
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Computational Modeling and Simulation 
Engineering Faculty Publications 

Computational Modeling and Simulation 
Engineering 

2021 

Hidden Markov Model and Cyber Deception for the Prevention of Hidden Markov Model and Cyber Deception for the Prevention of 

Adversarial Lateral Movement Adversarial Lateral Movement 

Md Ali Reza Al Amin 
Old Dominion University 

Sachin Shetty 
Old Dominion University, sshetty@odu.edu 

Laurent Njilla 

Deepak K. Tosh 

Charles Kamhoua 

Follow this and additional works at: https://digitalcommons.odu.edu/msve_fac_pubs 

 Part of the Computer and Systems Architecture Commons, Information Security Commons, and the 

Technology and Innovation Commons 

Original Publication Citation Original Publication Citation 
Amin, M., Shetty, S., Njilla, L., Tosh, D. K., & Kamhoua, C. (2021). Hidden Markov model and cyber 
deception for the prevention of adversarial lateral movement. IEEE Access, 9, 49662-49682. 
https://doi.org/10.1109/access.2021.3069105 

This Article is brought to you for free and open access by the Computational Modeling and Simulation Engineering 
at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling and Simulation 
Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, 
please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_fac_pubs
https://digitalcommons.odu.edu/msve_fac_pubs
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/access.2021.3069105
mailto:digitalcommons@odu.edu


Received February 19, 2021, accepted March 13, 2021, date of publication March 26, 2021, date of current version April 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069105

Hidden Markov Model and Cyber Deception for
the Prevention of Adversarial Lateral Movement
MD ALI REZA AL AMIN 1, SACHIN SHETTY 1, (Senior Member, IEEE), LAURENT NJILLA2,
DEEPAK K. TOSH3, AND CHARLES KAMHOUA4, (Senior Member, IEEE)
1Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, VA 23508, USA
2Air Force Research Laboratory, Rome, NY 13441, USA
3Department of Computer Science, The University of Texas at El Paso, El Paso, TX 79968, USA
4Army Research Laboratory, Adelphi, MD 20783, USA

Corresponding author: Md Ali Reza Al Amin (malam002@odu.edu)

This work was supported by the Office of the Assistant Secretary of Defense for Research and Engineering [OASD (R & E)] under Grant
FA8750-15-2-0120.

ABSTRACT Advanced persistent threats (APTs) have emerged as multi-stage attacks that have targeted
nation-states and their associated entities, including private and corporate sectors. Cyber deception has
emerged as a defense approach to secure our cyber infrastructure from APTs. Practical deployment of cyber
deception relies on defenders’ ability to place decoy nodes along the APT path optimally. This paper presents
a cyber deception approach focused on predicting the most likely sequence of attack paths and deploying
decoy nodes along the predicted path. Our proposed approach combines reactive (graph analysis) and
proactive (cyber deception technology) defense to thwart the adversaries’ lateral movement. The proposed
approach is realized through two phases. The first phase predicts the most likely attack path based on
Intrusion Detection System (IDS) alerts and network trace, and the second phase is determining optimal
deployment of decoy nodes along the predicted path. We employ transition probabilities in a HiddenMarkov
Model to predict the path. In the second phase, we utilize the predicted attack path to deploy decoy nodes.
However, it is likely that the attacker will not follow that predicted path to move laterally. To address this
challenge, we employ a Partially Observable Monte-Carlo Planning (POMCP) framework. POMCP helps
the defender assess several defense actions to block the attacker when it deviates from the predicted path. The
evaluation results show that our approach can predict the most likely attack paths and thwarts the adversarial
lateral movement.

INDEX TERMS Cyber deception, cyber defense, cyber decoy, lateral movement, intrusion detection system,
hidden Markov Model, attack path prediction.

I. INTRODUCTION
Given the growing spate of cyber attacks, it is very imperative
to design resilient cyber infrastructure. Organizations face
substantial financial losses and challenges in maintaining
core public services due to the increasing cyber attacks rate.
According to McAfee’s recent report in 2018, [1], cyber-
crime has reached nearly $600 billion. Adversaries have
lately resorted to using Advanced Persistent Threats (APT)
to conduct cybercrime. APT allows attackers to stay unde-
tected in the network for long periods and steal organizations’
data without being caught. In an APT attack, the attackers
use social engineering, spear-phishing email, or vulnerability

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

exploitation to gain the network’s initial entry. After the
network’s initial entry, they maintain a low footprint and
slowly gain their foothold by compromising one host to
another within the organization’s network. Lateral movement
is the most critical step in the APT attack to maintain the
presence in the network. Early detection of adversarial lateral
movement can deter the ongoing APT attack. From the early
detection, when a host is discovered as compromised, there
are several forensic requirements we need to answer: What
will be the end goal? What route the attacker can use to reach
the end goal? To reach the end goal, the attacker may need
to take several related attack steps (compromising hosts) and
the identification of these steps can be used as an attack paths
prediction process based on mathematical methods. Predict-
ing the most likely attack path is an important technique that

49662 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

IEEE Access· 
Multidi5ciplinary l Rapid Review l OpenAcce5sJournal 

• • • 

• • • 

https://orcid.org/0000-0002-2459-171X
https://orcid.org/0000-0002-8789-0610
https://orcid.org/0000-0001-7005-6489


M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

enables the defender to react before the attacker reach the end
goal by executing proactive responses.

Multi-Stage Attacks (MSAs) are cyber security threats
where the attack campaign is performed through several
attack stages. Each of the MSA stages comprises different
attack steps where each step may not be malicious if imple-
mented individually. APT has emerged as a complex version
of MSAs in recent years [2]. The main objective of the
APT attack is data exfiltration and intelligence appropriation.
Adversarial lateral movement is of one the stage of the MSAs
where the attacker stays in the network and slowly progress
towards the target without raising an alert. Usually, this type
of attack is conducted by highly skilled and motivated cyber
criminals. The defender can use supervised/unsupervised
machine learning approaches to detect each APT attack stage.
The readers are encouraged to read different approaches,
which are described in [3]. After detecting the lateral move-
ment stage from an ongoing attack, the challenge of how the
attacker will route to the end goal still remains. This challenge
has brought interest in the research and development of new
techniques to mitigate adversarial lateral movement. There-
fore, in this paper, we use Hidden Markov Model (HMM) to
identify the most likely attack path an attacker could take to
reach the goal state. The HMM is a statistical model used
for probability distributions over the sequence of observa-
tions [2]. HMM has also been utilized in [4], [5] to train
models using observed network traffic under normal network
conditions and to detect diverting sequences of traffic obser-
vations. Also, HMMcan detectMSAs stages if an IDSmisses
the detection of any stages from the MSAs [2]. Therefore,
HMM addresses the challenges of providing complete infor-
mation on an attack campaign. After getting the most likely
attack path, the defender needs to deter the lateral movement.

Defense methods to deter lateral movement are sometimes
cost-effective in patching and resetting all suspicious entities.
Moreover, patches are not available all the time, and some-
times it takes an extended period to develop the patch. Cyber
deception techniques can help the cyber defender mitigate
lateral movement without disrupting the organization’s core
services. Cyber deception has attracted attention from secu-
rity researchers and practitioners as an approach for designing
secure cyber infrastructure. Cyber deception can provide sev-
eral advantages in mitigating cyber attacks, including provid-
ing the opportunity to learn the attacker’s strategies, tactics,
capabilities, intent and reduce the likelihood of adversarial
success and cyber defense costs [6]. For a successful cyber
deception, the defender needs to design the techniques appro-
priately. Deploying decoy nodes in the network is one of
the cyber deception techniques. Researchers have proposed
cyber deception approaches that introduce fake networks by
varying system characteristics [7], manipulating attackers
probes [8], [9], introduce virtual network interface controllers
and route mutation [10]. All of the techniques focused on
thwarting cyber reconnaissance mission. Preventing adver-
sarial lateral movement using the cyber deception technique
still needs a good amount of effort.

This paper proposes a method to predict the most likely
attack path for adversarial lateral movement and deter
the adversarial lateral movement using a cyber decep-
tion approach. Our proposed approach undergoes two main
phases. The first phase predicts the most likely attack path
based on Intrusion Detection System (IDS) alerts and pcap
packet capture traces. The second phase is deployed decoy
nodes along the predicted path. Our model assumes that the
defender can detect the lateral movement stage from the
APT life cycle. Rather than detecting the lateral movement,
we focused on predicting the most likely attack path from
the lateral movement stage. To predict the path, we use
transition probabilities, present and past observations of the
HMM. There are several works [11]–[13] on detecting lateral
movement stage using machine learning approach. We used
a network-based attack graph to correlate compromised hosts
in the attack graph. We employ a state-based approach for
alert correlation with the exploit activity, reducing the false
positive alert. In the second phase, we utilize the predicted
attack path to deploy decoy nodes. We employ a Partially
Observable Monte-Carlo Planning (POMCP) framework to
force the attacker towards the predicted path whenever the
attacker deviates from the predicted path. POMCP helps the
defender assess several defense actions to block the attacker
in advance. The contribution of this work is summarized as
follows:
• We present an approach to predict the most likely attack
path for the adversarial lateral movement by leveraging
HMM. This approach helps the defender understand the
attacker’s strategies and aims and plays a vital role for
the security team to take the necessary actions (deploy-
ing decoy) before the attacker progresses into the pre-
dicted path and reaches the goal state.

• Incorporating POMCP in our model shows that the secu-
rity defender can force the attacker towards deployed
decoy paths whenever the attacker deviates from the
predicted path. This module also provides insights on
the optimal placement of decoy nodes.

The remainder of this paper is organized as follows.
In Section II, the most relevant related works are reviewed.
Section III provides an overview of the APT lifecycle.
Section IV describes our proposed system’s system archi-
tecture, and Section V presents the threat model of our pro-
posed system. Section VI described our prediction model,
and Section VII describes the assessment of various defense
actions to block the attacker’s path. Section VIII presents
the performance evaluation of the proposed system and
discusses the results. Finally, Section IX concludes the
paper.

II. RELATED WORK
State-of-art and State-of-practice intrusion detection and pre-
vention systems have been proposed to detect and pre-
vent several cyber threats. However, it is infeasible to
design a cyber defense system that can defend against all
threats. In this section, we present some recent research

VOLUME 9, 2021 49663

IEEEAccess· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

works on model-based approaches for intrusion detection and
prevention.

The work described in [14]–[16], and [17] uses hidden
states for characterizing risk. These approaches learn a single
HMM model for any attack type. In [16], authors computed
probability matrices, but they did shed details on the probabil-
ity matrices’ computation. Authors in [17] propose a model
based on HMM, but there is no indication of model training,
and the model uses random values for the transition matrix.
In contrast with our work, we define specific algorithms to
train the model and use alert sequences in the model training.
We also use the alert sequence to compute the probability
matrices for prediction.

Zonouz et al. [18] propose a security-oriented cyber- phys-
ical state estimation (SCPSE), based on the attack graph,
to predict the attack paths that an attacker can traverse by
exploiting vulnerabilities. In their methods, each state tran-
sition is achieved by exploiting vulnerabilities in the hosts.
The AG is converted to an HMM, which is used to determine
the attacker’s attack path. The execution time increases as the
network grows and is not practical in the real world. In con-
trast to our work, we also use the attack graph in our model
and handle the execution time by incorporating an exploit
dependency graph, which reduces the execution time.

Attack graphs were proposed as the first method for pre-
dicting cyber attacks [19]. To predict a cyber-attack using
an attack graph required traversing the graph and searching
for a successful attack path or using probability values of
edges in the graph. Probability values can give the most
probable attack path, but it does not consider the underlying
different attack steps the attacker can take. Ramaki et al. [20]
proposed a framework for multi-step attack scenarios detec-
tion and prediction. Despite proposing an attack graph in
their work, the authors extensively use causal correlations to
predict the attack path. The attack graph alone cannot predict
the most probable attack; instead, it can project all possible
attack paths. Our model uses HMM and Bayesian Attack
Graph (BAG) to reduce searching space, thereby substantially
improving computational efficiency.

In [21], the authors proposed a Hidden Colored Petri-Net
(HCPN) model to predict the attacker’s next goal. However,
their model suffers from performance issues as preconditions
and postconditions significantly grow as actions are added
to the HCPN. The action set was refereed there based on
different IDS alert set from a specific attack scenario.We han-
dle the performance issue using the POMCP framework.
The POMCP algorithm requires a sample region to construct
the entire state space, allowing one to avoid the state space
explosion problem.

The finite states machine (FSM) model is used in [22]
to design a multi-attack response system. The model sends
an alert only after there is a state change without predicting
the whole attack path. The authors also define a weight for
each state but not for any specific multi-step attack scenario.
In contrast, we define a probabilistic model to predict the
most likely attack path from the lateral movement stage. The

work described in [23] is closely related to our work as their
prediction model is based on the IDS database, National Vul-
nerabilities Database (NVD), and attack graph data sources.
The authors’ model assigns every state’s weight manually,
whereas we use the HMM model to automatically train the
parameters and assign the weight in each state. The authors
did not provide any results for their proposed model.

So far, we have presented reactive methods for predict-
ing multi-step attack paths. In the following discussion,
we present some recent works on proactive methods based on
techniques to deceive the attacker or change the attack surface
to make it difficult for the attacker to carry out the attack.

The authors in [24] addressed the insider threat problem
with a deception-based approach. They deploy decoy data in
the network to confuse and confound the attacker and make
it difficult to differentiate between original and decoy data.
These decoy data are automatically created and placed on
a decoy system to entice the attacker with fake credentials,
which triggers an alert when the attacker access those decoy
data. Additionally, the authors also embedded a beacon in the
decoy documents that signal a remote website when accessed.
However, the authors did not mention how the decoy systems
should be deployed in the system. It is very costly for an
enterprise network to distribute the decoy system all over the
network to entice the attacker.

Game-theoretical approaches are used in cyber deception
to mix true and false information to thwart the attacker’s
cyber reconnaissance mission. In [7], the authors presented
a Cyber Deception Game (CDG) model on how the defender
can benefit themost from determining amix of true, false, and
obscure responses to deceive the attackers. The Cyber Decep-
tion Game (CDG) model captures the strategic interaction
between the defender and an adversary in network security.
The authors use a zero-sum Stackelberg game between the
defender (e.g., network administrator) and an adversary (e.g.,
hacker). Game-theory cannot directly apply to predict the
multi-step attack prediction as the game solution in game the-
ory is not explicit. The most commonly used solution concept
is the Nash Equilibrium. However, finding the Nash Equilib-
rium of a game is often computationally intractable [25].

Urias et al. [26] proposed an unpredictable and adapt-
able deception-based framework using virtualization and
software-defined networking. The proposed framework can
provide better insights into an adversary’s actions by corre-
lating the network’s endpoint behavior data.

III. PRELIMINARIES AND ASSUMPTIONS
This section provides an overview of APT life-cycle.

A. ADVANCED PERSISTENT THREAT AND LIFE-CYCLE
A threat actor who remains undetected for a more extended
period in the network with the aim of espionage and sensi-
tive data exfiltration drive by a state-sponsored or a group
of threat actors is called an APT. An APT actor requires
a high degree of knowledge and stealthiness behavior to

49664 VOLUME 9, 2021

IEEE Access· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

FIGURE 1. Typical stages of APT attack.

successfully carried out the attack. In Figure 1, we depict the
different phases of an APT attack [27].

1) Intelligence gathering: This is the first step towards an
APT attack where the attacker aims to collect intelli-
gence information about the network as much as possi-
ble, including the organization’s structure, IT structure,
and sensitive information. The attacker uses public
sources (Facebook, Linked In) and prepares a cus-
tomized attack. Spear phishing email is the most com-
monly used technique to get to the point of entry [27].

2) Point of entry: After assessing security solution
defenses and attack signatures that the victim might
possess, the attacker narrows down the point of entry
exploitation. Social engineering and spear-phishing
email or vulnerability exploitation is the step used to
penetrate the network. Another infection method is
to plant malware into a website where organizations
employees might visit.

3) Command and control (C&C) communication: In this
stage, the communication between the infected host
and the C&C server is performed through a secure
socket layer (SSL), making it very difficult to identify
whether traffic is malicious. Attackers may also use
another technique, which is the domain flux technique
[28]. In this technique, an infected host may try to
connect to a large number of domain names to make
it difficult to shut down all of these domain names.

4) Lateral movement and persistence: Once the attacker
gains access to the target’s network, the attacker will
search for new hosts to infect and move laterally. There
are several techniques that the attacker can use in this
stage. One such attack is a brute force attack to obtain
information such as a username and password or per-
sonal identification number (PIN). The attacker can
also use internal spearfishing emails to gain access to
other user’s credentials. Another popular technique is
the pass the hash (PTH) attack, where the attacker steals

a hashed user credential and, without cracking it, reuses
it to trick the authentication system.

5) Asset and data discovery: This stage aims to determine
valuable assets within the target’s network. Based on
the asset and data discovery, the attacker determines the
goal of future data exfiltration. Port scanning can be
used for this step [29].

6) Data exfiltration: This is the final stage of APT, where
the attacker tunneled data of interest into external
servers with commonly used compressing and encryp-
tion techniques. Other techniques used in this stage
include built-in file transfer via FTP or HTTP or the
Tor anonymity network.

The attacker does not always need to use these stages in
every APT attack. The author in [30] has discussed the APT
life cycle model consisting of 7 stages such as (1) Initial
Compromise, (2) Establish Foothold, (3) Escalate Privileges,
(4) Internal Reconnaissance, (5)Move Laterally, (6)Maintain
Presence and (7) Complete Mission. Ussath et al. [31] have
discussed a 3 stage APT attack life cycle model focusing only
on initial compromise, lateral movement, and command &
control activity. Other modified versions of the APT attack
life cycle model have been proposed in literature [3]. How-
ever, studies showed that this is the common life cycle fol-
lowed by most of the APT attacks.

B. HIDDEN MARKOV MODEL
Hidden Markov Model is proposed to increase the usability
of theMarkov chain. AMarkov chain states the probability of
sequences of random variables. There is a strong assumption
in the Markov chain that we need to only rely on the current
state if we want to predict future states in the sequences. The
previous state of the current state has no impact on the future
state.

A Markov chain is applicable when we need to compute
the probability for a sequence of observable events. That
means the events we are interested in need to be directly
observable. However, in many cases, we cannot observe them
directly, which are called hidden states. HMM allows us to
compute the probability of both observed events and hidden
states. Figure 2 shows a Bayesian network representing the
first-order HMM, where the hidden states are shaded in gray.
In this model, an observation st at time t is produced by a
stochastic process, but the state ht of this process cannot be
directly observed, i.e., it is hidden [32].

FIGURE 2. A Bayesian network representing a first-order HMM. The
hidden states are shaded in gray.

VOLUME 9, 2021 49665

•
Intelligence 
Gathering 

0 Point of Entry 

( 

I 
Threat Agent 

0 

External Server 

Data of Interest 

=· I 
I ,----L---. _,,,, • = = Lateral Movement 

IEEEAccess· 

• • • ••• 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

Three fundamental problems such as training(learning),
decoding, and evaluation need to be solved when a set
of observations and the HMM are given:(1) Compute the
probability of given observation sequence, (2) Compute
the optimal (hidden) state sequence, and (3) Determine
the optimal state transition probabilities and observation
probabilities. The forward-Backward algorithm can use to
solve the problem (1) [33], Viterbi algorithm solves the
problem [33] (2), and Baum-Welch algorithm solves the
problem (3) [34].
The Forward-Backward Algorithm: In the HMM,

the actual state sequence is hidden, leading to considering
all path probabilities to determine the observation probability.
ForN hidden states and T observations, there areNT possible
hidden sequences, leading to exponentially increasing possi-
ble paths. However, this complexity can be reduced by using
Markov property and dynamic programming to efficiently
compute values required to obtain the posterior marginal
distributions in two passes. The first pass goes forward in
time while the second goes backward in time. The Forward
Algorithm (FW) computes the observation probability by
summing over the probabilities of all possible state paths that
could generate the observation sequence [34].
Viterbi Algorithm: The Viterbi algorithm is a dynamic

programming algorithm used to find the most probable state
sequence, also known as the decoding algorithm. The most
probable state sequence can be computed by calculating the
probability of the observation sequence for each possible path
based on the Forward algorithm. In this approach, the most
likely sequence is determined by tracing back the path with
the highest likelihood value starting from the most likely state
at the end of observation.
The Baum-Welch Algorithm: The BW algorithm is

also known as the Forward-Backward algorithm. It is a
dynamic programming approach and a special case of the
expectation-maximization (EW) algorithm. The EW algo-
rithm is an iterative method to find the maximum likelihood
estimates of parameters in statistical models. The BW algo-
rithm’s main purpose is to tune the parameters of HMM,
the state transition matrix A, the emission matrix B, and the
initial probability distribution πi. There are three phases in
the BW algorithm: the initial phase, the forward phase, and
the backward phase.

The list of assumptions that are made throughout the
paper is listed here. First of all, it is assumed that the
attacker is already in the network by performing social
engineering and exploiting some vulnerabilities. Secondly,
we assume that the defender can detect LM-based attacks in
the network. Rather than focusing on detection, we focused
on forestalling the attacker from reaching its goal(s) state.
To capture the defender behavior in blocking vulnerabil-
ities, we assume that the defender has some particular
set of actions that restrict normal network configurations.
For the illustrative example in the evaluation section,
we assume that the attacker will move first and attempt an
exploit.

TABLE 1. Symbols and their description.

IV. SYSTEM ARCHITECTURE
In this work, we considered lateral movement attacks from
external threat agents and preventing the attack by deploying
decoy nodes in the enterprise system. Here, we assume that
the attacker is already in the network by performing social
engineering and exploiting some vulnerabilities. How the
attacker gains access to the system is beyond the scope of
this paper.

Optimal deployment of decoy networks is always ben-
eficial for the network administrator. It comforts the
defender effort to drive the attacker towards deployed decoy
nodes. During C2 communication in the APT life cycle,
a set of infected hosts periodically sends a beacon to
attacker-controlled servers and performed instructed oper-
ations. The operations include infecting other hosts in the
network or gathering sensitive information about the network.
Usually, the attacker uses HTTP(s), FTP, and SSH as a com-
munication tool to evade easy detection. Attackers use several
techniques to move laterally, including internal scanning,
credential stealing, vulnerability exploitation, and privilege
escalation. The exploitation of remote services is one of
the techniques described by the MITRE post-compromise
framework [35]. However, the attacker can use any of the
techniques described in the framework. In this paper, we only
consider the exploitation of remote services (T1210).

In Figure 3, we illustrate our basic system model archi-
tectural diagram. The first module in our architecture is
Lateral Movement Attack, where the defender’s job is to
detect that attack using IDS alerts analysis and pcap (packet
capture) traces. The alert dataset is needed to train the HMM
parameters.

In the Offline training module, HMM parameters are
trained based on observations of LM attacks. This module is
explained in detail in the following section.
HMM Configuration File contains the algorithm to train

HMM parameters and predicting the most likely attack path.
This file also contains the procedure to obtain Local Condi-
tional Probability Distribution (LCPD) for each node in the
attack graph.

49666 VOLUME 9, 2021

IEEE Access· 

Symbols Description 
8 Maximum likelihood 

~t(i,j) Probability of being a state 
,t Marginal probability 
'lri Expected frequency 
A Transition probability 
B Emission probability 
7r Initial probability distribution 
'1/) Array of the argument 
N Node 
E Edge 
s Security state 

E(st) Available set of exploits 
z Set of security alerts 
f3t Belief matrix 
cp Attacker type 

7r* Optimal policy 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

FIGURE 3. System model architecture.

The Alert Correlation Module receives alerts from IDS
and uses the re-factorization and de-duplication technique to
correlate alerts. This module also reduces the false positive
alerts based on the state-based model, described in detail in
the following sections.

The HMM Prediction Module uses two HMM algorithms,
described in the following sections, to train the HMM param-
eters and predicting the most probable attack path. It also
calculates the attack probability from the Bayesian Attack
Graph.

The defender deploys decoy nodes along the predicted
attack path to mislead the attacker. The defender can use the
Defense Policy Assessment module to assess various defense
actions in advance to force the attacker towards the decoy
attack path whenever the attacker deviates from the predicted
path.

The Security Database stores all the CVE information,
including CVE name and CVSS scores, from the National
Vulnerability Database (NVD).

V. THREAT MODEL
If we consider the threat modeling from the attacker’s
perspective, we must evaluate the attacker’s goal (intent),
capability, methods (ways), and resources (means). Threat
landscape helps us to define defense requirements. The threat
landscape has been evolving, with approximately 80% of
threats categorized as a commodity carried out by attackers
using widely known tools. The next 10% are directed attacks
carried out using standard tools by organized crime to make
money. Finally, the last 10% are the most destructive attacks,
including advanced persistent threats (APTs) whose attacks
are crafted for a single target [36]. Operationalizing deception
begins with the organization’s objective to learn the adver-
sary’s tactics & capabilities. Once the organization defines
the objective, the deception must be implemented within
the organization. It is also required to determine the type
of adversary’s deception; small threats require small sticks,
but the APT-based threat requires sophisticated measures that

lead to knowledge of adversary tactics and intent. Deception
is not a passive exercise and requires adversary engagement.
When or where to engage with the adversary is also a decisive
factor to consider. In our approach, we consider these aspects
to ensure adversary engagement with the help of deception
technology while the attacker moves laterally.

Deploying decoy networks in the real networks to slow
down and thwart the ongoing attack is a deception technique.
Once the defender identifies compromised hosts from the
lateral movement stage and correlates hosts in the attack
graph, the defender understandswhen to deploy the network’s
decoy targets. However, the question remains where to deploy
the decoy targets. It is evident that for a small-scale network,
there will be more than one attack path. Let us assume that
there are 100 attack paths to reach the target node, and it is
infeasible and not a cost-effective way to deploy decoy targets
across all the attack paths.

Usually, the attacker moves forwards within the APT life
cycle, whichmeans the attacker does not go back to a previous
stage. However, if the current attack fails, the attacker can
go back to the previous stage and finds another way to com-
plete the attack campaign. In that case, the defender needs
to evaluate the effectiveness of various defense decisions
from the current belief state. We use the Partially Observ-
able Monte-Carlo Planning Framework (POMCP) to help
the defender making the effective defense decision to block
the attacker from moving forward. In the following sub-
section, we describe our HMM-based model to predict the
most probable attack path.

We have selected HMM to predict the most likely attack
path due to its inherent benefits over other AI-based algo-
rithms.We cannot directly observe the underlying attack steps
the attacker will take to reach the target node. We can only
probabilistically identify the likely attack path. HMM is a
generative, probabilistic model to model the distribution over
observations’ sequences.

VI. PREDICTION VALUES
Our HMM-based state estimation model is inspired by the
work presented in [2], where authors presented an approach to
predict the next APT stage based on HMM. In our approach,
we use HMM to predict the most probable attack path where
more than one attack path resides. These findings will ease
the defender’s effort to deploy the decoy networks along with
the real network.

HMM consists of two stochastic processes: a hidden pro-
cess that is not observable but can be observed through
another set of stochastic processes by producing the sequence
of observations. In our model, the different attack steps
towards a target are the hidden stochastic process where the
observations are the alerts generated by the attacker.
Definition 1: An HMM is specified by the following compo-

nents: for a given set of N states, S = (s1, s2, s3, . . . , sN ) and
discrete observation symbols, ŌM = ō1, ō2, . . . , ōm, the state
transitionmatrix, A = {ai,j}, the observation emissionmatrix,
B = {bi(ōk )}, and initial matrix, πi, where i, jε[1, . . . ,N ]

VOLUME 9, 2021 49667

Lateral 
M0wm1nt 

Attacks 

Security 
Database 

Observed 

~~~-~Sequence~---~ 
HMM 

Algorithm I 
HMM Triining 

Parameters 

HMM 
Pariilmeters 

Trilining 
Module 

C0nfigur,1tion ..------, 
File BAG& 

LCPO 

HMM 
Trained Pu,1m111t1rs 

AlgorithmZ 
Prediction 

Stage 

Real 

~ Alerts 
Alert 

Correlation 

Module 

Pr=d~=on ..-1'..,_ ~work Defense Policy 
~ Assessment 

~-M~o~d~ul~•~ Predicted 

Att;ick 

Path D Optimum 

~;,;-ii<~-
Notwo,k 9x: 

IEEEAccess· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

and kε[1, . . . ,M ] [2]. The probability of moving from state
i to j is represented by {ai,j}, bi(ōk ) is the probability of
an observation, ōk , emitted at state i, and πi is the initial
probability of HMM to start in state i. So, an HMM can be
fully described by λ = (A,B, π).

For a given sequence of observations, Ot , and a sequence
of states, Qt , a first-order HMM makes two assumptions,
First, the probability of a particular state depends only on the
previous state:

P(qt |q1 . . . qt−1 = P(qt |qt−1)

Second, the probability of an output observation oi depends
only on the state that produced the observation qi and not on
any other states or any other observations:

P(ot |q1 . . . qi, qT , o1, . . . , ot , . . . , oT ) = P(ot |qt )

Our goal here is to calculate the probability of attack given
an HMM. To do so, first, we need to know the system state
after the last observation. There is one way we can achieve
this by calculating the probability of being a state near the end
of the Markov chain. We can use the Baum-Welch algorithm
to compute the conditional probability of each observation’s
most likely state. However, if the state transitions have zero
probability, the state sequence could not be correct. We use
the Viterbi algorithm to get the single best state sequence for
the given observation sequence to solve this issue.

A. HMM TRAINING ALGORITHM
The most challenging problem in HMM is determining a
method to adjust the model parameter (A,B, π) to maximize
the observation sequence probability [34]. There is no known
way to optimize the parameters even in the finite observa-
tion sequence as training data. However, we can choose the
parameter to be locally maximized using an iterative proce-
dure such as the Baum-Welch (BW) method. Baum-Welch
algorithm is a learning algorithm used to optimize the HMM
transition and emission probabilities.

The BW algorithm first uses the Forward-Backward (FW)
algorithm parameters α and β. Then using Bayes theorem and
expectation-maximization [34] to introduce the two parame-
ters. We start with the parameter ξt (i, j), which defines the
probability of being in state i at time t , transitioning to state j
at time t + 1, given the model and observation sequence.

To train the HMM parameters, we use the historical record
of alert observations and the Baum-Welch algorithm shown
in Algorithm 1.

In Algorithm 1, HMM parameters (A,B, π) are initialized
randomly. At lines 2 & 3, the parameter from FW and BW
algorithm is computed. At line 5, we calculate the probability
of being state i at time t and transitioning to state j at time
t + 1 given the model and observation sequence. Then the
marginal probability over state j is calculated in line 6. Using
line 5 & 6, we can reestimate the parameters of HMM. A set
of reasonable reestimation formulas for the HMMparameters
(A,B, π) are with π̄i being the expected frequency spent in
state si at time 1 is presented at line 8. Next, āi,j is the expected

Algorithm 1 HMM Parameters Training
Input: Correlated alert OT sequence
Output: Optimized A,B, π
Initialization: Random(A,B, π)
1: To compute αt+1(i)(FW) and βt (i)(BW):
2: αt+1(j) = [

∑N
i=1 αt (i)ai,j]bj(ot+1)

3: βT (i) =
∑N

j=1 ai,jbj(ot+1)βt+1(j)
4: for state i→ j do
5: ξt (i, j) =

αt (i)ai,jbj(ot+1βt+1(j)∑N
i=1

∑N
j=1 αt (i)ai,jbj(ot+1)βt+1(j)

6: γt (i) =
αt (i)βt (i)∑N
i=1 αt (i)βt (i)

7: while iterate until convergence do
8: π̄i = γ1(i)

9: āi,j =
∑T−1

t=1 ξt (i,j)∑T−1
t=1 γt (i)

10: b̄i(ōk ) =
∑T−1

t=1 γt (i),when ot=ōk ,else 0∑T−1
t=1 γt (i)

number of transitions from state i to state j over the overall
number of transitions from state i at line 9. The parameter
b̄i(ōk ) is defined by the number of expected transition from
state i, when observation is ot = ōk , over the number of
expected transitions is presented at line 10. Finally, from lines
8 to 10, optimized HMM parameters are computed.

B. STATE SEQUENCE AND PROBABILITY
Let us assume that we have a sequence of observations, Ot ,
and we want to compute the most probable sequence of
states, Qt . One approach is to find the sequence of states is
to calculate the probability of the observation sequence for
each possible path based on the Forward algorithm. In this
approach, the most likely sequence is determined by tracing
back to the path with the highest likelihood value starting
from the most likely state at the end of observation. The
Viterbi algorithm uses the δ parameter, where it considers
only the maximum likelihood value. It also uses another
parameterψ to keep track of the argument, which maximized
δ for each t and j. The complete procedure for finding the best
state sequence is stated as follows [34]:
• The initialization step (t = 1):

δ1(i) = πibi(o1)

ψ1(i) = 0

• The recursion step:

δt (j) = max
1≤i≤N

[ δt−1(i)ai,j]bj(ot ) , 1 ≤ j ≤ N (1)

ψt (j) = arg max
1≤i≤N

[ δt−1(i)ai,j] , 1 ≤ j ≤ N (2)

• The termination step (t = T ):

P(T ) = max
1≤i≤N

δT (i) (3)

qT = arg max
1≤i≤N

δT (i) (4)

qt = ψt+1(qt+1) (5)

49668 VOLUME 9, 2021

IEEE Access· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

The term P(T ), qT , and qt in the (3), (4), and (5) defines as
maximum probability, best last state, and previous best state,
respectively.

State probability can be expressed in terms of forward-
backward variables [37]:

γt (i) =
αt (i)βt (i)∑N
i=1 αt (i)βt (i)

(6)

The steps in FW algorithm are given below:
Consider the forward variable αt (i) which defined as,

αt (i) = P(o1, o2, . . . , oT , qt = si|λ)

To solve for αt (i) inductively as follows:
• Step-1: The initialization step (t=1),

α1(i) = πibi(o1)

• Step-2: The induction step for (1 < t ≤ T ),

αt+1(j) = [
N∑
i=1

αt (i)ai,j] bj(ot+1)

• Step-3: The termination step,

P(OT |λ) =
N∑
i−1

αT (i)

The Backward Algorithm (BW) computes the β parameter,
as follows [34]:

βT (i) = P(ot+1, ot+2, . . . , oT |qt = si, λ) (7)

Steps to solve for βT (i) inductively, as follows:
• Step-1: The initialization step for (1 ≤ j ≤ N ),

βT (i) = 1

• Step-2: The induction step,

βT (i)=
N∑
j=1

ai,jbj(ot+1)βt+1(j), t=T − 1,T − 2, . . . , 1

C. ATTACK PATHS PREDICTION
1) ALERT CORRELATION FRAMEWORK
The alert processing unit first aggregates all the alerts and
then performs de-duplication processing to construct the pre-
diction module’s alerts log. In the alert log file, there are
necessary 10 fields to do the analysis represented as 10-tuple
(StartTime, EndTime, Type, SrcIP, DstIP, SrcPort , DstPort ,
Times, Protocol, Content).
In the alert log file, StartTime represents the time when the

alert is started, EndTime represents the alert event finished
time, Type represents the type of the alert, SrcIP represents
the origin IP for that alert, DstIP represents the destination
address, SrcPort represents the origin port number, DstPort
represents the destination port number, Times represents the
alert repetitions number, Protocol represents the protocol
used in the alert, Content represents the contents in the alert.

FIGURE 4. Attack path prediction framework.

De-duplication is applied to the aggregated alerts to reduce
the number of alerts while keeping the source data. The
de-duplication rule states that if the previous alerts IP, port,
and typematch the next alert, the latter alert will be discarded,
and EndTime will be recorded with the previous alert. This
alert correlation technique is used to predict the attacker’s
next state, whereas the state-based alert correlation technique
is used to correlate the exploit activity for capturing the
attacker’s progression in the network. The state-based alert
correlation model will discuss more in the following section.

After de-duplication, we get the set of alert logs where
redundant alerts are removed based on the time information
retention. For example, a single-step attack in a multi-step
attack IDSmay generate redundant alerts that may not belong
to the same attack. In this way, de-duplication reduces the
number of alerts and retains most of the source informa-
tion. In the alert correlation unit, the attack chain is con-
structed using an alert graph based on the alert logs. We use
the aggregation technique to remove redundant information.
Here redundant information represents a redundant attack
chain that does not belong to an ongoing attack. Lastly,
the attack chains are obtained based on the depth-first-search
(DFS) traversal algorithm. The attack graph generation mod-
ule is responsible for presenting the association between
attack chains intuitively. Attack graph generation module,
first, converts the attack chains into a directed graph; second,
it generates a dynamic Bayesian attack graph (BAG) from the
attack graph.

2) HMM PREDICTION UNIT
To predict the next state of the attacker, we use Bayesian
Attack Graph (BAG) [38], and Common Vulnerability Scor-
ing System [39]. A Bayesian Attack Graph is a four tuple
BAG = (S, τ, ε,P) where S = Ninternal ∪Nexternal ∪Nterminal
represents the set of attributes related to internal, external,
and terminal node. The internal, Nexternal , represents the set
of attributes, Si, for postcondition of an attack. Similarly,
Ninternal , represents the set of attributes, Sj, between precon-
dition and postcondition of an attack andNterminal is the set of
attributes, Sk , for precondition of an attack. A set of ordered
pairs, τ , represents the directed edges in the graph. Further,
for Si ∈ S, the set Pa[Si] = {Sj ∈ S|(Sj, Si) ∈ τ } is called
the parent set of Si. The relations of incoming connections

VOLUME 9, 2021 49669

IEEEAccess· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

{AND, OR} of a node represents by ε. All the preconditions
must be satisfied for AND, whereas if one or more precondi-
tions are enough to exploit work, the relationship is defined as
OR. To capture the success probability of an exploit, we use
Local Conditional Probability Distribution (LCPD). Let, Sj,
a local conditional probability distribution function when the
preconditions are defined as AND [38]:

Pr (Sj|Pa[Sj]) =
{
0, ∃Si ∈ Pa[Sj]|Si = 0,
Pr
(
∩Si=1ei

)
, otherwise

}
(8)

For OR,

Pr (Sj|Pa[Sj]) =
{
0,∀Si ∈ Pa[Sj]|Si = 0,
Pr
(
∪Si=1ei

)
, otherwise

}
(9)

When multiple exploits are present, for AND, each exploit
has individual success probability. So, we use the product rule
as follows:

Pr (∩Si=1ei) =
∏
Si=1

Pr (ei) (10)

For OR decomposition,

Pr (∪Si=1ei) = 1−
∏
Si=1

[1− Pr (ei)] (11)

To compute the LCPD, network administrator needs to esti-
mate the success probability of a known exploit given in
(21). The procedure of incorporating LCPD in our prediction
algorithm is described in Algorithm 2.

Algorithm 2 Next State of the Attacker

Input: Optimized HMM parameters (āi,j, b̄i(ōk ), π̄i), corre-
lated alerts OT , and LCPD from BAG
Output: The next state
1: for each of the next state j = 1, 2, . . . ,N do
2: for AND decomposition do
3: Pr (∩Si=1ei) =

∏
Si=1 Pr (ei)

4: for OR decomposition do
5: Pr (∪Si=1ei) = 1−

∏
Si=1[1− Pr (ei)]

6: for each intermediate state i = 1, 2, . . . ,N do
7: αt (i) = [

∑N
r=1 αt−1(i)a(r, i)]bi(ot ) F r=index of

all possible prior states
8: Pqt+1=sj =

∑N
i=1 αt (i)Prai,j

This algorithm’s inputs are as follows: optimized HMM
parameters from Algorithm 1, correlated alerts OT , and
LCPD from BAG. For decomposition, the rule algorithm
assigns edge probability to each node, which is presented at
lines 1 to 5. Then, the FW α parameters of every intermediate
stage, i, are calculated at line 7, and then the α parameters
are multiplied by the transition probability and LCPD for
the next state j. The state, which has the highest probability,
is predicted as the attacker’s next state.

VII. DEFENSE POLICY ASSESSMENT
Knowing how an attacker can progress in the network offers a
useful starting point for defining appropriate defense actions.
Attack graph can be leveraged to get the attacker’s progres-
sion map in the network. However, it is still challenging
to prescribe effective defense decisions as the defender has
uncertainty over the network’s security status at a given time,
the attacker’s true strategy, and attacker types. The defender
only has information about the history of security alerts
and previously deployed defense actions. The defender must
make the defense decisions based on the belief matrix he
possesses over the attacker’s capabilities. The belief matrix is
the joint probability distribution over the security states and
attacker capabilities. Forcing the adversary towards deployed
fake networks by taking actions (e.g., blocking vulnerabil-
ities, applying security control) is a Partially Observable
Markov Decision Process (POMDP) problem. There are two
main primary objectives in our defense policy assessment
model:1) quantify the security state, and 2) taking the opti-
mum defense actions based on the attacker’s capabilities.
To quantify the security state, we define the security state as
the set of currently enabled security conditions. In this sense,
the security state at any given time represents the current
capabilities of the attacker. One of our paper’s objective is
to quantify the level of security of the system as attacker
progress. To capture the security level, we define the security
state as a current level of the network’s attacker progression.

A. CAPTURING ATTACKER’s PROGRESSION
Researchers and cyber security professionals are always
interested in projecting different attack steps an attacker
can take to compromise a system. The attack graphs were
developed and allowed to study all possible combinations of
exploits an adversary can use to reach its goal(s). An attack
graph consists of system states (nodes) and transition
relations (edges). System states are related to each other via
exploits. Attack graphs must enumerate all possible steps,
which allow the graph to grow in dimension quickly. Accord-
ing to the monotonicity assumption [40], we can greatly sim-
plify the attack graph and reduce the amount of information
required to describe an attack. The monotonicity assumption
states that one exploit’s success does not interfere with the
attacker’s ability to carry out a future exploit. In a simpler
term, we do not need to enumerate all system states in an
attack graph, rather we can construct an exploit dependency
graph which describes how an exploit is related to security
conditions [40]. In [40], the authors construct such a graph
where nodes represent security conditions, and edges rep-
resent exploits. Exploits are used to relate the security con-
ditions via preconditions and postconditions. As discussed
in [40], the edges in an exploit dependency graph relate the
security conditions in a complex way, which means a given
exploit can have both multiple preconditions and multiple
postconditions. We formalize this behavior by acknowledg-
ing that such edges are directed hyperedges. Here, in this

49670 VOLUME 9, 2021

IEEE Access· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

paper, the meaning of hyperedge is that an edge connects two
sets of nodes rather than a pair of nodes.
To capture the attacker progression, we use an exploit

dependency graph [41], a directed acyclic hypergraph, H =
(N ,E), where, N = {c1, c2, . . . , cn} is the set of security
conditions and E = {e1, e2, . . . , en} is the set of exploits. The
security conditions in the graph can be either true or false.
When the security condition is in a true state, the attacker
has a particular set of capabilities. In contrast, the false value
represents the attacker does not possess any condition from
hypergraph H . For example, a true security condition could
mean an attacker may maliciously build the trust relationship
between two hosts or the attacker reached the goal state.
The distinct condition would represent the same host with
different privilege levels. To specify the goal state, we define
a parameter representing the goal node N g

r ⊆ N , N g
f ⊆

N where N g
r and N g

f are real and fake network goal node,
respectively. The defender’s main objective is to protect the
N g
r and drive the attacker towards N g

f .
Each exploits from hyperedges has two conditions, termed

as N−i (pre) and N+i (post). To attempt an exploit ei,
an attacker needs to set true all of the preconditions of that
exploit termed as j ∈ N−i [41]. There are some exploits
without having any preconditions, N−i = ∅, termed as ini-
tial exploits and denoted by E0. To attempt initial exploits
attacker does not need any prior capabilities (maliciously
enabled). When an exploit is successful, all of its postcon-
ditions become enabled and let the attacker penetrate more
into the network.

In Figure 5, we present an exploit dependency graph gen-
erated using Topological Vulnerability Analysis (TVA) [42]

FIGURE 5. A sample Exploit Dependency Graph with a real network (left)
and a fake network (right). The above dependency graph for real & fake
network H = (N, E) consists of ncr = 10 security conditions, ner = 11
exploits (in the form of hyperedges), ncf = 13 security conditions and
nef = 11 exploits respectively. Triple-encircled nodes are representing as
goal conditions Ng

r = {c10} and Ng
f = {c12, c13}.

tool to explain the model and the results. Whenever a con-
dition is enabled, it means an attacker has a particular set of
capabilities where the current security state, st , describes the
attacker’s set of capabilities. A security state, s ⊆ N , is called
a feasible security state if for every condition cj ∈ S there
exists at least one exploit ei = (N−i ,N

+

i ) ∈ E such that
cj ∈ N

+

i andN−i ,N
+

i ⊆ s and set S = {s1, . . . , sn} represents
the state space for this model. So, for a feasible security state,
every enabled condition must have been enabled through an
exploit, and all preconditions and postconditions associated
with that exploit must also be enabled. Here, we made an
implicit assumption for security state feasibility that our
model is not missing any exploits that could allow the attacker
to enable security conditions. This assumption makes sense
because some nodes can be added in s, which are not associ-
ated with any hyperedge E . These nodes can become enabled
via an unknown influence. We did not consider these nodes
in our work because the state space greatly increases.

The security state evolves probabilistically as a function
of the defender’s and attacker’s action [10]. The defender is
assumed to select actions that have the impact of restricting
normal network configuration. This action includes changing
network configuration or shut down a port or any active ser-
vices. However, in reality, the defender cannot block any indi-
vidual vulnerability; instead, the defender’s action induces a
set of blocked vulnerabilities [41]. Blocking a set of vulnera-
bilities also helps us to capture some of the zero-day attacks.
However, design a system to capture all unknown attacks is
infeasible. To capture the defender’s behavior in terms of
blocking vulnerabilities, we assume that the defender has
some particular set of actions that have the effect of restricting
normal network configurations. The action will block the vul-
nerabilities and influence of an attacker to choose a different
attack path.

The space of the defender’s available action set is rep-
resented by U = {u0, u1, . . . , un}. Here, u0 represents the
defender’s null action, which means the defender will not
block any exploit. The remaining actions from the set of
U signify the network changes, which will induce a set
of blocked exploits. Each action associated with the set of
blocked exploits influences the attacker to seek the available
paths. Defender’s action will have an impact on the availabil-
ity of the system to the trusted users. So, it is a defender’s
goal to make the trade-off between network availability and
network security. To capture this behavior, we assign a cost
to each of the defender’s action sets. Based on the cost,
the defender can choose an action that will limit the attacker’s
progression throughout the network and minimize the system
availability’s negative impact.

Based on the single attacker who is trying to infiltrate the
system, it can only increase its capability by exploiting more
vulnerabilities. On the other hand, it also increases the chance
of being detected. The defender’s goal is to prevent vulnera-
bility exploitation in the real network and let the exploita-
tion in the fake network. From the monotonicity assumption,
we know that once an attacker enables a condition, it remains

VOLUME 9, 2021 49671

IEEEAccess· 

el e2 e3 el e2 

' ' 
, \ , \ , \ 

cl c2 c3 c4 cl c2 c3 c4 

;/;/; ' , ,I , ,I \ , 
e4 e5 e6 e7 e3 e4 es 

' ' ;/ ' ' ;~ 
cS c6 c7 c5 c6 c7 c8 

' ' t \ , \ , \ , 
e8 e9 elO e6 e7 e8 e9 

''x' ' 'x' ' ' c8 c9 c9 clO ell 

\ , ~ I "" ; ell elO el I 

' ' ' c!O c12 c13 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

enabled all the time. For a given security state, st , the attacker
will have some set of available exploits described by E(st ).
From the available set of exploits, the attacker will attempt
exploits based on capabilities. The available set of exploits is
defined by [41],

E(st = s) = {ei = (N−i ,N
+

i ) ∈ |N−i ⊂ s,N+i 6⊆ s} (12)

Two important requirements that must be satisfied for an
exploit ei = (N−i ,N

+

i ) to be available:(1) N−i ⊂ s, i.e. all
of the exploit’s preconditions must be satisfied:(2) N+i 6⊆ s,
i.e. the exploit’s postconditions must not all be satisfied [41].
The second requirement depends on the assumption that the
attacker will not perform any redundant exploits. This is
a reasonable assumption since the attacker is not gaining
new capabilities by performing redundant exploits. It only
increases the chance of being detected.

Figure 6 represents the sample evolution of the security
state for a given state-action (st , ut ): (a) Consider the security
state st = {c1, c2, c3, c4, c5} (green circle) and defense action
ut = u where B(u) = {e5, e6} (here blocked exploits are
shown with red shaped hyperedge). So, the available set of
exploits using (12) is E(st ) = {e5, e6, e7, e8} and (b) attacker
attempt each exploit which does not lie within a set of
blocked exploits, with a probability of attack and success.
In this example, only exploits {e7, e8} are succeeded and the
updated security state is st = {c7, c8} (green circle). Doubled
circle shaded shape represents the security state.

As soon as the exploit attempts are successful, it enables
all the postconditions, which eventually form the updated
security state, as shown in Figure 6. Defender’s lack of infor-
mation regarding the current security state and the attacker’s
true strategy can be learned from noisy security alerts. The
next section describes how the defender uses that information
to construct the belief by getting security alerts from the
Intrusion Detection System (IDS).

FIGURE 6. Sample evolution of the security state.

B. DEFENDER’s AVAILABLE INFORMATION
Intrusion Detection System (IDS) is a major component in
this model because the defender’s certainty over the security
state depends on security alerts. IDS generates security alerts
in a sequential form when an attacker attempts to exploit
and progress through the network. Those security alerts are
not free from noisy alerts termed as false positives and false
negatives. Sometimes, there will be no alert for the exploit
activity, which solely depends on the attacker’s capability
(stealthiness), termed as a false negative. Similarly, it gen-
erates an alert for legitimate user activity termed as false pos-
itive. It is critically important for the defender to know which
exploit activity is going on. Based on the alerts, the defender
will choose his defensive action to drive the attacker towards
deployed fake networks. Filtering out the noisy alerts from
true alerts is essential in improving the defender’s efficiency
when it turns in real-time. In this work, we are considering
only known vulnerabilities.

Let Z = {z1, z2, . . . , zn} represents the set of security alerts
generated by the IDS, which is the defender’s observation set.
Each exploit ei ∈ E , when attempting can generate a set of
alerts, given by the set Z (ei) = {zAi(1), zAi(2), . . . , zAi(ai)} ∈
P(Z ) where P(Z ) is the power set of Z [41]. There is a
possibility that two or more exploits can generate the same
alert, that is, Z (ei) ∩ Z (ej) = ∅ for ei 6= ej. Some exploits
ei ∈ E may not generate any alerts, that is, Z (ei) = ∅.
To capture the uncertainty over the security state and

attacker type, we construct a belief matrix denoted by κt .
It combines all the defender’s available information into the
matrix, which includes initial security state, attacker type,
history of all defense action from time 0 to t − 1 and all
observations (security alert) from time 0 to t denoted by
ht = (κ0, u0, y0, . . . , ut−1, yt ). The belief matrix represents
the joint probability distribution over security states, and the
attacker types [41], is given below as a matrix form,

κt =


κ
1,1
t κ

1,2
t . . . κ

1,na
t

κ
2,1
t κ

2,2
t . . . κ

2,na
t

...
...

...
...

κ
ns,1
t κ

ns,2
t . . . κ

ns,na
t

 ∈ 1(S ×8)

The space1(S×8) represents the probability distribution
over state-type (S × 8). In the matrix, κt presented in the
double-stochastic matrix for each t . Each row in the matrix
represents the probability mass function over the type and
space for a given state and each column represents a probabil-
ity mass function over the space of security states for a given
type. For any defense action ut = u and observation yt+1 =
yk , the belief update is defined as κt+1 = [Tj(κt , yk , u)]sj∈S
where j is the update function, Tj(κt , yk , u) = P(St+1 =
sj | Ut = u,Yt+1 = yk ,Kt = κt ) is given by [41],

κ
j
t+1 = Tj(κt , yk , u) =

puj (κt )r
u
jk (κt )

ρ(κt , yk , u)
(13)

49672 VOLUME 9, 2021

IEEE Access· 

cl e2 c3 el e2 e3 

c6 c7 

' ' + 

:✓¥ ' e7 

' / 
c6 -' + ' c8 c9 clO c8 e9 elO ~· ' ""' ' + 

c8 c9 c9 

\ I \ 
ell ell 

' ' clO clO 

(a) (b) 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

The above terms are defined below,

puj (κt ) = P(St+1 = sj | Ut ,Kt ) =
∑
si∈S

κ it p
u
ij (14)

rujk (κt ) = P(Yt+1 | St+1 = st ,Ut ,Kt ) =
∑
si∈S

κ it r
u
ijk

(15)

ρ(κt , yk , u) = P(Yt+1 | Ut ,Bt ) =
∑
sj∈S

rujk (κt ) p
u
j (κt ) (16)

where puij is the transition probability from state si to sj under
defense action u, and rujk (κt ) = P(Yt+1 | St+1 = st ,Ut =
u,Kt = κt ) is the probability that IDS will generate observa-
tion vector yk when transitioning from the state si to sj under
a defense action u. The trajectory of beliefs based on security
alerts termed as observations and series of actions defined
in (14). Under a defense action u, transition probability si to
sj is controlled by a set of exploit events. For the available
set of exploits from (12), each event in the set of exploit is in
binary form (successful and unsuccessful).

C. BALANCING SECURITY AND AVAILABILITY COST
In cyber deception, it is possible to leverage the availability
cost over the security cost. There are two benefits when the
attacker is in the fake network: 1) defender can collect as
much intelligence information on the adversary, which helps
to derive the attacker’s capability, intentions, and targets,
2) defender can maximize the network availability to the
trusted user during a cyber attack. An availability cost, ca,
for each action defender takes to drive the adversary towards
the fake network. There will be no impact on the system’s
availability for some defense action, and sometimes there
will be a more significant impact. To formalize this notion,
we represent the availability cost ca : U → R for each
defense action taken by the defender. Similarly, the security
cost cs : S × U → R represents the cost while the system
is in various security states under defense action u. Here,
we consider a node’s availability regarding end-to-end packet
delay (considering the IT system).

D. END-TO-END PACKET DELAY
A packet starts the journey from a host (source), passes
through a series of routers, and ends its journey in another
host (destination). It is assumed that dE and N represent
the total delay and number of devices between a source and
destination. The end-to-end delay defined in [6] as

dE = N (dproc + dtrans + dprop + dqueue)+ dproco (17)

The terms are in (17) defined as following dproc = processing
delay, dtrans = transmission delay, dprop = propagation delay,
dqueue = queuing delay and dproco = processing overhead
because of authentication, integrity and confidentiality. For
an uncongested enterprise network, dqueue ' 0 and the
distance between the source and the destination node is very
small so that dprop ' 0. The processing delay, dproc, is often

negligible; however, it strongly influences a router’s max-
imum throughput, which is the maximum rate at which a
router can forward packets [6]. So that, (17) can be reduced to

dE = N × dtrans (18)

where dtrans = L/R, L = packet size and R = transmission
rate. For every defense action, the defender will measure
the total end-to-end packet delay. So, the availability cost in
terms of delay is defined as following cu = dE . We assign
more cost to the goal conditions (attacker’s target node) as
the defender’s goal is to keep the attacker from achieving the
goal. The total cost in terms of a security state and defense
action is defined as

c(st , ut , ϕt ) = (1− f )cs(st , ϕt )+ f ∗ dE (ut ) (19)

Here, f is a weighted factor, determines which cost focused
more (f = 0 represents defender is concerned only with
security cost, f = 1 means defender is only concerned with
availability cost).

E. THE DEFENSE ALGORITHM
An optimization of defense algorithm is a heuristic search
algorithm for determining defense actions in real-time as
the attacker progresses through the network and the secu-
rity alerts are generated. The scalability is achieved via a
sample-based online defense algorithm that takes advantage
of the security model structure to enable computation in
large-scale domains. For a large-scale network, computing
optimal action while deceptively interacting with the attacker
is a challenge. Offline POMDP solver aims to compute the
optimal action for each belief state before runtime. Although
such solvers have improved their efficiency [43], capturing
the optimal action can be intractable for large networks.
To resolve this issue, Silver and Veness [44] developed an
online algorithm termed Partially Observable Monte-Carlo
Planning (POMCP) to handle large-scale networks while
computing optimal action. Online methods interleave the
computation and execution (runtime) phases of policy, yield-
ing a much more scalable approach than offline methods.
POMCP algorithm is based on POMDP [24]. There are two
types of nodes in POMCP: belief nodes representing a belief
state and action nodes, which are their children nodes that can
be reached by performing an action. In this work, the action
selection procedure is the same as the POMCP algorithm
described in [44], and the belief update procedure is modified
to solve the large observation space problem as the belief
update procedure in POMCP does not scale as the observation
space grows.

Our defense policy assessment algorithm’s action selection
stage starts by performing Monte-Carlo simulations from the
current belief state to estimate the various defense actions’
quality. Each simulation starts by calling a generative model
shown in Figure 8. A generative model makes predictions
of all future events [45]. The predictions include what the
model is meant to make. For example, a generative model
will predict whether flipping over card 1 in 10 time-steps will

VOLUME 9, 2021 49673

IEEEAccess· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

FIGURE 7. An illustration of the search tree. The root node represents the
current history. Each child node from the root node represents the
possible future history. How the history is updated to h′ after a real-world
action (u1)is taken and real-world observation (yj ) is received
represented by the blue path [41].

FIGURE 8. The generative model.

reveal the ace or whether cards 1 and 2 will be swapped in
the next time-slot. An agent begins the simulation by calling
the generative model that provides a sample successor state,
observation, and cost given a state and action, (s′, ϕ′, y, c) ∼
G(s, ϕ, u). Calling the generative model and successive sam-
pling from the current belief creates search tree histories,
as shown in Figure 7.

As the process is partially observable, the search tree
in Figure 7 consists of nodes representing histories, and
branches from the original tree represent possible future his-
tories. The multi-armed bandit rule, termed as UCB1 [46],
is used to sample the selection of a defense action that begins
from the branch of the search-tree. It also optimally balance
the exploitation (to decrease the estimation error in terms of
promising selection actions) and exploration (finding better
alternatives by checking other actions). Here, the estimation
error decreases as the number of simulations increases. The
online algorithm performs the simulation until a stopping
condition is met (the max number of simulation nsim). After
the simulation, defense action, which has the lowest value of
the estimated cost, is taken. Then, a real-world action ur and
a real-world observation yr is recorded. A new root node is

specified as the current history node, and relevant branches
of the search tree are identified, and lastly, the remaining tree
is pruned.

As soon as the updated history h′ is obtained, the defender’s
belief must be updated. However, the computation of the
defender’s belief analytically is complex, as shown in (13).
This is why the defender maintains a belief approximation,
Bt , a state-type pair called particles. This belief approxima-
tion updating procedure involves calling the generative model
several times to obtain samples (s′, y) until it matches the
real-world observation vector yr and s′ is accepted into the
updated belief set Bt+1. This procedure continues until nk
particles have been added. However, with the large obser-
vation spaces, the sampled observation rarely matches the
real-world observation, causes the belief update procedure to
take a longer time [41]. To address this, we use a modified
belief update procedure. In the modified belief update proce-
dure, instead of checking if the sample observation matches
the real-world observation for every alert zi ∈ Z , the update
checks if the alerts match over a security state zi ∈ Z (s) =
∪e∈EZ (e). After that, the particle probabilistically accepts if
the condition is met. Here, the set Z (s) contains the alerts that
can be generated by an exploit attempts and the alerts not in
Z (s), i.e. any alert in Z̄ (s) = Z \ Z (s), cannot be generated
by the attempt of any exploit available in state s, as by (12).
The reason for this behavior is that these are the only alerts
that are informative for a change in the underlying state. So,
the remaining alerts in Z̄ (s) must have been triggered by
false alerts under the current state s. The pseudocode of the
defender’s belief update procedure is given in Algorithm 3.

Algorithm 3 Defenders Belief Update
Initialize: nk ,Bt+1 = Ua, numAdded = 0
1: procedure BeliefUpdate(Bt , ur , yr )
2: while numAdded < nk do
3: (s, ϕ) ∼ Bt
4: (s′, ϕ′, y,−) ∼ G(s, ϕ, ur )
5: if yZ (s) = yZ (s)r then F [If alerts Z(s) match]
6: Bt+1← Bt+1 ∪ {s′, ϕ′}
7: numAdded ← numAdded + 1

In Algorithm 3, we use a node utility array function as a
defender’s initial domain knowledge, which improves dur-
ing more simulation runs. Attacker builds an array of node
utility functions based on the base score metrics to exploit
vulnerabilities [47]. For every exploit, attackers use the met-
rics to quantify the attack success probability and serves
as the attacker’s initial knowledge about the network and
vulnerability. The attacker’s node utility function is defined
as follows [6]:

I = 10.41× (1− (1− CI )× (1− II )× (1− AI )) (20)

Vi = 20× AC × AI × AV (21)

The above terms are defined as CI = ConfImpact, II = Inte-
gImpact, AI = AvailImpact, I = Impact, Vi = Exploitability,

49674 VOLUME 9, 2021

IEEE Access· 

current history 

ht 

he UtYt+1 UtnYt+2 

u 

s 

(fJ 

r------------------------------ : 
~----+------1 c(s, <p, u) 

I 
I 

sample 
P(s, <p, u) 

B(u) 
sample 
a(<p) 

sample 
Z(s) 

sample 
Q 

: -------------------------------------------

C 

s' 

y 

cp' 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

AC = AccessComplexity, AI = Authentication and AV =
AccessVector. The utility array function is defined below

Ua = I × Vi (22)

For any belief the defender may possess, he needs to
determine an optimal action to deploy. This decision rule,
which is determining the action, is called a defense policy.
The optimum action for the defender while interacting with
the attacker turns into a POMDP. Casting optimum action is
defined as below [6],

V π (κ0) =
∞∑
t=0

γ tc(κt , ut , ϕt )

=

∞∑
t=0

γ tE
[
c(st , ut , ϕt )| κ0, π

]
(23)

where 0 < γ < 1 is the discount factor, and c(κt , ut )
represents the cost for each belief state bt when an action
ut is selected from the space of action where c(κt , ut ) =∑

si∈S κ
i
tc(st , ut , ϕt ). The optimal policy π∗ is obtained by

optimizing the long-term cost.

π∗ = argmin
π
V π (κ0) (24)

The optimal policy defined in (24) specifies each belief state’s
optimal action where the expected minimum cost is calcu-
lated over the infinite time horizon.

F. ATTACKER’s CAPABILITY ASSESSMENT
The concept of estimating adversary’s Capability, Opportu-
nity, and Intent (COI), which has been widely used in the
military and intelligence community for threat assessment,
can also be applied where network configurations and vul-
nerabilities are used for threat projection [48]. However, this
approach does not project the attack well enough for attacks
that continuously change the strategy and ignore the exposed
system [49]. In this paper, we use a probabilistic approach to
estimate the attacker’s capability.

To assess the attacker’s capability using domain
knowledge, CVSS score, and the intrinsic parameter of a net-
work, we categorized the attacker’s capability into three vec-
tors: knowledge, aggression, and stealthiness. Although it is
assumed that a persistent attacker like APT is a highly skilled
attacker, the attacker’s capability assessment can help a net-
work administrator to estimate the attacker’s capability when
deploying decoy nodes/networks. As our goal is to prevent
lateral movement by deploying fake networks, the defender
must understand the attacker’s capability beforehand. In the
following paragraph, we present how a defender can assess
each skill level we defined earlier by using the defender’s
domain knowledge and the attacker’s opportunities:

Knowledge As we defined earlier in this section, that
knowledge level is defined as how the adversary changes its
strategy based on the security measure imposes on the host.
After the initial compromise of a system, the attackers need
to move forward towards the attack goal/objective. In the

lateral movement stage, the attacker tries to remain unde-
tected in the system until they reach their goal. To remain
undetected in the system, the adversary needs to understand
the network well enough. Using a host-based network attack
graph, the defender can correlate compromised hosts with the
attacker’s location in the system. As we know the available
set of exploits from (12), the defender can use individual
security states’ likelihood in its belief matrix to assess new
security information. For example, let us there is a single
exploit available in state si and the set isE(st ) = e. Now, if the
exploit e is attempted, it generates the unique security alert z.
No other exploit can generate the alert z here. In that case,
the defender belief update allows the alert to be generated
by an attempt to exploit e. The defender can then use the
logical attack tree representation to see how the adversary
has reached that stage. There could be multiple attack paths
the attacker used, but using a log analysis defender can also
identify the actual attack paths. We use attack path criticality
metrics to score each attack path.

To calculate the attack path criticality score for a given net-
work, we have considered attacker’s opportunity metricsAom,
security control Sc, and pre-conditions Pre for that node. The
path criticality score of a path p from host i to i′ formulates
as:

Acp
i,i′
=

j∑
1

Aom × Sc × Pre (25)

where the following parameters characterize the opportunity
cost: available exploits, ae, count of attack paths, cap, from
host i to i′, techniques used to compromise, tc, from MITRE
ATT&CK [35].

Aom =
j∑
1

ae + cap−1 + tc−1 (26)

Aggression The aggression level is described by the condi-
tional probabilities of attack and success, dictating the rate of
movement through the network. The strategy attacker follows
on few parameters: attacker knowledge level ak , available
opportunities in the state of action Aom, defenders’ action da
defined by conditional attack probability CAP,

Pek (st , ut , ϕt ) =



∑
P(da,Aom|ak ) = Pek

when ek ∈ E(st )\B(ut )∑
P(da,Aom|ak ) = Pek

when ek ∈ E(st ) ∩ B(ut )
0,when ek /∈ E(st )


(27)

Dividing the set of available exploits into two categories helps
us understand how an attacker changes the attacking strategy.
In (27), Pek represents the probability of attack when there
is no action, and Pek defines the attack probability when the
defender’s action block exploits.

Each of the attacker’s attempts will succeed with a con-
ditional probability of success. The probability of success
models that attacks do not succeed with certainty (potentially

VOLUME 9, 2021 49675

IEEEAccess· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

due to the inherent difficulty in carrying out the attack or the
existence of network defenses already in place). So, for any
given security state st , the conditional probability of success
is defined by,

αek (st , ut , ϕt ) =
{
αek when ek /∈ B(ut )
0 when ek ∈ B(ut )

}
(28)

Stealthiness Stealthiness is described by the probabilities
of detection and false alarm. We have generated the probabil-
ity of detection table for the assumed attacker types presented
in the evaluation section. We will discuss more on this in the
evaluation section.

VIII. EXPERIMENTAL EVALUATION
We effectively computed defense policies for large instances
to scale our defense policy assessment algorithm using the
defender’s belief update procedure and the cost assignment.
We did two large-scale network simulations to compute
the most likely attack path and defense policies. Defense
policies were computed for a problem on a graph consist-
ing of 150 conditions (nodes), 160 exploits (hyperedges),
70 defense actions, and 43 security alerts (observation vec-
tors over 109). The resulting number of security states
exceeded 100 million. Our second instance on a graph con-
sisting of 200 conditions (nodes), 250 exploits (hyperedges),
70 defense actions, and 60 security alerts (observation vectors
over 1010). The resulting number of security states exceeded
110 million.

1) AN ILLUSTRATIVE EXAMPLE
Figure 9 illustrates a small-scale experiment network used for
an illustrative example. We synthesized a dataset of intru-
sion alerts due to the lack of publicly available datasets.
The dataset is generated based on the ‘LLDDoS1.0 DARPA’
dataset. The network shown in Figure 9 consists of the fire-
wall, intrusion detection system, and five hosts machine.
The whole network is divided into two subnets based on the
firewall policies. One host H1 and IDS are deployed in the

FIGURE 9. Experimental network topology.

TABLE 2. Hosts configuration and vulnerabilities information.

DMZ, and the rest of the hosts are placed in the trusted zone.
We assume that the attacker is already in the network by doing
some social engineering and compromised the host H1 in the
DMZ. The detailed vulnerability information was obtained
from NVD public sites. There are six vulnerabilities found
on our small-scale network, as presented in Table 2.

A =



0.0092 0.9321 0.0092 0.0092 0.0092 0.0092
0.0093 0.0093 0.1727 0.4327 0.0093 0.3839
0.0094 0.0094 0.0094 0.4405 0.2870 0.2649
0.0093 0.0093 0.1435 0.0093 0.0134 0.4113
0.0092 0.0092 0.2401 0.0092 0.0092 0.7103
0.0096 0.0096 0.0096 0.0096 0.0096 0.0096
0.0095 0.0095 0.0095 0.0095 0.0095 0.0095

0.0093
0.0095
0.0094
0.4317
0.0092
0.9503
0.0095



B =



0.6531 0.3102 0.0267 0.0093 0.0093 0.0093
0.0093 0.0093 0.0093 0.4932 0.4762 0.2761
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0093 0.0093 0.4357 0.0093 0.3286 0.1502
0.6288 0.2886 0.0092 0.0092 0.0092 0.0091
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0091 0.0091
0.0090 0.0091
0.0091 0.0091
0.0091 0.0091
0.0092 0.0091
0.0092 0.0092
0.0091 0.0091


A. MOST LIKELY ATTACK PATH
We leverage [50] to generate the experimental network’s
corresponding attack graph, shown in Figure 10. We use an

49676 VOLUME 9, 2021

IEEE Access· 

Host Service CVEID Severity Weight Impact 
H1 apache CVE 2014-0098 Mid 0.1 4.9 
H2 postgresql CVE 2014-0063 Mid 0.2 6.4 
H3 Linux CVE 2014-0038 High 0.1 10.0 
H3 ms-office CVE 2013-1324 Low 0.1 10.0 
H4 bmc CVE 2013-4782 Low 0.2 10.0 
HS radius CVE 2014-1878 Low 0.3 2.9 

H4 HS 
10.0.0.56 10.0.0.57 

~ 

:A 

bmc 
0.7215 

Firewall 
~ 

:A Trusted Zone 

CVE 2014-0063 
postgresql 

0.5163 

~ ~ 

:A :A 
CVE 2014-0038 

linux 

0.7222 H3 0.3097 

10.0.0.54 10.0.0.55 Snort IDS 
CVE 2014-0098 

ms.office 
10.0.0.52 

apache 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

TABLE 3. Assessments of vulnerability exploitability probability.

automated alert analysis tool ArcSight [51], to analyze the
alerts information and extract the attack sequence.We assume
that the attacker is trying to obtain the root privilege of the
Host H5. The training algorithm (Algorithm 1) and the pre-
diction algorithm (Algorithm 2) are implemented as follows
to predict the subsequent attack behaviors. Both algorithms,
the training and prediction algorithm, are written in Python 3.
Step 1 (HMM Parameters Training): We use our alert

correlation framework to generate the correlated alert dataset.
For each new alert, the ACF checks all historical alerts which
have been triggered over the last time window. Two alerts
are correlated if they have the same srcip or dstip. We use
the alert correlation dataset as the historical record of alerts
observation to learn and optimize the HMM parameters using
the Baum-Welch algorithm as presented in Algorithm 1.
We consider seven states for HMM, as shown in Table 4.

First, we initialized the HMM parameters (A,B, π) ran-
domly. Then, the two parameters α and β from FW and BW
are computed. To compute the Baum-Welch algorithm’s two
parameters ξ and γ , we start from state s1 and considers all
training observations sequences to update the HMM parame-
ters. Considering 7 different attack states and 14 observations
for the HMM in the attack graph presented in Figure 10,
the above transition, A, and emission, B, probabilities were
obtained. The values in the matrix A represent the probability
that the attacker will move from one state to another. If the
destination state is unreachable, the value is zero. It is impor-
tant to note that both the A&Bmatrix should not contain any
zero value element. Zero-value will produce the NaN error.
To avoid the NaN error, the algorithms replace the zero value
with minimal value.
Step 2 (Vulnerability Exploitability Probability): Using

(21), we calculate the vulnerability exploitation probabilities
presented in Table 3.
Step 3 (Attack Path Prediction): To predict the most

likely attack paths, the optimized HMM parameters
((āi,j, b̄i(ōk ), π̄i)) from step 1, correlated alerts, OT , from the
ACF, and LCPD from BAG are used. LCPD are calculated
from the attack graph presented in Figure 10. There are
7 different attack states, and one stage is probable to another
stage is called the transition probability. Table 4 presents the
attack states’ denotation, and all attack behaviors information
is presented in Table 5.

As it is evident from Table 5 that there are 14 different
state transitions for the target network. Based on the alert data
from our dataset and extracted attack sequence, we introduce

FIGURE 10. Attack graph of the experimental network.

TABLE 4. Attack states description.

TABLE 5. Description of attack behaviors.

the state transition success probability vector T , where T =
{0, 0.9321, 0.1727, 0, 0, 0, 0}. The total state transition prob-
ability matrix is presented in A, and the emission probability
matrix is presented in B. After initializing parameters A&B,
we use Algorithm 2 to simulate the process. The results here
show that the algorithm runs five times. As it is evident from
T 5 that the attack goal is S7, and the corresponding success
probability is 0.84. In Table 6, we depicted all possible attack
paths.
T 5
= {1, 0.78, 0.62, 0.59, 0.76, 0.67, 0.84}

Here, we are looking for the most probable attack path with
a length of 5. From Table 6, we can infer that only paths 5,7,
and 9 have a length of 5. By matching the alert sequence in

VOLUME 9, 2021 49677

IEEEAccess· 

CVEID Exploitability Probability 
CVE 2014-0098 0.7230 
CVE 2014-0063 0.5163 
CVE 2014-0038 0.3097 
CVE 2013-1324 0.7222 
CVE 2013-4782 0.7215 
CVE 2014-1878 0.7229 

State Description 
81 Initial State 
82 (H1,root) 
83 (H2,root) 
84 (H3,user) 
8s (H3,root) 
86 (H4,user) 
81 (Hs,root) 

State transition CVEID 
81 --+82 CVE 2014-0098 
82 --t83 CVE 2014-0063 
82 --t84 CVE 2013-1324 
82 --+86 CVE 2013-4782 
83 --t84 CVE 2013-1324 
83 --t8s CVE 2014-0038 
83 --+86 CVE 2013-4782 
84 --t83 CVE 2014-0063 
84 --t8s CVE 2014-0038 
84 --+86 CVE 2013-4782 
84 --+81 CVE2014-1878 
8s --+83 CVE 2014-0063 
8s --+86 CVE 2013-4782 
86 --+81 CVE 2014-1878 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

TABLE 6. Possible attack paths.

the dataset, we get S1 → S2 → S3 as the prior path. So that
we can conclude that the future attack path will be S5 → S6
→ S7. For the experimental network, we get the most likely
attack path for lateral movement is S1→ S2→ S3→ S5→
S6→ S7. In the following evaluation section, we will deploy
decoy nodes along this path and show how a defender can
force the attacker toward decoy nodes if the attacker does not
choose the most likely attack path.

B. DEFENSE POLICY ASSESSMENT
From the previous section, we acquired the most likely attack
path sequence towards a target. The defender should deploy
decoy nodes along that path to keep the attacker away from
the real target node. In Section C, we defined the way to
estimate the attacker’s capability, which is the defender’s
initial belief. Based on initial belief and domain knowledge,
the defender will estimate attack probability and success
probability for each exploit present in the system. We gen-
erated the exploit dependency graph for the experimental
network using Topological Vulnerability Analysis (TVA)
[42]. In Figure 11, we presented the corresponding exploit
dependency graph. We use an existing POMCP solver [6]

FIGURE 11. Exploit dependency graph of the experimental network.

in our simulation, which is implemented in Python. In this
simulation, we presented two use case scenarios to depict the
attacker and the defender effort exchange to compromise the
target node and prevent the target from being compromised.
We assume that the defender can deploy the decoy nodes at
the time of intrusion alert in the network. To alleviate the
time complexity in deploying decoy nodes, the defender can
design and initiate the decoy nodes without connecting with
the network. The design of the decoy nodes is beyond the
scope of this paper.

For each of the exploits present in the network, we will
now define the attack and its success probability based on the
attacker’s knowledge, aggression, and stealthiness defined in
(25-28). Here, we estimate the attacker’s knowledge, aggres-
sion, and stealthiness level are high, moderate, and high,
respectively. Probabilities of attack for each exploit are as
follows:

(Pek , Pek ) = (0.5, 0.5) for ek ∈ E0
(Pek , Pek ) = (0.7, 0.3) for ek ∈ {e4, e5, e6}

(Pek , Pek ) = (0.6, 0.4) for ek ∈ {e2, e6}

(Pek , Pek ) = (0.9, 0.8) for ek ∈ {e3, e5, e6}

similarly, probabilities of success are as follows:

αek =

{
0.7 when ek ∈ E0
0.5 when ek ∈ E\E0

}
In Table 7, we presented the probability of detection for each
of the exploit.

TABLE 7. Probability of detection for estimated attacker’s capability.

Use Case A: In this use case scenario, we deploy decoy
nodes along in the predicted attack path sequence, and the
attacker chooses the decoy nodes path to move laterally in the
network. Figure 12 represents the exploit dependency graph
with the decoy nodes where yellow color nodes represent
decoy nodes. In this simulation, we consider three actions
which induce a set of blocked exploits and the actions set is
as follows: B(u1) = {e2, e4}, B(u2) = {e5, e6}, B(u3) = {e3}.
The discount factor for this simulation is γ = 0.95. There
are total ns = 182 security states and nz = 7 security
alerts leading to 28 = 256 distinct observation vector. All
simulations use particles nk = 1500 to approximate the
belief. The evolution of computed deception policy when
Nsim = 5000 and attacker’s lateral movement throughout the
real and decoy nodes are presented in Figure 13.

49678 VOLUME 9, 2021

IEEE Access· 

Path Number Attack Path 
1 S1 ----tS2 ----tS5 ----tS7 

2 S1 ----tS2 ----tS3 ----tS4 ----tS7 

3 S1 ----tS2 ----tS3 ----tS5 ----tS1 
4 S1 ----tS2 ----tS3 ----tS4 ----tSs ----tS5 ----tS1 
5 S1 ----tS2 ----tS3 ----tSs ----tS5 ----tS1 
6 S1 ----tS2 ----tS4 ----tS5 ----tS1 
7 S1 ----tS2 ----tS4 ----tS3 ----tS5 ----tS1 
8 S1 ----tS2 ----tS4 ----tSs ----tS3 ----tS5 ----tS1 
9 S1 ----tS2 ----tS4 ----tSs ----tS5 ----tS1 

Alert e1 e2 e3 e4 e5 e5 

Z1 0.3 0.4 0 0 0 0 
Z2 0 0.2 0.3 0 0 0 
Z3 0 0 0.4 0.3 0 0 
Z4 0 0 0 0.4 0.4 0 
Zs 0 0 0 0.2 0.5 0 
Z5 0 0 0 0 0.5 0.2 
Z5 0 0 0 0 0 0.6 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

FIGURE 12. Exploit dependency graph of the experimental network with
decoy nodes.

Here, it is assumed that the attacker moves first, and the
security state starts from the empty state s0 = φ. As we
already stated that attackers already penetrate the network by
using social engineering. The attacker’s starting position in
the network is the host H1, represented by an orange color
(C1) in the top left corner of Figure 13. To make the service
available to the legitimate users, the defender does not block
any exploits in advance; rather, the defender’s belief matrix
gradually improves on the security state. As in this use case
scenario, it is assumed that the attacker would take the decoy
nodes path towards the fake goal state. It is evident from
Figure 13 that at time t = 1 attacker is in C1 then gradually
moves laterally by exploiting more vulnerability (t = 2 to
t = 6). The fake goal state is marked by red color at the most
right bottom of Figure 13.

Use Case B: In this use case, we will demonstrate how a
defender can push the attacker towards deployed decoy nodes
when the attacker does not take the decoy nodes path. In this
case, the defender will block exploits to prevent the attacker
from compromising the real goal state. Figure 14 demon-
strates the graphical representation of the defender’s actions
observing the attacker’s lateral movement. We use the same
simulation parameters used in Use Case A. The evolution of
computed deception policy is presented in Figure 14 when
Nsim = 5000.

Initially, the defender does not take any actions (from
t=1 to t=2) rather gradually updates the belief based on
the received security alerts. Then defender begins to deploy
defense actions (t=3) when the defender belief reflects that
the attacker is not taking the predicted path. It is evident
from Figure 14 when t=3 that the attacker exploited vul-
nerability e3 and reached c3, which is not in the predicted
paths. Defender takes an action that induces a set of blocked

FIGURE 13. Sample evolution of deception policy and attacker’s lateral
movement.

exploits, in this case, e2, e4 marked as a red hexagon in
Figure 14. Because of the blocked exploits, the attacker can-
not move laterally to exploit vulnerabilities e5, e6. These are
the ultimate two vulnerabilities that need to be exploited
to reach the real network goal state c5. In this situation,
the attacker tries to find another way to move forward.
At t=4, the attacker reached c2 (orange circle) by exploit-
ing exploits e2. At t=5, it is evident that the defender’s
belief reflects that attacker is in the predicted real network
attack path and towards the real goal state. In this case,
the defender’s action block vulnerabilities e5, e6, and the
attacker is forced to take the decoy nodes path to move
forward. The red circle in Figure 14 represents the fake
goal state.

VOLUME 9, 2021 49679

IEEEAccess· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

FIGURE 14. Sample evolution of deception policy and attacker’s lateral
movement.

IX. CONCLUSION
This paper proposes an adversarial lateral movement pre-
vention technique by incorporating reactive (graph analysis)

and proactive (cyber deception technology) methods. In our
proposed system, the approach undergoes two main phases.
The first phase predicts the most likely attack path based
on Intrusion Detection System (IDS) alerts and pcap packet
capture traces. The second phase is deploying decoy nodes
along the predicted path. To predict the path, we use transition
probabilities and present and past observations of the HMM.
In the second phase, we utilize the predicted attack path to
deploy decoy nodes. The Hidden Markov based model has
been developed to predict the most likely attack path from
the lateral movement stage. Forecasting the next sequence
of attack paths helps the defender deploy decoy nodes and
save time and cost in a resource-constrained environment.
It also allows us to prevent the attack from reaching the
final stage of data exfiltration. This prediction module uses
the Viterbi and forward-backward algorithm to determine the
most likely attack path sequences by correlating the sequence
of alert and packet trace analysis. For future work, we plan to
incorporate MITRE ATT&CK post-compromise framework
and additional context from the target system in our model.

REFERENCES
[1] Mcaafee-Report. (2018). The Economic Impact of Cybercrime no Slow-

ing Down. [Online]. Available: https://www.mcafee.com/enterprise/en-
us/assets/executive-summaries/es-economic-impact-cybercrime.pdf

[2] I. Ghafir, K. G. Kyriakopoulos, S. Lambotharan, F. J. Aparicio-Navarro,
B. Assadhan, H. Binsalleeh, and D.M. Diab, ‘‘HiddenMarkov models and
alert correlations for the prediction of advanced persistent threats,’’ IEEE
Access, vol. 7, pp. 99508–99520, 2019.

[3] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, ‘‘A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1851–1877, 2nd Quart., 2019.

[4] Z. Anming and J. Chunfu, ‘‘Study on the applications of hidden Markov
models to computer intrusion detection,’’ in Proc. 5th World Congr. Intell.
Control Autom., vol. 5, 2004, pp. 4352–4356.

[5] S. Shin, S. Lee, H. Kim, and S. Kim, ‘‘Advanced probabilistic approach for
network intrusion forecasting and detection,’’ Expert Syst. Appl., vol. 40,
no. 1, pp. 315–322, Jan. 2013.

[6] M. Al Amin, S. Shetty, L. Njilla, D. Tosh, and C. Kamouha,
‘‘Attacker capability based dynamic deception model for large-scale net-
works,’’ EAI Endorsed Trans. Secur. Saf., vol. 6, no. 21, Aug. 2019,
Art. no. 162808.

[7] A. Schlenker, O. Thakoor, H. Xu, M. Tambe, P. Vayanos, F. Fang,
L. Tran-Thanh, and Y. Vorobeychik, ‘‘Deceiving cyber adversaries:
A game theoretic approach,’’ in Proc. Int. Conf. Auto. Agents Multiagent
Syst., 2018.

[8] M. Albanese, E. Battista, S. Jajodia, and V. Casola, ‘‘Manipulating the
attacker’s view of a system’s attack surface,’’ inProc. IEEEConf. Commun.
Netw. Secur., Oct. 2014, pp. 472–480.

[9] S. T. Trassare, R. Beverly, and D. Alderson, ‘‘A technique for network
topology deception,’’ in Proc. IEEE Mil. Commun. Conf. (MILCOM),
Nov. 2013, pp. 1795–1800.

[10] Q. Duan, E. Al-Shaer, and H. Jafarian, ‘‘Efficient random route mutation
considering flow and network constraints,’’ in Proc. IEEE Conf. Commun.
Netw. Secur. (CNS), Oct. 2013, pp. 260–268.

[11] G. Zhao, K. Xu, L. Xu, and B. Wu, ‘‘Detecting APT malware infec-
tions based on malicious DNS and traffic analysis,’’ IEEE Access, vol. 3,
pp. 1132–1142, 2015.

[12] B. C. M. Cappers and J. J. van Wijk, ‘‘SNAPS: Semantic network traffic
analysis through projection and selection,’’ inProc. IEEE Symp. Visualizat.
Cyber Secur. (VizSec), Oct. 2015, pp. 1–8.

[13] M. Marchetti, F. Pierazzi, A. Guido, and M. Colajanni, ‘‘Countering
advanced persistent threats through security intelligence and big data
analytics,’’ in Proc. 8th Int. Conf. Cyber Conflict (CyCon), May 2016,
pp. 243–261.

49680 VOLUME 9, 2021

IEEE Access· 

e, e, 

e, 

e, 

e, 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

[14] K. Haslum, A. Abraham, and S. Knapskog, ‘‘DIPS: A framework for dis-
tributed intrusion prediction and prevention using hidden Markov models
and online fuzzy risk assessment,’’ in Proc. 3rd Int. Symp. Inf. Assurance
Secur., Aug. 2007, pp. 183–190.

[15] K. Haslum, M. E. G. Moe, and S. J. Knapskog, ‘‘Real-time intru-
sion prevention and security analysis of networks using HMMs,’’
in Proc. 33rd IEEE Conf. Local Comput. Netw. (LCN), Oct. 2008,
pp. 927–934.

[16] A. S. Sendi, M. Dagenais, M. Jabbarifar, and M. Couture, ‘‘Real time
intrusion prediction based on optimized alerts with hiddenMarkovmodel,’’
J. Netw., vol. 7, no. 2, p. 311, Feb. 2012.

[17] H. A. Kholidy, A. Erradi, S. Abdelwahed, and A. Azab, ‘‘A finite state
hidden Markov model for predicting multistage attacks in cloud systems,’’
in Proc. IEEE 12th Int. Conf. Dependable, Autonomic Secure Comput.,
Aug. 2014, pp. 14–19.

[18] S. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders, and
T. J. Overbye, ‘‘SCPSE: Security-oriented cyber-physical state estimation
for power grid critical infrastructures,’’ IEEE Trans. Smart Grid, vol. 3,
no. 4, pp. 1790–1799, Dec. 2012.

[19] T. Hughes and O. Sheyner, ‘‘Attack scenario graphs for computer network
threat analysis and prediction,’’ Complexity, vol. 9, no. 2, pp. 15–18,
Nov. 2003.

[20] A. A. Ramaki, M. Amini, and R. E. Atani, ‘‘RTECA: Real time episode
correlation algorithm for multi-step attack scenarios detection,’’ Comput.
Secur., vol. 49, pp. 206–219, Mar. 2015.

[21] D. Yu and D. Frincke, ‘‘Improving the quality of alerts and predicting
intruder’s next goal with hidden colored Petri-net,’’Comput. Netw., vol. 51,
no. 3, pp. 632–654, Feb. 2007.

[22] A. Shameli-Sendi, J. Desfossez, M. Dagenais, and M. Jabbarifar,
‘‘A retroactive-burst framework for automated intrusion response system,’’
J. Comput. Netw. Commun., vol. 2013, pp. 1–8, Jan. 2013.

[23] S. Fayyad and C. Meinel, ‘‘Attack scenario prediction methodology,’’ in
Proc. 10th Int. Conf. Inf. Technol., New Generat., Apr. 2013, pp. 53–59.

[24] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo,
‘‘Baiting inside attackers using decoy documents,’’ in Proc. Int.
Conf. Secur. Privacy Commun. Syst. Berlin, Germany: Springer, 2009,
pp. 51–70.

[25] V. Conitzer and T. Sandholm, ‘‘New complexity results about Nash equi-
libria,’’ Games Econ. Behav., vol. 63, no. 2, pp. 621–641, Jul. 2008.

[26] V. E. Urias, W. M. S. Stout, and H. W. Lin, ‘‘Gathering threat intelligence
through computer network deception,’’ in Proc. IEEE Symp. Technol.
Homeland Secur. (HST), May 2016, pp. 1–6.

[27] T. Micro. The Custom Defense Against Targeted Attacks. (Mar. 28, 2020).
[Online]. Available: http://www.trendmicro.fr/media/wp/custom-defense-
against-targeted-attacks-whitepaper-en.pdf

[28] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan, ‘‘Detecting
algorithmically generated malicious domain names,’’ in Proc. 10th Annu.
Conf. Internet Meas. (IMC), 2010, pp. 48–61.

[29] A. K. Kaushik, E. S. Pilli, and R. C. Joshi, ‘‘Network forensic system
for port scanning attack,’’ in Proc. IEEE 2nd Int. Advance Comput. Conf.
(IACC), Feb. 2010, pp. 310–315.

[30] M. I. Center, ‘‘APT1: Exposing one of China’s cyber espionage units,’’
Mandian, FireEye, Milpitas, CA, USA, Tech. Rep., Feb. 2013.

[31] M. Ussath, D. Jaeger, F. Cheng, and C. Meinel, ‘‘Advanced persistent
threats: Behind the scenes,’’ in Proc. Annu. Conf. Inf. Sci. Syst. (CISS),
Mar. 2016, pp. 181–186.

[32] L. R. Rabiner, ‘‘A tutorial on hidden Markov models and selected appli-
cations in speech recognition,’’ Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Feb. 1989.

[33] B. Bauer and K. Karl-Friedrich, ‘‘Towards an automatic sign language
recognition system using subunits,’’ inProc. Int. GestureWorkshop. Berlin,
Germany: Springer, 2001, pp. 64–75.

[34] L. Rabiner and B. Juang, ‘‘An introduction to hidden Markov models,’’
IEEE ASSP Mag., vol. 3, no. 1, pp. 4–16, Jan. 1986.

[35] (2020). Mitre Adversarial Tactics, Techniues, and Common Knowledge.
[Online]. Available: https://attack.mitre.org/techniques/enterprise

[36] The Evolving Face of Cyber ThreatsWhitepaper, IBM, Endicott, NY, USA,
2017.

[37] S.-Z. Yu and H. Kobayashi, ‘‘An efficient forward-backward algorithm for
an explicit-duration hidden Markov model,’’ IEEE Signal Process. Lett.,
vol. 10, no. 1, pp. 11–14, Jan. 2003.

[38] N. Poolsappasit, R. Dewri, and I. Ray, ‘‘Dynamic security riskmanagement
using Bayesian attack graphs,’’ IEEE Trans. Dependable Secure Comput.,
vol. 9, no. 1, pp. 61–74, Jan. 2012.

[39] P. Mell, K. Scarfone, and S. Romanosky, ‘‘Common vulnerability scoring
system,’’ IEEE Secur. Privacy Mag., vol. 4, no. 6, pp. 85–89, Nov. 2006.

[40] P. Ammann, D. Wijesekera, and S. Kaushik, ‘‘Scalable, graph-based net-
work vulnerability analysis,’’ in Proc. 9th ACM Conf. Comput. Commun.
Secur. (CCS), 2002, pp. 217–224.

[41] E. Miehling, M. Rasouli, and D. Teneketzis, ‘‘A POMDP approach to
the dynamic defense of large-scale cyber networks,’’ IEEE Trans. Inf.
Forensics Security, vol. 13, no. 10, pp. 2490–2505, Oct. 2018.

[42] S. Jajodia and S. Noel, ‘‘Topological vulnerability analysis,’’ in Cyber
Situational Awareness. Boston, MA, USA: Springer, 2010, pp. 139–154.

[43] H. Kurniawati, D. Hsu, and W. S. Lee, ‘‘SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces,’’ in
Proc. 4th Robot., Sci. Syst., Jun. 2008.

[44] D. Silver and J. Veness, ‘‘Monte-Carlo planning in large POMDPs,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 2164–2172.

[45] E. Talvitie and S. Singh, ‘‘Learning to make predictions in partially
observable environments without a generative model,’’ J. Artif. Intell. Res.,
vol. 42, pp. 353–392, Nov. 2011.

[46] P. Auer, N. Cesa-Bianchi, and P. Fischer, ‘‘Finite-time analysis of the mul-
tiarmed bandit problem,’’ Mach. Learn., vol. 47, nos. 2–3, pp. 235–256,
2002.

[47] P.Mell, K. Scarfone, and S. Romanosky, ‘‘A complete guide to the common
vulnerability scoring system version 2.0,’’ in Proc. 1st-Forum Incident
Response Secur. Teams, vol. 1, 2007, p. 23.

[48] A. Steinberg, ‘‘Open interaction network model for recognizing and pre-
dicting threat events,’’ in Proc. IEEE Inf., Decis. Control, Feb. 2007,
pp. 285–290.

[49] S. J. Yang, H. Du, J. Holsopple, and M. Sudit, ‘‘Attack projection,’’ in
Cyber Defense and Situational Awareness. Cham, Switzerland: Springer,
2014, pp. 239–261.

[50] X. Ou, S. Govindavajhala, and A. W. Appel, ‘‘MulVAL: A logic-based
network security analyzer,’’ in Proc. USENIX Secur. Symp., Baltimore,
MD, USA, vol. 8, 2005, pp. 113–128.

[51] Arcsight. ESM: Enterprise Security Manager [OL]. Accessed: Jun. 2020.
[Online]. Available: http://cn.linkedin.com/topic/enterprise-security-
manager

MD ALI REZA AL AMIN received the M.S.
degree in computer information and system
engineering from Tennessee State University,
Nashville, USA, in 2016. He is currently pursu-
ing the Ph.D. degree in computational modeling
and simulation engineering with Old Dominion
University, Norfolk, USA. His research interests
include cyber security, cyber deception technol-
ogy, and AI in cyber security.

SACHIN SHETTY (Senior Member, IEEE)
received the Ph.D. degree in modeling and sim-
ulation from Old Dominion University, in 2007.
He is currently the Associate Director of the Vir-
ginia Modeling, Analysis, and Simulation Cen-
ter, Old Dominion University. He holds a joint
appointment as an Associate Professor with the
Department of Computational, Modeling, and
Simulation Engineering. His research interests
include the intersection of computer networking,

network security, and machine learning.

VOLUME 9, 2021 49681

IEEEAccess· 



M. A. R. Al Amin et al.: HMM and Cyber Deception for Prevention of Adversarial Lateral Movement

LAURENT NJILLA received the B.S. degree
in computer science from the University of
Yaoundé 1, Cameroon, the M.S. degree in com-
puter engineering from the University of Central
Florida (UCF), in 2005, and the Ph.D. degree in
electrical engineering from Florida International
University (FIU), in 2015. He joined the Cyber
Assurance Branch, U.S. Air Force Research Lab-
oratory (AFRL), Rome, NY, as a Research Elec-
tronics Engineer, in 2015.

DEEPAK K. TOSH is currently an Assistant Pro-
fessor in computer science with The University of
Texas at El Paso. His research interests include
blockchain technology, cybersecurity, data prove-
nance mechanisms, the security of the Internet of
Battlefield Things (IoBT) environments. He has
been actively working with researchers from the
Air Force Research Laboratory (AFRL), Rome,
NY, and the Army Research Laboratory (ARL),
Adelphi, MD, on the cybersecurity and blockchain
research.

CHARLES KAMHOUA (Senior Member, IEEE)
received the B.S. degree in electronics from
the University of Douala (ENSET), Cameroon,
in 1999, and the M.S. degree in telecommuni-
cation and networking and the Ph.D. degree in
electrical engineering from Florida International
University (FIU), in 2008 and 2011, respectively.
He is currently a Researcher with the Network
Security Branch, U.S. Army Research Laboratory
(ARL), Adelphi, MD, where he is responsible for

conducting and directing basic research in the area of game theory applied
to cyber security.

49682 VOLUME 9, 2021

IEEE Access· 

••• 


	Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement
	Original Publication Citation

	Hidden Markov Model and Cyber Deception for the Prevention of Adversarial Lateral Movement

