greater impact. To formalize this notion, we represent the avail-

ability cost ca : U → R for each defense action taken by the defender similarly for the security

cost cs : S×U → R to depict the cost while the system is in various security state under defense

action u. Here, we are considering the availability of a node regarding end-to-end packet delay

(considering IT system). If the delay exceeds the limit, the node will still available but legitimate
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users could not able take services. For instance, the delay in practice can be the time it takes a user

to begin to interacting with the page, or the time it takes to completely load the whole content of

the page, which defines the availability factor.

End-to-End Packet Delay

Packet starts journey from a host (source), passes through a series of routers and ends it

journey in another host (destination) [41]. Let’s assume that, dE and N represents total delay and

number devices between a source and destination. The end-to-end delay defined in [42] as

dE = N(dproc +dtrans +dprop +dqueue)+dproco (25)

The above equation’s terms are defined as following dproc = processing delay, dtrans = transmission

delay, dprop = propagation delay, dqueue = queuing delay and dproco = processing overhead because

of authentication, integrity and confidentiality. For an uncongested enterprise network, dqueue ≃
0 and the distance between source and destination node is very small so that dprop ≃ 0. The

processing delay, dproc, is often negligible; however, it strongly influences a router’s maximum

throughput, which is the maximum rate at which a router can forward packets [41]. So that, Eq.

25 can be reduced to

dE = N×dtrans (26)

where dtrans = L/R, L = packet size and R = transmission rate.

For every defense action defender will measure the total end-to-end packet delay. So, the

availability cost in terms of delay is defined as following cu = dE . We assign more cost to the goal

conditions (attacker’s target node) as defender’s goal is to keep away the attacker from achieving

the goal. The total cost in terms of a security state and defense action is given below

c(st ,ut) = (1− f )cs(st ,ut)+ f ∗dE(ut) (27)

Here, f , is weighted factor, determines which cost focused more (f = 0 represents defender is

concerned only with security cost, f = 1 means defender is only concerned with availability cost).

The proposed online deception algorithm, is based on an existing online solver [31], computes

optimal action from deception standpoint to deceive attacker with fake network while balancing

availability and security cost.
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Algorithm 1 Defender’s Belief Update Algorithm
Initialize: nk, Bt+1 = Ua(r, f ), numAdded = 0

1: procedure BELIEFUPDATE(Bt ,ur,yr)
2: while numAdded < nk do
3: (s)∼Bt
4: (s

′
y,−)∼ G(s,ur)

5: if yZ(s) = yZ(s)
r then [If alerts Z(s) match]

6: Bt+1←Bt+1∪{s
′}

7: numAdded← numAdded +1
8: end if
9: end while

10: end procedure

Figure 5: An illustration of POMCP in an environment.

3.3 ONLINE DECEPTION ALGORITHM

Although embedding state space on the dependency graph allows us to accurately quan-

tify the level of progression of the attacker but still computing the optimal deceptive action is a

challenge where high diemsionality [43] of deception actions are present while interacting with

the attacker. Offline POMDP solver is a way to compute the optimal action for each belief state

before runtime. Although such solvers have improved their efficiency, capturing the optimal ac-

tion can be intractable for large networks. To resolve this issue, Silver and Veness [31] developed

an online algorithm termed as Partially Observable Monte-Carlo Planning (POMCP) to handle

large-scale network while computing optimal action. Online methods interleave the computation

and execution (runtime) phases of a policy [38], yielding a much more scalable approach than
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offline methods.

POMCP algorithm is based on and makes use of POMDP [44]. There are two types of

nodes in POMCP: belief nodes and action nodes where belief nodes represent a belief state and

action nodes are the children nodes of belief nodes that can be reached by doing an action. In

this work, action selection procedure is as same as POMCP algorithm described in [31] and belief

update procedure is modified based on [38] where it solves the large observation space problem.

Modified belief update procedure is given in Algorithm 1, where Bt is a state-action pair named

particles. The action selection step involves Monte-Carlo simulation from the current belief state

to assess the quality of various deception action. An agent begins the simulation by calling a

generative model provides a sample successor state, observation and cost given a state and ac-

tion, (s
′
,y,c)∼G(s,u). Calling generative model and successive sampling from the current belief

creates histories of search tree presented in Figure 5. Monte-Carlo Tree Search (MCTS) uses

Monte-Carlo simulation for assessing search tree nodes [45]. In the search tree nodes represent

histories and branches from the node in forwarding direction represents the possible future his-

tories because of having partial observability of the fundamental process. A simpler version of

MCTS uses greedy tree policy in the very beginning of the simulation, where it selects the action

with the highest value. To improve the greedy action selection, UCT algorithm [46] is used. In

the search tree, each action selection is done using UCB1 [47] and state is being viewed as multi-

armed bandit rule to balance the exploration and exploitation. In the UCT algorithm, there is an

option to use the domain knowledge [46] to initialize the new nodes. We use the utility array func-

tion Uar as our initial domain knowledge which is improved during more simulation runs. The

optimum action for the defender while interacting with the attacker turns into a POMDP. Casting

optimum action is defined as below,

V π(b0) =
∞

∑
t=0

γ
tc(bt ,ut)

=
∞

∑
t=0

γ
tE[c(st ,ut)| b0,π]

(28)

where 0 < γ < 1 is the discount factor and c(bt ,ut) represents the cost for each belief state bt when

an action ut is selected from the space of action where c(bt ,ut) = ∑si∈S bi
tc(st ,ut). For each belief

state, defense action generates according to the policy function and belief update must follow the
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procedure defined in Eq. 28. The optimal policy π∗ is obtained by optimizing the long-term cost.

π
∗ = argmin

π
V π(b0) (29)

The optimal policy defined in Eq. 29 specifies the optimal action for each belief state bt ∈ ∆S

where the expected minimum expected cost calculated over the infinite time horizon. The defender

will chose the action where the cost makes trade-off between availability and security cost.

In POMCP, a belief state updates when a sample observation matches with real-world

observation, but for large observation space, it barely matches with real-world observation. In

the modified belief update procedure presented in Algorithm 1, check a statement whether each

incoming alert zi ∈ Z match with over a security state, Z(s) = Z(e). The alerts are generated

whenever an attacker attempts an exploit. Alerts not in Z(s) cannot be generated by exploit activity

for that security state. We are referring those alerts are false alarms for the defender.

To evaluate the scalability of our approach, we experimented our online deception algo-

rithm on a graph consisting 160 conditions (nodes), 150 exploits (hyperedges), 60 defense actions,

35 security alerts resulting more than 109 observation vectors. The resulting security states from

this example exceed 100 million.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION

In this simulation, we assume that attacker is a true rational type where his aggression,

knowledge, and stealthiness are moderate, high and high respectively. Using the state-based alert

correlation we creates a probability table for alert detection with assumed attacker type where

column represents exploit activity and rows are triggered alert. The probability of detection table

is not presented here due to high volume of dataset.

Under null defender’s action, the probability of attacking real nodes and fake nodes are

same. For this simulation, we assume that the exploit dependency graph is already generated us-

ing TVA (Topological Vulnerability Analysis) [38]. We use the [48] software package to use the

POMCP solver in our simulation and use python and MatLAB to implement our model. Attacker’s

progression depends on the defender’s action and we assume that defender moves first with null

action and wait for the attacker to proceed. In this simulation, we use the sample exploit depen-

dency graph presented in Figure 6 to evaluate our approach and present our simulation results.

Attack probabilities for each of the exploit under assumed true rational attacker type,
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Figure 6: A sample Exploit Dependency graph with real network (left) and fake network (right).

(Perk , Perk
= (0.8,0.3) f or erk ∈ E0

(Pe fk , Pe fk = (0.8,0.3) f or e fk ∈ E0

(Perk , Perk
= (0.7,0.3) f or erk ∈ {e4,e5,e6,e8,e9}

(Pe fk , Pe fk = (0.9,0.7) f or e fk ∈ {e5,e7}

(Perk , Perk
= (0.6,0.4) f or erk ∈ {e7,e10,e11}

(Pe fk , Pe fk = (0.9,0.8) f or e fk ∈ {e7,e8}

similarly, probability of success are,

αerk =

{
0.7 when erk ∈ E0

0.5 when erk ∈ E\E0

}
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αe fk =

{
0.85 when e fk ∈ E0

0.7 when e fk ∈ E\E0

}

As we defined earlier, the space of actions is the power set of each defense action. In

this simulation, we consider three actions for real network which induce a set of block exploits

defined as, B(u1) = {e1,e2,e3}, B(u2) = {e4,e5,e6,e7,e8}, B(u3) = {e9,e10,e11}. Similarly for

fake network two actions, B(u1) = {e5,e7}, B(u2) = {e7,e8} where the cost of each action is 0.30.

The weight cost in Eq. 27 is 0.5 and the discount factor γ = 0.95. In total (real & fake) there

are ns = 356 security states and nz = 12 security alerts leading to 212 = 4096 distinct observation

vector. To approximate the belief, all simulations use particles nk = 1500. The sample evolution

of computed deception policy when NSim = 5000 is given in Figure 7, 8. The computed deception

policy is intuitive.

Figure 7: Sample evolution of deception policy when attacker is in real network.

It is assumed that the security state starts from the empty state defined as, s0 = φ . The

defender uses utility array function to construct the initial belief which is defined in Eq. 24. We

run the simulation 5000 times. The defender initially (from t=1 to t=4) does not take any action to

save the availability cost. As the attacker progress and enable more conditions, defender’s belief

gradually updates based on the received security alerts.

Then defender begins to deploy actions (t=5) to block exploits. As we know from mono-

tonicity assumption, once a security condition enabled it remains enable all the time. Whenever



28

Figure 8: Sample evolution of deception policy when attacker is in fake network.

Table 2: Deception’s system performance evaluation table for real network

Simulation
Runs

Attacker
Starts with
Real Node

Attacker
Ends on
Real Node

Attacker
Ends on
Fake Node

500 15 13 2
1000 13 10 3
1500 11 7 4
2000 10 6 4
3000 8 3 5
4000 7 1 6
5000 6 0 6

defender’s belief reflects that attacker is close to goal conditions, it will block the exploits to pre-

vent the attacker reach the goal. As we can see from Figure 7 at time step t=8, defender blocks

exploits { e8,e9,e10} which prevents attacker to move forward. From this point, the attacker will

try to progress from another point as he received the response from the defender in the reconnais-

sance stage with a mix of true and false information. Then he moves toward the fake network,

Figure 8, based on his available set of exploits dictated by Eq. 21. At this stage defender let the

attacker move forward. From time step t=9 to 13, defender action is null. As it (fake) is same as

the real network from the attacker perspective, the defender will take action only when attacker

have an alternative way to reach the next security state (see time steps t=14-20 in Figure 8). This
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Table 3: Deception’s system performance evaluation table for decoy network

Simulation
Runs

Attacker
Starts with
Fake Node

Attacker
Ends on
Fake Node

Attacker
Ends on
Real Node

500 10 10 0
1000 12 12 0
1500 14 14 0
2000 15 15 0
3000 17 17 0
4000 18 18 0
5000 19 19 0

way attacker will have more confidence that he is in the right track and ultimately he gains noth-

ing. On the other hand, the defender can save more availability cost and learn the attacker which

will increase defender’s certainty about attacker.

In Table 2, we presented our deception system’s performance evaluation data while at-

tacker start to exploit real initial nodes vulnerability and ended up with real to real network end

state and real to fake end state. The numerical numbers in the 2nd column represent how many

times out of 25 sample runs attacker start with real network initial nodes and 3rd column repre-

sents how many times attacker ended up with real network end state without transition to the fake

network and 4th column represents how many times attacker make transition from real network to

fake network and end up with fake goal state.

In Table 3, we presents the same statistics for the fake network.

From Table 3, we can see that up to 76% of the time attacker start with the fake initial

nodes and carry out the series of exploit to achieve the fake goal state. When the NSim = 500, out

of 25 sample runs 15 times attacker start with the real network (Table 2) and 13 times ended up

with real network goal state because of poor quality of possible future histories estimation. When

the number of simulation increases and more possible future histories are taken into account, the

action estimation quality increased as well as policy function (e.g. Nsim = 5000, 19 times out of

25 times attacker start and ended up with fake goal state).

In Figure 9, we plot the discounted cost against each time step for 25 sample runs while

attacker in real network state. When Nsim = 500, 15 times attacker starts with the real network

where out of 15 times attacker reached the real goal state (node) 13 times. Trajectories which

ended up with red circle represents the path where attacker reached the goal. Initially, for low

simulation counts e.g., Nsim = 500 defender does not have much information about attacker’s



30

0 20 40 60 80

t

0

2

4

6

8

10

d
is

c
o

u
n

te
d

 c
o

s
t

N_Sim=500

0 20 40 60 80

t

0

2

4

6

8

10

d
is

c
o

u
n

te
d

 c
o

s
t

N_Sim=2000

0 20 40 60 80

t

0

2

4

6

8

10

d
is

c
o

u
n

te
d

 c
o

s
t

N_Sim=4000

0 20 40 60 80

t

0

2

4

6

8

10

d
is

c
o

u
n

te
d

 c
o

s
t

N_Sim=5000

Figure 9: Discounted cost
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strategy, capability. Because of this, defender aggressively blocks exploit from the very beginning

(t = 0) which eventually produces low quality of estimation and ended up with less availability.

For poor estimation, attacker also reaches into the goal node several times as shown in Figure

9 upper left corner. As soon as, simulation count increases more possible future histories are

included which results high quality of estimation (which set of exploits to be blocked). As it is

evidenced from Figure 9 lower right corner, though attacker start with real network for 5000 trials

but could not able to reach any goal state.

3.5 CONCLUSION

In this chapter, we develop a technique to alter the view of the system with a mix of real and

fake information and a cyber deception approach where defender’s action influence an attacker to

take different attack path while maintaining availability cost and security cost. To do so, we use an

exploit dependency graph which describes attacker progression throughout the network. For every

cyber defense system, there is a goal to maintain the availability to the trusted user while security

is at a satisfactory level. Scalability is achieved via online deception algorithm where it samples

from large-scale cyber domain instead of creating the entire state space. Using our approach, a

defender not only saves availability cost but also can learn the attacker while the attacker is in fake

networks. This knowledge will help the defender to make better security planning in the future.

One future research direction concerns modeling attacker type so that defender can precisely iden-

tify the attacker type based on an attacker knowledge, stealthiness and aggression level. Having

the capability of identifying an attacker type will improve the efficiency of a defender to choose

the deception algorithm. For example, if the attacker’s knowledge, stealthiness and aggression

level is low, low and low respectively and the defender is deploying the deception algorithm for

high, high and moderate attacker, then the defender is wasting the available resource which is not

an efficient way to deal with the attacker.
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Chapter 4

ATTACKER CAPABILITY BASED DYNAMIC DECEPTION MODEL

FOR LARGE-SCALE NETWORKS

In this chapter, we model a dynamic deception system (DDS) which not only thwart recon-

naissance mission but also steer the attacker towards fake network to achieve a fake goal state. In

our model, we also capture the attacker’s capability using a belief matrix which is a joint probabil-

ity distribution over the security states and attacker types. Experiments conducted on the prototype

implementation of our DDS confirm that the defender can make the decision whether to spend

more resources or save resources based on attacker types and thwart reconnaissance mission.

4.1 THREAT MODEL AND ASSUMPTIONS

The model is based on a single attacker who is trying to penetrate the network where

we are going to capture the attacker’s capability. Without considering the attacker’s capability,

a security model is a waste of resource or lack of resource. Based on the attacker’s capability,

the defender is going to block vulnerabilities to thwart the attacker and drive the attacker towards

the fake network. The defender is able to be blocking exploits by doing system modification.

Those system modifications have an effect on normal system operation. This is why the defender

needs to estimate the true attacker’s capability. For a novice attacker, might be it is sufficient

to apply some countermeasure rather than blocking a vulnerability. In our previous chapter, we

assumed attacker capabilities; however, in this paper, we incorporated attacker capabilities to do

the dynamic security model which is presented in Figure 10

There are two main primary objectives of our dynamic security model i.e., 1) quantify the

security state and, 2) taking the optimum deception action based on the attacker capabilities. To

quantify the security, we define the security state as a current level of attacker progression. To

capture the attacker progression, we use an exploit dependency graph based approach which is

described in the earlier chapter.

The strategy attacker will take solely depends on attacker capability. To model attacker

types we assume an attacker will be one of n types which are represented by the set Φ= {ϕ1,ϕ2, ...,ϕn}.
Each type of attacker ϕi ∈Φ will have the conditional attack probabilities (CAP) over the exploits.

CAP depends on the parameters such as defender’s action da the available set of exploits ae and
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Figure 10: Dynamic security Model.

attacker capabilities ac. For a given security state st and under a defense action ut the CAP over

the real network exploit erk ∈ E given by,

Perk(st ,ut ,ϕt) =


∑P(da,ae|ac) = Perk(ϕi),when erk ∈ E(st)\B(ut)

∑P(da,ae|ac) = Perk
(ϕi),when erk ∈ E(st)∩B(ut)

0,when erk /∈ E(st)

 (30)

Similarly, for the fake network,

Pe fk(st ,ut ,ϕt) =


∑P(da,ae|ac) = Pe fk(ϕi),when e fk ∈ E(st)\B(ut)

∑P(da,ae|ac) = Pe fk(ϕi),when e fk ∈ E(st)∩B(ut)

0,when e fk /∈ E(st)

 (31)

By dividing the set of available exploits into two categories helps us to understand how

an attacker change the attacking strategy. When defender does not block any exploits, attacker

attempt with a probability which is defined by the term Perk(ϕi) & Pe fk(ϕi). On the other hand,

attacker attempt with a probability Perk
(ϕi) & Pe fk(ϕi), when defender blocks exploit. The value

0 means that there are no available set of exploits to be attempted. When the attacker is not able
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to identify blocked exploits in a security state for action u that means Perk(ϕi) = Perk
(ϕi) the other

hand, if the attacker identifies that exploits are blocked in this security state, the attacker would

not attempt it, Perk
(ϕi) = 0.

4.2 SYSTEM ARCHITECTURE OVERVIEW

Our dynamic deception system consists of five components such as a) a SDN controller

which generates the flow rules dynamically and control the network traffic, b) deception server

which manipulates network traffic, imitate some virtual network resources based on the user pol-

icy, and perform the online deception algorithm, c) delay handler which keeps the bandwidth

balance between real and fake network, so that attacker couldn’t distinguish the real and fake

network, d) IDS alert correlation server is responsible for correlating the alert with the exploit

activity, e) SDN network elements are responsible to controlling and analyzing the network traffic

after getting the flow rules from SDN controller. When packet arrives at SDN switch, which is

connected to our system, the SDN controller generates flow rule in accordance with our fake net-

work. The packet either sends to the deception server or send to the destination after tagging each

packet. When the packet sent to the deception server, the packet is crafted in accordance with the

fake network when reply back to the sender by adding artificial delay to make consistency. If the

packet is sent to the real network, an artificial delay is added when reply back to the sender to

make consistency between real network and fake network. For a very large network, the decep-

tion server could be a bottleneck because of a large number of requests can come to the server. To

handle this issue, our deception server can be replicated so that each of the deception servers can

handle a certain number of requests. Our system is implemented using in Python. We use POX

framework [49] to implement the SDN controller and Scapy framework [50] to implement our

deception server. We use mininet [51], which is the current state-of-art SDN network emulator

to test our implementation. In Figure 11 we presented a systematic architectural overview of our

DDS system. In the next couple of sections, we briefly describe our DDS system.

4.2.1 ONLINE DECEPTION ALGORITHM

For deception we use the same algorithm described in earlier chapter.

4.2.2 SOFTWARE DEFINED NETWORK CONTROLLER

In our DDS, the primary objective of the SDN controller is to generate network flow rules

based upon the arrival of network packets. The generated flow rules later forward to SDN switch
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Figure 11: System architecture.

to control and analyse the network traffic. For our deception model, we use the following flow

rules based on our fake network needs,

Routing Packets to or from the Fake Network: The use of fake network makes our

model dynamic in the sense that it changes the attacker’s perception about network structure from

the real one. With the mix of real and fake information make the network significantly larger than

the actual one. The network flows from and to the fake network are monitored and analyzed by

the SDN controller to identify the infected host.

Dynamic Address Translation: To send the fake network information along with the real

network information, our deception system rewrites packet headers on-the-fly based.

ARP Request Forwarding: In our system, ARP request forwarding the most important

part as all the requests are handled by our deception server. Usually, a network is flooded by ARP

request to discover a host and match the IP address with MAC address. Deception server receives

ARP request and responds with an appropriate response.

Routing of DHCP Packets: As fake networks associated with DHCP lease, our deception

server serves as a DHCP server. It leases IP to the fake network’s host when any host from the
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fake networks trying to connect with the network.

Routing of DNS Packets: To make sure the reachability to the legitimate services, DNS

requests are handled by our deception server. To forward the DNS packets appropriate flow rules

between host and the deception server are generated.

4.2.3 DECEPTION SERVER

In our deception server, there are six components to deceive the cyber adversary and handle

the packets coming from hosts connected with the network and crafted the packet based on the

fake networks. Below we briefly discuss the six components,

DHCP Handler: The DHCP handler acts as a DHCP server in our deception server and

responsible for assigning DHCP lease to hosts which are trying to connect with the network.

ARP Handler: All ARP requests are forwarded by appropriate flow rules to our deception

server. Based on our fake network specifications, our deception server modified the request and

sent back to the requesting host.

ICMP Handler: ICMP error messages are forwarded by the specific rules to our deception

server. Packets with the message like destination host unreachable contain nested packet. Such a

nested packet cannot be updated automatically in the SDN switches. We forward such packets to

our deception server and crafted accordingly and send back to the destination.

DNS Handler: To make sure the reachability to the legitimate services, DNS requests are

handled by our deception server and creates appropriate responses.

Gateway Simulator: Gateway simulator is using to make the fake network more realistic

as some of the components from the fake network does not have any endpoints. Such endpoints

are like routers or gateway. If our deception server receives any probing request, it sends back an

appropriate response to the destination.

Route Simulator: Route simulator is using in our deception server to reply packets with

mapping functions like traceroute. If the probing request to any node has lower TTL value

than specified in our fake network, our deception server handles those packets on behalf of

router/gateway between the scanning source node and destination node.

4.2.4 DELAY HANDLER

Besides the traditional scanning method, advance level attackers can analyze the statistics

of round-trip time and measured bandwidth on links to find the inconsistency.By adding artificial

delay to certain packets, we change the link bandwidth and host delays. To make the consistency,

firstly, we collect measurement data from real network nodes and use those data as the basis for
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Table 4: Four attacker types

Attacker
Types

Knowledge Aggression Stealthiness

Type-I High Moderate High
Type-II Moderate High High
Type-III Moderate Moderate Moderate
Type-IV Low Low Low

our fake network.

4.3 EVALUATION AND RESULTS

4.3.1 EXPERIMENTAL SETUP AND METRICS

Now we will investigate an illustrative example using the sample exploit dependency graph

presented in Figure 12. For this example, we assume an attacker will na = 4 types by varying at-

tacker knowledge, aggression, and stealthiness level presented in Table 4. We will present four use

cases, how defender deceives the attacker with a fake network for four attacker types. Aggression

level is defined by the conditional attack probabilities and success, which in terms called the rate

of movement of the attacker throughout the real network. Knowledge level is defined by the Eq.

30, 31 where the separation of two parameters Perk(ϕi) & Perk
(ϕi) dictate the knowledge level of

the attacker.

The weight cost is 0.5 and the discount factor γ = 0.95. In total (real & fake) there are

ns = 356 security states and nz = 12 security alerts leading to 212 = 4096 distinct observation

vectors. To approximate the belief, all simulations use particles nk = 1500. For this simulation,

we assume that the exploit dependency graph is already generated using TVA (Topological Vul-

nerability Analysis) [46]. We use the [52] software package to use the POMCP solver in our

simulation and use Python and Matlab to implement our model. In the section, we are going to

present our simulation results for each of the attacker types defined in Table 4. In Table 5. we

presented probabilities of detection for real networks for each of the four attacker types.

In Table 5 columns represent attempted exploit, and rows present the triggered alert. Each

entry from the table represents the probability of detection under each of the attack types.

4.3.2 RESULTS
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Table 5: Probability of detection for each of the attacker types

Alert e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11
Z1 0.3 0.4 0 0 0 0 0 0 0 0 0

0.5 0.5 0 0 0 0 0 0 0 0 0
0.4 0.4 0 0 0 0 0 0 0 0 0
0.8 0.2 0 0 0 0 0 0 0 0 0

Z2 0 0.2 0.3 0 0 0 0 0 0 0 0
0 0.4 0.2 0 0 0 0 0 0 0 0
0 0.4 0.3 0 0 0 0 0 0 0 0
0 0.6 0.8 0 0 0 0 0 0 0 0

Z3 0 0 0.4 0.3 0 0 0 0 0 0 0
0 0 0.3 0.4 0 0 0 0 0 0 0
0 0 0.3 0 0 0 0 0 0 0 0
0 0 0.6 0.7 0 0 0 0 0 0 0

Z4 0 0 0 0.4 0.4 0 0 0 0 0 0
0 0 0 0.2 0.3 0 0 0 0 0 0
0 0 0 0.5 0.4 0 0 0 0 0 0
0 0 0 0.6 0.7 0 0 0 0 0 0

Z5 0 0 0 0.2 0.5 0 0 0 0 0 0
0 0 0 0 0.3 0 0 0 0 0 0
0 0 0 0.4 0.4 0 0 0 0 0 0
0 0 0 0.7 0.8 0 0 0 0 0 0

Z6 0 0 0 0 0.5 0.2 0 0 0 0 0
0 0 0 0 0.3 0.4 0 0 0 0 0
0 0 0 0 0.4 0.3 0 0 0 0 0
0 0 0 0 0.6 0.7 0 0 0 0 0

Z7 0 0 0 0 0 0.6 0.2 0 0 0 0
0 0 0 0 0 0.3 0.5 0 0 0 0
0 0 0 0 0 0.2 0.3 0 0 0 0
0 0 0 0 0 0.8 0.7 0 0 0 0

Z8 0 0 0 0 0 0.2 0.3 0.3 0 0 0
0 0 0 0 0 0.5 0.5 0.2 0 0 0
0 0 0 0 0 0.3 0.4 0.4 0 0 0
0 0 0 0 0 0.7 0.6 0.7 0 0 0

Z9 0 0 0 0 0 0 0 0 0.4 0.3 0
0 0 0 0 0 0 0 0 0.5 0.2 0
0 0 0 0 0 0 0 0 0.2 0.5 0
0 0 0 0 0 0 0 0 0.7 0.7 0

Z10 0 0 0 0 0 0 0 0.5 0.2 0.2 0
0 0 0 0 0 0 0 0.4 0.3 0.4 0
0 0 0 0 0 0 0 0.5 0.5 0.6 0
0 0 0 0 0 0 0 0.6 0.7 0.8 0
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Z11 0 0 0 0 0 0 0 0 0.3 0.2 0
0 0 0 0 0 0 0 0 0.5 0.4 0
0 0 0 0 0 0 0 0 0.6 0.3 0
0 0 0 0 0 0 0 0 0.8 0.7 0

Z12 0 0 0 0 0 0 0 0 0 0.3 0
0 0 0 0 0 0 0 0 0 0.4 0
0 0 0 0 0 0 0 0 0 0.4 0
0 0 0 0 0 0 0 0 0 0.8 0

Z13 0 0 0 0 0 0 0 0 0 0 0.3
0 0 0 0 0 0 0 0 0 0 0.3
0 0 0 0 0 0 0 0 0 0 0.4
0 0 0 0 0 0 0 0 0 0 0.8

Figure 12: Experimental exploit dependency graph.

Use Case I
For this use case, we use attacker Type-I (ϕ1) from Table 4. We calculated the conditional attack

probabilities for real and fake networks using Eq. 30 & 31 which is presented below.
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(Perk(ϕ1), Perk
(ϕ1)) = (0.8,0.3) f or erk ∈ E0

(Pe fk(ϕ1), Pe fk(ϕ1)) = (0.8,0.3) f or e fk ∈ E0

(Perk(ϕ1), Perk
(ϕ1)) = (0.7,0.3) f or erk ∈ {e4,e5,e6,e8,e9}

(Pe fk(ϕ1), Pe fk(ϕ1)) = (0.9,0.7) f or e fk ∈ {e5,e7}

(Perk(ϕ1), Perk
(ϕ1)) = (0.6,0.4) f or erk ∈ {e7,e10,e11}

(Pe fk(ϕ1), Pe fk(ϕ1)) = (0.9,0.8) f or e fk ∈ {e7,e8}

similarly, probability of success are,

αerk(ϕ1) =

{
0.7 when erk ∈ E0

0.5 when erk ∈ E\E0

}

αe fk(ϕ1) =

{
0.85 when e fk ∈ E0

0.7 when e fk ∈ E\E0

}

As we defined earlier, the space of actions is the power set of each defense action. In

this simulation, we consider three actions for real network which induce a set of block exploits

defined as, B(u1) = {e1,e2,e3}, B(u2) = {e4,e5,e6,e7,e8}, B(u3) = {e9,e10,e11}. Similarly for

fake network two actions, B(u1) = {e5,e7}, B(u2) = {e7,e8} where the cost of each action is 0.30.

The weight cost in Eq. 27 is 0.5 and the discount factor γ = 0.95. In total (real & fake) there

are ns = 356 security states and nz = 12 security alerts leading to 212 = 4096 distinct observation

vector. To approximate the belief, all simulations use particles nk = 1500. The sample evolution

of computed deception policy when NSim = 5000 is given in Figure 7, 8. The computed deception

policy is intuitive. It is assumed that the security state starts from the empty state defined as,

s0 = /0. The defender uses utility array function to construct the initial belief which is defined in

Eq. 24. We run the simulation 5000 times.

In Table 6, we present our deception system performance evaluation data while attacker

start to exploit real initial nodes vulnerability and ended up with real to real network end state and

real to fake end state. The numerical numbers in the 2nd column represent how many times out of

25 sample runs attacker start with real network initial nodes and 3rd column represents how many

times attacker ended up with real network end state without transition to the fake network and 4th

column represents how many times attacker make transition from real network to fake network
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Table 6: Use Case I: Deception system performance evaluation table for real network

Simulation
Runs

Attacker
Starts with
Real Node

Attacker
Ends on
Real Node

Attacker
Ends on
Fake Node

500 15 13 2
1000 13 10 3
1500 11 7 4
2000 10 6 4
3000 8 3 5
4000 7 1 6
5000 6 0 6

Table 7: Use Case I: Deception system performance evaluation table for decoy network

Simulation
Runs

No. of
Times
Attacker
Starts with
Fake Node

No. of
Times At-
tacker Ends
on Fake
Node

No. of
Times At-
tacker Ends
on Real
Node

500 10 10 0
1000 12 12 0
1500 14 14 0
2000 15 15 0
3000 17 17 0
4000 18 18 0
5000 19 19 0

and end up with fake goal state.

In Table 7, we presents the same statistics for the fake network.

From Table 7, we can see that up to 76% ((19×25)÷100) of the time attacker start with

the fake initial nodes and carry out the series of exploit to achieve the fake goal state. When the

NSim = 500, out of 25 sample runs 15 times attacker start with the real network (Table 6) and 13

times ended up with real network goal state because of poor quality of possible future histories

estimation. When the number of simulation increases and more possible future histories are taken

into account, the action estimation quality increased as well as policy function (e.g. Nsim = 5000,

19 times out of 25 times attacker start and ended up with fake goal state).

Use Case II
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For use case II, we use attacker type II (ϕ2) from the Table 4 where attacker knowledge, aggression

and stealthiness level as follows moderate, high, and high respectively. The conditional attack

probabilities and success probabilities are given below for this use case,

(Perk(ϕ2), Perk
(ϕ2)) = (0.7,0.7) f or erk ∈ E0

(Pe fk(ϕ2), Pe fk(ϕ2)) = (0.7,0.7) f or e fk ∈ E0

(Perk(ϕ2), Perk
(ϕ2)) = (0.8,0.4) f or erk ∈ {e4,e5,e7}

(Pe fk(ϕ2), Pe fk(ϕ2)) = (0.9,0.6) f or e fk ∈ {e5,e7}

(Perk(ϕ2), Perk
(ϕ2)) = (0.7,0.5) f or erk ∈ {e8,e9,e11}

(Pe fk(ϕ2), Pe fk(ϕ2)) = (0.9,0.7) f or e fk ∈ {e7,e8}

similarly, probability of success are,

αerk(ϕ2) =

{
0.8 when erk ∈ E0

0.5 when erk ∈ E\E0

}

αe fk(ϕ2) =

{
0.85 when e fk ∈ E0

0.7 when e fk ∈ E\E0

}

We kept other simulation parameters same as for use case I as we are evaluating use case II

for the same exploit dependency graph, we presented in Figure 12. In this simulation, we present

the performance evaluation table to capture the attacker progression from real to real and real to

fake network.

From Table 8 we can see that, the number times attacker starts with the real node less than

the use case I because attacker has less knowledge level than previous use case. The results are

reasonable because attacker hardly distinguishes the real and fake network. Also, it is difficult for

the attacker to discover which exploits are not blocked by the defender in a security state. In Table

9, we present the same simulation results for the fake network.

Table 9 represents the statistics on how many times attacker go back to real node from the

fake node. As we stated earlier that as soon as attacker enters the fake network, attacker cannot

go back to the real node. We can conclude based on this simulation that up to 84% of the time

attacker starts with the fake initial nodes and carry out the series of exploit to achieve the fake goal

state because of moderate level of knowledge skill.
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Table 8: Use Case II: Deception system performance evaluation table for real network

Simulation
Runs

No. of
Times
Attacker
Starts with
Real Node

No. of
Times At-
tacker Ends
on Real
Node

No. of
Times At-
tacker Ends
on Fake
Node

500 14 9 5
1000 12 8 4
1500 12 7 5
2000 9 5 4
3000 8 4 4
4000 7 2 5
5000 4 0 4

Table 9: Use Case II: Deception system performance evaluation table for decoy network

Simulation
Runs

No. of
Times
Attacker
Starts with
Fake Node

No. of
Times At-
tacker Ends
on Fake
Node

No. of
Times At-
tacker Ends
on Real
Node

500 11 11 0
1000 13 13 0
1500 13 13 0
2000 16 16 0
3000 17 17 0
4000 18 18 0
5000 21 21 0

Use Case III
For use case III, we use attacker type III (ϕ3) from the Table 4 where attacker knowledge,

aggression and stealthiness level as follows moderate, moderate, and moderate respectively. The

conditional attack probabilities and success probabilities are given below for this use case,
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Table 10: Use Case III: Deception system performance evaluation table for real network

Simulation
Runs

No. of
Times
Attacker
Starts with
Real Node

No. of
Times At-
tacker Ends
on Real
Node

No. of
Times At-
tacker Ends
on Fake
Node

500 11 7 4
1000 11 8 3
1500 10 8 2
2000 8 5 3
3000 7 2 5
4000 7 2 5
5000 3 0 3

(Perk(ϕ3), Perk
(ϕ3)) = (0.8,0.2) f or erk ∈ E0

(Pe fk(ϕ3), Pe fk(ϕ3)) = (0.8,0.2) f or e fk ∈ E0

(Perk(ϕ3), Perk
(ϕ3)) = (0.7,0.3) f or erk ∈ {e4,e5,e7}

(Pe fk(ϕ3), Pe fk(ϕ3)) = (0.7,0.3) f or e fk ∈ {e5,e7}

(Perk(ϕ3), Perk
(ϕ3)) = (0.7,0.3) f or erk ∈ {e8,e9,e11}

(Pe fk(ϕ3), Pe fk(ϕ3)) = (0.8,0.2) f or e fk ∈ {e7,e8}

similarly, probability of success are,

αerk(ϕ3) =

{
0.8 when erk ∈ E0

0.5 when erk ∈ E\E0

}

αe fk(ϕ3) =

{
0.85 when e fk ∈ E0

0.7 when e fk ∈ E\E0

}

Our deception system performance evaluation table for this simulation is presented in Ta-

ble 10.

The number of times attacker starts with the real node is increased in this simulation. As

defender beliefs reflect that attacker is more knowledgeable, the conditional attack probabilities
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are higher than the previous case. In fact, in this simulation, the numbers are higher than previous

two use cases. This is because defender possesses a high knowledge level. Because of his high

knowledge level, he has the ability to find out the blocked exploits before he moves. As soon

as the attacker identifies the blocked exploits, he will not attempt it unlit defender changed her

action. In this case, up to 88% of the time attacker starts with the fake initial nodes.

Use Case IV
For use case IV, we use attacker type IV (ϕ3) from the Table 4 where attacker knowledge,

aggression and stealthiness level as follows low, low, and low respectively. The conditional attack

probabilities for attacker type IV are given below,

(Perk(ϕ3), Perk
(ϕ3)) = (0.9,0.7) f or erk ∈ E0

(Pe fk(ϕ3), Pe fk(ϕ3)) = (0.9,0.7) f or e fk ∈ E0

(Perk(ϕ3), Perk
(ϕ3)) = (0.8,0.7) f or erk ∈ {e4,e5,e7}

(Pe fk(ϕ3), Pe fk(ϕ3)) = (0.7,0.7) f or e fk ∈ {e5,e7}

(Perk(ϕ3), Perk
(ϕ3)) = (0.8,0.6) f or erk ∈ {e8,e9,e11}

(Pe fk(ϕ3), Pe fk(ϕ3)) = (0.8,0.7) f or e fk ∈ {e7,e8}

similarly, probability of success are,

αerk(ϕ3) =

{
0.8 when erk ∈ E0

0.5 when erk ∈ E\E0

}

αe fk(ϕ3) =

{
0.85 when e fk ∈ E0

0.7 when e fk ∈ E\E0

}

The performance evaluation table for this simulation is presented in Table 11. From Table

11, we can see that though attacker starts with the real node few times but end up into the real

network goal node very few times. The number times attacker ended up on fake goal node is

higher than any of the previous three use cases. This is because of the attacker skill set (knowledge,

aggression, and stealthiness) reflects as a novice attacker. From the statistics, we can infer that up

to 92% of time attacker starts with the fake node and ended up with fake goal state. In this case,

defender did not use many resources to block this attacker. As defender’s belief reflects that it is a

novice attacker. This is why defender saved a lot of resources in terms of availability and security
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Table 11: Use Case IV: Deception system performance evaluation table for real network

Simulation
Runs

No. of
Times
Attacker
Starts with
Real Node

No. of
Times At-
tacker Ends
on Real
Node

No. of
Times At-
tacker Ends
on Fake
Node

500 12 1 11
1000 10 0 10
1500 10 0 10
2000 9 2 7
3000 9 1 8
4000 5 0 5
5000 2 0 2

Table 12: Overall deception system performance statistics for all attacker types

Attacker Types Performance Statistics
Type-I 76%
Type-II 84%
Type-III 88%
Type-IV 92%

cost.

We also investigate the host infection rate with and without our DDS based on network

scanning techniques. To do this, we implemented some previous common scanning techniques

[53], [54], and [55] which is also discussed in the related work section. To implement these

scanning techniques, we use a python library name libnmap [56] which provides an API to Nmap

[57] as well as python scapy framework. Based on the discussion [58], an adversarial scanner first

selects the scanning space which is denoted by Ω. In the scanning space, attacker selects the IP

addresses to probe. Also, the address distance denoted by λ specifies the numerical differences

between IP address of scanner and scanning target [58].

Local preference scanning discussed in [53], is a kind of biased scanning technique. In

this technique, based on the localhost information some specific regions of a network are chosen.

But there is an issue, for the current state-of-the-art computer networks, hosts are not uniformly

distributed within the address apace. The attacker can increase the speed to detect vulnerable host

by scanning IP address where it densely populated [58].
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Preference sequential scanning probes the IP address sequentially. In preference scan-

ning technique, attacker use local preference and selects start IP address with small address dis-

tance λ (h) to the host IP address.

Non-preference sequential scanning is the same as preference sequential scanning, but

it selects the starting IP address in a random manner within the scanning space Ω.

Preference parallel using parallelism to increase the scanning performance with a draw-

back of causing a large amount of network traffic. For our simulation, we use 10 parallel probing

messages.

In Figure 13 we presented the performance of dynamic deception system. We deployed 20

subnets, and in each there are 45 hosts are present. The fake network nodes are evenly distributed

throughout the subnet. From the performance figure, we can see that with our DDS the infected

host detection rate is less than without DDS. Here infected host means attacker successfully exploit

the vulnerabilities in that host. From the Figure 13 it can be inferred that defender successfully

drive the attacker towards fake network by blocking vulnerabilities in the real network.

From Table 12, it is clearly evident that as soon as attacker knowledge level is decreasing,

defender can save more resources in terms of network availability to legitimate users. Based on

our simulation results, it is evident that the defender can decide when and where to spend more

resources or save resources.

4.4 CONCLUSION

In this paper, we show that with our dynamic defense system defender can save resource

in terms of availability cost and security cost. By introducing fake networks, we also alter the

perception of network view to the attacker, and defender’s action influence an attacker to take fake

network attack path towards fake goal state. Using SDN, the defender can analyze the malicious

traffic and reply back to the attacker with a mix of true and false information. After adding attacker

capabilities in the model, we learned that if the attacker’s knowledge level is high and aggression

and stealthiness level are moderate, the defender needs to spend more resources than the opposite

case.
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Figure 13: Average vulnerable host detection rate in minutes for the scanning strategies Preference
Parallel, Local Preference, Preference Sequential, Non- Preference Sequential with and without
our DDS system.
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Chapter 5

HIDDEN MARKOV MODEL AND CYBER DECEPTION FOR THE

PREVENTION OF ADVERSARIAL LATERAL MOVEMENT

This chapter presents a cyber deception approach focused on predicting the most likely

sequence of attack paths and deploying decoy nodes along the predicted path. Our proposed ap-

proach combines reactive (graph analysis) and proactive (cyber deception technology) defense to

thwart the adversaries’ lateral movement. The proposed approach is realized through two phases.

The first phase predicts the most likely attack path based on Intrusion Detection System (IDS)

alerts and network trace, and the second phase is determining optimal deployment of decoy nodes

along the predicted path.We employ transition probabilities in a Hidden Markov Model to predict

the path. In the second phase, we utilize the predicted attack path to deploy decoy nodes. How-

ever, it is likely that the attacker will not follow that predicted path to move laterally. To address

this challenge, we employ a Partially Observable Monte-Carlo Planning (POMCP) framework.

POMCP helps the defender assess several defense actions to block the attacker when it deviates

from the predicted path. The evaluation results show that our approach can predict the most likely

attack paths and thwarts the adversarial lateral movement.

5.1 PRELIMINARIES AND ASSUMPTIONS

This section provides an overview of APT life-cycle.

5.1.1 ADVANCED PERSISTENT THREAT AND LIFE-CYCLE

A threat actor who remains undetected for a more extended period in the network with

the aim of espionage and sensitive data exfiltration drive by a state-sponsored or a group of threat

actors is called an APT. An APT actor requires a high degree of knowledge and stealthiness

behavior to successfully carried out the attack. In Figure 14, we depict the different phases of an

APT attack[59].

1. Intelligence gathering: This is the first step towards an APT attack where the attacker aims

to collect intelligence information about the network as much as possible, including the

organization’s structure, IT structure, and sensitive information. The attacker uses public
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Figure 14: Typical stages of APT attack.

sources (Facebook, Linked In) and prepares a customized attack. Spear phishing email is

the most commonly used technique to get to the point of entry [59].

2. Point of entry: After assessing security solution defenses and attack signatures that the

victim might possess, the attacker narrows down the point of entry exploitation. Social en-

gineering and spear-phishing email or vulnerability exploitation is the step used to penetrate

the network. Another infection method is to plant malware into a website where organiza-

tions employees might visit.

3. Command and control (C&C) communication: In this stage, the communication between

the infected host and the C&C server is performed through a secure socket layer (SSL),

making it very difficult to identify whether traffic is malicious. Attackers may also use

another technique, which is the domain flux technique [60]. In this technique, an infected

host may try to connect to a large number of domain names to make it difficult to shut down

all of these domain names.

4. Lateral movement and persistence: Once the attacker gains access to the target’s network,

the attacker will search for new hosts to infect and move laterally. There are several tech-

niques that the attacker can use in this stage. One such attack is a brute force attack to obtain

information such as a username and password or personal identification number (PIN). The

attacker can also use internal spearfishing emails to gain access to other user’s credentials.

Another popular technique is the pass the hash (PTH) attack, where the attacker steals a

hashed user credential and, without cracking it, reuses it to trick the authentication system.
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Table 13: Symbols and their description

Symbols Description
δ Maximum likelihood

ξt(i, j) Probability of being a state
γt Marginal probability
π̄i Expected frequency
A Transition probability
B Emission probability
π Initial probability distribution
ψ Array of the argument
N Node
E Edge
s Security state

E(st) Available set of exploits
Z Set of security alerts
βt Belief matrix
Φ Attacker type
π∗ Optimal policy

5. Asset and data discovery: This stage aims to determine valuable assets within the target’s

network. Based on the asset and data discovery, the attacker determines the goal of future

data exfiltration. Port scanning can be used for this step [61].

6. Data exfiltration: This is the final stage of APT, where the attacker tunneled data of in-

terest into external servers with commonly used compressing and encryption techniques.

Other techniques used in this stage include built-in file transfer via FTP or HTTP or the Tor

anonymity network.

The attacker does not always need to use these stages in every APT attack. The author in [62]

has discussed the APT life cycle model consisting of 7 stages such as (1) Initial Compromise, (2)

Establish Foothold, (3) Escalate Privileges, (4) Internal Reconnaissance, (5) Move Laterally, (6)

Maintain Presence and (7) Complete Mission. Ussath et al. [63] have discussed a 3 stage APT

attack life cycle model focusing only on initial compromise, lateral movement, and command &

control activity. Other modified versions of the APT attack life cycle model have been proposed in

the literature [64]. However, studies showed that this is the common life cycle followed by most

of the APT attacks.

The list of assumptions that are made throughout the chapter is listed here. First of all, it is

assumed that the attacker is already in the network by performing social engineering and exploiting
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some vulnerabilities. Secondly, we assume that the defender can detect LM-based attacks in the

network. Rather than focusing on detection, we focused on forestalling the attacker from reaching

its goal(s) state. To capture the defender behavior in blocking vulnerabilities, we assume that

the defender has some particular set of actions that restrict normal network configurations. For

the illustrative example in the evaluation section, we assume that the attacker will move first and

attempt an exploit.

5.2 SYSTEM ARCHITECTURE

In this work, we considered lateral movement attacks from external threat agents and pre-

venting the attack by deploying decoy nodes in the enterprise system. Here, we assume that the

attacker is already in the network by performing social engineering and exploiting some vulnera-

bilities. How the attacker gains access to the system is beyond the scope of this paper.

Optimal deployment of decoy networks is always beneficial for the network administra-

tor. It comforts the defender effort to drive the attacker towards deployed decoy nodes. During

C2 communication in the APT life cycle, a set of infected hosts periodically sends a beacon to

attacker-controlled servers and performed instructed operations. The operations include infecting

other hosts in the network or gathering sensitive information about the network. Usually, the at-

tacker uses HTTP(s), FTP, and SSH as a communication tool to evade easy detection. Attackers

use several techniques to move laterally, including internal scanning, credential stealing, vulner-

ability exploitation, and privilege escalation. The exploitation of remote services is one of the

techniques described by the MITRE post-compromise framework [65]. However, the attacker

can use any of the techniques described in the framework. In this paper, we only consider the

exploitation of remote services (T1210).

In Figure 15, we illustrate our basic system model architectural diagram. The first module

in our architecture is Lateral Movement Attack, where the defender’s job is to detect that attack

using IDS alerts analysis and pcap (packet capture) traces. The alert dataset is needed to train the

HMM parameters.

In the Offline training module, HMM parameters are trained based on observations of LM

attacks. This module is explained in detail in the following section.

HMM Configuration File contains the algorithm to train HMM parameters and predicting

the most likely attack path. This file also contains the procedure to obtain Local Conditional

Probability Distribution (LCPD) for each node in the attack graph.

The Alert Correlation Module receives alerts from IDS and uses the re-factorization and

de-duplication technique to correlate alerts. This module also reduces the false positive alerts



53

Figure 15: System model architecture.

based on the state-based model, described in detail in the following sections.

The HMM Prediction Module uses two HMM algorithms, described in the following sec-

tions, to train the HMM parameters and predicting the most probable attack path. It also calculates

the attack probability from the Bayesian Attack Graph.

The defender deploys decoy nodes along the predicted attack path to mislead the attacker.

The defender can use the Defense Policy Assessment module to assess various defense actions in

advance to force the attacker towards the decoy attack path whenever the attacker deviates from

the predicted path.

The Security Database stores all the CVE information, including CVE name and CVSS

scores, from the National Vulnerability Database (NVD).

5.3 THREAT MODEL

If we consider the threat modeling from the attacker’s perspective, we must evaluate the at-

tacker’s goal (intent), capability, methods (ways), and resources (means). Threat landscape helps

us to define defense requirements. The threat landscape has been evolving, with approximately

80% of threats categorized as a commodity carried out by attackers using widely known tools. The
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next 10% are directed attacks carried out using standard tools by organized crime to make money.

Finally, the last 10% are the most destructive attacks, including advanced persistent threats (APTs)

whose attacks are crafted for a single target [66]. Operationalizing deception begins with the orga-

nization’s objective to learn the adversary’s tactics & capabilities. Once the organization defines

the objective, the deception must be implemented within the organization. It is also required to

determine the type of adversary’s deception; small threats require small sticks, but the APT-based

threat requires sophisticated measures that lead to knowledge of adversary tactics and intent. De-

ception is not a passive exercise and requires adversary engagement. When or where to engage

with the adversary is also a decisive factor to consider. In our approach, we consider these aspects

to ensure adversary engagement with the help of deception technology while the attacker moves

laterally.

Deploying decoy networks in the real networks to slow down and thwart the ongoing

attack is a deception technique. Once the defender identifies compromised hosts from the lateral

movement stage and correlates hosts in the attack graph, the defender understands when to deploy

the network’s decoy targets. However, the question remains where to deploy the decoy targets. It

is evident that for a small-scale network, there will be more than one attack path. Let us assume

that there are 100 attack paths to reach the target node, and it is infeasible and not a cost-effective

way to deploy decoy targets across all the attack paths.

Usually, the attacker moves forwards within the APT life cycle, which means the attacker

does not go back to a previous stage. However, if the current attack fails, the attacker can go back

to the previous stage and finds another way to complete the attack campaign. In that case, the

defender needs to evaluate the effectiveness of various defense decisions from the current belief

state. We use the Partially Observable Monte-Carlo Planning Framework (POMCP) to help the

defender making the effective defense decision to block the attacker from moving forward. In the

following sub-section, we describe our HMM-based model to predict the most probable attack

path.

We have selected HMM to predict the most likely attack path due to its inherent bene-

fits over other AI-based algorithms. We can not directly observe the underlying attack steps the

attacker will take to reach the target node. We can only probabilistically identify the likely at-

tack path. HMM is a generative, probabilistic model to model the distribution over observations’

sequences.

5.4 PREDICTION VALUES

Our HMM-based state estimation model is inspired by the work presented in [67], where
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authors presented an approach to predict the next APT stage based on HMM. In our approach, we

use HMM to predict the most probable attack path where more than one attack path resides. These

findings will ease the defender’s effort to deploy the decoy networks along with the real network.

HMM consists of two stochastic processes: a hidden process that is not observable but can

be observed through another set of stochastic processes by producing the sequence of observations.

In our model, the different attack steps towards a target are the hidden stochastic process where

the observations are the alerts generated by the attacker.

Definition 1: An HMM is specified by the following components: for a given set of N states,

S = (s1,s2,s3, ...,sN) and discrete observation symbols, ŌM = ō1, ō2, ..., ōm, the state transition

matrix, A = {ai, j}, the observation emission matrix, B = {bi(ōk)}, and initial matrix, πi, where

i, jε[1, ...,N] and kε[1, ...,M] [67]. The probability of moving from state i to j is represented

by {ai, j}, bi(ōk) is the probability of an observation, ōk, emitted at state i, and πi is the initial

probability of HMM to start in state i. So, an HMM can be fully described by λ = (A,B,π).

For a given sequence of observations, Ot , and a sequence of states, Qt , a first-order HMM

makes two assumptions, First, the probability of a particular state depends only on the previous

state:

P(qt |q1...qt−1 = P(qt |qt−1)

Second, the probability of an output observation oi depends only on the state that produced the

observation qi and not on any other states or any other observations:

P(ot |q1...qi,qT ,o1, ...,ot , ...,oT ) = P(ot |qt)

Our goal here is to calculate the probability of attack given an HMM. To do so, first, we

need to know the system state after the last observation. There is one way we can achieve this by

calculating the probability of being a state near the end of the Markov chain. We can use the Baum-

Welch algorithm to compute the conditional probability of each observation’s most likely state.

However, if the state transitions have zero probability, the state sequence could not be correct. We

use the Viterbi algorithm to get the single best state sequence for the given observation sequence

to solve this issue.

5.4.1 HMM TRAINING ALGORITHM

The most challenging problem in HMM is determining a method to adjust the model pa-

rameter (A,B,π) to maximize the observation sequence probability [35]. There is no known way

to optimize the parameters even in the finite observation sequence as training data. However, we
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can choose the parameter to be locally maximized using an iterative procedure such as the Baum-

Welch (BW) method. Baum-Welch algorithm is a learning algorithm used to optimize the HMM

transition and emission probabilities.

The BW algorithm first uses the Forward-Backward (FW) algorithm parameters α and β .

Then using Bayes theorem and expectation-maximization [35] to introduce the two parameters.

We start with the parameter ξt(i, j), which defines the probability of being in state i at time t,

transitioning to state j at time t +1, given the model and observation sequence.

To train the HMM parameters, we use the historical record of alert observations and the

Baum-Welch algorithm shown in Algorithm 1.

Algorithm 2 HMM Parameters Training
Input: Correlated alert OT sequence
Output: Optimized A,B,π
Initialization: Random(A,B,π)

1: To compute αt+1(i)(FW) and βt(i)(BW):
2: αt+1( j) = [∑N

i=1 αt(i)ai, j]b j(ot+1)
3: βT (i) = ∑

N
j=1 ai, jb j(ot+1)βt+1( j)

4: for state i→ j do
5: ξt(i, j) = αt(i)ai, jb j(ot+1βt+1( j)

∑
N
i=1 ∑

N
j=1 αt(i)ai, jb j(ot+1)βt+1( j)

6: γt(i) =
αt(i)βt(i)

∑
N
i=1 αt(i)βt(i)

7: end for
8: while iterate until convergence do
9: π̄i = γ1(i)

10: āi, j =
∑

T−1
t=1 ξt(i, j)

∑
T−1
t=1 γt(i)

11: b̄i(ōk) =
∑

T−1
t=1 γt(i),when ot=ōk,else 0

∑
T−1
t=1 γt(i)

12: end while

In Algorithm 2, HMM parameters (A,B,π) are initialized randomly. At lines 2 & 3, the

parameter from FW and BW algorithm is computed. At line 5, we calculate the probability of

being state i at time t and transitioning to state j at time t + 1 given the model and observation

sequence. Then the marginal probability over state j is calculated in line 6. Using line 5 & 6,

we can reestimate the parameters of HMM. A set of reasonable reestimation formulas for the

HMM parameters (A,B,π) are with π̄i being the expected frequency spent in state si at time 1 is

presented at line 8. Next, āi, j is the expected number of transitions from state i to state j over the

overall number of transitions from state i at line 9. The parameter b̄i(ōk) is defined by the number

of expected transition from state i, when observation is ot = ōk, over the number of expected

transitions is presented at line 10. Finally, from lines 8 to 10, optimized HMM parameters are
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computed.

5.4.2 STATE SEQUENCE AND PROBABILITY

Let us assume that we have a sequence of observations, Ot , and we want to compute

the most probable sequence of states, Qt . One approach is to find the sequence of states is to

calculate the probability of the observation sequence for each possible path based on the Forward

algorithm. In this approach, the most likely sequence is determined by tracing back to the path

with the highest likelihood value starting from the most likely state at the end of observation. The

Viterbi algorithm uses the δ parameter, where it considers only the maximum likelihood value. It

also uses another parameter ψ to keep track of the argument, which maximized δ for each t and

j. The complete procedure for finding the best state sequence is stated as follows[35]:

• The initialization step (t = 1):

δ1(i) = πibi(o1)

ψ1(i) = 0

• The recursion step:

δt( j) = max
1≤i≤N

[δt−1(i)ai, j]b j(ot) ,1≤ j ≤ N (32)

ψt( j) = arg max
1≤i≤N

[δt−1(i)ai, j] ,1≤ j ≤ N (33)

• The termination step (t = T ):

P(T ) = max
1≤i≤N

δT (i) (34)

qT = arg max
1≤i≤N

δT (i) (35)

qt = ψt+1(qt+1) (36)

The term P(T ), qT , and qt in the Eq. 34, 35, and 36 defines as maximum probability, best last

state, and previous best state, respectively.

State probability can be expressed in terms of forward-backward variables [68]:
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γt(i) =
αt(i)βt(i)

∑
N
i=1 αt(i)βt(i)

(37)

The steps in FW algorithm are given below:

Consider the forward variable αt(i) which defined as,

αt(i) = P(o1,o2, ...,oT ,qt = si|λ )

To solve for αt(i) inductively as follows:

• Step-1: The initialization step (t=1),

α1(i) = πibi(o1)

• Step-2: The induction step for (1 < t ≤ T ),

αt+1( j) = [
N

∑
i=1

αt(i)ai, j]b j(ot+1)

• Step-3: The termination step,

P(OT |λ ) =
N

∑
i−1

αT (i)

The Backward Algorithm (BW) computes the β parameter, as follows [35]:

βT (i) = P(ot+1,ot+2, ...,oT |qt = si,λ ) (38)

Steps to solve for βT (i) inductively, as follows:

• Step-1: The initialization step for (1≤ j ≤ N),

βT (i) = 1

• Step-2: The induction step,

βT (i) =
N

∑
j=1

ai, jb j(ot+1)βt+1( j), t = T −1,T −2, ...,1
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5.4.3 ATTACK PATHS PREDICTION

Alert Correlation Framework

The alert processing unit first aggregates all the alerts and then performs de-duplication

processing to construct the prediction module’s alerts log. In the alert log file, there are necessary

10 fields to do the analysis represented as 10-tuple (StartTime, EndTime, Type, SrcIP, DstIP,

SrcPort, DstPort, Times, Protocol, Content).

Figure 16: Attack path prediction framework.

In the alert log file, StartTime represents the time when the alert is started, EndTime

represents the alert event finished time, Type represents the type of the alert, SrcIP represents

the origin IP for that alert, DstIP represents the destination address, SrcPort represents the origin

port number, DstPort represents the destination port number, Times represents the alert repetitions

number, Protocol represents the protocol used in the alert, Content represents the contents in the

alert.

De-duplication is applied to the aggregated alerts to reduce the number of alerts while

keeping the source data. The de-duplication rule states that if the previous alerts IP, port, and type

match the next alert, the latter alert will be discarded, and EndTime will be recorded with the

previous alert. This alert correlation technique is used to predict the attacker’s next state, whereas

the state-based alert correlation technique is used to correlate the exploit activity for capturing the

attacker’s progression in the network. The state-based alert correlation model will discuss more

in the following section.

After de-duplication, we get the set of alert logs where redundant alerts are removed based

on the time information retention. For example, a single-step attack in a multi-step attack IDS
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may generate redundant alerts that may not belong to the same attack. In this way, de-duplication

reduces the number of alerts and retains most of the source information. In the alert correlation

unit, the attack chain is constructed using an alert graph based on the alert logs. We use the

aggregation technique to remove redundant information. Here redundant information represents

a redundant attack chain that does not belong to an ongoing attack. Lastly, the attack chains are

obtained based on the depth-first-search (DFS) traversal algorithm. The attack graph generation

module is responsible for presenting the association between attack chains intuitively. Attack

graph generation module, first, converts the attack chains into a directed graph; second, it generates

a dynamic Bayesian attack graph (BAG) from the attack graph.

HMM Prediction Unit

To predict the next state of the attacker, we use Bayesian Attack Graph (BAG) [69], and

Common Vulnerability Scoring System [70]. A Bayesian Attack Graph is a four tuple BAG =

(S,τ,ε,P) where S=Ninternal∪Nexternal∪Nterminal represents the set of attributes related to internal,

external, and terminal node. The internal, Nexternal , represents the set of attributes, Si, for postcon-

dition of an attack. Similarly, Ninternal , represents the set of attributes, S j, between precondition

and postcondition of an attack and Nterminal is the set of attributes, Sk, for precondition of an attack.

A set of ordered pairs, τ , represents the directed edges in the graph. Further, for Si ∈ S, the set

Pa[Si] = {S j ∈ S|(S j,Si) ∈ τ} is called the parent set of Si. The relations of incoming connections

{AND, OR} of a node represents by ε . All the preconditions must be satisfied for AND, whereas

if one or more preconditions are enough to exploit work, the relationship is defined as OR. To

capture the success probability of an exploit, we use Local Conditional Probability Distribution

(LCPD). Let, S j, a local conditional probability distribution function when the preconditions are

defined as AND [69]:

Pr(S j|Pa[S j]) =

{
0,∃Si ∈ Pa[S j]|Si = 0,

Pr (∩Si=1ei) ,otherwise

}
(39)

For OR,

Pr(S j|Pa[S j]) =

{
0,∀Si ∈ Pa[S j]|Si = 0,

Pr (∪Si=1ei) ,otherwise

}
(40)

When multiple exploits are present, for AND, each exploit has individual success probability. So,

we use the product rule as follows:
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Pr(∩Si=1ei) = ∏
Si=1

Pr(ei) (41)

For OR decomposition,

Pr(∪Si=1ei) = 1−∏
Si=1

[1−Pr(ei)] (42)

To compute the LCPD, network administrator needs to estimate the success probability of a known

exploit given in Eq. 52. The procedure of incorporating LCPD in our prediction algorithm is

described in Algorithm 3.

Algorithm 3 Next State of the Attacker
Input: Optimized HMM parameters (āi, j, b̄i(ōk), π̄i), correlated alerts OT , and LCPD from BAG
Output: The next state

1: for each of the next state j = 1,2, ...,N do
2: for AND decomposition do
3: Pr(∩Si=1ei) = ∏Si=1 Pr(ei)
4: end for
5: for OR decomposition do
6: Pr(∪Si=1ei) = 1−∏Si=1[1−Pr(ei)]
7: end for
8: for each intermediate state i = 1,2, ...,N do
9: αt(i) = [∑N

r=1 αt−1(i)a(r, i)]bi(ot) ▷ r=index of all possible prior states
10: end for
11: Pqt+1=s j = ∑

N
i=1 αt(i)Prai, j

12: end for

This algorithm’s inputs are as follows: optimized HMM parameters from Algorithm 2,

correlated alerts OT , and LCPD from BAG. For decomposition, the rule algorithm assigns edge

probability to each node, which is presented at lines 1 to 5. Then, the FW α parameters of every

intermediate stage, i, are calculated at line 7, and then the α parameters are multiplied by the

transition probability and LCPD for the next state j. The state, which has the highest probability,

is predicted as the attacker’s next state.

5.5 DEFENSE POLICY ASSESSMENT

Knowing how an attacker can progress in the network offers a useful starting point for

defining appropriate defense actions. Attack graph can be leveraged to get the attacker’s progres-

sion map in the network. However, it is still challenging to prescribe effective defense decisions as

the defender has uncertainty over the network’s security status at a given time, the attacker’s true
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strategy, and attacker types. The defender only has information about the history of security alerts

and previously deployed defense actions. The defender must make the defense decisions based

on the belief matrix he possesses over the attacker’s capabilities. The belief matrix is the joint

probability distribution over the security states and attacker capabilities. Forcing the adversary to-

wards deployed fake networks by taking actions (e.g., blocking vulnerabilities, applying security

control) is a Partially Observable Markov Decision Process (POMDP) problem. There are two

main primary objectives in our defense policy assessment model:1) quantify the security state,

and 2) taking the optimum defense actions based on the attacker’s capabilities. To quantify the se-

curity state, we define the security state as the set of currently enabled security conditions. In this

sense, the security state at any given time represents the current capabilities of the attacker. One

of our paper’s objective is to quantify the level of security of the system as attacker progress. To

capture the security level, we define the security state as a current level of the network’s attacker

progression.

5.5.1 CAPTURING ATTACKER’S PROGRESSION

Researchers and cyber security professionals are always interested in projecting different

attack steps an attacker can take to compromise a system. The attack graphs were developed and

allowed to study all possible combinations of exploits an adversary can use to reach its goal(s). An

attack graph consists of system states (nodes) and transition relations (edges). System states are

related to each other via exploits. Attack graphs must enumerate all possible steps, which allow

the graph to grow in dimension quickly. According to the monotonicity assumption [30], we can

greatly simplify the attack graph and reduce the amount of information required to describe an

attack. The monotonicity assumption states that one exploit’s success does not interfere with the

attacker’s ability to carry out a future exploit. In a simpler term, we do not need to enumerate

all system states in an attack graph, rather we can construct an exploit dependency graph which

describes how an exploit is related to security conditions [30]. In [30], the authors construct

such a graph where nodes represent security conditions, and edges represent exploits. Exploits

are used to relate the security conditions via preconditions and postconditions. As discussed in

[30], the edges in an exploit dependency graph relate the security conditions in a complex way,

which means a given exploit can have both multiple preconditions and multiple postconditions.

We formalize this behavior by acknowledging that such edges are directed hyperedges. In this

dissertation, hyperedge is defined as an edge connecting two sets of nodes rather than a pair of

nodes.

To capture the attacker progression, we use an exploit dependency graph [38], a directed
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acyclic hypergraph, H = (N,E), where, N = {c1,c2, ...,cn} is the set of security conditions and

E = {e1,e2, ...,en} is the set of exploits. The security conditions in the graph can be either true or

false. When the security condition is in a true state, the attacker has a particular set of capabilities.

In contrast, the false value represents the attacker does not possess any condition from hypergraph

H. For example, a true security condition could mean an attacker may maliciously build the trust

relationship between two hosts or the attacker reached the goal state. The distinct condition would

represent the same host with different privilege levels. To specify the goal state, we define a

parameter representing the goal node Ng
r ⊆ N, Ng

f ⊆ N where Ng
r and Ng

f are real and fake network

goal node, respectively. The defender’s main objective is to protect the Ng
r and drive the attacker

towards Ng
f .

Figure 17: A sample Exploit Dependency Graph with a real network (left) and a fake network
(right).

Each exploits from hyperedges has two conditions, termed as N−i (pre) and N+
i (post). To

attempt an exploit ei, an attacker needs to set true all of the preconditions of that exploit termed

as j ∈ N−i [38]. There are some exploits without having any preconditions, N−i = /0, termed as

initial exploits and denoted by E0. To attempt initial exploits attacker does not need any prior



64

capabilities (maliciously enabled). When an exploit is successful, all of its postconditions become

enabled and let the attacker penetrate more into the network.

In Figure 17, we present an exploit dependency graph generated using Topological Vul-

nerability Analysis (TVA) [71] tool to explain the model and the results. Whenever a condition is

enabled, it means an attacker has a particular set of capabilities where the current security state,

st , describes the attacker’s set of capabilities. A security state, s⊆ N, is called a feasible security

state if for every condition c j ∈ S there exists at least one exploit ei = (N−i ,N+
i ) ∈ E such that

c j ∈ N+
i and N−i ,N+

i ⊆ s and set S = {s1, ...,sn} represents the state space for this model. So,

for a feasible security state, every enabled condition must have been enabled through an exploit,

and all preconditions and postconditions associated with that exploit must also be enabled. Here,

we made an implicit assumption for security state feasibility that our model is not missing any

exploits that could allow the attacker to enable security conditions. This assumption makes sense

because some nodes can be added in s, which are not associated with any hyperedge E. These

nodes can become enabled via an unknown influence. We did not consider these nodes in our

work because the state space greatly increases.

The security state evolves probabilistically as a function of the defender’s and attacker’s

action [10]. The defender is assumed to select actions that have the impact of restricting normal

network configuration. This action includes changing network configuration or shut down a port

or any active services. However, in reality, the defender cannot block any individual vulnerabil-

ity; instead, the defender’s action induces a set of blocked vulnerabilities [38]. Blocking a set of

vulnerabilities also helps us to capture some of the zero-day attacks. However, design a system to

capture all unknown attacks is infeasible. To capture the defender’s behavior in terms of block-

ing vulnerabilities, we assume that the defender has some particular set of actions that have the

effect of restricting normal network configurations. The action will block the vulnerabilities and

influence of an attacker to choose a different attack path.

The space of the defender’s available action set is represented by U = {u0,u1, ...,un}. Here,

u0 represents the defender’s null action, which means the defender will not block any exploit. The

remaining actions from the set of U signify the network changes, which will induce a set of

blocked exploits. Each action associated with the set of blocked exploits influences the attacker to

seek the available paths. Defender’s action will have an impact on the availability of the system

to the trusted users. So, it is a defender’s goal to make the trade-off between network availability

and network security. To capture this behavior, we assign a cost to each of the defender’s action

sets. Based on the cost, the defender can choose an action that will limit the attacker’s progression

throughout the network and minimize the system availability’s negative impact.
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Based on the single attacker who is trying to infiltrate the system, it can only increase its

capability by exploiting more vulnerabilities. On the other hand, it also increases the chance of

being detected. The defender’s goal is to prevent vulnerability exploitation in the real network

and let the exploitation in the fake network. From the monotonicity assumption, we know that

once an attacker enables a condition, it remains enabled all the time. For a given security state, st ,

the attacker will have some set of available exploits described by E(st). From the available set of

exploits, the attacker will attempt exploits based on capabilities. The available set of exploits is

defined by [38],

E(st = s) = {ei = (N−i ,N+
i ) ∈ |N−i ⊂ s,N+

i ̸⊆ s} (43)

Two important requirements that must be satisfied for an exploit ei = (N−i ,N+
i ) to be avail-

able :(1) N−i ⊂ s, i.e. all of the exploit’s preconditions must be satisfied :(2) N+
i ̸⊆ s, i.e. the

exploit’s postconditions must not all be satisfied [38]. The second requirement depends on the

assumption that the attacker will not perform any redundant exploits. This is a reasonable as-

sumption since the attacker is not gaining new capabilities by performing redundant exploits. It

only increases the chance of being detected.

Figure 18 represents the sample evolution of the security state for a given state-action

(st ,ut): (a) Consider the security state st = {c1,c2,c3,c4,c5} (green circle) and defense action

ut = u where B(u) = {e5,e6} (here blocked exploits are shown with red shaped hyperedge). So,

the available set of exploits using (12) is E(st) = {e5,e6,e7,e8} and (b) attacker attempt each

exploit which does not lie within a set of blocked exploits, with a probability of attack and success.

In this example, only exploits {e7,e8} are succeeded and the updated security state is st = {c7,c8}
(green circle). Doubled circle shaded shape represents the security state.

As soon as the exploit attempts are successful, it enables all the postconditions, which

eventually form the updated security state, as shown in Figure 18. Defender’s lack of information

regarding the current security state and the attacker’s true strategy can be learned from noisy

security alerts. The next section describes how the defender uses that information to construct the

belief by getting security alerts from the Intrusion Detection System (IDS).

5.5.2 DEFENDER’S AVAILABLE INFORMATION

Intrusion Detection System (IDS) is a major component in this model because the de-

fender’s certainty over the security state depends on security alerts. IDS generates security alerts

in a sequential form when an attacker attempts to exploit and progress through the network. Those
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Figure 18: Sample evolution of the security state.

security alerts are not free from noisy alerts termed as false positives and false negatives. Some-

times, there will be no alert for the exploit activity, which solely depends on the attacker’s capa-

bility (stealthiness), termed as a false negative. Similarly, it generates an alert for legitimate user

activity termed as false positive. It is critically important for the defender to know which exploit

activity is going on. Based on the alerts, the defender will choose his defensive action to drive the

attacker towards deployed fake networks. Filtering out the noisy alerts from true alerts is essential

in improving the defender’s efficiency when it turns in real-time. In this work, we are considering

only known vulnerabilities.

Let Z = {z1,z2, ...,zn} represents the set of security alerts generated by the IDS, which is

the defender’s observation set. Each exploit ei ∈ E, when attempting can generate a set of alerts,

given by the set Z(ei) = {zAi(1),zAi(2), ...,zAi(ai)} ∈ P(Z) where P(Z) is the power set of Z [38].

There is a possibility that two or more exploits can generate the same alert, that is, Z(ei)∩Z(e j) =

/0 for ei ̸= e j. Some exploits ei ∈ E may not generate any alerts, that is, Z(ei) = /0.

To capture the uncertainty over the security state and attacker type, we construct a belief
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matrix denoted by κt . It combines all the defender’s available information into the matrix, which

includes initial security state, attacker type, history of all defense action from time 0 to t−1 and

all observations (security alert) from time 0 to t denoted by ht = (κ0,u0,y0, ...,ut−1,yt). The belief

matrix represents the joint probability distribution over security states, and the attacker types [38],

is given below as a matrix form,

κt =


κ

1,1
t κ

1,2
t . . . κ

1,na
t

κ
2,1
t κ

2,2
t . . . κ

2,na
t

...
...

...
...

κ
ns,1
t κ

ns,2
t . . . κ

ns,na
t

 ∈ ∆(S×Φ)

The space ∆(S×Φ) represents the probability distribution over state-type (S×Φ). In the

matrix, κt presented in the double-stochastic matrix for each t. Each row in the matrix represents

the probability mass function over the type and space for a given state and each column represents

a probability mass function over the space of security states for a given type. For any defense

action ut = u and observation yt+1 = yk, the belief update is defined as κt+1 = [Tj(κt ,yk,u)]s j∈S

where j is the update function, Tj(κt ,yk,u) = P(St+1 = s j |Ut = u,Yt+1 = yk,Kt = κt) is given by

[38],

κ
j

t+1 = Tj(κt ,yk,u) =
pu

j(κt)ru
jk(κt)

ρ(κt ,yk,u)
(44)

The above terms are defined below,

pu
j(κt) = P(St+1 = s j |Ut ,Kt) = ∑

si∈S
κ

i
t pu

i j (45)

ru
jk(κt) = P(Yt+1 | St+1 = st ,Ut ,Kt) = ∑

si∈S
κ

i
t ru

i jk (46)

ρ(κt ,yk,u) = P(Yt+1 |Ut ,Bt) = ∑
s j∈S

ru
jk(κt) pu

j(κt) (47)

where pu
i j is the transition probability from state si to s j under defense action u, and ru

jk(κt) =

P(Yt+1 | St+1 = st ,Ut = u,Kt = κt) is the probability that IDS will generate observation vector yk

when transitioning from the state si to s j under a defense action u. The trajectory of beliefs based

on security alerts termed as observations and series of actions defined in Eq. 44. Under a defense

action u, transition probability si to s j is controlled by a set of exploit events. For the available

set of exploits from Eq. 43, each event in the set of exploit is in binary form (successful and

unsuccessful).
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5.5.3 BALANCING SECURITY AND AVAILABILITY COST

In cyber deception, it is possible to leverage the availability cost over the security cost.

There are two benefits when the attacker is in the fake network: 1) defender can collect as much

intelligence information on the adversary, which helps to derive the attacker’s capability, inten-

tions, and targets, 2) defender can maximize the network availability to the trusted user during a

cyber attack. An availability cost, ca, for each action defender takes to drive the adversary towards

the fake network. There will be no impact on the system’s availability for some defense action,

and sometimes there will be a more significant impact. To formalize this notion, we represent the

availability cost ca : U → for each defense action taken by the defender. Similarly, the security

cost cs : S×U → represents the cost while the system is in various security states under defense

action u. Here, we consider a node’s availability regarding end-to-end packet delay (considering

the IT system).

5.5.4 END-TO-END PACKET DELAY

A packet starts the journey from a host (source), passes through a series of routers, and

ends its journey in another host (destination). It is assumed that dE and N represent the total delay

and number of devices between a source and destination. The end-to-end delay defined in [72] as

dE = N(dproc +dtrans +dprop +dqueue)+dproco (48)

The terms are in Eq. 48 defined as following dproc = processing delay, dtrans = transmission delay,

dprop = propagation delay, dqueue = queuing delay and dproco = processing overhead because of

authentication, integrity and confidentiality. For an uncongested enterprise network, dqueue ≃ 0

and the distance between the source and the destination node is very small so that dprop ≃ 0. The

processing delay, dproc, is often negligible; however, it strongly influences a router’s maximum

throughput, which is the maximum rate at which a router can forward packets [72]. So that, Eq.

48 can be reduced to

dE = N×dtrans (49)

where dtrans = L/R, L = packet size and R = transmission rate. For every defense action, the

defender will measure the total end-to-end packet delay. So, the availability cost in terms of delay

is defined as following cu = dE . We assign more cost to the goal conditions (attacker’s target node)

as the defender’s goal is to keep the attacker from achieving the goal. The total cost in terms of a
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security state and defense action is defined as

c(st ,ut ,ϕt) = (1− f )cs(st ,ϕt)+ f ∗dE(ut) (50)

Here, f is a weighted factor, determines which cost focused more (f = 0 represents defender is

concerned only with security cost, f = 1 means defender is only concerned with availability cost).

5.5.5 THE DEFENSE ALGORITHM

An optimization of defense algorithm is a heuristic search algorithm for determining de-

fense actions in real-time as the attacker progresses through the network and the security alerts

are generated. The scalability is achieved via a sample-based online defense algorithm that takes

advantage of the security model structure to enable computation in large-scale domains. For a

large-scale network, computing optimal action while deceptively interacting with the attacker is

a challenge. Offline POMDP solver aims to compute the optimal action for each belief state be-

fore runtime. Although such solvers have improved their efficiency [73], capturing the optimal

action can be intractable for large networks. To resolve this issue, Silver and Veness [31] devel-

oped an online algorithm termed Partially Observable Monte-Carlo Planning (POMCP) to handle

large-scale networks while computing optimal action. Online methods interleave the computation

and execution (runtime) phases of policy, yielding a much more scalable approach than offline

methods. POMCP algorithm is based on POMDP [24]. There are two types of nodes in POMCP:

belief nodes representing a belief state and action nodes, which are their children nodes that can

be reached by performing an action. In this work, the action selection procedure is the same as

the POMCP algorithm described in [31], and the belief update procedure is modified to solve the

large observation space problem as the belief update procedure in POMCP does not scale as the

observation space grows.

Our defense policy assessment algorithm’s action selection stage starts by performing

Monte-Carlo simulations from the current belief state to estimate the various defense actions’

quality. Each simulation starts by calling a generative model shown in Figure 20. A generative

model makes predictions of all future events [74]. The predictions include what the model is

meant to make. For example, a generative model will predict whether flipping over card 1 in 10

time-steps will reveal the ace or whether cards 1 and 2 will be swapped in the next time-slot.

An agent begins the simulation by calling the generative model that provides a sample successor

state, observation, and cost given a state and action, (s
′
,ϕ
′
,y,c) ∼ G(s,ϕ,u). Calling the genera-

tive model and successive sampling from the current belief creates search tree histories, as shown
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Figure 19: An illustration of the search tree.

in Figure 19.

As the process is partially observable, the search tree in Figure 19 consists of nodes rep-

resenting histories, and branches from the original tree represent possible future histories. The

multi-armed bandit rule, termed as UCB1 [47], is used to sample the selection of a defense action

that begins from the branch of the search-tree. It also optimally balance the exploitation (to de-

crease the estimation error in terms of promising selection actions) and exploration (finding better

alternatives by checking other actions). Here, the estimation error decreases as the number of sim-

ulations increases. The online algorithm performs the simulation until a stopping condition is met

(the max number of simulation nsim). After the simulation, defense action, which has the lowest

value of the estimated cost, is taken. Then, a real-world action ur and a real-world observation yr

is recorded. A new root node is specified as the current history node, and relevant branches of the

search tree are identified, and lastly, the remaining tree is pruned.

As soon as the updated history h
′
is obtained, the defender’s belief must be updated. How-

ever, the computation of the defender’s belief analytically is complex, as shown in (13). This is

why the defender maintains a belief approximation, Bt , a state-type pair called particles. This

belief approximation updating procedure involves calling the generative model several times to

obtain samples (s
′
,y) until it matches the real-world observation vector yr and s

′
is accepted into

the updated belief set Bt+1. This procedure continues until nk particles have been added. How-

ever, with the large observation spaces, the sampled observation rarely matches the real-world
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Figure 20: The generative model.

observation, causes the belief update procedure to take a longer time [38]. To address this, we use

a modified belief update procedure. In the modified belief update procedure, instead of checking

if the sample observation matches the real-world observation for every alert zi ∈ Z, the update

checks if the alerts match over a security state zi ∈ Z(s) = ∪e∈EZ(e). After that, the particle

probabilistically accepts if the condition is met. Here, the set Z(s) contains the alerts that can be

generated by an exploit attempts and the alerts not in Z(s), i.e. any alert in Z̄(s) = Z \Z(s), can

not be generated by the attempt of any exploit available in state s, as by (12). The reason for this

behavior is that these are the only alerts that are informative for a change in the underlying state.

So, the remaining alerts in Z̄(s) must have been triggered by false alerts under the current state s.

The pseudocode of the defender’s belief update procedure is given in Algorithm 3.

Algorithm 4 Defenders Belief Update
Initialize: nk, Bt+1 = Ua, numAdded = 0

1: procedure BELIEFUPDATE(Bt ,ur,yr)
2: while numAdded < nk do
3: (s,ϕ)∼Bt
4: (s

′
,ϕ
′
,y,−)∼ G(s,ϕ,ur)

5: if yZ(s) = yZ(s)
r then [If alerts Z(s) match]

6: Bt+1←Bt+1∪{s
′
,ϕ
′}

7: numAdded← numAdded +1
8: end if
9: end while

10: end procedure



72

In Algorithm 4, we use a node utility array function as a defender’s initial domain knowl-

edge, which improves during more simulation runs. Attacker builds an array of node utility func-

tions based on the base score metrics to exploit vulnerabilities [40]. For every exploit, attackers

use the metrics to quantify the attack success probability and serves as the attacker’s initial knowl-

edge about the network and vulnerability. The attacker’s node utility function is defined as follows

[72]:

I = 10.41× (1− (1−CI)× (1− II)× (1−AI)) (51)

Vi = 20×AC×AI×AV (52)

The above terms are defined as CI = ConfImpact, II= IntegImpact, AI = AvailImpact, I = Impact,

Vi = Exploitability, AC = AccessComplexity, AI = Authentication and AV = AccessVector. The

utility array function is defined below

Ua = I×Vi (53)

For any belief the defender may possess, he needs to determine an optimal action to deploy.

This decision rule, which is determining the action, is called a defense policy. The optimum action

for the defender while interacting with the attacker turns into a POMDP. Casting optimum action

is defined as below [72],

V π(κ0) =
∞

∑
t=0

γ
tc(κt ,ut ,ϕt)

=
∞

∑
t=0

γ
tE[c(st ,ut ,ϕt)| κ0,π]

(54)

where 0 < γ < 1 is the discount factor, and c(κt ,ut) represents the cost for each belief state bt

when an action ut is selected from the space of action where c(κt ,ut) = ∑si∈S κ i
t c(st ,ut ,ϕt). The

optimal policy π∗ is obtained by optimizing the long-term cost.

π
∗ = argmin

π
V π(κ0) (55)

The optimal policy defined in (24) specifies each belief state’s optimal action where the expected

minimum cost is calculated over the infinite time horizon.
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5.5.6 ATTACKER’S CAPABILITY ASSESSMENT

The concept of estimating adversary’s Capability, Opportunity, and Intent (COI), which

has been widely used in the military and intelligence community for threat assessment, can also

be applied where network configurations and vulnerabilities are used for threat projection [75].

However, this approach does not project the attack well enough for attacks that continuously

change the strategy and ignore the exposed system [76]. In this paper, we use a probabilistic

approach to estimate the attacker’s capability.

To assess the attacker’s capability using domain knowledge, CVSS score, and the intrinsic

parameter of a network, we categorized the attacker’s capability into three vectors: knowledge,

aggression, and stealthiness. Although it is assumed that a persistent attacker like APT is a highly

skilled attacker, the attacker’s capability assessment can help a network administrator to estimate

the attacker’s capability when deploying decoy nodes/networks. As our goal is to prevent lateral

movement by deploying fake networks, the defender must understand the attacker’s capability

beforehand. In the following paragraph, we present how a defender can assess each skill level we

defined earlier by using the defender’s domain knowledge and the attacker’s opportunities:

Knowledge As we defined earlier in this section, that knowledge level is defined as how the

adversary changes its strategy based on the security measure imposes on the host. After the initial

compromise of a system, the attackers need to move forward towards the attack goal/objective. In

the lateral movement stage, the attacker tries to remain undetected in the system until they reach

their goal. To remain undetected in the system, the adversary needs to understand the network

well enough. Using a host-based network attack graph, the defender can correlate compromised

hosts with the attacker’s location in the system. As we know the available set of exploits from

Eq. 43, the defender can use individual security states’ likelihood in its belief matrix to assess

new security information. For example, let us there is a single exploit available in state si and

the set is E(st) = e. Now, if the exploit e is attempted, it generates the unique security alert z.

No other exploit can generate the alert z here. In that case, the defender belief update allows the

alert to be generated by an attempt to exploit e. The defender can then use the logical attack tree

representation to see how the adversary has reached that stage. There could be multiple attack

paths the attacker used, but using a log analysis defender can also identify the actual attack paths.

We use attack path criticality metrics to score each attack path.

To calculate the attack path criticality score for a given network, we have considered at-

tacker’s opportunity metrics Aom, security control Sc, and pre-conditions Pre for that node. The
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path criticality score of a path p from host i to i
′
formulates as:

Acp

i,i′
=

j

∑
1

Aom×Sc×Pre (56)

where the following parameters characterize the opportunity cost: available exploits, ae, count of

attack paths, cap, from host i to i
′
, techniques used to compromise, tc, from MITRE ATT&CK

[65].

Aom =
j

∑
1

ae + cap
−1 + tc−1 (57)

Aggression The aggression level is described by the conditional probabilities of attack

and success, dictating the rate of movement through the network. The strategy attacker follows

on few parameters: attacker knowledge level ak, available opportunities in the state of action Aom,

defenders’ action da defined by conditional attack probability CAP,

Dividing the set of available exploits into two categories helps us understand how an at-

tacker changes the attacking strategy. In (27), Pek represents the probability of attack when there

is no action, and Pek
defines the attack probability when the defender’s action block exploits.

Each of the attacker’s attempts will succeed with a conditional probability of success.

The probability of success models that attacks do not succeed with certainty (potentially due to

the inherent difficulty in carrying out the attack or the existence of network defenses already in

place). So, for any given security state st , the conditional probability of success is defined by,

αek(st ,ut ,ϕt) =

{
αek when ek /∈ B(ut)

0 when ek ∈ B(ut)

}
(58)

Stealthiness Stealthiness is described by the probabilities of detection and false alarm. We

have generated the probability of detection table for the assumed attacker types presented in the

evaluation section. We will discuss more on this in the evaluation section.

5.6 EXPERIMENTAL EVALUATION

We effectively computed defense policies for large instances to scale our defense policy as-

sessment algorithm using the defender’s belief update procedure and the cost assignment. We did

two large-scale network simulations to compute the most likely attack path and defense policies.

Defense policies were computed for a problem on a graph consisting of 150 conditions (nodes),

160 exploits (hyperedges), 70 defense actions, and 43 security alerts (observation vectors over

109). The resulting number of security states exceeded 100 million. Our second instance on a
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Figure 21: Experimental network topology.

Table 14: Hosts configuration and vulnerabilities information

Host Service CVE ID Severity Weight Impact
H1 apache CVE 2014-0098 Mid 0.1 4.9
H2 postgresql CVE 2014-0063 Mid 0.2 6.4
H3 Linux CVE 2014-0038 High 0.1 10.0
H3 ms-office CVE 2013-1324 Low 0.1 10.0
H4 bmc CVE 2013-4782 Low 0.2 10.0
H5 radius CVE 2014-1878 Low 0.3 2.9

graph consisting of 200 conditions (nodes), 250 exploits (hyperedges), 70 defense actions, and 60

security alerts (observation vectors over 1010). The resulting number of security states exceeded

110 million.

An Illustrative Example

Figure 21 illustrates a small-scale experiment network used for an illustrative example.

We synthesized a dataset of intrusion alerts due to the lack of publicly available datasets. The

dataset is generated based on the ’LLDDoS1.0 DARPA’ dataset. The network shown in Figure 21

consists of the firewall, intrusion detection system, and five hosts machine. The whole network

is divided into two subnets based on the firewall policies. One host H1 and IDS are deployed in
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the DMZ, and the rest of the hosts are placed in the trusted zone. We assume that the attacker

is already in the network by doing some social engineering and compromised the host H1 in the

DMZ. The detailed vulnerability information was obtained from NVD public sites. There are six

vulnerabilities found on our small-scale network, as presented in Table 14.

A= 

0.0092 0.9321 0.0092 0.0092 0.0092 0.0092 0.0093

0.0093 0.0093 0.1727 0.4327 0.0093 0.3839 0.0095

0.0094 0.0094 0.0094 0.4405 0.2870 0.2649 0.0094

0.0093 0.0093 0.1435 0.0093 0.0134 0.4113 0.4317

0.0092 0.0092 0.2401 0.0092 0.0092 0.7103 0.0092

0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.9503

0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095


B= 

0.6531 0.3102 0.0267 0.0093 0.0093 0.0093

0.0093 0.0093 0.0093 0.4932 0.4762 0.2761

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0092 0.0092 0.0092 0.0092 0.0092 0.0092

0.0092 0.0092 0.0092 0.0092 0.0092 0.0092

0.0092 0.0092 0.0092 0.0092 0.0092 0.0092

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0093 0.0093 0.4357 0.0093 0.3286 0.1502 0.0090 0.0091

0.6288 0.2886 0.0092 0.0092 0.0092 0.0091 0.0091 0.0091

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0092 0.0091

0.0092 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091


5.6.1 MOST LIKELY ATTACK PATH

We leverage [77] to generate the experimental network’s corresponding attack graph, shown

in Figure 22. We use an automated alert analysis tool ArcSight [78], to analyze the alerts infor-

mation and extract the attack sequence. We assume that the attacker is trying to obtain the root
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privilege of the Host H5. The training algorithm (Algorithm 2) and the prediction algorithm (Algo-

rithm 4) are implemented as follows to predict the subsequent attack behaviors. Both algorithms,

the training and prediction algorithm, are written in Python 3.

Step 1 (HMM parameters training): We use our alert correlation framework to generate

the correlated alert dataset. For each new alert, the ACF checks all historical alerts which have

been triggered over the last time window. Two alerts are correlated if they have the same srcip or

dstip. We use the alert correlation dataset as the historical record of alerts observation to learn and

optimize the HMM parameters using the Baum-Welch algorithm as presented in Algorithm 2. We

consider seven states for HMM, as shown in Table 16.

First, we initialized the HMM parameters (A,B,π) randomly. Then, the two parameters α

and β from FW and BW are computed. To compute the Baum-Welch algorithm’s two parameters

ξ and γ , we start from state s1 and considers all training observations sequences to update the

HMM parameters. Considering 7 different attack states and 14 observations for the HMM in the

attack graph presented in Figure 22, the above transition, A, and emission, B, probabilities were

obtained. The values in the matrix A represent the probability that the attacker will move from one

state to another. If the destination state is unreachable, the value is zero. It is important to note

that both the A & B matrix should not contain any zero value element. Zero-value will produce

the NaN error. To avoid the NaN error, the algorithms replace the zero value with minimal value.

Step 2 (Vulnerability exploitability probability): Using Eq. 52, we calculate the vulner-

ability exploitation probabilities presented in Table 15.

Step 3 (Attack path prediction): To predict the most likely attack paths, the optimized

HMM parameters ((āi, j, b̄i(ōk), π̄i)) from step 1, correlated alerts, OT , from the ACF, and LCPD

from BAG are used. LCPD are calculated from the attack graph presented in Figure 22. There

are 7 different attack states, and one stage is probable to another stage is called the transition

probability. Table 16 presents the attack states’ denotation, and all attack behaviors information is

presented in Table 17.

As it is evident from Table 17 that there are 14 different state transitions for the target

network. Based on the alert data from our dataset and extracted attack sequence, we introduce

the state transition success probability vector T , where T = {0,0.9321,0.1727,0,0,0,0}. The

total state transition probability matrix is presented in A, and the emission probability matrix is

presented in B. After initializing parameters A&B, we use Algorithm 3 to simulate the process.

The results here show that the algorithm runs five times. As it is evident from T 5 that the attack

goal is S7, and the corresponding success probability is 0.84. In Table 18, we depicted all possible

attack paths.
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Figure 22: Attack graph of the experimental network.

Table 15: Assessments of vulnerability exploitability probability

CVE ID Exploitability Probability
CVE 2014-0098 0.7230
CVE 2014-0063 0.5163
CVE 2014-0038 0.3097
CVE 2013-1324 0.7222
CVE 2013-4782 0.7215
CVE 2014-1878 0.7229

Table 16: Attack states description

State Description
S1 Initial State
S2 (H1,root)
S3 (H2,root)
S4 (H3,user)
S5 (H3,root)
S6 (H4,user)
S7 (H5,root)
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Table 17: Description of attack behaviors

State transition CVE ID
S1 →S2 CVE 2014-0098
S2 →S3 CVE 2014-0063
S2 →S4 CVE 2013-1324
S2 →S6 CVE 2013-4782
S3 →S4 CVE 2013-1324
S3 →S5 CVE 2014-0038
S3 →S6 CVE 2013-4782
S4 →S3 CVE 2014-0063
S4 →S5 CVE 2014-0038
S4 →S6 CVE 2013-4782
S4 →S7 CVE 2014-1878
S5 →S3 CVE 2014-0063
S5 →S6 CVE 2013-4782
S6 →S7 CVE 2014-1878

T 5 = {1,0.78,0.62,0.59,0.76,0.67,0.84}
Here, we are looking for the most probable attack path with a length of 5. From Table 18,

we can infer that only paths 5,7, and 9 have a length of 5. By matching the alert sequence in the

dataset, we get S1 →S2 →S3 as the prior path. So that we can conclude that the future attack path

will be S5 →S6 →S7. For the experimental network, we get the most likely attack path for lateral

movement is S1 →S2 →S3 →S5 →S6 →S7. In the following evaluation section, we will deploy

decoy nodes along this path and show how a defender can force the attacker toward decoy nodes

if the attacker does not choose the most likely attack path.

5.6.2 DEFENSE POLICY ASSESSMENT

From the previous section, we acquired the most likely attack path sequence towards a tar-

get. The defender should deploy decoy nodes along that path to keep the attacker away from the

real target node. In Section C, we defined the way to estimate the attacker’s capability, which is the

defender’s initial belief. Based on initial belief and domain knowledge, the defender will estimate

attack probability and success probability for each exploit present in the system. We generated the

exploit dependency graph for the experimental network using Topological Vulnerability Analysis

(TVA) [71]. In Figure 23, we presented the corresponding exploit dependency graph. We use an

existing POMCP solver [72] in our simulation, which is implemented in Python. In this simula-

tion, we presented two use case scenarios to depict the attacker and the defender effort exchange to
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Table 18: Possible attack paths

Path Number Attack Path
1 S1 →S2 →S6 →S7
2 S1 →S2 →S3 →S4 →S7
3 S1 →S2 →S3 →S6 →S7
4 S1 →S2 →S3 →S4 →S5 →S6 →S7
5 S1 →S2 →S3 →S5 →S6 →S7
6 S1 →S2 →S4 →S6 →S7
7 S1 →S2 →S4 →S3 →S6 →S7
8 S1 →S2 →S4 →S5 →S3 →S6 →S7
9 S1 →S2 →S4 →S5 →S6 →S7

compromise the target node and prevent the target from being compromised. We assume that the

defender can deploy the decoy nodes at the time of intrusion alert in the network. To alleviate the

time complexity in deploying decoy nodes, the defender can design and initiate the decoy nodes

without connecting with the network. The design of the decoy nodes is beyond the scope of this

paper.

For each of the exploits present in the network, we will now define the attack and its

success probability based on the attacker’s knowledge, aggression, and stealthiness defined in

(25-28). Here, we estimate the attacker’s knowledge, aggression, and stealthiness level are high,

moderate, and high, respectively. Probabilities of attack for each exploit are as follows:

(Pek , Pek
) = (0.5,0.5) f or ek ∈ E0

(Pek , Pek
) = (0.7,0.3) f or ek ∈ {e4,e5,e6}

(Pek , Pek
) = (0.6,0.4) f or ek ∈ {e2,e6}

(Pek , Pek
) = (0.9,0.8) f or ek ∈ {e3,e5,e6}

similarly , probabilities of success are as follows:

αek =

{
0.7 when ek ∈ E0

0.5 when ek ∈ E\E0

}

In Table 19, we presented the probability of detection for each of the exploit.

Use Case A: In this use case scenario, we deploy decoy nodes along in the predicted

attack path sequence, and the attacker chooses the decoy nodes path to move laterally in the
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Figure 23: Exploit dependency graph of the experimental network.

Table 19: Probability of detection for estimated attacker’s capability

Alert e1 e2 e3 e4 e5 e6
Z1 0.3 0.4 0 0 0 0
Z2 0 0.2 0.3 0 0 0
Z3 0 0 0.4 0.3 0 0
Z4 0 0 0 0.4 0.4 0
Z5 0 0 0 0.2 0.5 0
Z6 0 0 0 0 0.5 0.2
Z6 0 0 0 0 0 0.6

network. Figure 24 represents the exploit dependency graph with the decoy nodes where yellow

color nodes represent decoy nodes. In this simulation, we consider three actions which induce

a set of blocked exploits and the actions set is as follows: B(u1) = {e2,e4}, B(u2) = {e5,e6},
B(u3) = {e3}. The discount factor for this simulation is γ = 0.95. There are total ns = 182 security

states and nz = 7 security alerts leading to 28 = 256 distinct observation vector. All simulations use

particles nk = 1500 to approximate the belief. The evolution of computed deception policy when

Nsim = 5000 and attacker’s lateral movement throughout the real and decoy nodes are presented
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Figure 24: Exploit dependency graph of the experimental network with decoy nodes.

in Figure 25.

Here, it is assumed that the attacker moves first, and the security state starts from the

empty state s0 = φ . As we already stated that attackers already penetrate the network by using

social engineering. The attacker’s starting position in the network is the host H1, represented by

an orange color (C1) in the top left corner of Figure 25. To make the service available to the

legitimate users, the defender does not block any exploits in advance; rather, the defender’s belief

matrix gradually improves on the security state. As in this use case scenario, it is assumed that the

attacker would take the decoy nodes path towards the fake goal state. It is evident from Figure 25

that at time t = 1 attacker is in C1 then gradually moves laterally by exploiting more vulnerability

(t = 2 to t = 6). The fake goal state is marked by red color at the most right bottom of Figure 25.

Use Case B: In this use case, we will demonstrate how a defender can push the attacker

towards deployed decoy nodes when the attacker does not take the decoy nodes path. In this

case, the defender will block exploits to prevent the attacker from compromising the real goal

state. Figure 26 demonstrates the graphical representation of the defender’s actions observing the

attacker’s lateral movement. We use the same simulation parameters used in Use Case A. The

evolution of computed deception policy is presented in Figure 26 when Nsim = 5000.

Initially, the defender does not take any actions (from t=1 to t=2) rather gradually updates

the belief based on the received security alerts. Then defender begins to deploy defense actions

(t=3) when the defender belief reflects that the attacker is not taking the predicted path. It is evident
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Figure 25: Sample evolution of deception policy and attacker’s lateral movement for use case A.

from Figure 26 when t=3 that the attacker exploited vulnerability e3 and reached c3, which is not

in the predicted paths. Defender takes an action that induces a set of blocked exploits, in this case,

e2,e4 marked as a red hexagon in Figure 26. Because of the blocked exploits, the attacker can

not move laterally to exploit vulnerabilities e5,e6. These are the ultimate two vulnerabilities that

need to be exploited to reach the real network goal state c5. In this situation, the attacker tries to

find another way to move forward. At t=4, the attacker reached c2 (orange circle) by exploiting

exploits e2. At t=5, it is evident that the defender’s belief reflects that attacker is in the predicted

real network attack path and towards the real goal state. In this case, the defender’s action block

vulnerabilities e5,e6, and the attacker is forced to take the decoy nodes path to move forward. The

red circle in Figure 26 represents the fake goal state.

5.7 CONCLUSION

This paper proposes an adversarial lateral movement prevention technique by incorporat-

ing reactive (graph analysis) and proactive (cyber deception technology) methods. In our proposed

system, the approach undergoes two main phases. The first phase predicts the most likely attack

path based on Intrusion Detection System (IDS) alerts and pcap packet capture traces. The second
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Figure 26: Sample evolution of deception policy and attacker’s lateral movement for use case B.

phase is deploying decoy nodes along the predicted path. To predict the path, we use transition

probabilities and present and past observations of the HMM. In the second phase, we utilize the

predicted attack path to deploy decoy nodes. The Hidden Markov based model has been de-

veloped to predict the most likely attack path from the lateral movement stage. Forecasting the

next sequence of attack paths helps the defender deploy decoy nodes and save time and cost in a

resource-constrained environment. It also allows us to prevent the attack from reaching the final

stage of data exfiltration. This prediction module uses the Viterbi and forward-backward algo-

rithm to determine the most likely attack path sequences by correlating the sequence of alert and

packet trace analysis. For future work, we plan to incorporate MITRE ATT&CK post-compromise

framework and additional context from the target system in our model.
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Chapter 6

DECEPTION FOR CHARACTERIZING ADVERSARIAL STRATEGIES

IN COMPLEX NETWORKED SYSTEMS

In this chapter, we model the need for systematic characterization of complex networked

systems involving friendly forces and opponent forces to understand the adversary opportunities

and capabilities to cause harm and develop counter-strategies that would minimize the adversarial

impact. Specifically, we need the ability to quantify the incurred cost (cost of protecting friendly

forces) and induced cost (opponent cost to cause damage to friendly systems). Cyber attackers’

evolving skills cause it challenging to secure the network. Thus it is paramount to characterize ad-

versarial strategies and estimate the attacker’s capability. Furthermore, estimating the adversarial

capability can aid the cyber defender when deciding to place deceptive elements in the network.

Thus, we develop a suite of metrics that quantify the opportunity and capability of the adversary.

Using these metrics, the cyber defender can estimate the attacker’s capability. In our simulation,

we incorporated the developed metrics to estimate adversary capabilities based on the attacker’s

aggression, knowledge, and stealthiness level. To minimize the adversarial impact, we consider

placing decoy nodes as deceptive elements in the network and measure the effectiveness of having

decoy nodes. Our experimental evaluation suggests that placing decoy nodes in the network can

effectively increase the attacker’s resource usage and decrease the win percentage.

6.1 INTRODUCTION

Cyber deception has also emerged as a defense approach to secure our cyber infrastructure

from opponent forces. The cyber deception technique allows deploying a network of decoy assets

in a complex networked system environment, aiming to exhaust the opponent’s resources and

time, gather information about their strategies, tactics, capabilities, and intent, and redirect the

opponent towards less desirable states. The cyber deception approach will mitigate the information

asymmetry that exists between an opponent and friendly systems by converting the friendly’s

disadvantageous position to a position of strength. However, in order to deploy cyber-deception to

realize a resilient cyber infrastructure, several research challenges need to be addressed: a) Design

of network decoys, b) Placement of network decoys, c) Maximizing information uncertainty for

an opponent, d) Anticipating opponent attack strategy and nodes targeted, e) Quantifying the
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performance of deception mechanism to assess the level of asymmetry between an opponent and

friendly systems.

Practical deployment of cyber deception relies on friendly forces’ ability to optimally place

decoy nodes along the networked paths. We have developed a cyber deception approach focused

on predicting the most likely sequence of attack paths and deploying decoy nodes along the pre-

dicted path [79]. Our proposed approach combines reactive (graph analysis) and proactive (cyber

deception technology) defense to thwart the adversaries’ lateral movement. The proposed ap-

proach is realized through two phases. The first phase predicts the most likely attack path based

on Intrusion Detection System (IDS) alerts and network trace. The second phase determines the

optimal deployment of decoy nodes along the predicted path. We employ transition probabilities

in a Hidden Markov Model to predict the path. In the second phase, we utilize the predicted attack

path to deploy decoy nodes. However, it is likely that the attacker will not follow that predicted

path to move laterally. To address this challenge, we employ a Partially Observable Monte-Carlo

Planning (POMCP) framework. POMCP helps the defender assess several defense actions to

block the opponent when it deviates from the predicted path.

In this paper we address the following research challenge, a set of metrics that will provide

insights into the level of complexity a sequence of events will impose on an opponent. A set of

mixed true and false information increases an aspect of the complexity of the environment in a

way that makes it more difficult for an opponent to make decisions or shape conditions in one’s

favor. If the attacker believes that all the information, he is receiving is accurate, the probability

that the attack campaign will fail is very high. On the other hand, if the attacker knows that the

information is mixed with true and false information, attackers need to spend more time differenti-

ating that information. To define the metrics that will provide insights into the level of complexity

a sequence of events will impose on an opponent, we consider two dimensions of evolution in

terms of the opponent’s progression: timeliness and effectiveness. Timeliness metrics measures

the time it takes to generate new strategies while effectiveness reflects of these generations and

impact measure the causeeffect relationship whenever the attacker or defender takes an action.

Timeliness suite of metrics measures how quickly the attacker or defender evolves its strategies

with or without considering the resulting effectiveness. On the other hand, effectiveness suite of

metrics measures the effectiveness of generations over the course of the evolution. In summary,

we provide the following contributions:

• Developed a suite metrics that quantify the opportunity and capability of the adversary based

on based on aggression, knowledge, and stealthiness.
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• To quantify more effective evolutionary strategy to aid in selecting effective deception action

by using an autonomous cyber attacker agents.

6.2 RELATED WORK

The importance of security metrics to capture the attacker-defender evolution strategy and

related challenges in developing those metrics have been recognized by the security communities

[80].

Some literature has been proposed dynamic security metrics [81] where it mentioned met-

rics for measuring the strength of the preventive defense. The authors in [82] proposed metrics for

measuring the reactive defense, and metrics to measure the overall defense are proposed in [83].

A few kinds of literature [84] have proposed some time-related metrics to forecast cyber threats

and incidents. er to characterizing adversarial strategies in the cyber deception domain.

The authors in [85] proposed two metrics, Reconnaissance Surface measure (RSM) and

Attacker’s Belief Error (ABE), to quantify the effectiveness of network deception. Furthermore,

the authors model an attacker’s evolving knowledge during their interaction with the target system

as a belief system. These two metrics are from the network perspective to disrupt the reconnais-

sance effort. At the same time, we measure the effectiveness of the deception strategy from the

system perspective to disrupt the adversarial lateral propagation. To the best of our knowledge,

we are the first to study the dynamic security metrics in the cyber deception domain to measure

the deception strategy evolution and incorporating it with the POMCP framework to push the

adversary towards the decoy network.

6.3 METRICS TO CAPTURE ATTACKER’S CAPABILITY

Cyber attackers and defenders are continuously evolving their strategies to maximize the

effectiveness of cyber-attacks or defense. Sometimes cyber attackers are more agile than defend-

ers because cyber defenders take reactive responses against new cyber attacks. The proposing

framework aims to define metrics to capture the insights of the complexity a sequence of actions

will impose on an opponent’s decision calculus. The imposition of complexity is to take actions

that increase an aspect of the complexity of the environment in a way that makes it more difficult

for an opponent to make decisions or shapes conditions in one’s favor. For example, in a game

of chess, a player receives a notification of a “win’ or “lose” after a long sequence of moves.

Strategic moves are complex ones that present an opponent with a multitude of dilemmas, which

obviate any simple or singular response.
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The framework is designed to consider the evolution of both attack and defense strategies.

The defenders need to improve the strategy over time. The metrics will try to understand and

improve the defenders’ evolution. A single metric can not adequately measure the effectiveness

of attack and defense generation over time; we consider a set of metrics. Then these metrics can

be aggregated using a weighted average.

6.3.1 OVERVIEW OF THE METRICS

Here, we consider two sets of metrics in terms of the attacker-defender evolution: time-

liness and effectiveness. Timeliness measures the time to evolve new strategy generation from

attackers’ and defenders’ perspectives. Effectiveness measures how effective the strategy is over

each other (i.e., attacker and defender). Thus, we use timeliness as a reference of effectiveness

and vice versa.

1. Timeliness-Oriented Metrics: This suite of metrics measures how an attacker or de-

fender emerges its strategies with or without taking into account the resulting effectiveness.

Timeliness-oriented metrics contains 4 metrics for both the attacker and defender as follows:

• Generation-Time (GT) measures the time between two consecutive generations of

strategies that are observed by the measuring party (i.e., an attacker or defender).

• Effective-Generation-Time (EGT) measures the time it takes for a party to evolve a

generation which indeed increases the effectiveness against the opponent.

2. Effectiveness-Oriented Metrics: This suite of metrics measures the effectiveness of gen-

erations over the course of the evolution. This suite contains 2 metrics, which are equally

applicable to both an attacker and defender, leading to 4 metrics in total. The 2 metrics are

as follows:

• Evolutionary-Effectiveness (EE) measures the overall effectiveness of generations with

respect to the opponent’s generation. This is a random variable over t ∈ [0,T ].

• Aggregated-Generation (AG) measures the gain in the effectiveness of all generations

t ∈ [0,T ].

6.4 ATTACK DEFENSE STRATEGY EVOLUTION

We now describe the graph-theoretic representation of the Bayesian attack graph and met-

rics mathematical model. Here, we restricted the attention to directed acyclic graphs based on the
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assumption monotonicity [30] on the attacker’s behavior. The monotonicity assumption states that

the success of the previous exploit will not interfere with the success of the future exploit. The

nodes in a Bayesian attack graph represent attributes whereas edges represent exploits. Attacker

capabilities, vulnerabilities of a service or system, interpreted as attributes and exploits, allow the

attacker to obtain further capabilities using their current capabilities.

DEFINITION 5.1 [69] A Bayesian attack graph, G, is defined as the tuple G = (N ,T ,E ,P)

where

• N = {1,...,N} is the set of nodes.

• T is the set of node types. The node type can one of two types, T⟩ ∈ {∧(AND),∨(OR)}.

• E is the set of directed edges.

• P is the set of exploit probabilities associated with edges.

Here, each of the nodes i ∈N (attributes) can be either enabled or disabled, which means

the attacker possesses a certain capability or not. So, at time t, the network state denoted by

Xt = (X1
t , ...,X

N
t ) where X i

t is the state of attribute i at time t. We have AND and OR configurations

for different attack scenarios for a complex networked system (i.e., power grid) from the Bayesian

attack graph. The metrics we defined earlier help us to estimate the attackers’ opportunity and

capability. It also creates a path to assess the effectiveness of different strategies an attacker or

defender might take. Our very first suite of metrics, Strategy Evolution - Timeliness, captures the

opportunity for the adversary to make a successful attack and the defender to make a successful

defense. The second suite of metrics, Strategy Evolution - Effectiveness, captures the capability

of the defender and attacker.

6.4.1 STRATEGY EVOLUTION - TIMELINESS

Generation-Time (GT)

Strategic evolution of attack-defense in terms of timeliness measures the time it takes for

the attacker or defender to evolve its strategy. The first metric is Generation-Time (GT), a random

variable because the strategy generation is often a stochastic process. We assume that the defender

will not evolve its strategy before the attacker’s movement. So that at time t = 0 there will be no

defender’s impact on the initial attack.
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Defenders’ Generation-Time: Suppose the defense is evolved at t0 = 0, t1, ..., tn ≤ T ,

namely t0, t1, ..., tn ⊆ [0,T ]. The defender’s GT, namely random variable GT (D), is sampled by

GT (D, i) [86]

GT (D, i) = ti+1− ti f or i = 0,1, ...,n−1 (59)

This implies that Dti+∆t = Dti for any ∆t < ti+1− ti and Dti+GT (D,i) = Dti+1 ̸= Dti because

the defense is not evolved until time ti+1. At time ti+1, the defender’s strategy evolve and will have

an impact on the attacker’s success probability. So, the defender’s success probability in terms of

blocking the attack,

(60)

P(X i
t+1|Xt) =

∏
y∈px

αyx × (1 \ GT (D, i), i f Xy
t = 1∀ j ∈ px

0, otherwise

Attackers’ Generation-Time: Suppose the attack evolves at t
′
0 = 0, t

′
1, ..., t

′
k ≤ T , namely

t
′
0, t
′
1, ..., t

′
k ⊆ [0,T ]. Here, the notation t

′
is used to further highlight the perspective of the at-

tacker’s. So, the random variable GT (A) is sampled by GT (A, j), [86]

GT (A, j) = t
′
j+1− t

′
i f or j = 0,1, ...,k−1 (61)

This means that At ′j+∆t = At ′j
for any ∆t < t

′
j+1− t

′
j and At ′j+GT (A, j) = At ′i+1

̸= A
′
t j

. The

attacker’s attack success probability defined as follows,

(62)

P(X i
t+1|Xt) =

∏
y∈px

βyx × (1 \ GT (A, j), i f Xy
t = 1∀ j ∈ px

0, otherwise

Effective-Generation-Time (EGT)

Effective Generation Time (EGT) measures the time to make an effective strategy gener-

ation as a whole attack-defense generation. The earlier metric GT, only measure the generation

time without considering the effectiveness of the action from both attackers and defenders per-

spective. This is why we may not get an relationship with respect to the opponent’s action. In that

case EGT helps to devise the relationship between the attackers and defenders action.
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EGT Defenders’: Suppose defense generations evolve at t0 = 0, t1, ..., tn ≤ T , namely

t0, t1, ..., tn ⊆ [0,T ]. The defender’s EGT is a random variable, denoted by EGT (D), because

the evolution of defense generations are stochastic in nature. The random variable EGT (D) is

sampled by EGT (D, i) for i = 0, ...,n− 1 such that Dti+EGT (d,i) is the nearest future generation

that leads to a higher than Dti(Ati,M) defense effectiveness. Formally [86],

EGT (D, i) = ti∗− ti (63)

when there exists some ti∗ ∈ ti+1, ..., tn such that

Dti+∆t(Ati,M)≤ Dti(Ati,M) (64)

and

Dti+EGT (d,i)(Ati,M) = Dt∗i (Ati,M)> Dti(Ati,M) (65)

EGT Attackers’: Suppose the attack generations evolve at t
′
0 = 0, t

′
1, ..., t

′
k≤T , namely t

′
0, t
′
1, ..., t

′
k⊆

[0,T ]. The attacker’s EGT is a random variable, denoted by EGT (A), because the evolution of at-

tack generations are stochastic in nature. The random variable EGT (A) is sampled by EGT (A, j)

for j = 0, ...,n− 1 such that Dt ′j+EGT (d, j) is the nearest future generation that leads to a smaller

than Dt ′j
(At ′j

,M) defense effectiveness. Formally [86],

EGT (A, j) = t
′
j∗− t

′
i (66)

when there exists some t
′
j∗ ∈ t

′
j+1, ..., t

′
k such that

Dt ′j+∆t(At ′i
,M)≥ Dt ′i

(At ′j
,M) (67)

and

Dt ′j+EGT (A, j)(At ′j
,M) = Dt ′j∗

(At ′j∗
,M)< Dt ′j

(At ′j
,M) (68)

6.4.2 STRATEGY EVOLUTION - EFFECTIVENESS

Evolutionary Effectiveness

Now, we need to compare each generation with respect to a reference generation. Evolu-

tionary Effectiveness metrics measures the difference between two generations. The measurement
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of generation is a random variable sampled by the opponent’s generations. Suppose defense gener-

ations are evolved at time t0 = 0, t1, ..., tl and attack generation are evolved at time t
′
0 = 0, t1

1 , ..., t
′
k.

Here we assume that, the defender’s generation as the reference generation and the attacker’s

generation with respect to the defender’s generation [86],

EE(A , i) =
1

T +1

T

∑
t ′=0

[Dti(At ′ ,M)] (69)

where the defender’s EE is defined by a random variable,

EE(D , i) =
1

T +1

T

∑
t=0

[Dt(At ′j
,M)] (70)

Now, we can define the attacker’s capability in terms of the defender’s EE(D ,j) random

variable, available exploits ae, and pre-conditions of a node Pre

Ca = EE(D , i)×
T

∑
t=1

ae×Pre (71)

Aggregated-Generation

We need to estimate the overall security gained by the defender when the defender is suc-

cessful in blocking an attack. Aggregated-Generation (AG) metrics measure the security gained

over time horizon [0,T ]. The gain is represented by G (i) where i = 1, ...,T [86],

AG(D) =
1
T

T

∑
i=1

G (i) (72)

As of now, we have characterized how to capture defender and attacker evolving strategies,

we need to assess defense action to achieve higher security gain. To assess various defense action,

we employ Partially Observable Monte-Carlo Planning (POMCP) framework that simulates future

possible state trajectories from the current security state. The POMCP framework maps the current

security state and attacker strategy to a defense action. To quantify the security state, we define

the security state as the set of currently enabled security conditions. In this sense, the security

state at any given time represents the current capabilities of the attacker. One of our objectives is

to quantify the level of security of the system as an attacker progresses. To capture the security

level, we define the security state as a current level of the network’s attacker progression. In the

following section we describe the framework.
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6.5 CONTROL OVER ATTACKER’S DECISION-MAKING PROCESS

6.5.1 DECISION CALCULUS

We begin our analysis by laying out an adversary’s decision calculus as it applies to the

attack context. This represents the base state of adversarial decision making and defender opera-

tions, both traditional and complexity focused, that attempt to shape the outcome of this decision

flow to achieve a desired set of operational effects. In some cases, the outcome might be more

robust deterrence as the attacker sees that the likelihood of arriving at a desired end state is dimin-

ished. In other cases, the outcome might be an inability of the attacker to act quickly as necessary

information is denied and risk-reward trade-offs are more complex. We focused on decision mak-

ing as the target of these attacks because, as we explored possible analytical frames, this provides

the clearest articulation of ways that complexity exerts its influence in operational practice. In

this dissertation, we assume that the defender can collectively formulate the attacker’s decision

calculus. Rather, we focused on how the defender can control the attackers’ decision-making pro-

cess if the decision calculus is given. In the previous section we identified and formulated metrics

to provide insight into the level of complexity a sequence of events will impose on an opponent.

In the following section, we describe how the metrics will help in capturing and controlling the

attacker’s decision-making process.

6.5.2 DECISION MAKING PROCESS

Most cyber security algorithms assume that attackers make rational decisions. However,

human decision making processes are only boundedly rational and based on the similarity of

the present contextual features to past experience. An attackers’ decision-making is a complex

process. To capture the attacker’s decision making process, we categorize the attacker based

on the attacker’s i)Knowledge, ii) Stealthiness, and iii) Aggression level. Aggression level is

defined by the conditional attack probabilities and success. From the reconnaissance stage of the

attack phase, an attacker collects critical information from the network and make the attack plan.

Identifying the available set of exploits defined the level of the attacker’s knowledge. Stealthiness

is described by the false alarm and the probabilities of detection. The attacker types we consider

is presented in Table 20. To capture the attacker types, we consider numerical values from 0 to 10

range for different levels of attacker’s knowledge, aggression, and stealthiness presented in Table

20. The defender needs to make the decision based on the attacker types which is sometimes

difficult. However, an autonomous agent can interact with the defender and make decision by
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automatically. We need a model-free technique that can find the best course of action given its

current state. Q-Learning is a reinforcement learning algorithm where it can come up with rules

of its own, or it may operate outside the policy given it to follow.

Table 20: Attacker types

Attacker Types Knowledge Aggression Stealthiness
Type-I High (9) Moderate (7) High (7)
Type-II Moderate (7) High (9) High (9)

6.6 EXPERIMENTAL EVALUATION

In this section, we demonstrated that using reinforcement-based learning algorithm i.e.,

Q-Learning we can gain control over the attacker’s decision-making process. We placed decoy

nodes along with the real nodes in the network and measure the effectiveness when the attacker is

an autonomous agent.

6.6.1 SIMULATION SETUP

We adopted the simulation environment from the toy capture the flag (ToyCTF) example

provided in the CyberBattleSim code [87]. CyberBattleSim is an experimentation research plat-

form to investigate the interaction of automated agents operating in a simulated abstract enterprise

network environment. The network topology in this simulation platform is fixed and a set of

vulnerabilities are present which can be used by the attacker to move laterally.

Action Space

We consider three exploits which includes local, remote, and connect and control for the

attacker as the attacker action space. Local exploits are executable on a node the attacker controls,

remote exploits the attacker can exploits from the local node to remote node. Connect and control

exploits can be executed with a matching credential object on a node which is visible to the

attacker.

State Space and State Transitions

The scenario presented in Figure 27 involves a small network with machine running dif-

ferent OSes, software. We assume that a single attacker (agent) is present in the network and the

goal of the attacker is to maximize the reward by discovering and exploiting nodes in the network.
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Here, the environment from the attacker’s perspective is partially observable. The attacker can not
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Figure 27: A toy example of network with machines running different OSes, software without
deception.

see all the nodes and edges of the network graph in advance. Instead, the attacker takes actions

to laterally move and observe the environment. For the simulation, we consider three types of ac-

tions the attacker can take to offer a mix of exploitation and exploration. The local exploits reveal

credentials to exploit the local node and it can be used later with a connect and control exploit to

gain control of the specific node. Local exploit can also discover the path to neighboring nodes.

Remote exploits are used to form the local node to exploit the remote node. The reward represents

the the intrinsic value of a node. The attacker breaches the network as follows (represented by the

red arrow in Figure 27):

Win7→Win8→Win7→ IIS→ SQLDB

Decoy Nodes

We consider decoy nodes [88] to be deceptive elements. Decoy nodes appear as real nodes

and the attacker can exploit and control the decoy node. An attacker can find the credentials for

the decoy node in the real node and leading to the decoy node. Any new connection established to

the decoy node generates a defined penalty of -100 for the attacker. We do not increase the penalty

when the attacker make repeats actions. Instead, the repeating action incurs a penalty of -1.
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Reward Function

To facilitate penalties with the deception the original code was modified per the following

reward function:

• Decoy connection: -100

• Exploit worked: +50

• Exploit use: -1

• Control of node: +1000

• Win condition: +5000

• Repeated mistake: -1

Learning Algorithms

We consider the attacker agents provided by CyberBattleSim which includes the following

algorithms:

Deep Q-Learning: Deep Q Networks (DQN) are neural networks that utilize deep Q

learning to provide models. DQL uses a Neural Network as the Q-value function approximator.

The agent interacts with the environment and applies rewards based on the current state and ac-

tion. It also could be defined as a value-based RL agent. The following parameter is used in the

simulation ε = 0.9, epsilon-min= 0.1, epochs= 300, steps= 5000.

Tabular Q-Learning: Q-learning is a sample-based version of Q-value iteration. This

method attempts to directly find optimal Q-values, instead of computing Q-values of a given pol-

icy. The value for γ = 0.025 is selected for the simulation.

6.6.2 RESULTS

In our first simulation, we consider attacker Type-I and the toy example network presented

in Figure 27. We deployed the decoy nodes along the real nodes. The goal of the RL agent is to

learn a policy so that the expected cumulative reward can be maximized. We consider two metrics

to assess the deception framework. Firstly, we calculate the percentage of the attacker wins for

defined attacker types in Table 20. Secondly, we measure the resources the attacker needs to spend

because of the deception is present.
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Figure 28: Attacker’s win percentage when the number of decoy increases.

An attacker’s win is the percentage of an episode where the attacker meets the win cri-

teria. The win condition for the attacker is defined when the attacker takes control of the real

nodes. Figure 28 illustrates that type-I attacker agents using different algorithms that can vary

overall success on the cyber attack goal. When the number of decoy nodes is increasing, the win
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Figure 29: The number of steps required for the attacker to win as a function of the number of
decoys.

percentage is also decreasing. The Deep Q-network (DQN) outperforms the QTAB algorithm. It
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is evident from the Figure 29 that the attacker attacker is spending more resources (number of

iteration increases) when the number of decoy nodes increases.
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Figure 30: Attacker’s win percentage when the number of decoy increases.

For type-II attacker, we find that the attacker win percentage increases compared to type-

I as attacker demonstrated in Figure 30. In type-II, we increased the attacker’s aggression and

stealthiness values. Because of high aggression and stealthiness, the number of iterations to enter

the win state for the attacker also decreased as shown in Figure 31. Our findings suggest that even

though the attacker is highly skilled, adding decoy nodes can significantly improve the overall

network security. Although the defender agent is not employed in this paper, our results can

provide insight for an autonomous cyber defender. Early placement of decoy nodes in the network

can effectively block the attacker from lateral movement. Our next steps include addition of more

deceptive elements with an autonomous deceptive cyber defender.

6.7 CONCLUSION

In this paper, we propose the framework for characterizing adversarial strategies in com-

plex networked systems by developing a set of metrics and provides evaluation to measure the

effectiveness of deception. We formulated two sets of metrics to capture the defender and at-

tacker strategy evolution in terms of time and effectiveness and attacker’s progression based on

the Bayesian attack graph. While the defender’s strategy evolution not employing in the simulation

but or findings measure the effectiveness of employing decoy nodes in the network. We categorize

two types of attacker based on attacker aggression, knowledge, and stealthiness. Increasing decoy
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Figure 31: The number of steps required for the attacker to win as a function of the number of
decoys.

nodes in the network can effectively reduce a highly skilled attacker’s win percentage. Thus, in

future work we will consider adding more deceptive elements i.e., honeypots and honey-tokens.

We will also incorporate an autonomous cyber deceptive agent in the simulation.
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