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“Knowledge is as wings to man’s life, and a ladder for his ascent. Its acquisition is incumbent
upon everyone. The knowledge of such sciences, however, should be acquired as can profit the
peoples of the earth, and not those which begin with words and end with words. Great indeed
is the claim of scientists and craftsmen on the peoples of the world.... In truth, knowledge is a
veritable treasure for man, and a source of glory, of bounty, of joy, of exaltation, of cheer and
gladness unto him.”

Bahá’u’lláh
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Abstract
IEEE 802.11 Wireless Networks are getting increasingly popular providing ubiq-

uitous Internet access for a large number of users in university campuses, enter-
prises, urban areas, and many other public places. Among the many characteris-
tics of these large-scale 802.11 networks is the transition of huge volumes of traffic
as a result of intensive usage from different locations in the wireless covered area.
The mobile users often suffer from connectivity problems and performance issues
due to unstable radio conditions and dynamic user behavior among other reasons.
Anomaly detection and distinction are among the major challenges that network
managers encounter. Monitoring the broad and complex Wireless Local Area Net-
works (WLANs) often requires heavy instrumentation of the user devices, which
makes the anomaly detection analysis even harder.

In this thesis we propose to use Hidden Markov Models (HMMs) and its vari-
ation models: 1) to inspect and characterize the dynamic usage pattern of wireless
networks in terms of the changing traffic patterns, mobility of the users and the
anomalies, 2) to model usage behaviors of individual access points (APs) or groups
of APs, 3) to introduce and improve anomaly detection techniques based on the
temporal data sequences, and 4) to represent the spatio-temporal anomaly detection
approaches based on the additional spatial information.

To achieve this purpose, we start by performing an exhaustive outlier detection
analysis using the state of the art methodologies as well as the proposed HMM mod-
eling approach. We explore and compare individual HMMs versus single HMM and
mixture of HMMs. We further present a number of network anomalous patterns
based on HMM parameters like hidden states’ transition and partial likelihood of
the observation sequences.

In order to understand how to improve the anomaly detection results, we then
propose Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs)
as time-invariant and time-variant modeling techniques, respectively. We represent
the anomaly detection techniques by GMM and HMM and analyze the root causes of
the anomalies. We further improve the HMM models using Universal Background
Model (UBM) as a robust technique to initialize HMMs using all the available data.
We represent the application of anomaly detection in three different aspects: 1) de-
tection of anomalous time-series in a database of time-series, 2) distinction of anoma-
lous patterns, and 3) detection of anomalous points within a given time-series.

Finally, we try to understand how and to which extent the anomaly detection re-
sults can improve by adding spatial information. In particular, we apply a hybrid in-
tegration of the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM),
called SOHMMM for spatio-temporal anomaly detection in 802.11 wireless network.
We believe that while modeling an independent HMM per AP misses the opportu-
nity to explore similarities between APs for improvement of learning, a single HMM
for all APs loses the flexibility to learn AP specific behaviour. The UBM-HMM is an
improvement in the right direction but the relations between APs are only used in
the initial phase, where one learns the UBM to then initialize the individual HMM
models per AP. In SOHMMM we focus on actual proximity of APs as a determinant
factor in connectivity and performance problems and employ SOHMMM to exploit
the semantic connectivity between adjacent HMMs. We further extend the online
gradient descent unsupervised learning algorithm of SOHMMM for multivariate
Gaussian emissions.

We validate our proposed methodologies on three main data sets for experimen-
tal analysis and evaluation purposes: 1) RADIUS authentication log data collected
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at the hotspot of the Faculty of Engineering of the University of Porto (FEUP) that
summarizes the connection of more than 45 thousands users to 364 APs in over
two years, 2) an exploratory small testbed deployed in FreeRADIUS server and at a
home environment with 6 wireless users connected to 1 AP from heterogeneous de-
vices, 3) a middle-sized wireless network simulation containing 100 wireless users
associated to 10 APs located in a wireless ground, simulated in a 1500m × 1200m
OMNeT++ wireless simulator and INET framework.

Our findings indicate that: 1) the single HMM and mixture HMM models outper-
forms the individual HMMs in terms of accuracy and HMM indicators conformity
(Chapter 4), 2) HMM as time-variant approach outperforms GMM as time-invariant
approach in obtaining higher detection ratio while producing minor false alarms
(Chapter 5), 3) HMM and HMM-UBM models are both capable of detecting greater
proportion of anomalies while producing only a small false positive ratio, compared
to baseline approaches like RawData and PCA (Chapter 5), 4) SOHMMM algorithm
can improve the anomaly detection accuracy and sensitivity compared to HMM-
UBM and Z-SOHMMM (SOHMMM with zero neighborhood) techniques in various
anomalous scenarios (Chapter 6).
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Resumo
As redes sem fio IEEE 802.11 estão a tornar-se cada vez mais populares fornecendo

acesso ubíquo à Internet para um grande número de usuários em campus univer-
sitários, empresas, áreas urbanas e muitos outros locais públicos. Entre as muitas
características dessas redes 802.11 de larga escala está a transição de grandes vol-
umes de tráfego como resultado do uso intensivo de diferentes locais na área coberta
sem fio. Os utilizadores móveis geralmente sofrem com problemas de conectividade
e problemas de desempenho devido a condições de rádio instáveis e comportamen-
tos dinâmicos do utilizador, entre outras razões. A detecção e distinção de anomalias
estão entre os principais desafios que os gerentes de rede enfrentam. A monitoriza-
ção de amplas e complexas redes locais sem fio (WLANs) geralmente requer instru-
mentação pesada dos dispositivos do utilizador, o que dificulta ainda mais a análise
da detecção de anomalias.

Nesta tese propomos o uso de Modelos Ocultos de Markov (HMMs) e seus mod-
elos de variação, para: 1) inspecionar e caracterizar o padrão de uso dinâmico de
redes sem fio em termos de mudança de padrões de tráfego, mobilidade dos uti-
lizadores e das anomalias, 2) modelar comportamentos de uso de pontos de acesso
individuais (APs) ou grupos de APs, 3) introduzir e melhorar técnicas de detecção de
anomalias baseadas nas sequências de dados temporais e, 4) representar as aborda-
gens de detecção de anomalias espacio-temporais baseadas na informação espacial
adicional.

Para atingir este objetivo, começamos por realizar uma análise exaustiva da de-
tecção de outliers usando as metodologias do estado da arte, assim como a abor-
dagem de modelação de HMM proposta. Exploramos e comparamos HMMs indi-
viduais versus um HMM simples e a mistura de HMMs. Além disso, apresentamos
vários padrões anômalos de rede baseados em parâmetros HMM, como a transição
de estados ocultos e a verossimilhança parcial das seqüências de observação.

Para entender como melhorar os resultados de detecção de anomalias, propomos
Modelos de Mistura Gaussiana (GMMs) e Modelos Ocultos de Markov (HMMs)
como técnicas de modelação invariantes no tempo e variantes no tempo, respecti-
vamente. Representamos as técnicas de detecção de anomalias por GMM e HMM
e analisamos as causas raízes das anomalias. Melhoramos ainda mais os modelos
HMM usando o Universal Background Model (UBM) como uma técnica robusta
para inicializar HMMs usando todos os dados disponíveis. Representamos a apli-
cação da detecção de anomalias em três aspectos diferentes: 1) detecção de séries
temporais anômalas em um banco de dados de séries temporais, 2) distinção de
padrões anômalos e 3) detecção de pontos anômalos dentro de uma determinada
série temporal.

Finalmente, tentamos entender como e em que medida os resultados da detecção
de anomalias podem melhorar, adicionando informações espaciais. Em particular,
aplicamos uma integração híbrida do Mapa Auto-Organizável (SOM) e do Modelo
Oculto de Markov (HMM), chamado SOHMMM para detecção de anomalia espaço-
temporal na rede sem fio 802.11. Acreditamos que, embora a modelação de um
HMM independente por AP perca a oportunidade de explorar semelhanças entre
os APs para melhorar a aprendizagem, um único HMM para todos os APs perde a
flexibilidade de aprender o comportamento específico do AP. O UBM-HMM é uma
melhoria na direção certa, mas as relações entre os APs são usadas apenas na fase
inicial, onde se aprende o UBM para, então, inicializar os modelos HMM individ-
uais por AP. No SOHMMM, nos concentramos na proximidade real dos APs como
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um fator determinante dos problemas de conectividade e desempenho e empreg-
amos o SOHMMM para explorar a conectividade semântica entre os HMMs adja-
centes. Além disso, estendemos o algoritmo de aprendizado não supervisionado
de SOHMMM de gradiente de descida on-line para emissões gaussianas multivari-
adas. Validamos as nossas metodologias propostas em três conjuntos de dados prin-
cipais para análise experimental e avaliação: 1) dados do registo de autenticação
RADIUS recolhidos no hotspot da Faculdade de Engenharia da Universidade do
Porto (FEUP) que resume a ligação de mais de 45 mil utilizadores para 364 APs
em mais de dois anos, 2) um pequeno testbed exploratório implantado no servidor
FreeRADIUS e em um ambiente doméstico com 6 usuários wireless conectados a 1
AP de dispositivos heterogêneos, 3) uma simulação de rede wireless de tamanho
médio contendo 100 usuários wireless associados 10 APs localizados em um terreno
sem fio, simulados em um simulador sem fio OMNeT ++ de 1500m× 1200m e uma
estrutura INET.

Nossas descobertas indicam que: 1) os modelos HMM e HMM de mistura única
superam os HMMs individuais em termos de precisão e conformidade dos indi-
cadores HMM (Capítulo 4); 2) HMM como abordagem de variante de tempo su-
pera o GMM como abordagem invariante no tempo para obter maior taxa de de-
tecção enquanto produz menos falsos alarmes (Capítulo 5), 3) os modelos HMM e
HMM-UBM são capazes de detectar uma maior proporção de anomalias enquanto
produzem apenas uma pequena proporção de falsos positivos, em comparação com
abordagens de base como RawData e PCA (Capítulo 5), 4) O algoritmo SOHMMM
pode melhorar a precisão e a sensibilidade da detecção de anomalias em compara-
ção com as técnicas HMM-UBM e Z-SOHMMM (SOHMMM com vizinhança zero)
em vários cenários anômalos (Capítulo 6).
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Chapter 1

Introduction

Recently, the mass deployment of communication devices and wireless infrastruc-
tures has been observed extensively. As the employment of these technologies be-
comes an important part of peoples’ lives, utilizing these devices has the potential
ability of reflecting the lifestyle of human beings or the specific features of their in-
habitant places. Understanding the user’s behavioral patterns will also play an im-
portant role in dealing with network management issues to provide higher quality
of service, preventing network failures due to congestion, predicting traffic flow, de-
signing behavior-aware applications among others.

Wireless LANs (WLANs) with 802.11 technologies are getting deployed princi-
pally at most university campuses, enterprises and organizations, shopping centers,
airports and in so many other public places. These large-scale networks, particu-
larly speaking of IEEE 802.11 Infrastructure mode, consist of basic network compo-
nents: Wireless Stations, wired stations, and the Access Points (AP) that function
as connection links between the wired and wireless sections. An AP in a wireless
network establishes wireless connectivity with a wireless station within WLAN and
supports a particular number of devices at a given time. The APs provide coverage
and capacity for supporting mobile clients with heterogeneous devices and a variety
of applications. The number of connected devices sustained by an AP varies over
time since new devices come in and existing devices leave by. The type of services
utilized and the amount of traffic transferred also affect the number of supported
devices and hence the quality of service provided. Figure 1.1 shows the schema of a
typical WLAN and its main components.

Among the many characteristics of these large-scale networks is the transmission
of huge volumes of traffic as a result of intensive usage from different locations in
the wireless area. The mobile clients demand reliable connections and high perfor-
mance in all circumstances and expect their applications to work smoothly around
the wireless covered field, but this is an ideal case which is not always achievable.
Most of the time, wireless users suffer from low coverage, intermittent connectivity,
authentication failure, degraded performance and many other complications origi-
nated from the unreliable nature of the wireless connection and dynamic usage pat-
tern of other users in the vicinity. The question of performance becomes increasingly
important as new applications demand sufficient bandwidth and reliable medium
access. Detection of aforementioned problems that affect the performance of the in-
dividual users in the network is of great importance for network managers.

One of the objectives of this work is to inspect and characterize the usage pattern
of the wireless networks and its inherent dynamics by exploring the spatial prox-
imity of access points as well as their timely usage pattern, and to provide robust
models for anomaly detection.
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FIGURE 1.1: WLAN APs and the coverage area of the wireless sta-
tions (STA)

In the following section, we elaborate some details of wireless setup in infras-
tructure mode, and explain how a wireless station associate to an access point. We
further provide a brief description of RADIUS protocol and the process of authen-
tication and authorization of users to the network under this protocol. This content
is important so the reader can better understand not only the wireless performance
issues, but also the data in which our solution is based.

The remaining sections of this chapter present performance issues for wireless
users in subsection 1.2, challenges of the wireless network management in subsec-
tion 1.3, proposed solution that contain usage modeling and anomaly detection in
subsection 1.4, the most important research questions of the current work in subsec-
tion 1.5, the key contributions in subsection 1.6, and thesis structure in subsection
1.7.

1.1 Wireless Setup in Infrastructure Mode

1.1.1 Association of Wireless Station to Access Point

The process of the association of a wireless mobile station to an AP, as it is cur-
rently implemented by most manufacturers is described as follows: A wireless sta-
tion scans the available channels of each AP in the neighborhood and listens to the
beacon (passive approach) or probe response frames (active approach). IEEE 802.11
protocol defines a number of Wi-Fi channels ranging from 2.4 GHz to 5.9 GHz. The
Wi-Fi channels that are the concern of this work (802.11 b/g/n) are listed in the 2.4
GHz range and consist of one to eleven (up to fourteen in some countries) channels.
The wireless station stores the received signal strength indicator (RSSI) of the APs
in the vicinity and other relevant information such as extended service set identifi-
cation (ESSID), encryption type (e.g. WPA, WEP), etc. When the scanning process
is over, the wireless station typically selects an AP with the highest RSSI among the
observed APs in its proximity. After the process of authentication/authorization is
accomplished, the permission is granted to the wireless station and the connection
is established. Forthwith, the wireless station is associated with the new AP and the
user is ready to send and receive traffic through that AP. The wireless station will be
dis-associated from the current AP under the mobility circumstances, AP shutdown
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or halt, RSSI recession or some other normal or abnormal consequences of network
fluctuations. The process of AP selection only based on the strongest RSSID lead to
load imbalance problem, while some APs are overcrowded and the other available
APs remain idle.

1.1.2 Remote Authentication Dial-In User Service (RADIUS)

Remote Authentication Dial-In User Service (RADIUS) is a network protocol that
enables remote access servers to communicate with a central server to authenticate
dial-in users and authorize their access to the requested system or service. RADIUS
is commonly used by Internet Service Providers (ISPs), cellular network providers,
and corporate and educational networks, and it allows the management of user pro-
files in a central database that all remote servers can share. Having a central service
facilitates the process of tracking usage for billing and network statistics. RADIUS is
a de facto industry standard used by a number of network product companies and
it is a proposed IETF standard [1]. This protocol is used to provide network authen-
tication, authorization, and accounting services, and it is particularly described in
Request for Comments (RFC) 2865 [2] and RFC 2866 [3].

According to RADIUS protocol, whenever a client associates to an 802.11 AP, a
log event "START" is recorded in the accounting database. While the client is still
connected to this AP, every 10 or 15 minutes (based on the server configuration) an
interim log event "ALIVE" is issued to refresh the connection between the client and
the AP. Eventually, when the user decides to disconnect from the network, or for
some reason it is forced to leave the network, a log event "STOP" is recorded, which
marks the end of the association period of this user.

RADIUS serves three main purposes as follows:

• Authenticates users before granting them access to the network.

• Authorizes the authenticated users for specific network services.

• Accounts the usage activity of the authorized users for the services in use.

AAA stands for "Authentication, Authorization, and Accounting". It defines an
architecture that authenticates and grants authorization to users and accounts for
their activity. When AAA is not used, the architecture is described as "open", where
anyone can gain access and do anything, without any tracking.

A Network Access Server (NAS) operates as a client of the RADIUS accounting
server. The client is responsible for passing user accounting information to a des-
ignated RADIUS accounting server. The RADIUS accounting server is in charge of
receiving the accounting request and returning a response to the client indicating
that it has successfully received the request. The RADIUS accounting server can act
as a proxy client to other kinds of accounting servers [3].

Accounting

Accounting refers to the recording of resources users consume during the time they
are connected to the network. The information gathered can include the total sys-
tem time used, and the amount of data sent or received by the user during a session.
Over a network session, the NAS periodically sends an accounting data of user ac-
tivity to the server (in "Alive" or "Stop" sessions). This data is mainly used for the
billing purposes. However, we used the accounting information for the reason of
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FIGURE 1.2: The Authentication and Authorization Process in RA-
DIUS

network monitoring and management as the log data set is already stored in a cen-
tral database, the RADIUS server, and facilitates the data collection process.

The detailed information of users’ activities is not included in the summary sent
by NAS- for instance the visited web sites or particular protocols in use is local to the
NAS- and is not available to the RADIUS server. Transactions between the client and
RADIUS server are authenticated through the use of a shared secret, which is never
sent over the network. In addition, user passwords are sent encrypted between the
client and RADIUS server to eliminate the possibility of snooping on an insecure
network.

The process of authentication and authorization is delineated in Figure 1.2.

1.2 Performance Issues for Wireless Users

Having further explored the connectivity procedure in wireless networks, some in-
herent concerns and dilemmas become more clear. In Wireless 802.11 networks, mo-
bile stations perform an active or passive scanning process to discover available APs
in the vicinity and connect to an AP with the highest received signal strength (RSS)
[4]. This association strategy, only based on RSS, can lead to many connectivity prob-
lems and performance issues as it may result in significant load imbalance between
APs. The overloaded APs can still present high RSS and try to accommodate more
stations while other APs are only slightly loaded or even idle.

Another source of performance degradation in WLANs is the multi-rate flexibil-
ity and the fairness mechanism of the MAC protocol, when a station far from the
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AP reduces its bit rate to avoid repeated unsuccessful frame transmission and as a
result, degrades the throughput of the other stations associated with the same AP
[5].

In addition to the aforementioned problems, due to the unreliable and time-
varying nature of the wireless channels, 802.11 networks usually suffer from many
deficiencies such as exposed and hidden terminals, capture effect, interferences, sig-
nal fading, inconsistent coverage among others. In such circumstances, high packet
loss is observed [6] that results in inconsistent connectivity and low performance.
Additionally, the traffic load and users movement on different access points in the
wireless covered area vary from time to time, making these network management
tasks even harder. Network managers are concerned about discovering such sort of
problems and abnormal events occurring in their network. Detection of anomalies
is not only advantageous for prompting immediate administrative actions but also
useful for long-term network design, planning, and maintenance decisions as the
network infrastructure and usage evolve over time. This paves the way for gath-
ering data from existing mechanisms in the network; in our case we focus on the
RADIUS accounting data.

1.3 Challenges of the Wireless Network Management

In large deployments of 802.11 networks with varying usage, channel conditions,
and operational constraints, network managers often demand tools that provide
them with a comprehensive view of the entire network for automatic detection of
the problems. In such widespread networks, where at any moment there is a high
possibility of malfunctioning of APs and user devices, the necessity of such auto-
matic tools or applications is vital to preserve the quality of service at an acceptable
level.

Monitoring the infrastructure by any means rather than intelligent diagnostic
tools seems inconvenient in practice or overpriced in budget. For example, it is ex-
pensive to deploy third party devices like sensors and sniffers individually on clients
machines or APs for detection of problems in different OSI layers, as studied earlier
[7, 8, 9]. And it seems impractical for network staff to walk around the wireless cov-
ered area with a device in their hand monitoring the network and measuring the
quality of connections at any time.

1.4 Proposed Solution: Usage Modeling and Anomaly De-
tection

We propose to use Hidden Markov Models (HMMs) and its variation models: 1) to
inspect and characterize the dynamic usage pattern of wireless networks in terms of
the changing traffic patterns, mobility of the users and the anomalies, 2) to model
usage behaviors of individual access points (APs) or groups of APs, 3) to introduce
and improve anomaly detection techniques based on the temporal data sequences,
and 4) to represent the spatio-temporal anomaly detection approaches based on the
additional spatial information. The employed methodology is based on the devel-
opment of HMM models and a detection tool using Wi-Fi campus data, Testbed
deployment and wireless simulation.

An exhaustive analysis is performed for outlier detection in 802.11 wireless net-
works using the state of the art methodologies in addition to the proposed HMM
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techniques. Chapter 4 has taken this approach into account. Furthermore a num-
ber of network anomalous patterns are represented considering HMM parameters
such as hidden states’ transition and partial likelihood of the observation sequences.
Moreover, individual HMMs versus single HMM (one for all APs) and mixture of
HMMs (groups of HMM) are investigated.

In Chapter 5, the AP usage data of 802.11 WLAN is analyzed and anomaly de-
tection techniques for AP level anomalous events are proposed. Gaussian Mixture
Models (GMMs) as time-invariant and Hidden Markov Models (HMMs) as time-
variant modeling techniques are presented, and a case study on FEUP data set (3.2)
is performed to inspect these two methodologies. Further, the anomaly detection
techniques by GMM are represented as distant data points that hardly belong to
any Gaussian component, and by HMM as data points with the minimum likeli-
hood values. Some of the root cause of the low likelihood values are analyzed as
divergence from the assigned hidden states as well as the low probability in state
transition. The experiments are carried out on an exploratory Testbed deployed in
a home environment (3.3). In the second part of this chapter, Universal Background
Modeling (UBM) approach is introduced for a robust initialization of the HMMs us-
ing the data available from all experiments regardless of containing anomalies or
not. Regarding the anomaly detection techniques three main approaches are con-
sidered: 1) detection of anomalous time-series in a database of time-series, 2) dis-
tinction of anomalous patterns, and 3) detection of anomalous points within a given
time-series. For the evaluation part a number of anomalous scenarios are simulated
in OMNeT++/INET for 5 APs and 30 STAs (smaller version of wireless network
simulation in 3.4). Then the detection results of HMM and HMM-UBM techniques
are evaluated versus the baseline approaches, namely RawData and PCA.

In Chapter 6 a hybrid integration of the Self-Organizing Map (SOM) and the
Hidden Markov Model (HMM) is applied, called SOHMMM for anomaly detec-
tion in 802.11 wireless network. Further the online gradient descent unsupervised
learning algorithm of SOHMMM is extended for multivariate Gaussian emissions.
Experimental analysis consists of two main parts: synthetic data, and wireless sim-
ulation data (3.4). In synthetic data analysis the distance between randomly initial-
ized HMMs and reference HMMs are estimated to investigate whether the random
HMMs converge to the reference HMMs efficiently. The experiments are further re-
peated for various observation sequence lengths and different neighborhood sizes.
Wireless Simulation data analysis display how the SOHMMM algorithm improve
the anomaly detection accuracy and sensitivity compared to HMM-UBM and Z-
SOHMMM techniques in AP shutdown/halt, AP overload, noise, and flash crowd
anomalous scenarios. Also a combination of several anomalies in one observation
sequence is investigated as miscellaneous anomalous case showing that SOHMMM
is capable of detecting contrasting anomalous cases while HMM-UBM is not.

Table 1.1 demonstrates the proposed methodologies and techniques versus the
data sets utilized for experiments and evaluation in each methodology. The FEUP
data set is conducted on a real university campus, however do not contain ground
truth of anomalous events. The Testbed deployment and wireless simulation data set
contain ground truth of a number of anomalous cases generated in them deliberately,
however they are reproduced in smaller scales. Although the first data set is rather
old, it has lots of data points, small though the second data set is, we can make
controlled experiments in a real network, and the third data set is simulated, but
allows us to make controlled experiments in relatively large network.
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TABLE 1.1: Methodologies vs. Datasets

Large Data Set -
FEUP (Sec. 3.2)

Testbed Deployment
(Sec. 3.3)

Wireless Simulation
(Sec. 3.4)

HMM Variations
(Ch. 4) X

GMM vs. HMM
(Sec. 5.2) X X

HMM vs. HMM-UBM
(Sec. 5.3)

X

SOHMMM
(Ch. 6) X

1.5 Research Questions

The most important research questions of the current work, investigated and ex-
plored in the presented chapters consist of:

• which model is more efficient in characterizing AP usage in WLAN: single
HMM, individual HMMs, or mixture of HMMs. (Chapter 4)

• whether HMMs are required for AP usage time-series analysis and anomaly
detection purposes or simpler models like GMMs are adequate. (Chapter 5,
Section 5.2)

• whether HMM and HMM-UBM models are capable of anomaly detection and
anomalous pattern recognition in AP usage data. (Chapter 5, Section 5.3)

• whether HMM and HMM-UBM models are required for AP anomaly detection
or the baseline approaches like RawData and PCA are enough. (Chapter 5,
Section 5.3)

• whether HMM-UBM have any advantages over HMM in the context of AP
anomaly detection. (Chapter 5, Section 5.3)

• how the spatial connections of various APs in the wireless ground could be
considered for model improvement. (Chapter 6)

• whether the integration of SOM and HMM (SOHMMM) has any advantages
over simpler model like HMM-UBM or Z-SOHMMM (SOHMMM with zero
neighborhood) in the context of AP anomaly detection. (Chapter 6)

1.6 Contributions

This thesis has two main objectives: 1) analysis and modeling of 802.11 AP usage and
exploring the inherent relationships between various parts of the network regarding
spatial and temporal connectivity, and 2) identification and detection of different
types of anomalies and characterizing them efficiently. Both these objectives are
investigated on a large data set of AP usage, a smaller Testbed deployment, and a
802.11 wireless network simulation for the purpose of evaluation.

The key contributions of this work include:
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• Extracting and presenting two main classes of data features from RADIUS data
set: Density Attributes containing population related features of user count, ses-
sion count, and connection duration, in addition to Usage Attributes including
traffic related features of input and output data in octet, and input and output
data in packets. (Chapter 3)

• Deployment of an exploratory Testbed with 1 AP and 6 STAs in FreeRADIUS
server, and generating a number of real anomalous cases for experimental pur-
poses. (Chapter 3)

• Conducting 802.11 wireless network simulation in OMNeT++/INET with 10
APs and 100 STAs, and generating several anomalous scenarios for evaluation
purposes. (Chapter 3)

• Proposing single HMM (one model for all APs), individual HMMs (one model
per AP), and mixture of HMMs (one model per groups of APs) for anomaly
detection in 802.11 wireless networks. (Chapter 4)

• Proposing a number of network anomalous patterns deduced from hidden
states transition sequences and presenting the potential HMM variations ca-
pable of detecting specific types of patterns. (Chapter 4)

• Presentation and comparison of time-invariant modeling approach (GMM)
and time-variant modeling approach (HMM) in anomaly detection. (Chapter
5)

• Proposing HMM-UBM as HMMs initialized robustly by Universal Background
Model using all the available data. (Chapter 5)

• Application of a hybrid integration of the Self-Organizing Map (SOM) and the
Hidden Markov Model (HMM) for the purpose of anomaly detection in 802.11
wireless networks. (Chapter 6)

• Extension of the online gradient descent unsupervised learning algorithm of
SOHMMM for multivariate Gaussian emissions. (Chapter 6)

The aforementioned contributions can also be found in the following list of our
publications:

• Anisa Allahdadi, Diogo Pernes, Jaime S Cardoso, and Ricardo Morla. "Hid-
den Markov Models on Self-Organizing Map for Anomaly Detection in 802.11
Wireless Networks". In: Journal of Engineering Applications of Artificial Intelli-
gence (2019). Under review

• Anisa Allahdadi and Ricardo Morla. "Anomaly Detection and Modeling in802.11
Wireless Networks". In: Journal of Network and Systems Management 27.1 (2019),
pp. 3–38. ISSN: 1573-7705. [10]

• Anisa Allahdadi, Ricardo Morla, and Jaime S Cardoso. "802.11 Wireless Sim-
ulation and Anomaly Detection using HMM and UBM". In: arXiv preprint-
arXiv:1707.02933(2017) and under review in Journal of Simulation SAGE. [11]

• Anisa Allahdadi, Ricardo Morla, and Jaime S Cardoso. "Outlier detection in
802.11 wireless access points using Hidden Markov Models". In: Wireless and
Mobile Networking Conference (WMNC), 2014 7th IFIP. IEEE. 2014, pp. 1–8. [12]
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• Anisa Allahdadi, Ricardo Morla, Ana Aguiar, and Jaime S Cardoso. "Predict-
ing short 802.11 sessions from RADIUS usagedata". In: Local Computer Net-
works Workshops (LCN Workshops), 2013 IEEE 38thConference on. IEEE. 2013, pp.
1–8. [13]

1.7 Thesis Structure

In chapter 2, we provide a survey of the related work and the most relevant re-
search on usage modeling, anomaly detection in large-scale 802.11 networks, HMM
applications in network analysis, integration of HMM and SOM, and wireless net-
work simulation. Chapter 3 deals with the process of data accumulation as a result
of wireless users’ association attempts in a large data set, a small Testbed deploy-
ment, and wireless network simulation. We present the set of main features held in
common in these three mentioned data sources, and feature selection techniques for
further analysis. In chapter 4 we present various approaches on HMM for anomaly
detection and pattern recognition and the experiments conducted on large data set
(3.2). The main direction of work in this chapter consists of outlier detection tech-
niques using proposed HMM models including individual HMMs, single HMM,
and mixture of HMMs. In chapter 5 we present: 1) time-invariant and time-variant
modeling approaches evaluated on large data set (3.2) and Testbed deployment (3.3),
as well as 2) improved HMM modeling techniques, namely Universal Background
Model (UBM), for detection of anomalous time-series in a database of time-series,
distinction of anomalous patterns, and detection of anomalous point within a given
time-series. In chapter 6 we introduce a hybrid integration of the Self-Organizing
Map (SOM) and the Hidden Markov Model (HMM) for spatio-temporal anomaly
detection in AP usage data. We extend the online gradient descent unsupervised
learning algorithm of SOHMMM for multivariate Gaussian emissions, and apply
the proposed algorithm for the purpose of spatio-temporal anomaly detection in
wireless simulation data set (3.4). In chapter 7 we provide major conclusions and
reveal potential directions for future work.
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Chapter 2

Related Work

2.1 Introduction

In this chapter we analyze existing works on 802.11 usage modeling and anomaly
detection, applications of HMM in network analysis, integration of HMM and SOM,
and wireless network simulation. These topics particularly comprise the salient lines
of research pursued in the upcoming chapters. We begin by analyzing works con-
ducted on the traces of university campuses, corporate organizations, and public
802.11 infrastructures. We present analysis of the recent works related to user be-
havior in subsection 2.2.1, user mobility modeling at APs in subsection 2.2.2, user
encounter patterns in subsection 2.2.3, user access duration in subsection 2.2.4, traf-
fic characterization in subsection 2.2.5, and AP usage characterization in subsection
2.2.6. From AP perspective, all the above mentioned items constitute to the aggre-
gate usage of the 802.11 AP.

Regarding anomaly detection in 802.11 wireless networks, we analyze relevant
existing works related to the collected 802.11 usage data, Testbeds, and simula-
tions. The main emphasis is placed on the detection of connectivity and performance
anomalies in the usage of 802.11 access points. We focus on the features and tech-
niques used for the detection of AP overload in subsection 2.3.1, AP shutdown/halt
in subsection 2.3.2, AP interference in subsection 2.3.3, and wireless measurement
tools in subsection 2.3.4.

We also investigate relevant works in the literature concerning the most common
applications of hidden Markov models in network analysis. We take into consid-
eration wireless parameters modeling in subsection 2.4.1, user behavior modeling
in subsection 2.4.2, prediction of various network features in subsection 2.4.3, net-
work traffic classification in subsection 2.4.4, and eventually anomaly detection in
subsection 2.4.5. In each context we provide simple explanation of how HMMs are
modeled and employed to resolve specific network issues.

In Section 2.5, we analyze the existing works related to the integration of Self-
Organizing Maps (SOM) and Hidden Markov Models (HMM), which is the principal
topic of Chapter 6. We study several pieces of research works that take advantage
of the synergy of SOM and HMM in collaborating or competing modes. Addition-
ally, we explore resources that refer to the incremental learning process of HMM
parameters.

Regarding the network wireless simulation in Section 2.6, we address relevant
works that employed wireless simulation for evaluation and validation, obtaining
synthesized data and parameterized metrics among others.
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2.2 Usage Modeling

Understanding of how WLANs are used provides significant information for those
who deploy and manage the network, as well as those who develop systems and
applications for wireless networks. Modeling WLAN usage characteristics are ben-
eficial in capacity planning, network monitoring, and providing more accurate net-
work simulation models. Modeling 802.11 AP usage can help performance man-
agement of large-scale 802.11 networks, and it is notably important to analyze all
aspects of user activities that may aggregate to overall usage at the 802.11 AP.

2.2.1 User behavior

In initial stages of 802.11 wireless network, many researchers focused on under-
standing how wireless users take advantage of 802.11 infrastructure. In many of
these studies, basic statistics about user behavior and network performance were
collected and analyzed. For instance in [14] a twelve-week trace of a local-area wire-
less network of a university building is examined, to explore the overall user behav-
ior, network traffic, and load characteristics. They observed that most users exploit
the network for web-surfing, session-oriented and chat-oriented activities. They also
found that the entire population can be divided into sub-communities, each with its
own unique behavior regarding user mobility, active periods, and traffic genera-
tion. Subsequently, the authors analyzed network traces of metropolitan-area wire-
less network in [15], aiming to understand overall user behavior in a daily basis.
They discovered that on average users associate with few APs which are closer to-
gether, and the the distance users move can be modeled by Gaussian distribution
around the radius of the network. They also found that the most active periods are
during the day and evening hours.

Later on, authors in [16] expanded the work conducted in [14] and [15] with
broader population using a campus-wide network of 476 APs spread over 161 build-
ings at Dartmouth College. They identified that residential traffic dominated all
other traffic, and web protocols were the largest component of traffic volume. In
[17], authors analyzed network traces belong to over 550 APs and 7000 users. They
employed several measurement techniques including sys-log messages and SNMP
polling among others. They compared the outcome from this trace to a trace taken
after the network’s initial deployment two years prior in [16]. They found a dras-
tic change in the application usage, with significant increases in peer-to-peer and
streaming multimedia traffic. They utilized a new metric for mobility called "ses-
sion diameter" to show a different mobility characteristics of the embedded devices.
They also found that almost half of the users were at the time non-mobile and remain
close to home around 98% of the time.

2.2.2 User Mobility

There are numerous efforts in the literature that attempted to characterize the mobil-
ity of wireless users among available APs, buildings, and across the entire wireless
coverage area. For example, authors in [18] studied user mobility patterns and load
distribution across APs. They modeled user mobility with session duration (persis-
tence) and the frequency of users visiting various locations (prevalence). They found
that the probability distribution of these two measures follow power laws. They also
observed that load is unevenly distributed across APs, some located in popular ar-
eas with high number of users, others located in less visited areas and usually idle.
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In another related work in [19], authors analyzed daily and weekly periods along
with a yearly seasonal effect to understand user mobility and the behavior of APs.
They found that a daily pattern is common among users and APs, while a weekly
pattern only belongs to APs. Analysis of one year traces revealed the dependency of
user mobility and AP popularity on the academic calendar.

Furthermore in [20] authors present an individual mobility-based clustering al-
gorithm that uses roaming events as the metric to evaluate the proximity of APs
without considering geographical information. They were able to differentiate net-
work places with social meaning for each individual and APs which are as part of a
path between two destinations. In a relative study, authors in [21] explored logical
proximity of APs as an alternative measure to physical proximity. They developed
an algorithm that uses the ping-pong effect of wireless users between various APs to
measure the logical proximity of APs. They provided a logical topology of the APs
in a university campus and clustered APs based on their logical distance.

In another direction of work several authors tried to exploit mobility patterns of
users to predict their next location or the next AP they will associate with. For ex-
ample in [22], authors used a two-year trace of the mobility patterns of over 6000
users on Dartmouth’s campus-wide Wi-Fi for empirical evaluation of their loca-
tion predictors. They developed several domain-independent predictors, namely
Markov-based, compression-based, PPM, and SPM predictors. Their experimental
results showed that low-order Markov predictors outperformed compression-based
predictors. However none of their predictors could make a prediction in an unseen
data. To overcome this drawback they employed Order-2 Markov predictor with
fallback. They also attempted to improve the Markov predictor in terms of space
and computation time. In a more recent line of work, authors in [23] analyzed sev-
eral mobility models for predicting temporal behavior of an individual user. They
used fine-grained and continuous mobility data for the evaluation purposes rather
than coarse-grained mobility data with partial temporal-coverage in previous re-
searches. They studied the regularity and predictability of human mobility using
location-dependent and location-independent models, and showed that a location-
dependent predictor is a superior predictor. They found that duration of stay at
a location is strongly correlated to the arrival time at the current location and the
return-tendency to the next location, rather than recent k location sequences.

The user mobility characterizations of the aforementioned campus WLANs pro-
duced almost similar results. The usage is generally diurnal in nature and only a
small fraction of devices are mobile. The resulting models mostly investigate distri-
bution of association events from a number of users or a group of them rather than
the entire network activity, while we need to explore the whole network activity and
usage characteristics.

2.2.3 User Encounter

Several works in the literature tried to extend the analysis of individual users be-
havior and establish inter-user relationships by observing their association patterns
in different locations across 802.11 infrastructures. For example, authors in [24] ex-
plored mobile node encounter patterns from campus and enterprise wireless net-
works using a graph analysis approach. They found that mobile nodes encounter
with only a small subset of other nodes (on average between 1.33% to 6.70%), and
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the total encounter counts follow the BiPareto distribution. They observed that es-
tablishing relationships with only high-ranked friends leads to a disconnected net-
work with separate clusters, while relationships to low-ranked friends provides a
reachable network in the encounter-relationship graphs.

Authors in [25, 26] focused on user groups behavior analysis across two univer-
sity campuses by mining wireless network logs. They used clustering techniques to
identify groups of users with similar behavioral patterns. The association patterns
of WLAN users symbolized a diverse community with hundreds of distinct behav-
ioral patterns that followed power-law distribution. In another related work in [27],
authors identified groups of mobile nodes using two clustering algorithms: k-means
chain and spectral clustering. K-means chain identified the number of groups in a
dynamic graph, using a chaining process to keep track of group trajectories over the
entire trace, while spectral clustering used similarities between node pairs to clus-
ter nodes into groups. They evaluated these algorithms with synthetically-generated
traces in addition to a real-world trace from a military scenario. Their results showed
that the number of groups and node membership can be accurately extracted from
traces, particularly when the number of groups is small.

Moreover, authors in [28] adapted a neural synchrony method [29] to measure
the regularity of users visiting to particular locations in weekly basis. They applied
their method to three real-world data sets; a metropolitan transport system, a uni-
versity campus, and an online location-sharing service. Through their experiments
they could identify a core group of individuals in each data set that visited at least
one location with near-perfect regularity. They also observed a correlation between
an individual’s most-visited location and irregularity.

2.2.4 User Access to Wireless Network

Other aspects of usage modeling consist of characterizing user wireless access dura-
tion that focus on modeling the periods users normally stay connected to APs. For
example, authors in [30] analyzed the wireless access patterns, in a university cam-
pus, based on mobility, session and visit duration. They showed that the mobility
and building type affect the session and visit duration. They also found that mobil-
ity and visit duration are in opposite relation, and a family of BiPareto distributions
can model the visit and session duration.

In another related work from the [31] authors developed a wireless user model
from analysis of five different traces. They defined four behavioral states for the
wireless users (active, idle, sleeping, and gone), and measured the transition prob-
abilities between these states. They eventually applied Hidden Markov Models on
their data set, and utilized similarity metrics based on HMM likelihood for eval-
uation purposes. They found similarity in user models across all five traces even
though the traces were collected at different venues (library, coffee shops, and con-
ference), and they showed that residing time to APs follow a generalized Pareto
distribution.

In the same direction of research, authors in [32] investigated user access time
from network simulation. They studied the impact of mobility models on two tele-
traffic variables: the cell residence time (time connected to an AP) and the handoff
rate. They performed various simulations, in OMNeT++ along with INET frame-
work, for different AP layouts and mobility patterns. They observed that the aver-
age cell residence time and squared coefficient of variation (SCV) decreased when a
memoryless movement pattern is followed (e.g. Random Waypoint) and increased
when smoother movement patterns are followed (e.g. Gauss-Markov). Their results
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showed that the cell residence time can be characterized by log-normal distributions.
They also observed that the Probability Density Function (PDF) of the cell residence
time is a combination of a distribution that characterizes very short connections and
a distribution that depends on the movement pattern.

We also consider aggregate association duration at APs as one of the main fea-
tures related to density attributes described in Section 3.2.2.

2.2.5 Traffic Characterization

In addition to user access duration modeling, other works in the literature attempt to
focus on infrastructure usage and network performance rather than user behavior.
This line of research aims at characterizing traffic of APs and aggregate traffic load of
802.11 infrastructure networks. For example, authors in [33] proposed a time-series
forecasting methodology for characterizing traffic at each AP. They conducted their
measurement approach in a university campus using the Simple Network Manage-
ment Protocol (SNMP), and analyzed traffic characteristics in terms of total load
and periodicity. They observed spatial locality and diurnal periodicities on heavily
utilized APs as well as diurnal periodicities at the total traffic load of the wireless
infrastructure.

Authors in [34] proposed a traffic prediction mechanism using the Recursive
Least Squares (RLS) algorithm aiming at traffic prediction at short timescales on the
order of few minutes. The experimental results of this study showed that the RLS al-
gorithm is capable of accurately predicting the traffic load and shows good adaptive
behavior. However, the accuracy of the predictor was constrained by the amount of
history required to make a prediction, and how much to predict ahead.

In another related work in [35], authors analyzed measurement traffic statistics
for high-speed wireless Internet access sessions collected in a public nation-wide
Wi-Fi network. By ranking session lengths and traffic volumes, they found a law
implying the truncated Pareto distribution. The basic session traffic variables, for
instance session duration download and uploaded traffic volumes are governed by
a power law. They also observed that the longer the session the higher the uploaded
and downloaded traffic volumes, and the downloaded traffic increases as the up-
loaded traffic does.

The aggregate traffic load of 802.11 at APs, in terms of number of octet and pack-
ets transferred between APs and STAs, form the data features of the current work
related to usage attributes, described in Section 3.2.2.

2.2.6 AP Usage Characterization

There exist a number of efforts in the literature that focus more on network char-
acteristics exploring the usage behavior of APs as indicators of different locations
around the wireless ground. APs’ usage patterns reflect characteristics of spaces
where they are deployed, and allow the identification of similarities and differences
of those spaces.

Authors in [36] studied the aggregated user workloads both spatially (across
multiple locations) and temporally (time of day, and day of week patterns) to un-
derstand typical user workload in a large-scale environment in two large cities in
the U.S. They explored arrival patterns, arrival models, connection times, and si-
multaneous users of Wi-Fi APs in different types of venues from small coffee shops
to large enterprises. They present a number of modeling techniques to characterize
AP usage in terms of arrival counts and temporal variations, connection durations,
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and byte counts. The practical use of their models is in capacity planning for sites,
building load modules for test purposes, and network monitoring for detection of
changes in traffic patterns and intrusion.

Further in [37] authors presented system-wide and AP-level models of traffic de-
mand to capture the network-independent characteristics of the traffic workload. In
another work [38] authors conducted analysis on Wi-Fi network as a proxy to space
usage modeling aiming to use AP usage data as a means for the characterization of
physical spaces, and consequently, as a source of information for a dynamic sym-
bolic model representing those spaces.

In another direction of work [39] AP usage and daily keep-alive events of mo-
bile stations in 802.11 hotspots in infrastructure mode are analyzed and modeled.
In this work, generative probabilistic models are investigated such as Gamma mix-
ture of exponentials and Conditional probability models considering dependencies
between consecutive samples in time. The generative statistical models and exper-
imental results of this work - conducted on a very similar data set to ours in 3.2
- provided some broad insight into AP usage and illustrated significant aspects of
802.11 wireless networks. In another related work [40] authors analyzed Wi-Fi ac-
cess point utilization pattern to explore anomalies occur in spaces covered by wire-
less networks. Their observations consist of 33 week time-series of 230 APs belong
to University of Minho Wi-Fi network. They identified four types of APs regard-
ing their usage pattern: normal type, zero type, constant type, and residence type.
They proposed statistical anomaly detection techniques to identify spacial events in
physical places and feed these events to context-aware applications.

2.3 Anomaly Detection in 802.11 Wireless Networks

In studies concerning 802.11 wireless networks, there exist several analyses on con-
nectivity and performance issues for facilitating the network management tasks. In
connection to this, a number of articles investigated overloaded networks, faulty
APs, impact of interference in large 802.11 deployments and similar anomalous
cases, which are elaborated in the following paragraphs.

2.3.1 Overload Detection

Having explored the network under high-medium utilization conditions, authors
in [41] showed that in overloaded networks, stations only maintain a short associ-
ation period with an AP, and repeated dis-association and re-association attempts
are common even in the absence of client mobility. Their analysis demonstrated that
stations’ throughput suffers drastically from unnecessary hand-offs, leading to sub-
optimal network performance. In another related work in [42], authors observed
that congestion in WLANs leads to the use of lower transmission data rates weaken-
ing the overall network throughput and capacity accordingly. To this end, authors
presented a technique to measure the utilization of the wireless medium in real-
time, and also developed a rate adaptation scheme called Wireless Congestion Opti-
mized Fallback (WOOF). Their experimental results showed that WOOF achieves up
to 300% higher throughput in congested networks, compared to other well-known
adaptation algorithms.

In another direction of work [43], authors presented a software architecture called
DenseAP (DAP), supporting a dense deployment of APs to improve the perfor-
mance of corporate WLANs. They refrain to apply hardware modifications to the
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802.11 standard. In DenseAP architecture, a central controller gathers information
from all APs, determines which AP each client should associate with, and also de-
cides on the assignment of channels to APs. The authors demonstrated that DenseAP
improves the capacity of an enterprise network by exploiting DAP density via an in-
telligent association process that encompasses load balancing and dynamic channel
allocation.

In a more recent research [44], authors proposed a framework for user associa-
tion focusing on distributed load balancing in spatially heterogeneous traffic distri-
butions. Their work encompassed various user association policies: rate-optimal,
throughput-optimal, delay-optimal, and load-equalizing (α-optimal). They claimed
that their α-optimal user association mechanism could achieve a global performance
optimum without relying on a centralized controller. They also addressed admis-
sion control policies for overloaded situation that blocks all flows at cells edges,
while providing a minimum level of connectivity to all spatial locations.

2.3.2 AP Shutdown/Halt Detection

Due to the time varying nature of the wireless medium, it is possible that at any
given time a number of APs face problems and stop running. In such circumstances
users’ connections and throughput will be impaired, leading to significant amount
of intermittent sessions, and a busy medium consequently. Automatic detection of
unavailable or failed APs is beneficial for effective management of large-scale 802.11
infrastructures. In connection to this, there exist few efforts in the literature that tried
to detect halted or crashed APs from 802.11 measurement data. For example authors
in [45] presented several algorithms that detect faulty APs by analysis of AP usage
logs. They also presented some heuristics to select a path for a technician to repair
failed APs. The main assumption in their algorithm is that the longer the time an
AP does not register events, the greater the probability that particular AP is crashed
or halted. Their evaluation results showed that their best algorithm can detect up
to 90% of failed APs by processing log files at Dartmouth College. Authors in [46]
made use of clock skew of APs as their fingerprint to detect unauthorized APs. They
calculated the clock skew of an AP from the IEEE 802.11 Time Synchronization Func-
tion (TSF) time stamps sent out in the beacon/probe response frames. They applied
two methods- linear programming and least-square fit- along with a heuristic for
differentiating original packets from those sent by the fake APs. Their experimental
results showed that clock skews remain consistent over time for the same AP but
vary significantly across APs.

In another direction of work, authors in [47] proposed and evaluated a technique
called Client Conduit, which enables bootstrapping and fault diagnosis of discon-
nected clients. They utilized a controller system along with a diagnostic server to
detect and self-diagnose disconnected clients around the faulty APs. In their solu-
tion, clients are augmented to begin an ad-hoc network when an AP stops function-
ing.

The focus in these works is in supporting disconnected clients not to associate
with a crashed AP, but for that clients require cooperation among themselves and
support from a third party device such as diagnostic server or management station.
Instrumenting devices (APs and clients) and presentation of third party devices in
large-scale 802.11 networks can be challenging and expensive due to high popula-
tion of users and APs.
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2.3.3 Interference Detection

Interference in 802.11 networks often occurs where transmission in one link of the
network interferes with the transmissions in other neighboring links. It can also be
induced by other radio waves in the same frequency range. During the interference
period many re-transmissions are required that results in overall 802.11 performance
degradation. There exists several researches in the literature that investigate the
effects of interference and propose techniques to detect and mitigate its potential
impact.

For example, authors in [48] studied the impact of interference in chaotic 802.11
deployments on end-client performance. Having used large-scale measurement data,
they showed that it is not uncommon to have tens of APs deployed in close proxim-
ity, and most APs are not configured to minimize interference with their neighbors.
They designed and evaluated automated power control and rate adaptation algo-
rithms to minimize interference among neighboring APs to ensure robust end-client
performance.

In another related work [49], authors proposed methodologies including intelli-
gent frequency allocation across APs, load balancing of user affiliations across APs
and AP adaptive power control for interference mitigation in dense 802.11 deploy-
ments. Furthermore, authors in [50] studied the impact of RF interference on 802.11
networks from devices like Zigbee and cordless phones that crowd the 2.4GHz ISM
band to devices like wireless camera jammers and non-compliant 802.11 devices that
disrupt 802.11 operations. They affirmed through practice that moving to a different
channel is more effective in coping with interference than changing 802.11 opera-
tional parameters such as CCA (clear channel assessment).

In [51], a usage pattern called "abrupt ending" is explored in a data set similar
to 3.2 that concerns the dis-association of a large number of wireless sessions in the
same AP within a one second window, or in a nutshell "simultaneous session end-
ing". The authors introduced some anomalous patterns that might be in correlation
with the occurrence of this phenomena. For instance, AP halt/crash, AP overload,
persistence interference and intermittent connectivity. The analysis of the anomaly-
related patterns performed in this research, inspired our work to regenerate similar
anomalies via network simulation (3.4) in addition to the real Testbed deployment
(3.3).

2.3.4 Wireless Measurement Tools

Several prior works are dedicated to studying the dynamics of wireless network
behavior, as well as the performance and reliability of WLAN technologies [8, 52,
53, 54]. In [8] a system called Jigsaw is presented which uses multiple monitors to
provide a single unified view of physical, link, network and transport-layer activi-
ties, including inference techniques for the particular issues of 802.11. The authors
deployed an infrastructure with over 150 radio monitors that capture 802.11b and
802.11g activities in a university building to investigate the causes of performance
degradation. Significant challenges of such vast distributed monitoring system in-
clude the necessity of hardware and software instrumentations on each and every
monitor and the scalable synchronization difficulties and inaccuracies. For this rea-
son, most wireless management techniques avoid broad modifications in the clients
devices, sensors, sniffers and monitors deployed in the large wireless covered area.

In another line of research a Passive Interference Estimator (PIE) is presented in
[52] which provides a fine-grained estimation of link interferences in WLAN. PIE
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provides an estimate of WLAN interference caused by client mobility, dynamic traf-
fic loads, and varying channel conditions. This work is inspired by two previous
WLAN monitoring approaches: the aforementioned Jigsaw [8] and WIT [55]. The
PIE producers used sniffing at APs to avoid deploying additional monitors similar
to Jigsaw, but with the penalty of missing a portion of uplink client traffics and hence
uplink client conflicts. However, they proposed an accurate approach in estimating
link interference by providing a conflict graph in real time.

In a similar direction of work, fine-grained detection algorithms are proposed
that are able to distinguish the root-causes of performance degradation at the phys-
ical layer [53]. It is described that various faults, such as hidden terminals, capture
effects and noise, could have the same propagation effects on the network layer (de-
graded throughput) and therefore could lead to the same remediation techniques
from 802.11 (rate fallback), while they have completely different origins in the phys-
ical layer. Hence, the researchers of this work designed a unified framework for this
purpose, called MOJO, that combines the observations from multiple distributed
sniffers and diagnoses the granularity of the root causes to suggest appropriate
remedies for different physical faults. Although the proposed framework measures
the impact of the most commonly observed faults on different network layers, it is
still a client side monitoring system and suffers from the extensive sniffer distribu-
tion all over the wireless covered area.

WiMed [54] uses only local measurements from commodity 802.11 NICs for un-
derstanding how the medium is utilized, and for inspecting the causes of interfer-
ences (including non-802.11 devices). WiMed provides a time-domain view of how
the medium is used in a given 802.11 channel, and identifies the root causes of inter-
ference using physical layer properties such as bit error patterns and medium busy
times. The authors refrained from elaborated instrumentation and dedicated infras-
tructure, however detectors are only implemented for interference and contention,
and there is a higher confidence for recognition of non-802.11 interferer rather than
802.11 sources of interference.

The mentioned studies of this subsection expose the difficulties in monitoring
the wireless environment thoroughly, and the challenges of performance estimation
in these complex networks. Most cases - require heavy instrumentation of the user
devices and focus on specific anomalies affecting individual users - thus neither con-
sidering usage trend nor location related anomalies.

2.4 HMM Applications in Network Analysis

In wireless networking, HMMs are employed to address various aspects of network
measurement and analysis.

2.4.1 Wireless Parameters Modeling

Hierarchical and Hidden Markov based techniques are analyzed in [56] to model
802.11b MAC-to-MAC channel behavior in terms of bit error and packet loss. The
authors employed two random variables in packet loss process, inter-arrival-rate
and burst-length of packet loss, and applied the traditional two-state Markov chain.
The results demonstrates that two-state Markov chain provides an adequate model
for the 802.11b MAC-to-MAC packet loss process. Furthermore, in regard to bit
error modeling, three other Markov-based chains are evaluated: full-state, hidden,
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and hierarchical Markov chains. It is illustrated that among these chains, the full-
state Markov bit error model of order 9 and above yields the best performance. Since
the main concern to use HMM in this example is to generate error traces, a simple
three-state HMM is designed and utilized for one HMM solution: the adjustment of
model parameters to best account for the observed signal.

In a more recent line of research in [57] a multilevel approach involving HMMs
and Mixtures of Multivariate Bernoullis (MMB) is proposed to model the long and
short time scale behavior of wireless sensor network links, that is, the binary se-
quence or trace of packet receptions (1s) and losses (0s) in the link. In this approach,
HMM is applied to model the long-term evolution of the trace, and the hidden states
correspond to packet reception rate. Within the aforementioned hidden states, the
short-term evolution of the trace is modeled by either another HMM or by a MMB.
That is how the multilevel, or in this case the two level approach, is formed. The
notion of multilevel HMM is an impressive concept regarding anomalous pattern
detection in our work.

Authors in [58] applied HMMs for spectrum sensing in cognitive radios, since
the true states (occupancy by primary users) of a sub-band (idle frequency) are never
known (hidden) to the cognitive radio. They employed an HMM to model the evo-
lution of occupancy/non-occupancy of a sub-band by its primary user over time
using the measurements obtained by the cognitive radio. The hidden sequence is
considered to be the sub-band occupancy state, and the observed sequence is ex-
pressed as the sequence of decisions generated by the sensing technique of a second
user. The authors utilized maximum likelihood approach and the Viterbi algorithm
to estimate the hidden states. They validated the accuracy of their proposed method
in predicting the true states of a sub-band using extensive simulations.

2.4.2 User Behavior Modeling

In a very recent line of research in [59] authors employed patterns of data traffic
to identify the function of physical locations. They investigated the predictability
of mobile app usage behavior and mobility behavior of users by observing users’
mobility behavior/app usage behavior. They built a hidden Markov model (HMM)-
based predictor to characterize a user’s mobility/app usage behavior. They showed
that there is a strong correlation between users’ app usage behavior, mobility behav-
ior, and data traffic patterns.

In another direction of work in [60], authors proposed an analytical method to
classify web user behavior based on latent states of users as intention, interest, or
motivation, and applied their method to the data of a social network game. They
put the click-stream data of many users into a Hidden Markov Model in which the
number of hidden states is large enough to build a state transition network. They
represented the movement on the state transition network as user behavior, and
found their approach suitable for services with many pages and complicated to an-
alyze.

Further in [61], authors investigated heterogeneous cellular networks and the
hand-over strategy by analyzing the self-similar least-action human walk (SLAW)
and proposing a method based on the hidden Markov model for perceiving user
behavior in hot spots. They simulated users’ mobile paths in hot spots based on
SLAW, and modeled user behaviors using HMM. Then, they predicted the corre-
sponding moving time by the mobile sequence of the user for designing a handover
management plan.
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2.4.3 Network Parameter Prediction

One of the salient application of HMMs addressed in wireless networking is network
parameter prediction. In a recent research, HMMs are utilized to model and predict
the spectrum occupancy of sharing radio bands [62]. The channel status prediction is
considered as a binary series prediction problem, as channel occupancy can be rep-
resented as idle or busy depending on the presence or absence of a primary user ac-
tivity. An ergodic two-state discrete HMM is employed to this problem. The experi-
mental results showed the ability of HMM in offering a new paradigm for predicting
channel behavior in cognitive radio. Some other prominent work has been done on a
similar subject in radio spectrum sensing and status prediction using HMMs [63, 64,
65]. For example, authors in [65] designed a channel status predictor using two dif-
ferent adaptive schemes: a neural network based on multilayer perceptron (MLP),
and a hidden Markov model (HMM). The simulation results demonstrated that the
two prediction schemes performed similarly under the same traffic scenario while
the performance of MLP predictor is slightly better than that of the HMM predictor.
However the HMM predictor is more appropriate for time varying traffic scenarios
while the MLP predictor should be retrained periodically for better performance.

Furthermore, in another direction of work, HMMs are applied for modeling and
prediction of user movement in wireless networks to address issues in Quality of
Service (QoS) [66]. User movement from an AP to an adjacent AP is modeled using
a second-order HMM. Although the authors demonstrated the necessity of using
HMM instead of Markov chain model, the proposed model is only practical for small
wireless networks with a few number of APs, not huge enterprises or widespread
networks. In [67] authors proposed a new approach for optimizing the hand-off
decision in Femtocell networks using Hidden Markov Model. They formulated the
hand-off problem as an optimization problem whose objective is to find the best
Femtocell Access Point (FAP) assignment strategy that minimizes the number of un-
necessary hand-offs while maintaining a good quality of wireless communications.
The HMM is employed to predict the target FAP by observing the geographic posi-
tions of the mobile user. The simulation results showed that the proposed approach
minimized the number of hand-offs and enhanced the dwell time in the FAP in com-
parison with others hand-off decision making strategies.

2.4.4 Network Traffic Classification

Network traffic classification is the process of analyzing traffic flows and associating
them to peculiar categories of network applications. Traffic modeling and classifica-
tion gained significance in many areas such as bandwidth management, traffic anal-
ysis, prediction and engineering, network planning, Quality of Service provisioning
and anomalous traffic detection.

There are various efforts in the literature that tried to exploit HMMs for net-
work traffic classification. For example, authors in [68, 69] proposed a packet-level
traffic classification approach based on Hidden Markov Model (HMM) using real
network traffic and estimating Packet Size (PS) and Inter Packet Time (IPT) char-
acteristics. They considered their HMM model with discrete states and continuous
bi-dimensional observations consist of IPT and PS measurements. In [68] the pro-
posed HMM model is applied to classify real traffic traces of a network game (AoM),
SMTP, and HTTP. Moreover the model is used for monitoring to obtain an estimate
of the current state via the Viterbi algorithm, and prediction on the basis of the cur-
rent state estimate and of the trained model parameters. In [69] the classification is
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extended to broader range of applications: HTTP, SMTP, Edonkey, PPlive, and MSN
Messenger among others. The presented results demonstrated that the proposed
Packet-Level Hidden Markov Model (PL-HMM) could be a good candidate as to be
used in a multi-classification scenario (when different classification engines are used
and their output is combined by a decision system).

In another related work, authors in [70] investigated the performance of a new
Hidden Markov Model structure used as the core of an Internet traffic classifier and
compares the results against other models presented in the literature. The HMM
structure includes the packet payload size (PS) and the inter-packet times (IPT) se-
quences, and consist of an HMM profile associated with a fully-connected HMM.
The first part (HMM profile) captures the specific properties of the initial protocol
packets while the second part (fully connected HMM) captures the statistical prop-
erties of the entire sequence present in the flow. The results showed the superior per-
formance of the proposed mixed model (5-Profile+5-Fully HMM) against five other
models used in the literature including HMM Profile (5P-HMM), fully connected
HMM (5F-HMM), the centroid, 1-NN and Naive Bayes classifiers.

2.4.5 Anomaly Detection

Authors in [71, 72] attempted to estimate the interference between nodes and links
in a live wireless network by deploying several sniffers across the network to cap-
ture wireless traffic traces in a passive mode. They modeled the 802.11 MAC as a
Hidden Markov Model, and learned the state transition probabilities in this model
using the observed trace. The HMM approach is used for modeling interactions be-
tween a pair of senders in an 802.11 network and inferring sender-side interference
relations (deferral behavior). A sender node is considered to be in one of four states:
idle, backoff, defer, and transmit, and the interference is defined as transition into
defer state. They assumed that a single Markov model is not enough to address the
complete behavior of the network, so they formed a combined Markov model with
each state consisting of 2-tuple states of individual nodes. Therefore their model is
restricted to determine pairwise interference relationships. The observation symbols
contain the status of the pair of nodes (e.g. one, both or none transmitting). Their
Experimental results demonstrated that the HMM approach is more accurate than
simpler heuristics.

There are several attempts in the literature that investigated intrusion detection
techniques using HMMs. For example, authors in [73] explored an HMM strategy
for intrusion detection using a multivariate Gaussian model for observations that
are used to predict an attack that exists in a form of a hidden state. Their proposed
model contains a self-organizing network for event clustering, an observation clas-
sifier, a drift detector, a profile estimator, a Gaussian mixture model (GMM) acceler-
ator, and an HMM engine. The hidden states are defined as follows: normal, hostile
intrusion attempt, friendly intrusion attempt, intrusion in progress, and intrusion
successful. They observed that the intrusion state cannot be inferred directly by
monitoring any specific parameters, hence they intended to predict an attack based
on mixture of observable data-points, events and current states. Accordingly they
designed a statistical mechanism for intrusion prediction using HMM with weighted
Gaussian mixtures as observed data. They used the proposed methodology to pre-
dict the intrusion states based on observation deviation from normal profiles or by
fitting it into an appropriate attack profile. In a more recent research in [74] au-
thors defined a sequence of attack states corresponding to the attack stages and the
proposed detection system adopts a Hidden Markov Model for detecting advanced
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planned intrusion attacks. The proposed HMM based classification model consists
of three layers: the hidden states at the first layer, the observable events emitted from
the hidden states at the second layer, and the feature set used for correlation at the
third layer, and different attack events might refer to different features. The exper-
imental results showed that the proposed detection system can identify the attacks
efficiently.

In a different direction of work [75] authors investigated anomaly detection of
human dynamics using spatio-temporal data obtained from GPS facilities. They for-
malized their problem as a semi-supervised anomaly detection problem that detects
contextual anomalies behind time-series data. Their anomaly detection method is
based on a sticky hierarchical Dirichlet process hidden Markov model, which is able
to estimate the number of latent states according to the input data. They obtained
significant detection results through experiments in synthetic data as well as real
gridded population data, in which anomalies were detected when and where an
actual social event had occurred.

To the best of our knowledge, HMM related studies in wireless network man-
agement are rarely employed in performance prediction and anomaly detection.

2.5 Integration of HMM and SOM

In this section, we analyze the existing work related to the integration of Self-Organizing
Maps (SOM) and Hidden Markov Models (HMM), which is the principal topic of
Chapter 6. There are a number of attempts in the literature that tried to integrate
the SOM and the HMM in different ways [76, 77, 78, 79, 80]. In [76] Spherical
Self Organizing Map (S-SOM) is proposed, which uses HMM models as neurons (S-
HMM-SOM) for the purpose of classifying the time series data. The HMM models
in [76] are discrete and the author applied Baum-Welch algorithm for updating the
model parameters. In [77] the authors extended the self-organizing mixture models
for multivariate time-series assuming that the time-series are generated by HMMs.
This model which is called self-organizing hidden Markov model (SOHMM), uses
constrained Expectation Maximization (EM) for HMM parameters estimation. The
self-organization in this work is used for the purpose of meteorological states visu-
alization.

In another direction of work in [78], a self-organizing Markov map (SOMM)-
based architecture is presented for hand gesture recognition. The approach involves
a combination of SOMs and Markov models for gesture trajectory classification. In
this work the neurons on the SOM map correspond to the states of the Markov mod-
els. In [79] the combination of SOM and HMM (SOS-HMM: Self Organizing Struc-
ture of HMM) automatically extracts the structure of an HMM without any prior
knowledge of the application domain. In this model the macro-HMM is represented
as a graph of macro-states, where each state represents a micro-HMM. In conclu-
sion, each neurons in SOS-HMM collaborative architecture is either HMM by itself
or HMM hidden state. In our work each particular neuron on SOM lattice is associ-
ated with an HMM.

In [80] the fusion and synergy of SOM and HMM are employed in biological
molecules studies to meet the increasing requirements imposed by the properties of
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules.
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They proposed a stochastic unsupervised learning algorithm based on the integra-
tion of the SOM and the HMM principles, called SOHMMM. The authors demon-
strated the SOHMMM’s characteristics and capabilities through two series of exper-
iments based on artificial sequence data and splice junction gene sequences. How-
ever, in [80] only the discrete observation setting is addressed. In this thesis we
improve this algorithm for multivariate Gaussian emissions, and extend the model
to fit the requirements of our anomaly detection study.

The training process of SOM and HMM sub-units are in most cases disjoint and
conducted independently. However, there are two main approaches regarding this
hybrid technique. First approach considers SOM as a front-end processor (e.g. vec-
tor quantization, preprocessing, feature extraction) and HMMs are then used in
higher processing stages [81, 82]. The second approach places the SOM on top of
the HMM [80, 83].

Incremental learning of HMM parameters is the core function of the SOHMMM
algorithm which is based on a stochastic gradient descent technique. Incremental
learning of new data sequences allows to adapt HMM parameters as new data be-
comes available, without having to retrain from the start on all accumulated training
data. There are various techniques in the literature that address this topic. These
techniques are classified according to the objective function, optimization technique
and target application, involving block-wise and symbol-wise learning of parame-
ters. The authors in [84] presented a comprehensive survey of techniques that are
suitable for incremental learning of HMM parameters, among which the stochastic
gradient descent technique of SOHMMM is referred as one of the numerical opti-
mization methods.

Additionally, there exist few efforts in the literature that exploit the SOM and
the HMM for anomaly detection purposes [85, 86]. In [85] the authors presented an
intrusion detection system in which the SOM determines the optimal measures of
audit data and reduces them into appropriate size for efficient modeling by HMM.
Similar to our previous work [12] two types of HMMs are utilized: single model
for all the users and individual models for each user. In another relevant work in
[86], the HMM and the SOM are investigated separately as intrusion detection tech-
niques. Testing results show that the HMM method using the transition property of
events outperformed SOM using the frequency property of events. Regarding the
same subject of intrusion detection, SOM and HMM have a collaborating connection
in [85] and competitive roles in [86].

In Chapter 6 we intend to benefit from the collaboration of these two techniques
(SOM and HMM) to extend our anomaly detection framework applying only HMM
[12, 10, 11].

2.6 Wireless Network Simulation

There are numerous efforts in the literature that try to exploit simulation as an effec-
tive tool to setup a computationally tractable network. Wireless network simulation
is used for various objectives from assessment and validation of models to obtain
synthesized data and parameterized metrics.

In [37] the authors employed simulation to generate synthetic traffic and validate
their proposed model of traffic workload in a campus WLAN. As another example,
researchers proposed a framework in [87] to integrate the infrastructure mode and
ad hoc mode in WLANs and they implemented the framework in NS2 [88]. They
used simulation to show the higher performance of their proposed model compared
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to the traditional wireless LAN. In a rather relevant work to ours, the performance
of IEEE 802.11 wireless networks is evaluated using OPNET Modeler in [89]. The
simulated network in infrastructure mode for one AP and 12 stations investigated
the performance of pure 802.11g network over a network that uses both 802.11g and
802.11b clients.

After exploring various simulation frameworks such as NS3 [90] and OPNET
[91], we chose to use OMNeT++ [92] along with INET Framework [93] for our re-
search purposes. Regarding OMNet++, and its simulation models, a number of ar-
ticles worked on validating the reliability and accuracy of OMNeT++. For exam-
ple in [94] the authors performed a measurement study of wireless networks in a
highly controlled environment to validate the IEEE 8021.11g model of OMNet++.
They used metrics like throughput, delay and packet inter-transmission to compare
the measurement results to identical simulations. They showed that the simulation
results match the measurements well in most cases. Furthermore in [95] the reliabil-
ity of OMNeT++ is assessed for wireless DoS attacks by comparing the simulation
results to the real 802.11 Testbed. In this case, throughput, end-to-end delay, and
packet lost ratio are considered as performance measures. The authors confirmed
the accuracy of the simulation results in wireless DoS domain.

However, there exist few efforts in the literature that conducted simulation of
WLANs in OMNeT++ concerning performance and quality of service (QoS). For ex-
ample in [96] the performance of the TCP protocol for audio and video transmission
is evaluated using OMNeT++ simulation. In another direction of work in [97] an
overview of the IEEE 802.11b model is simulated in OMNeT++ and an example net-
work consisting of a mobile station moving through a series of APs is used to analyze
the handover behavior of the model. To the best of our knowledge the simulation of
aforementioned anomalous patterns in WLAN infrastructure mode has never been
done before.
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Chapter 3

Experimental Setup

3.1 Introduction

In this chapter we address three main data sets we utilize for experimental analysis
and evaluation through the rest of the thesis. The schemas of all these three data
sets are identical and related to the wireless station RADIUS authentication data col-
lected at access points. However, each set of data has different sources. The first data
set explained in section 3.2 belongs to the RADIUS authentication log data collected
at the hotspot of the Faculty of Engineering of the University of Porto (FEUP). It is
a large data set as it contains the connection summary of more than 45 thousand
users associated to 364 APs. The second data set described in section 3.3 is related
to an exploratory small Testbed deployed at a home environment with 6 wireless
users connected to 1 AP. The Testbed uses the FreeRADIUS server and a set of well
defined anomalous cases are generated in this network for the evaluation purposes.
The last data set is described in section 3.4 and is generated through wireless net-
work simulation using the OMNeT++ [92] wireless simulator and INET framework
[93]. The simulated wireless network consist of 100 wireless users associated to 10
APs located in a 1500m× 1200m wireless ground. A number of anomalous scenarios
are generated that mostly affect physical layer parameters. The generated anoma-
lous cases in Testbed and wireless simulation experiments are not exactly the same,
but there are both employed for evaluating similar types of anomalies. Although the
first data set is rather old, it has lots of data points, small though the second data set
is, we can make controlled experiments in a real network, and the third data set is
simulated, but allows us to make controlled experiments in relatively large network.

3.2 Large Data Set

As a first set of data, we make use of RADIUS authentication log data collected at
the hotspot of the Faculty of Engineering of the University of Porto (FEUP). The
University hotspots are part of the Eduroam European wireless academic network
initiative. The entire data set incorporates records of 802.11 mobile stations’ as-
sociation to APs stored at a RADIUS authentication server. When a client asso-
ciates/disassociates to an 802.11 AP, a "START"/"STOP" event is recorded. A prob-
ing log event "ALIVE" is generated every 10 or 15 minutes (depends on the server
configuration) while the client is still connected to the network [3]. Each log record
includes some key attributes of time-stamp, session ID, association duration, num-
ber of input and output packets/octets. Table 3.1 presents a brief explanation of
some of these key attributes more relevant to this work.
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TABLE 3.1: The key attributes of RADIUS accounting table

Acct-Status-Type has three values: Start, Alive and Stop. A Start record is created
when a user session begins. An Alive record is registered after
each 10 or 15 minutes for the users that are still connected. A Stop
record is generated when the session ends.

Acct-Session-Id is a unique number assigned to each session to facilitate matching
the Start and Stop records in a detail file, and to eliminate dupli-
cate records.

Acct-Session-Time records the user’s connection time in seconds. This information
could be included in Alive or Stop records.

Acct-Delay-Time is the number of seconds passed between the event and the current
attempt to send the record. The approximate time of an event can
be determined by subtracting the Acct-Delay-Time from the time
of the record’s arrival on the RADIUS accounting server.

Called-Station-Id &
Calling-Station-Id

record the IP address of the AP (Called Station) and the wireless
user (Calling Station) connected to that AP.

Timestamp records the time of arrival on the RADIUS Accounting host mea-
sured in seconds since the epoch (00:00 January 1, 1970). It pro-
vides a machine-friendly version of the logging time at the begin-
ning of the accounting record.

Acct-Input-Octets
& Acct-Output-
Octets

records the number of bytes received (Acct-Input-Octets) and sent
(Acct-Output-Octets) during a session. These values appear in
Alive or Stop records.

Acct-Input-Packets
& Acct-Output-
Packets

records the number of packets received (Acct-Input-Packets) and
sent (Acct-Output-Packets) during a session. These values appear
in Alive or Stop records.

Our trace data consists of the daily summary of connections between 364 APs
and their corresponding wireless stations collected in almost two years, from Jan-
uary 1, 2010 to December 22, 2011. The university campus contains over 30 build-
ings, including classrooms, administrative offices, auditoriums, libraries, cafeterias,
laboratories, etc. During the mentioned period, the usage record of more than 45
thousand users was observed through the established connections of over 24 million
sessions. Table 3.2 depicts the evolution of the usage across the hotspot throughout
the academic semesters.

TABLE 3.2: The semester-level evolution of hotspot usage during two
years

Academic
Semesters

# APs # Users # Sessions Total Input
Traffic (TB)

Total Output
Traffic (TB)

Spring 10/11 238 15564 5127823 148 253
Fall 10/11 278 15614 2619497 81 138
Spring 11/12 317 20200 5879742 177 359
Fall 11/12 338 21946 7167023 91 170

In general, an increasing trend is observed in the number of deployed APs, num-
ber of wireless users and overall number of RADIUS sessions (start, alive, and stop),
from semester to semester. Total input and output traffic, however, fluctuate be-
tween spring and fall semesters to some extent. Although the overall sent and
received traffic grows in volume in ultimate fall/spring semester rather than the
earlier, the wireless network are subjected to higher traffic in spring semesters com-
pared to fall semesters.
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FIGURE 3.1: Moving average of the hourly number of sessions per
user.

3.2.1 Preliminary Data Analysis

In this section we present some extensive statistical analysis about the entire data
set and demonstrate relevant graphics revealing some general facts of underlying
usage pattern of FEUP wireless network. We conduct this study from two peculiar
viewpoints: 1) users and their sessions, and 2) access points and their users.

User Sessions

As indicated earlier, each user can connect to the same AP more than once during
a day, and each connection creates a separate sessionID in the accounting table. An
ideal association to the wireless network could last for the entire day and if the user
is fixed in its location, it is expected to have the same session without interruption.
However, this is not always the case and users disassociate from their current AP
and associated to the same AP or another AP in the vicinity for various reasons such
as signal strength loss, and roaming among other reasons.

Figure 3.1 shows the moving average of the number of sessions per user dur-
ing one hour of connection. Although the majority of users have a few number of
sessions in an hour which shows few number of dis-associations, extreme cases are
also detectable in this figure. For instance, users are observed that generate over
2000 sessions on average in an hourly connection to a single AP. To study the great-
est population of users, Cumulative Distribution Function (CDF) of users and their
containing sessions is demonstrated in Figure 3.2. This figure displays that more
than 70% of user connections remain unbroken and preserve a single session during
the hourly association to their affiliated AP, and over 95% of user connections con-
tain only 5 sessions during an hour which is the result of intentional or unintentional
disassociation from the current AP.

Figure 3.3 encloses similar information as Figure 3.1, but in a daily basis. As
expected, the number of dis-associations during one day is higher than an hour pe-
riod. Figure 3.4 demonstrates that users holding a single session during a day, are
less than 40%. Such connections could be issued from stationary or idle users in
vacant locations of the campus with few or none other active users around, or the
user could be connected for a short time containing only one session. This figure
also displays that about 20% of the sessions are interrupted between 5 and 20 times
a day.
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FIGURE 3.2: CDF of the hourly number of sessions per user.

FIGURE 3.3: Moving average of the daily number of sessions per user.

FIGURE 3.4: CDF of the daily number of sessions per user.
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FIGURE 3.5: CDF of average number of users & sessions per AP.

FIGURE 3.6: CDF of the daily average connection duration of users
per AP (minute).

Access Points

In this part, we focus on the usage behavior of APs as indicators of different loca-
tions around the university campus. Figure 3.5 demonstrates the average number of
users and sessions per AP during the two years of experiment for the working days
only. Because usage in the campus on weekends is substantially reduced, the week-
ends are excluded from this statistics. These statistics could differ from semester to
semester as the number of users and their corresponding sessions evolve over time,
however this figure provides a general report of involvement of the entire set of APs
in the wireless covered area. Figure 3.5 shows that around half of the APs associate
with 10 users during a day. This figure also indicates that few APs (only 5%) have
a large number of users per day (more than 50), and about 30% of the APs typically
associate with only 5 users each day. This figure also demonstrates that few APs
(almost 10%) contain more than 100 sessions during a daily connection which are
generated by less than 40 users.

Figure 3.6 reveals interesting information about the duration of users’ daily con-
nections per AP. It shows that the average connection period of users in 30% of the
APs is only 10 minutes per day. This data most probably belongs to the mobile
users, guests or short-term users. Figure 3.6 also demonstrates that in about 95% of
the APs, users maintain their connections at most for 100 minutes (less than 2 hours)
a day.
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The information provided in Figure 3.5 and 3.6 - can be related to the impor-
tance of the APs and their locations, for instance whether they are located in a busy
entrance hall or a quiet corner of the campus. Such sort of information also im-
plies potential categories in terms of university divisions like administrative office,
classroom, cafeteria, auditorium, etc. Such classification plays an important role for
further analysis and modeling practices and brings about the question of the extent
of similarity or difference of usage patterns in similar categories with different pop-
ulation of users.

3.2.2 Data Features

A number of features emerge from the raw data set as a result of a preliminary
analysis and enumeration process on a timely basis of 15 minutes. We categorize all
the measured features as two main classes: Density Attributes and Usage Attributes.
Those features that are indicators of density, basically demonstrate how crowded is
the place in terms of current users. The usage features disclose the amount of sent
and received traffic by the current users. The former attributes mainly characterize
the association population and durability, while the later attributes reveal the total
network traffic regardless of how populous the place is.

Density Attributes

User Count: the number of unique users observed in a specific location (indicated
by an AP) during the predefined time-slot (15 min).

Session Count: the total population of active sessions during a time-slot regard-
less of the user. This attribute reveals the number of attempts made by all users to
associate with the current AP. The connection duration of each user consists of one
to many sessions.

Connection Duration: the total duration of association time of all the current users
of an AP in a 15 min time slot. This attribute is an indicator of the overall con-
nection persistence. The maximum amount of this features is achieved when there
is no evidence of disassociation in the ongoing active sessions during a time slot
(User Count ∗ 15 min).

Usage Attributes

Input Data in Octets: the number of octets transmitted from the client and incom-
ing to the NAS port, and is only present in the Stop or Alive sessions. This attribute
briefly refers to the number of bytes uploaded by the wireless user.

Output Data in Octets: similar to Input Data in Octets but receives by the client
rather than sent, and it refers to the number of bytes downloaded by the wireless
user.

Input Data in Packets: similar to Input Data in Octets, just to be measured in pack-
ets instead of bytes.

Output Data in packets: similar to the above Output Data in Octets, just to be
measured in packets instead of bytes.



3.2. Large Data Set 33

FIGURE 3.7: Correlation matrix of the main data features - features
stored in no particular order.

3.2.3 Analysis of Features

In this section we discuss the correlation of the data features explained earlier in an
attempt to select an appropriate set of features for further analysis. Figure 3.7 depicts
the correlation matrix of all the above features. There is a high correlation observed
between User Count and Session Count (0.94), on the grounds that the number of
sessions are always equal or higher than the number of users in a time-slot. Duration
do not have a strong correlation with any of the mentioned features, neither with
Density Attributes, nor with Usage Attributes.

Having considered the input and output traffic transferred in octets, there is no
significant correlation between these two (0.64) compared to Input and output data
in packets (0.96). However there is a noticeable correlation between Output Octets
and its corresponding attribute Output Packets (0.97), as well as Input Octets and Input
Packets (0.84). Nevertheless we consider input/output data in octets and in packets
as semi-independent variables, and include both of them in our further experiments.
The information added to the system through input and output traffic in octets sim-
ply take into account all the sent and received data in bytes. However, the input
and output traffic measured in packets could bring other types of information as the
packets’ size could differ by various factors such as application types and commu-
nication protocols.

For subsequent analysis and modeling procedures, we favor using less features
rather than the entire set of attributes introduced earlier. For this purpose, we ap-
plied Principal Component Analysis (PCA) technique to find the combination of the
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FIGURE 3.8: The behavior of the main features relative to the three
principal components.

variables which best explain the phenomena and contain the greatest part of the
entire information.

In this case the first three principal components bring the cumulative proportion
of variance to over 95%. Figure 3.8 demonstrates the participation proportion of each
feature to the principal components. We observe that the first principal component is
associated with all the above features in a positive manner, more specifically with the
usage attributes. The second principal component is decreasing with the usage at-
tributes, and increasing with the density values. The single largest contributor to the
third principal component is the output data in octet or the amount of downloaded
bytes by the wireless users. The other features play less important roles in the third
component, positively or negatively. Approximately categorizing the principal com-
ponents like so, provides us with a deeper understanding of the connection of the
aforementioned features, density or usage attributes, with the principal components
resulted by PCA technique.

3.2.4 Summary

In this section we explored the large log data of RADIUS authentication collected
from FEUP in approximately two years. We presented a summary of usage evolu-
tion through the academic semesters. Then we conducted a preliminary analysis
for user sessions and for access points. Moreover, we performed some enumera-
tion processes on the data to extract the main data features: User Count, Session
Count, and Connection Duration as Density Attributes, and Input and Output Data
in Octets and Packets as Usage Attributes. Eventually, we analyzed the correlation
of the aforementioned features and performed PCA to select three principal compo-
nents.

3.3 Testbed Deployment

In this section we explain how we deployed a Testbed with a single AP and generate
a number of anomalies in a controlled environment for experimental purposes. We
worked with FreeRADIUS server [98] which is widely used for Enterprise Wi-Fi
and IEEE 802.1X network security and communication, particularly in the academic
community, including Eduroam.

The Testbed is deployed in a home environment, with a single AP and 6 regular
users and between 4 guest users. The experiment contains 6 weeks of data, 30 work-
ing days, and is performed in two different time span, once in November 2015 and
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a while later in April 2016. There exist 20 normal days with no anomalies provoked,
and 10 abnormal days containing at least one anomalous event a day. Each anomaly
takes from 15 minutes to around an hour.

3.3.1 Server Configurations and Users Specifications

The FreeRADIUS server was setup on a Linux machine with 2.30 GHz Intel(R) Core(TM)
i5-2410M CPU, and 8GiB System Memory. The database system which is used to
store primary configurations and AAA information is MySQL and consist of 10
specified tables. The principal tables employed for data collection and analysis
are labeled as radcheck (authentication), radpostauth (authorization) and radacct (ac-
counting). Other essential configurations are conducted directly on FreeRADIUS
setting files, such as server and client security configurations, required certificates,
and database setups.

The AP is an enhanced 802.11g wireless access point powered by D-Link 108G
technology, DWL-2100AP, and supports WPA and WPA2 security protocols. The
wireless users connected to this network during one month of experiment consist of
two laptops, two smart phones, and two tablets. A summary of the users’ specifi-
cations in terms of devices, operating systems and participation time in the exper-
iment is provided in Table 3.3. Obviously not all the users were present everyday
and every hour of the test, but they follow a natural form of entering and exiting the
network. Some devices were disassociated from the network when the users sim-
ply depart from the coverage area and others were deliberately disconnected in the
time of specific anomaly generation. In the coming sections we present all types of
anomalies generated and organized for this Testbed.

TABLE 3.3: A summary of the Testbed users’ specifications

Device OS Participation Time
Surface Pro II Win 10 All the time
Asus Win XP All the time
Alcatel onetouch Andriod Frequently
iPhone iOS Infrequently
iPad iOS All the time
Dell Win 10 Infrequently

3.3.2 Network Anomaly Generation in a Controlled Environment

In this section we describe how some of the known wireless network issues are
re-generated to make the desired data records for the evaluation of the proposed
methodologies. In the course of the experiment we have two types of days: Nor-
mal and Abnormal. Users do not follow a script for their normal behaviour, and just
use the network as they see fit. In abnormal days, however, one or some kind of
anomalies are provoked to inspect the behavior of the model under abnormal cir-
cumstances. The anomalous patterns selected for this purpose are common cases
that occur in real networks relatively often and affect the performance of users con-
nection and availability of the network. Succeeding paragraphs deal with the spe-
cific aspects of these anomalies and point out how to replicate them.
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AP Shutdown/Halt

An AP is considered to be shutdown for a while or halted when there is no session
recorded in the accounting table. We generate this anomaly by turning off the AP
power deliberately for some periods of time in different times of the day.

Heavy Usage

Single User We provoke this anomaly by making one user perform heavy down-
loads or uploads. It might affect the rest of the associated users depending on the
amount of usage, duration, time of the day and other relevant factors.

Multiple Users This anomaly emerges when more than one user utilizing the net-
work excessively, and therefore the overall throughput of the network intensifies.
This could occur in a normal day or as an anomalous event, and the network toler-
ance varies for different networks and different AP configurations. In any case, the
proposed model is expected to detect the irregularity and report the level of hazard
so that the network managers can take control of the situation and make required
changes if possible.

Wireless Network Interference

In a real network, a variety of things can interfere with the radio waves, degrading
the quality of connection and decreasing the network reliability. Sources of interfer-
ence are commonly from other wireless networks in the vicinity when they all locate
in the same channel, from non-802.11 devices such as microwave ovens or cordless
phones that use 2.4GHz band as well, from other clients in a crowded environment
when they all try to transfer data at the same time, and from RF effects such as hid-
den terminals or capture effects.

In this work we intend to cause interference in a systematic and controlled man-
ner. For this aim, we use a python script named wifijammer [99] to intentionally jam
wireless clients or APs in the range to simulate the same outcome as the aforemen-
tioned interference. The jamming process works by sending one de-authentication
packet to the client from the AP, one de-auth to the AP from the client, and one
de-auth to the AP destined for the broadcast address to de-authenticate all clients
connected to the AP. Many APs, however, ignore de-auth to broadcast addresses.

We employed wifijammer in the following plans by applying different configu-
rations and creating different forms of interference.

Jamming the Entire Channel In this practice, the monitor mode interface is set to
listen and de-authenticate clients or APs on a specific channel. This way of jamming
influence all the available networks on the current channel and imply interference
caused by busy channels.

Jamming Clients with Various Time Intervals Executing the de-authentication
procedure with short time intervals hinder clients from recovering and disable them
for the entire period of jamming, so the immediate result in the accounting table
is a stop session from each client and then a silent period without any start session.
However, de-authenticating with a larger time interval makes clients reclaim and try
to get back the connection to the AP, and subsequently many short sessions are ob-
served in the accounting table because they are de-authenticated right after getting
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connected again. In such manner we can replicate two interference cases observed
in the real data sets frequently: stop session followed by a silent period, and several
consecutive short sessions.

Jamming Specific Clients De-authenticating some specific clients and not the rest
resembles the hidden-terminal situation, when one client is forced to back-off and
delay data transfer because the other clients can not sense its send-request. Depend-
ing on the time interval discussed earlier, the sessions outcome in the accounting
table could be different.

3.3.3 Summary

In this section we described the deployment of a small Testbed with one AP and
six wireless users in FreeRADIUS server. Further we disclosed the server configura-
tions and users specifications in detail. Then we described the process of anomaly
generation in this real Testbed. The anomalous cases reproduced contain AP Shut-
down/Halt, Heavy Usage, and Interference.

3.4 Wireless Network Simulation

When acquiring ground truth is too expensive and time-consuming, network sim-
ulation seems to be an effective solution to achieve a close to reality setup that is
computationally tractable. After exploring various simulation frameworks such as
NS3 [90] and OPNET [91], we chose to use OMNeT++ [92] and INET Framework
[93] for our research purposes. Besides the well-structured framework and user-
friendly IDE that facilitate analysis and data gathering, OMNeT++/INET provides
an adequate set of modules supporting physical and radio models for 802.11.

3.4.1 Simulation Setup

We performed an extensive set of simulations using OMNeT++ [92] simulator and
INET framework [93]. OMNeT++ is a C++-based discrete event simulator (DES) for
modeling communication networks, multiprocessors and other distributed or par-
allel systems. It has a generic architecture and is used in various problem domains
including the modeling of wired and wireless communication networks.

One of the major network simulation model frameworks for OMNeT++ is the
INET Framework that provides detailed protocol models for TCP, IPv4, IPv6, Ether-
net, Ieee802.11b/g, MPLS, OSPFv4, and several other protocols. We used OMNeT++
along with INET Framework to simulate the IEEE 802.11 WLANg (2.4 GHz band) in
infrastructure mode.

As in any discrete event simulator, in OMNeT++, events take place at discrete
instances in time taking zero time to happen. It is assumed that nothing important
happens between two consecutive events. Thus the simulation time is relevant to
the order of events in the events’ queue, and it could take more than the real CPU
time or less than that based on the number of nodes, amount of traffic, and other
details of the network.

With the current number of nodes (10 APs and 100 STAs) and our chosen traffic
plan, 10 minutes of simulation time took around 2 hours of CPU time. Our HMM
approach operates on 40 consecutive time-slots of 15s simulation time each.
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(A) The initial picture of the network (B) After 30s of simulation

FIGURE 3.9: The initial picture of the wireless network simulated in
OMNeT++/INET, and the location of the wireless stations after 30s

of simulation.

The simulation consists of one normal scenario and four anomalous scenarios:
AP Shutdown/Halt, AP Overload, Noise, and Flash Crowd. We simulated 15 in-
stances of 3000s simulation time for normal scenario, and 5 instances of 3000s simu-
lation time for each of the anomalous scenarios to have enough data for training and
test sets.

Normal Scenario

Figure 3.9a shows the initial picture of a normal scenario, the location of the access
points (APs), wireless stations (STAs), and the servers. Figure 3.9b displays how the
stations scatter in the wireless ground after passing 30 s (simulation time) from the
beginning of the simulation.

In the normal scenario, there are 10 APs and 100 STAs. Each STA is initially asso-
ciated to one of the available APs depending on its location. During the simulation,
wireless stations - based on their mobility models - are handed over to other APs
when moving around the simulation ground. Then, according to the defined traffic
plans in section 3.4.2, each node sends and receives packets to the existing servers.

3.4.2 Mobility Models of the Wireless Stations

The APs are stationary and the wireless nodes follow different mobility patterns. In
the current experiment, the mobility models of the nodes are selected in a way to
emulate the usage behavior of three typical places in a campus.

The mobile nodes initially connected to one AP follow the Linear Mobility pat-
tern which is configured with speed, angle and acceleration parameters (Table 3.4).
The mobile nodes move to random destinations with the specified parameters and
when they hit a wall they reflect off the wall at the same defined angle. These nodes
connect to another AP in the vicinity, and sometimes they lose the connection when
they move to blind spots. This pattern is selected to symbolize the nodes with some
degree of freedom but within a limited space like administrative offices. In this ex-
periment 20% of the wireless stations follow this mobility model.

The nodes following the Mass Mobility model move within the room. This pattern
of mobility is intended to represent places like classroom or library in which users
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TABLE 3.4: Wireless nodes’ specifications in terms of mobility models

Mobility Model # Nodes Mobility Parameters
Linear Mobility 20 speed: truncnormal1 (20mps, 10mps)

angle: normal2 (270deg, 90deg)
acceleration: 0

Mass Mobility 30 speed: truncnormal(70mps, 50mps)
changeInterval: truncnormal(2ms, 0.5ms)
changeAngleBy: normal(90deg, 90deg)

Random Waypoint
Mobility

50 speed: uniform3 (50mps,50mps)
waitTime: uniform(3s,8s)

do not frequently leave the place, but still have some motions in the place. 30% of
the nodes follow this mobility pattern.

The rest of the wireless nodes follow the Random Waypoint Mobility and move to
a random destination (distributed uniformly over the playground) with a random
speed. When nodes reach their target position, they wait for a specified waitTime
and select a new random position afterwards. This type of movement resembles
the random mobile users around the wireless ground mostly connected with their
mobile devices. Half of the nodes in this experiment follow this mobility pattern.

A summary of wireless nodes’ specifications in terms of mobility models is pro-
vided in Table 3.4.

Traffic Generation

As it is shown in Figure 3.9, there are three main servers wire-connected to the Ether-
net switch: srvHostVideo, srvHostFTP, and srvHostEcho. The traffic transferred be-
tween wireless stations and the servers (through APs) is considered to be User Data-
gram Protocol (UDP). The video server (srvHostVideo) sends UDP packets with the
message length ofN (600B, 150B) to a number of clients resembling the video down-
loading by those users. The FTP server (srvHostFTP) is to receive the FTP uploads of
some clients with message length ofN (500B, 100B). The other server (srvHostEcho)
is in charge of both sending and receiving traffic to all the users. This traffic pat-
tern represents web browsing and email checking by all the wireless users. The echo
packets length are configured to be smaller than the previous ones, N (200B, 50B),
indicating lighter traffic transmission. 35% of the users download via srvHostVideo,
and 20% of them upload via srvHostFTP. In AP Overload anomalous scenario one
more server is added to take care of heavy channel utilization (srvHostBurst), and
more details about it can be found in section 3.4.3.

Path Loss Models

As the signal propagates through space its power density decreases. Path loss might
be due to the combination of many effects, such as free-space loss, refraction, diffrac-
tion, reflection, and absorption. The path loss model computes the power loss factor
based on the traveled distance, the signal frequency and the propagation speed. In
our experiments we utilized the following four path loss models to increase the com-
plexity of the simulation and make it more realistic:
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• Free Space Path Loss: is the loss in signal strength resulting from a line-of-
sight path through free space, with no obstacles nearby to cause reflection or
diffraction.

• Log Normal Shadowing: is a stochastic path loss model, where power levels
follow a lognormal distribution. It is useful for modeling shadowing caused
by objects such as trees.

• Rician Fading: is a stochastic path loss model which assumes a dominant line-
of-sight signal and multiple reflected signals between the transmitter and the
receiver. It is useful for modeling radio propagation in an urban environment.

• Rayleigh Fading: is the loss in signal magnitude according to a Rayleigh dis-
tribution - the radial component of the sum of two uncorrelated Gaussian ran-
dom variables. It is useful for modeling the effect of heavily built-up urban
environments on radio signals.

3.4.3 Anomalous Scenarios

AP Shutdown/Halt

When there is no session recorded for a given AP in RADIUS accounting table in
a period of time, it is likely that the AP has stopped working - possibly due to a
technical problem or power failure. In our simulation, we reproduced this anomaly
by turning off the AP power deliberately during the halt-period for some time-slots.
We used ScenarioManager in OMNeT++/INET and shutdown and startup commands
to turn off the AP module and start it over after some periods of time.

AP Overload

In this anomalous case, excessive channel utilization occurs that could be the con-
sequence of excessive download or upload by a number of wireless users. In such
circumstances, the clients get disconnected from the current AP frequently even with
the presence of high signal strength. In this experiment we simulated AP heavy us-
age caused by all of the users of a given AP. Burst server (srvHostBurst) sends UDP
packets to the given IP addresses in bursts during the burst-duration period which re-
sembles the heavy downloads of the wireless users. In the sleep-duration period the
burst flow stops and the channel utilization gets back to normal. This experiment
contains three different cases as following:

• burst-duration < sleep-duration.

• burst-duration = sleep-duration.

• burst-duration > sleep-duration.

Noise

Thermal noise, cosmic background noise, and other random fluctuations of the elec-
tromagnetic field affect the quality of the communication channel. This kind of noise
doesn’t come from a particular source, nor propagates through space. If the noise
level is too high, the signal strength will degrade and the performance will decrease.

In the current experiment we change the level of noise power by adjusting the
value of IsotropicBackgroundNoise parameter in the simulator. The default value of
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this parameter is set to -110dBm which is the minimum noise level in Wi-Fi networks
802.11 variants. We gradually increase the noise power to -90dBm and record the
simulation results repeated 10 times for each experiment. According to the study
in [100], the average noise level in a busy university campus had a stable value at
around -94 dBm.

Flash Crowd

In wireless networks an unexpected surge of traffic occurs mostly due to the begin-
ning or ending of an event when the majority of the wireless users abruptly enter
or leave a place and consequently associate to or disassociate from an AP. Such inci-
dents are not necessarily an anomaly in terms of performance or connectivity issues,
but could be considered more as a sudden change to a routine network. To see
whether the proposed models are able to detect such alterations in the normal usage
pattern, we simulate this example in two experiments:

• Arrival: simultaneous association of 10 new nodes to the current AP.

• Departure: simultaneous disassociation of 10 existing nodes from the current
AP.

3.4.4 Summary

In this section we represented the simulation of 10 AP and 100 wireless stations
in infrastructure mode in OMNeT++/INET. We defined the characteristics of our
simulation such as simulation time, mobility models of the wireless nodes, traffic
generation, and path loss models. Finally we described the generated anomalous
scenarios and their specifications. Simulated anomalous scenarios consist of AP
Shutdown/Halt, AP Overload, Noise, and Flash Crowd.

3.5 Conclusion

In this chapter we described the different data sets that will be used in the models
described in the following chapters. Although having different sources, these data
sets are all related to the wireless station RADIUS authentication data collected at
access points.

We explored the large log data of RADIUS authentication collected from FEUP
in approximately two years, and presented a summary of usage evolution through
the academic semesters. Then we conducted a preliminary analysis for user ses-
sions and access points. Moreover, we performed enumeration processes on the
data to extract the main data features: User Count, Session Count, and Connection
Duration as Density Attributes, and Input and Output Data in Octets and Packets
as Usage Attributes. Yet we analyzed the correlation of the aforementioned features
and performed PCA on them to select three best features.

Further, we described deployment process of a small Testbed with one AP and
six wireless users in FreeRADIUS server, and disclosed the server configurations and
users specifications in detail. Then we described the process of anomaly generation
in this real Testbed. The anomalous cases reproduced contain AP Shutdown/Halt,
Heavy Usage, and Interference.
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Finally, we represented the simulation of 10 AP and 100 wireless stations in in-
frastructure mode in OMNeT++/INET. We defined the characteristics of our simu-
lation such as simulation time, mobility models of the wireless nodes, traffic gen-
eration, and path loss models. Ultimately we described the generated anomalous
scenarios and their specifications. Simulated anomalous scenarios consist of AP
Shutdown/Halt, AP Overload, Noise, and Flash Crowd.
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Chapter 4

Selected Approaches to Hidden
Markov Modeling for Anomaly
Detection and Pattern Recognition

4.1 Introduction

We intend to inspect and characterize the usage pattern of wireless networks and
their inherent dynamics in order to provide models for anomaly detection. For this
purpose we explore the temporal usage behavior of the network by applying var-
ious types of Hidden Markov Models. We observe the usage pattern of up to 100
APs in one week period in 2011 at the Faculty of Engineering of the University of
Porto. The first step of this study consists of constructing Hidden Markov Models
from 802.11 AP usage data. We then apply statistical techniques for outlier detection
and justify the presented outliers by inspecting the models’ parameters and a set of
HMM indicators. The reason for this justification is that there is no explicit ground
truth provided for the RADIUS data set (3.2) that would conveniently lead us to
anomalies. We finally introduce examples of wireless networks anomalous patterns
based on the transitions between HMM states and provide an analysis of the entire
set of APs under study.

In this chapter we proceed as follows. We first provide some background infor-
mation on connectivity problems in 802.11 wireless networks and Hidden Markov
Models application for anomaly detection purposes in these networks in section 4.2.
In section 4.3 we present Hidden Markov Models definition, parameters, and key
problems in subsection 4.3.1, selected approaches to HMM modeling in subsection
4.3.2, and outlier detection methods by the state of the art and HMM techniques
in subsection 4.3.3. In section 4.4 we provide some discussions on outliers analyz-
ing the outlier quality indicators in subsection 4.4.1, and investigating anomalous
patterns as collective outliers in subsection 4.4.2. In section 4.5 we present the ex-
perimental results on HMM outliers in subsection 4.5.1, and anomalous patterns in
subsection 4.5.2. In both above mentioned subsections, the experimental results are
demonstrated through a case study and a systematic analysis of the entire set of data.
In section 4.6 we present concluding remarks.



44
Chapter 4. Selected Approaches to Hidden Markov Modeling for Anomaly

Detection and Pattern Recognition

4.2 Background

The question of performance in 802.11 wireless networks becomes increasingly im-
portant as many new emerging applications such as mobile information access, real-
time multimedia communications, and cooperative work require sufficient band-
width and consistent connectivity. Some major circumstances leading to perfor-
mance degradation in such networks are contention and collision, rate diversity and
fairness, random losses, and TCP performance and traffic asymmetry [5, 101]. Due
to such fundamental issues of the wireless medium, users of 802.11 networks experi-
ence a number of connectivity problems such as authentication failures, intermittent
connections to 802.11 APs and inconsistent or lack of coverage. These connectivity
problems can also be the consequence of RF interference, weak RF or RF holes, and
users associating to overloaded APs [102].

To detect and address such anomalies in 802.11 networks we apply Hidden Markov
Models which are frequently used in network measurements to obtain temporal in-
formation of signals in the network. Hidden states of HMMs encode different proba-
bility distributions. For example, states for low and high network activities and their
respective observation distributions. A statistical learning methodology estimates
automatically the states’ parameters and the state transition probabilities from the
previous observations. The typical approach for using HMMs in network-related
work is to automatically learn an HMM for each behavior or class of network activ-
ities [103, 104]. In this work we detect anomalous time instances by analyzing the
likelihood series of three approaches to HMM modeling: a single model for all the
network data, separate models for each AP’s data, and groups of HMMs by mixture
estimation technique. We justify and evaluate the anomalies detected by each model
through HMM parameters exploration and analysis. Furthermore, we propose a
number of network anomalous patterns deduced from states transition sequences
and present the potential HMM variations capable of detecting specific types of pat-
terns.

4.3 Methodologies

In circumstances where acquiring labeled data is troublesome or time-consuming,
unsupervised techniques are most widely applicable to discover underlying patterns
of the data. In the current case, there is no explicit ground truth provided for the
RADIUS data set (3.2) which would conveniently lead us to anomalies. Therefore,
we made use of well-known outlier detection techniques as well as various HMM
approaches to investigate this demanding network management work.

4.3.1 Hidden Markov Model

An HMM is a doubly stochastic process with an underlying stochastic process that
can only be observed through another set of stochastic processes that produce the
sequence of observed symbols [105].

An HMM is completely defined by the following parameters:

• The number of hidden states, N.

• The discrete set of hidden states, S = {si}, 1 ≤ i ≤ N.
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• If observations are discrete, the number of possible observations, M, and the
discrete set of such observations, V = {vk}, 1 ≤ k ≤ M.

• If observations are continuous, the corresponding dimensionality of the obser-
vation space, d.

• The state transition probability distribution, P(ht|ht−1), represented by a ma-
trix A = [ai,j], 1 ≤ i, j ≤ N, where ai,j = P(ht = sj|ht−1 = si).

• The emission probability distribution, P(ot|ht). For discrete observations, this
is represented by a matrix B = [bi(vk)], 1 ≤ i ≤ N, 1 ≤ k ≤ M, where
bi(vk) = P(ot = vk|ht = si). For continuous Gaussian observations, the
emission probability density is defined by the set of d-dimensional means,
µ = {µi}, and the set of d× d covariance matrices, Σ = {Σi}, 1 ≤ i ≤ N.

• The initial state probability distribution, P(h0), represented by a vector π =
[πi], 1 ≤ i ≤ N, where πi = P(h0 = si).

An HMM λ models the joint distribution P(O, H|λ) of a sequence of hidden
states H = (h0, h1, h2, ..., hT) and a sequence of observations O = (o1, o2, ..., oT) as:

P(O, H|λ) = P(h0)
T

∏
t=1

P(ht|ht−1)P(ot|ht), (4.1)

where, on the right-hand side, we omit the dependency on λ to simplify notation.
Furthermore, it is often assumed that both distributions P(ot|ht) and P(ht|ht−1) are
stationary, that is:

P(ot|ht) = P(ot′ |ht′), (4.2)
P(ht|ht−1) = P(ht′ |ht′−1), for all t′ (4.3)

Using the model λ, an observation sequence O = o1, o2, ..., oT is generated as
follows:

1. Select an initial state, h1, according to the initial state probability distribution,
π;

2. Set t = 1;

3. Choose ot according to observation probability distribution in state ht, bht(k);

4. Choose ht+1 according to the state transition probability distribution for state
ht, aht,ht+1

5. Set t = t + 1; return to step 3 and continue until t = T

Given the form of the HMM, there are three key problems whose solution is in-
teresting for real world applications. These problems are listed as following [105]:

Problem 1 – Given the observation sequence O = o1, o2, ..., oT and the model λ =
(A, B, π), compute P(O|λ), the probability of the observation sequence. (Forward-
backward)

Problem 2 – Given the observation sequence O = o1, o2, ..., oT, choose a state se-
quence S = s1, s2, ..., sT which is optimal in some meaningful sense. (Viterbi)
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Problem 3 – Given the observation sequence O = o1, o2, ..., oT and the model
λ = (A, B, π), adjust the model parameters λ = (A, B, π) to maximize P(O|λ).
(Baum-Welch)

The compact notation λ = (A, B, π) defines an HMM with discrete emission,
and λ = (A, µ, Σ, π) represents an HMM with continuous Gaussian emission.

The forward-backward algorithm provides an efficient solution to the evalua-
tion problem (likelihood of an observation sequence O given the λ model), and
also scoring problem (choosing the best λ model among the competing models).
The forward variable αt(i) = P(o1o2...ot, ht = si|λ), and the backward variable
βt(i) = P(ot+1ot+2...oT|ht = si, λ) are computed recursively according to Equations
4.4 - 4.7 as follows:

α1(i) = πibi(o1) 1 ≤ i ≤ n (4.4)

αt+1(j) =
[
Σαt(i)aijbj(ot+1)

]
1 ≤ j ≤ n, 1 ≤ t ≤ T − 1 (4.5)

βT(i) = 1 1 ≤ i ≤ n (4.6)

β1(i) = Σaijbj(Ot+1)βt+1(j) 1 ≤ i ≤ n, 1 ≤ t ≤ T − 1 (4.7)

These probabilities contain very small values, due to the multiplication of many
transition and emission probabilities all below 1. As the length of the sequences in-
crease, the forward-backward probabilities will likely exceed the available machine
precision. Consequently to avoid the underflow issue the scaled values must be
substituted. The exact formulations of the scaled version of forward and backward
variables can be found in [83, 106].

According to forward-backward algorithm there are T ways to compute the like-
lihood value or probability of the observation sequence O given the model λ.

P(O|λ) =
n

∑
j=1

αt(j)βt(j) 1 ≤ t ≤ T (4.8)

for t = T the above equation will be in the following form:

P(O|λ) =
n

∑
j=1

αT(j)βT(j) (4.9)

Substituting the forward recursion of 4.8 for αT(j) gets the following equation
which will be further used in analysis presented in chapter 6.

P(O|λ) =
n

∑
j=1

n

∑
i=1

αT−1(i)aijbj(oT)βT(j) (4.10)

Once again due to the vanishingly small likelihood probabilities produced in
long time-series, the logarithmic value is used as log-likelihood values.

4.3.2 Selected approaches to HMM Modeling

The HMMs we use in this chapter are multivariate, having 3 main features, consist
of continuous Gaussian distribution, and contain fully connected states, thus transi-
tions are allowed from any state to any state.

HMMs consist of states that encode different probability distributions. For the
current work, we considered 3 states of low, medium and high addressing the usage
(load) of the APs and the respective observation distributions.
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In this section three different HMM modeling approaches are provided to char-
acterize the usage pattern of the entire set of APs. All types of HMMs in this work
retain 3 states of low, medium and high.

Separate Models per AP

To induce HMMs specifically for each AP, a vector quantization process is performed
on the observation data and 3 clusters (low, medium and high) are produced by
k-means. Hence, the emission matrix of each model is formed by estimating the
distribution parameters of the clusters. Moreover, the transition matrix is a result
of an enumeration procedure on the sequences of observed states which are labeled
base on the assumed distribution parameters.

Single Model for all APs

In this approach the observation sequences of all APs participate in generating a sin-
gle HMM which characterizes the entire set of data in one model. The process of the
formation and estimation of states’ distribution parameters and transition probabil-
ities are similar to the previous model with this difference that the states distribu-
tions and the transition probabilities are estimated using the expanded set of data.
The single model is expected to be more robust using the data belonging to all APs,
while the separate models might be better cater for the specificities of each AP.

Groups of APs and Mixture of HMMs

Given a source of time-series data, it is often advantageous to determine whether
there are qualitatively different regimes in the data and characterizing those regimes.
HMMs have been shown empirically to be capable of modeling the structure of the
generative processes underlying numerous types of real world time-series. The mix-
ture modeling is based on the well-established method of Expectation Maximization
(EM) for estimating mixture parameters from the set of data. A mixture model [107]
is defined as following:

P(Oi|Θ) = ΣK
k=1αkP(Oi|λk) (4.11)

The mixture probability density function (pdf) is parameterized by (α1, ..., αk, λ1,
..., λk), consist of the prior probabilities αk, k = 1, ..., K, and the likelihood function
of the HMMs denoted by P(Oi|λk). The λk is the set of parameters that describe
the density functions of linear HMMs with multivariate emission distributions. The
observed data Oi then corresponds to the multi-dimensional time-series that reflect
the underlying usage pattern of the APs. The goal is to maximize Equation 4.11
by choosing optimal parameter set. This problem is generally solved by the EM
algorithm which finds a local optimum for the above function. The outcome is the
groups of APs with one optimized HMM as the representative of the group.

The mixture method concisely performs the following main steps, given a collec-
tion of K initial HMMs λ0

1, ..., λ0
K:

1) Iteration:

• Generate the initial groups of sequences by assigning each sequence Oi to the
model k for which the likelihood is maximal.
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• Calculate new parameters for each model λt
1, ..., λt

K using re-estimation algo-
rithm (Baum-Welch) based on their current parameters λt−1

1 , ..., λt−1
K and the

assigned weights of the participating sequences.

2) Stop: If the improvement of the objective function is below a given threshold ε, the
grouping of the sequences does not change or a given iteration number is reached.

Our assumption is that grouping APs and presenting an optimized HMM per
group, has the potential to enhance the quality of the group models to conquer the
weak points of the very generalized or very specific models (single HMM vs. sepa-
rate HMMs). We show results that validate our assumption in Section 4.5

4.3.3 Outlier Detection Methods

Outlier detection, also referred to as anomaly detection, event detection, or deviant
discovery, is the process of distinguishing observations that lie outside the regular
pattern of a distribution and do not comply with the well-defined expected behavior
[108].

Univariate Outliers: Feature by Feature

Individual data instances which are not compatible with the normal pattern of the
rest of the data are called point anomalies. Point anomalies are the simplest form of
anomalies detected as they lie outside the boundary of the normal zones. They can
be single points each with a different pattern or small regions composed of several
point anomalies.

To detect univariate outliers, features are inspected one by one without consid-
ering any correlation between them. Thus, any instance out of the normal boundary
could be marked as an outlier without looking at the other accompanying features.
In this work, univariate outlier detection is performed using boxplot.stats function
from R, which returns the statistics for producing boxplots [109]. It labels the data
points lying beyond the extremes of the box-and-whisker plot. An argument of coeffi-
cients is used to control how far the whiskers extend out from the box of a boxplot.
We assumed coe f = 3 to get the most extreme values as outliers. In an example AP
(AP#0), there is no outlier detected in the first two features, and only 1 extreme is
observed in the third feature.

Multivariate Outliers: 3D Impression of Data

Assuming the data is multivariate normally distributed in D dimensions, the Ma-
halanobis [110] distance of such set of data follows a Chi-Square distribution with
D degrees of freedom. There are two approaches for outlier detection using Ma-
halonobis distances. The first one marks observations as outliers if they exceed a
certain quantile of the chi-squared distribution. The second is an adaptive proce-
dure looking for outliers specifically in the tails of the distribution, beginning at a
certain chisq-quantile.

For this purpose the aq.plot function [111] from mvoutlier package [112] in R is
used which plots the ordered squared robust Mahalanobis distances of the observa-
tions against the empirical distribution function of the MD2

i (squared Mahalanobis
distance). Figure 4.1 shows the outliers detected based on the assumed quantile
(97.5%) and the adapted quantile for the 3D data of AP#0. The points marked as X
(in red) are the outliers projected on their two most robust principal components.
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FIGURE 4.1: Multivariate Outliers Detected for 3D Data of AP#0

The first and second approaches detect 2 and 3 outliers shown in Figure 4.1 bottom-
left and bottom-right, respectively. The multivariate outliers of the experimental
results in Section 4.5 are identified using the first approach.

Temporal Outliers: Time Series

Contextual or conditional anomalies occur when a data instance is anomalous in one
specific context and not in the others. The notion of context (or vicinity) determines
the structure of data which has to be considered joint with data attributes to distin-
guish the anomalies. A salient example of a contextual attribute forming the data
context is time in time-series data. Contextual anomalies have been mostly explored
in temporal data [113, 114] and spatial data [115].

Accordingly, the third type of outliers inspected for the current data set is the
temporal outliers. Thereupon, stl function [116] from R is employed which de-
composes a time-series into seasonal, trend and irregular components using loess
smoother [117]. As the data set of this work is inherently periodic, containing 12
hours a day for 5 consecutive working days, a time-series object with frequency of
12 is built and given to stl function. Figure 4.2 shows the time series data of AP#0,
the seasonal, trend and remainder component. The X point is the only temporal
outlier detected for the data of AP#0.
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FIGURE 4.2: Temporal Outliers Detected for Data of AP#0

(A) Separate HMMs (B) Single HMM (C) Mixture of HMMs

FIGURE 4.3: Likelihood Series of Three Variations of HMMs

Hidden Markov Models: Likelihood Series

Measuring the likelihood of each observation instance (ot, 1 ≤ t ≤ T) in an observa-
tion sequence O = o1, o2, ..., oT given the HMM model, produces a likelihood series
of the entire observation sequence. In the likelihood series some values are basically
out of the normal range of the rest of the series, hence simple outlier detectors indi-
cate them as outliers. Figure 4.3 demonstrates the likelihood series of AP#0 for the
separate, single and mixture HMM models. The anomalies are marked with red X.
As this figure shows some points are detected by more than one HMM model, for
instance separate and mixture models both detect point #49 as outliers.
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4.4 Discussion on Outliers

4.4.1 Outlier Quality Indicators

In this section we investigate some of the salient properties of HMMs that explain
the likelihood results of different HMM models and provide justifications to sub-
stantiate the detected outliers. In the absence of ground truth these indicators could
provide the network manager with more robust assessment of detected anomalies.

Large Distance from the Assigned Hidden State

Given an HMM λ and an observation sequence of O = o1, o2, ..., oT, the most prob-
able set of states are generated by Viterbi algorithm as O = s1, s2, ..., sT, si ∈ S. To
estimate the distance of a data record in time t to its closest HMM state (st) in Viterbi
path, we employed the concept of distance of a data point to a distribution. For
this purpose Mahalonobis distance is calculated for each data point to its equivalent
assigned state in the Viterbi path. To highlight the isolated records in terms of sep-
aration from the appointed HMM states, the univariate outlier detection method is
utilized.

Less Likely State Transition

Intuitively we expect that the highest transition probabilities are observed between
identical states (si to si), and the lowest probabilities between the most distant states
(s0 and s2 in a 3 states HMM). The medium state (s1) is the most uniformly dis-
tributed state in terms of transition probabilities to the higher (s2) and lower (s0)
states. Having observed the regular HMM state transitions of the HMM variations,
the least frequent transitions are more likely to be among the anomalous instances.
For example when rare state modifications appear in Viterbi path or there exist no
transition when according to the transition matrix it is expected to be, the chances of
encountering an anomaly is higher. To distinguish the least likely state transitions,
the HMM transition matrix is analyzed and transitions probabilities below 10% are
marked as outliers.

Unbalanced Separation of the HMM States

Continuous observations indicate different distribution parameters for each hid-
den state. To determine the distances between HMM states, we utilized the bhat-
tacharyya.dist function [118] from R calculating the distance between distribution
pairs. Successive fluctuation between states could be a symptom of network mal-
functioning. However, if the distance between two alternating states is not large
enough the possibility of a network connectivity problem is less.

Other advantage of studying distance between HMM states is to understand the
separation of states and declare the anomalous patterns with more confidence. For
example when in a model (s1) and (s2) are very close, the anomalous pattern of 2020
is very similar to 1010, or the anomalous pattern of 2121 does not necessarily re-
flect any changes. Therefore, we should inspect specific patterns based on distance
between their states, and also take into consideration similar patterns.

We must carefully consider that HMM indicators and HMM outlier detectors
deal with two different aspects of the HMM models. HMM outliers come from the
abnormal likelihood values in the likelihood series, which reflect the trait of each
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and every observation instance as well as the overall quality of the model. On the
other hand, HMM indicators monitor the characteristic of each observation instance
concerning the model parameters which determine whether there is any sign of ab-
normality associated with observation instances and assert the potential source of
the problem from the model parameters’ viewpoint. For example a data point is
marked by less likely state transition HMM indicator because of its low transition
probability which is one of the model parameters. Hence, according to the proposed
model this point is suspicious. If the model has already reported the same point as
outlier (based on its likelihood value), then we claim a true match. The likelihood
outliers that are not confirmed by any of the model indicators are supposed to be
false positives of the model.

4.4.2 Anomalous Patterns: Collective Outliers

Our intuition is that the normal usage pattern observed in APs consists of one or two
peaks a day. Regardless of the AP location category (classroom, auditorium, admin-
istrative office, cafeteria, etc.) a gradual transition between successive hidden states
is expected during the normal periods. There exist a number of anomalous patterns
where a sequence of actions occur together. In HMM terminology, the anomalous
patterns could be defined as the occurrences of a number of state transitions in a
specific order. For example a high state transition to a low state and remaining there
for some successive time slices, could indicate a special type of anomaly interpreted
by network administrator. From the AP point of view, we have defined anomalous
patterns as falling into one of the following categories [51]:

AP Halt/Crash

When the HMM is in the low state after a drop from a higher state and remains low
for some successive time-slots (210000 or 110000 or 220000). Such patterns indicate
possibility of AP halt or crash.

Persistent Interferences

Where repeated downturns are observed for a given AP in a day, possibly due to RF
interference and RF holes. Decline from a higher state to the lowest state (s0) more
than three times a day indicates such anomalies (10..10..10 or 20..20..20).

AP Overload

In the presence of high HMM state right after a low state and intermittent fluctuation
between the two states (0202 or 0101 in case states 0 and 1 are distant or 1212 in case
state 1 and 2 are distant). This could be the case of heavy utilization by some few
users.

4.5 Experimental Results

In this section we discuss two principal lines of the current study: 1) HMM outliers,
and 2) anomalous patterns. The experimental results are presented through a case
study and a systematic analysis of the entire set of data. The data used for the fol-
lowing experiments is a subset of the dataset described in Section 3.2 for a period of
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TABLE 4.1: Detected Outliers of AP#0 by All the Outlier Detection
Techniques (HMM Indicators: Large distance from the assigned states
(Dist Ind.), Less likely state transition (Prob Ind.), Rare transition

probability (Trans Ind.)

Day 2 Day 4 Day 5
Day Hours 8 9 10 11 12 13 14 15 16 17 18 19 8 9 10 11 12 13 14 15 16 17 18 19 8 9 10 11 12 13 14 15 16 17 18 19

STOA
Univariate X

Multivariate X X
Temporal X

Separate HMMs
Dist Ind. * * *
Prob Ind.
Trans Ind.

Single HMM X
Dist Ind. *
Prob Ind.
Trans Ind.

Mixture of HMMs X X
Dist Ind. * * *
Prob Ind. *
Trans Ind. * *

one week between 2011-12-12 and 2011-12-19. The summary of the relevant tests are
provided in Table 4.1-4.4.

4.5.1 HMM Outliers

Case Study

In this part one AP is selected (AP#0) and its outliers are detected by various detec-
tion techniques (State Of The Art (STOA) and HMM models). Table 4.1 provides a
comparative outlook of all detected outliers of this example by the different detec-
tion techniques. Detected anomalies are marked by X and those supported by HMM
indicators are marked by *. The learning period consist of 5 working days and 12
hours per day, from 8:00 to 19:00. No outlier was observed in day 1 and day 3.

There are some hours which are marked by a majority of the detectors and those
that are pointed out only by one or two detectors. For example one data point is
labeled as outlier on day 4 at 13:00 by 4 out of the 6 detectors. Inspecting the data, the
third feature (user count) is out of the normal range, so the entire record is marked by
univariate detector. It is also detected by multivariate technique which consider the
Chi-Square of Mahalonobis distances, but not by the temporal detector. The mixture
HMM detects this point as well as the single HMM, while the separate model do
not.

The mixture model reports this data instance of day 4 as an outlier due to its
large distance to the assigned hidden state in Viterbi path, but there is no reasoning
found by the single model indicators explaining why this point is detected as an
outlier. As the table results show, none of the single indicators support this decision.
However, based on ensemble learning [119] the mentioned data point is very likely
to be an outlier as the majority of detectors acknowledge that. The single model, in
this case, is not good enough to justify its detection, and the separate model does not
recognize it at all. Several fluctuations in the separate model makes it impossible to
distinguish any outlier for this example. It is only the mixture model which detects
the point and has support from the HMM indicators.

Furthermore, there is another outlier suggested by the mixture model in day5 at
9:00 which is supported by two of the HMM indicators, the low probability and the
rare transition between hidden states. Among the STOA detectors, the multivariate
technique also marks this point as outlier. Neither the single nor the separate HMM
models are able to detect this point. Both data points detected by mixture model are
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TABLE 4.2: HMM Outliers Compliance with STOA Outliers and
HMM Indicators

STOA Outliers HMM Indicators
Univariate Multivariate Temporal Large Distant (Dist) Low Probability (Prob) Rare Transition (Trans)

Separate Model 29% 70% 74% 15% 9% 10%
Single Model 29% 60% 73% 22% 8% 24%

Mixture Model 21% 81% 76% 24% 12% 15%

compatible with the STOA outliers (one with univariate and both with multivariate),
and they are both supported by the HMM indicators of the mixture model.

If the outliers can not be justified by the HMM indicators they are referred to as
soft false positives. If they can not be explained neither by the HMM indicators, nor
by the STOA outliers, they are declared as hard false positives. The unique outlier
introduced by the temporal method is not detected by any of the HMM variations.
The overall compatibility of the HMM outliers with the STOA outliers and HMM
supported indicators are summarized in Table 4.2 and 4.3 in the next section.

The quality of HMMs in modeling observation sequences is an important con-
cern. How accurately does an HMM represent the characteristics of its associated
observations and adjust to the overfitting issues at the same time? Basically, each
HMM model produces a number of false positives which in the absence of the pre-
cise ground truth is complicated to distinguish. In spite of this, a background knowl-
edge of the network abnormalities in addition to the HMM parameters inspection
provides reliable explanations to estimate anomalies and can improve the robustness
of anomaly detection.

The Systematic Approach

In this section we present the likelihood results of three HMM variations for all the
APs in the one week data set, comparing the detected outliers to STOA outliers and
the HMM parameters indicators. Those HMM outliers not in agreement with any of
the HMM indicators, are marked as Soft FP. If they are not compatible with HMM
indicators nor with the STOA outliers they are referred to as Hard FP that means we
found no reason for their selection as outliers.

This experiment also reveals the best HMM models for different types of anoma-
lies. For instance Table 4.2 shows that mixture of HMM is the best model to capture
multivariate outliers, while in detecting other types of the STOA outliers all three
types of HMMs perform almost identical. The mixture model is more capable of
recognizing outliers caused by large distances to the proper hidden state, while the
single model is the most efficient model for outliers due to rare state transitions and
large distances distinguished in Viterbi path.

Table 4.3 shows that more than 77% of the outliers detected by the three versions
of HMM are in accordance with the STOA outliers, while the second column dis-
plays that around half of the HMM outliers can be validated by HMM indicators
(large distance, low probability and rare transition). The higher the compliance be-
tween HMM outliers and HMM indicators, the more confidence is assured in the
presented anomalies to the network administrating team. The single and mixture
models demonstrate a superior rate of compliance to HMM indicators, while the ra-
tio of the Hard FP in the mixture model still remains lower than the two other HMM
models. It must be noticed that STOA outliers are not utilized as ground truth, but
just as auxiliary verification tools providing an extra level of certainty for explaining
the HMM outliers.
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TABLE 4.3: Comparison of HMM Variations

STOA HMM Ind. Soft FP Hard FP
Separate Model 81% 45% 55% 12%

Single Model 77% 57% 43% 15%
Mixture Model 85% 56% 44% 6%

TABLE 4.4: Anomalous Patterns Observed in 3 HMM Variations

AP Halt/Crash Persistence Interference AP Overload
210000 110000 220000 10 (3x) 20 (3x) 0202 0101 1212

Separate Model AP (%) 10 25 12 14 0 1 18 8
Day (%) 2.2 6.4 2.4 3 0 0.2 4 2.4

Outlier Compliance (%) 10 20 33.3 64.2 0 0 5.5 12.5

Single Model AP (%) 2 40 2 3 0 0 4 1
Day (%) 0.4 13 0.6 0.6 0 0 0.8 0.2

Outlier Compliance (%) 100 52.5 100 0 0 0 25 0

Mixture Model AP (%) 4 31 7 9 1 0 10 1
Day (%) 0.8 8 1.6 2.2 0.2 0 2.4 0.2

Outlier Compliance (%) 25 22.5 28.5 33.3 0 0 40 0

4.5.2 Anomalous Patterns

Table 4.4 presents the observed anomalous patterns in separate, single and mixture
HMM models by the percentage of the patterns’ occurred per AP and per day, in
addition to the patterns’ compliance to the observed outliers. The Outlier Compli-
ance row of this table shows in what portion of the observed anomalous patterns an
outlier is also detected by the model.

Among the three categories of anomalous patterns, the least frequent one ob-
served is Persistence Interference which is the repetition of downturns to the lowest
state (10 or 20) more than three times a day. Generally the state transition of 20 is
very rare and its three recurrences per day, is only captured once by the mixture
model (in 1 hour of 1 day). However, transition from the medium state to the low
state (10) is more frequently occurred and is identified by the separate model.

In the case of AP Halt/Crash, 110000 pattern appears more than the two other
patterns (210000 and 220000). However the most salient patterns of this category is
220000, which demonstrate a sudden decline of usage from peak to bottom that lasts
for 4 consecutive time slots. It should be noted that such types of anomalies need a
further check by the network administrator. For example if this pattern happens in
classroom or auditorium, it can be due to the termination of a crowded event after
which a large number of participants decide to disconnect their wireless stations and
leave the place almost concurrently. Another interesting outcome is inspecting the
pattern observations by various HMM models. For example when the single HMM
detects (220000) pattern, it is extremely acceptable to be a true detection, while de-
tecting (110000) pattern by the same model could contain many false alarms. The
reason behind that is the high probability of watching only 2 states in Viterbi path (0
and 1 or 1 and 2) created by the single model, due to the HMM state generalization
(expanded HMM states generated from the entire data set). The high rate of observ-
ing 110000 pattern by the single model (in 40% of APs and in 13% of days) and low
rate of 220000 pattern observation (in 2% of APs and in 0.6% of days) supports the
above discussion.

The AP Overload pattern which is identified by the HMM state fluctuations, is
very unlikely between the high and low states (0202) and is captured just once
appeared in the separate model. The (1212) pattern seems to occur less than 0101
pattern, and the former is a more appropriate estimation of AP Overload, as the ex-
tremely jammed hours (high HMM state) normally are followed by medium states in
AP overloaded situations and the intermittent fluctuation between these two states
can be a typical form of this type of anomaly.
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Table 4.4 performs a cross-check between the distinguished anomalous patterns
and the detected outliers of each HMM model. For example in the mixture model,
the second pattern of the AP Overload (0101) is observed in 10% of the APs, which
in 4 of them (40%), an HMM outlier has also occurred during the pattern at the
specified anomaly point. For each anomalous pattern there is an anomaly point
(HMM state in Viterbi path), in which the AP is crashed, the interference occurs, or
the AP is overloaded at that specific state. For instance in the AP Halt/Crash pattern,
the third state is where the anomaly happens (downturn to the low HMM state).
Observing the previous and next hours just determines the type of anomaly and
affirms the required duration. The compliance between the anomalous patterns and
the observed outliers of each model provides a higher level of confidence for the
proposed anomalies to the network management team.

The comprehensive analysis of such anomaly-related patterns or even more com-
plicated alternatives, may inform the network managers about various types of
anomalies, the level of severity, and the extent of confidence to the presented pat-
terns. Such information may permit the network managers to take immediate ac-
tions or make long-term decisions for the maintenance or re-structure plans of the
network.

4.6 Conclusion

The main contribution of this section was analyzing the user’s behavioral patterns
and learning models to detect anomalous patterns. We proposed a new application
of HMMs in performance anomaly detection of 802.11 wireless networks and pre-
sented several indicators of outliers by HMM parameters’ analysis. Furthermore, we
provided a number of anomalous patterns associated with such networks in terms
of HMM state transitions.

The experimental results show that HMM models were able to discover a portion
of the state of the art’s outliers (univariate, multivariate and temporal). The HMM
models also introduced some additional outliers that could be justified by HMM pa-
rameter indicators (large distance to assigned HMM state, low transition probability,
and rare state modification). The reason for evaluation through STOA outliers and
HMM indicators is the lack of ground truth in the RADIUS data set. The single and
mixture models outperformed the separate HMMs in terms of accuracy and HMM
indicators conformity.
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Chapter 5

Hidden Markov Model Analysis
for Anomaly Detection: Time
Variant Modeling

5.1 Introduction

Due to unstable radio conditions, faulty equipment, and dynamic user behavior
among other reasons, there are always unpredictable connectivity problems in a
wireless covered area. Detection and prediction of such problems is of great sig-
nificance to network managers if they are to alleviate the connectivity issues of the
mobile users and provide a higher quality wireless service. This chapter aims to
improve the management of the 802.11 wireless networks by characterizing and
modeling wireless usage patterns in a set of anomalous scenarios that can occur
in such networks. This chapter contains two main divisions: time-variant and time-
invariant HMM modeling in section 5.2, and Hidden Markov Models and Universal
Background Model in section 5.3.

In section 5.2 we apply time-invariant (Gaussian Mixture Models) and time-
variant (Hidden Markov Models) modeling approaches to a data set generated from
the large production network addressed in section 3.2. In subsection 5.2.3 we pro-
pose to apply these models for anomaly detection purposes. We then evaluate
the proposed anomaly detection methodologies in a controlled environment of the
Testbed network addressed in section 3.3. In subsection 5.2.4 we analyze and discuss
the experimental results of the Testbed showing that HMM outperforms GMM and
yields a higher anomaly detection ratio and a lower false alarm rate.

In section 5.3 we propose an anomaly detection technique based on Hidden
Markov Model (HMM) and Universal Background Model (UBM) on data that is
inexpensive to obtain. Furthermore in subsection 5.3.2 we present techniques for de-
tection of anomalous time-series in a database of time-series, distinction of anoma-
lous patterns, and detection of anomalous points within a given time-series. We
then evaluate our proposed methodologies on generated network anomalous sce-
narios in OMNeT++/INET network simulator addressed in section 3.4, and compare
the detection outcomes with those in baseline approaches - RawData and Principal
Component Analysis (PCA). The experimental results in subsection 5.3.3 show the
superiority of HMM and HMM-UBM models in detection precision and sensitivity.
In subsection 5.3.4 we present the summary and conclusion of the main section.
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5.2 Time Variant HMM Modeling

5.2.1 Background

In this work, we propose an automatic diagnostic tool that analyzes the usage data
of the APs—collected from a RADIUS authentication server. We apply probabilis-
tic learning algorithms to produce a model for each access point or group of ac-
cess points, and identify anomalous events with a margin of certitude. AP usage
modeling and anomaly detection in hotspots would assist network administrators
to ensure long-term quality of service by analyzing various connectivity factors of
wireless users in particular localities. In the current work we focus on proposing
individual models for APs as the ground truth data is only available through the
single AP Testbed deployment. The prospective methodology is based on the de-
velopment of HMM models and a detection tool using Wi-Fi campus data; other
work that we have developed in [13] and [12] has taken this approach into account.
As a preliminary investigation on the subject, we focused on short 802.11 sessions
recorded through RADIUS authentication as a network artifact and an indicator of
quality of wireless access in [13]. In [12] an exhaustive analysis is performed for
outlier detection in 802.11 wireless networks using HMM variations- single HMM,
mixture of HMMs and individual HMMs- and is evaluated by the state of the art sta-
tistical methodologies. Furthermore a number of network anomalous patterns are
represented, in the same study, considering HMM parameters such as hidden states’
transition and partial likelihood of the observation sequences. In the current study
we consider Hidden Markov Model and its counterpart time-invariant methodology
- Gaussian Mixture Model (GMM) - to investigate the temporal relevance of the em-
ployed data. These two methodologies are analyzed and compared with each other
both in modeling and anomaly detection experiments. The key research question is
whether time plays a role in the modeling or a simple time-invariant model such as
GMM is adequate.

This section contains two main parts: 1) analysis and modeling of 802.11 AP
usage and exploring the time dependency of the employed data, and 2) identifica-
tion, detection, and characterization of different types of anomalies. The aforemen-
tioned objectives are investigated as case studies on the large data set of AP usage
addressed in Section 3.2. Moreover those objectives are examined on the smaller
scale Testbed defined in Section 3.3 for the purpose of evaluation.

5.2.2 Methodologies

In this section we introduce statistical techniques for modeling purposes and in the
upcoming section we indicate how to apply these models for anomaly detection. Al-
though in this thesis we use the modeling approaches for anomaly detection, they
can be used in distinct directions such as investigating the similarities and differ-
ences of the locations, categorizing the localities in terms of functionality (e.g. class-
room, office, library) or specification (homogeneous/heterogeneous daily, seasonal
or constant usage). We introduce time-invariant and time-variant models and in
each case we show how to apply the model on the large data set previously elabo-
rated in Section 3.2.

Time Invariant Modeling: Gaussian Mixture Model

We first consider models that assume there is no time binding between consecutive
daily events. Although this might not be precisely the case, it yields a modeling
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approach that time does not play a role in it. Later in this study we compare this type
of modeling with others that do consider dependency between consecutive daily
events.

We begin our modeling efforts by applying techniques that assume all daily
events come from the same distribution, regardless of any time dependency between
the consecutive records. To explain this, we pick Gaussian Mixture Model (GMM),
a probabilistic model that assumes all the data points are generated from a mixture
of a finite number of Gaussian distribution with unknown parameters. The Expec-
tation Maximization (EM) procedure is an optimization technique utilized to fit the
unknown parameters and incorporate information about the covariance structure of
the data as well as the centers of the latent Gaussians [120]. GMM can be thought of
as a single-state HMM with a Gaussian mixture observation density, or an ergodic
Gaussian observation HMM with fixed, equal transition probabilities [121].

A Gaussian mixture model is a weighted sum of M component Gaussian densi-
ties as given by Equation 5.1.

p(x|λ) =
M

∑
k=1

ωk g(x|µk, Σk) (5.1)

where x is a D-dimensional continuous-valued data vector (of features), wk, k =
1, ..., M, are the mixture weights, and g(x|µk, Σk), k = 1, ..., M, are the component
Gaussian densities. Each component density is a D-variate Gaussian function of the
following form:

g(x|µk, Σk) =
exp{− 1

2 (x− µk)
′Σ−1

k (x− µk)}
(2π)D/2|Σk|1/2 (5.2)

with mean vector µk and covariance matrix Σk .The mixture weights satisfy the
constraint that ∑M

k=1 ωk = 1.
The complete Gaussian mixture model is parameterized by the mean vectors,

covariance matrices and mixture weights from all component densities. These pa-
rameters are collectively represented by the following notation:

λ = {ωk, µk, Σk} k = 1, ..., M (5.3)

GMM Application: Case Study GMM could be applied to our data features in
several ways, for instance a single mixture model for the entire set of data, or a mix-
ture model for each location separately. The later approach is closer to the goal of
proposing practical models for each place indicated by an AP to explore the charac-
teristics of that place, and ultimately discovering the abnormal behaviors occurring
in contrast with the expected usage pattern.

In order to investigate the modeling capacities of GMM, we select two different
spots to be our test cases: a highly crowded AP at a computer service section with
3726 observed users, and a less crowded AP in a chemical engineering department
with overall 175 users. The experiment takes into consideration the second semester
period of 2011 from February to July. To achieve more precise results, we focus on
the working daily pattern, hence the data records belong to the working days (from
Monday to Friday) and the working hours (8:00 to 18:00).

On each location, GMM fits are computed with three mixture components. The
Gaussian density parameters (mean and covariance matrix) are depicted in Figure
5.1, the first row belongs to the crowded AP and the second row shows the density
parameters of the less crowded AP. In order to facilitate the visual perception and
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FIGURE 5.1: Density parameters of three Gaussian mixture compo-
nents of the selected APs. (a) Crowded AP, (b) less crowded AP

to have an easier comparison, the density parameters are illustrated in 2D, despite
the fact that GMM process is conducted on 3 principal components as explained in
Chapter 3 subsection 3.2.3.

The data is standardized to have zero mean and one standard deviation feature-
wise, so the density values are not appropriate to be compared with each other di-
rectly. However, the contour lines show the diversity of the data points in each
mixture component and the direction of spread as well as the mass center. The R
value on each plot represents the correlation between the X and Y axis, correspond-
ingly the first two principal components. The distribution parameters of the GMM
components shown in Figure 5.1 reveals that mixture components of the crowded
AP model and less crowded AP model are not very much alike in terms of R values
or direction of spread. However, the most and least intense mixture components can
be observed in the first and the third components of both models, respectively.

Each location is characterized in this manner and according to GMM modeling
approach represents the mixture weights and density parameters of the first and the
second APs, respectively:

λ1 = {ωi1, µi1, Σi1} i = 1, ..., 3
and
λ2 = {ωj2, µj2, Σj2} j = 1, ..., 3

Time Variant Modeling: Hidden Markov Model

In this section we consider models that assume time dependency between consec-
utive daily events. In this case the sequences of data records matter and they form
significant connections in a meaningful context or profile. In time-variant models
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in general, conditional probabilities for events are determined based on the history
of the events. In the following section we study the Hidden Markov Models for
modeling the time-varying sequential data for the purpose of anomalous pattern
recognition.

HMMs are generally used for the stochastic modeling of non-stationary time-
series. HMMs provide a high level of flexibility for modeling and analyzing time-
varying processes or sequential data. Their particular application is in recognition
such as speech recognition, activity recognition, gene prediction, etc. where data
instances are represented as a timely sequence of estimates. In the current research
we propose to use HMMs for modeling and anomaly detection purposes in wireless
networks which has never been investigated before to the best of our knowledge.

A more comprehensive definition of Hidden Markov Models are provided in
Chapter 4 Section 4.3.1.

According to our data set, the HMMs form observations with continuous mul-
tivariate Gaussian distribution, hence the emission matrix B is defined by the dis-
tribution parameters associated with the set of states. In the proposed model, the
HMMs contain fully connected states, thus transitions are allowed from any state to
any other state.

HMM Application: Case Study In this section we select the very same APs as in
the GMM case study (Section 5.2.2), and build HMM models for each of them sepa-
rately. Our focus is once more on the working daily pattern in the second semester
of 2011, from Monday to Friday in the working hours.

As described earlier, we consider fully connected HMMs (ergodic model) with
continuous Gaussian distribution as the emission probabilities and 3 states. The
states are initialized randomly, and we chose 3 states based on the best practice of
the experiments conducted on both the large data set and the Testbed data set. For
the multivariate Gaussian observations, the initial values of the mean vector are uni-
formly drawn between µ− 3σ and µ + 3σ, and the initial variances of the diagonal
covariance matrix are uniformly drawn between 1

2 σ2 and 3σ2. The initial probability
matrix (π) and the transition matrix (A) are uniformly drawn. The primary HMM is
then optimized by means of the Baum-Welch algorithm with the cut off likelihood
value of 1e−6 or the maximum number of iterations set to 20. Following the opti-
mization process some states may better reflect usage or density given their values.
For example a hidden state with the highest value for the second principal compo-
nent shows a populated case in terms of users or sessions density.

The Gaussian density parameters of the three hidden states are illustrated in Fig-
ure 5.2. Similar to Figure 5.1, the first row is affiliated with the crowded AP and
the second row belongs to the less crowded AP. The contour lines in these two fig-
ures represent the overall picture of the population and density distribution of the
data in each GMM component or HMM state. Figure 5.2 shows that the first state
of the crowded AP model and the less crowded AP model are very similar in terms
of density of data points, direction of spread and R values. The second states of
these models, however, have almost nothing in common. The second state of the
less crowded AP model contains few data points and less intensity. The third states
are similar in terms of direction of spread and data points density, however the R
values showing the correlation between the first two principal components are quite
different.

Suchlike graphs are visual aids to depict the distribution parameters, and for
inspecting the goodness of fit over the entire feature set further analysis are required.
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FIGURE 5.2: Density Parameters of Three Hidden State in HMM of
the Selected APs. (a) Crowded AP, (b) Less Crowded AP

Model Comparison: GMM vs. HMM

In this section two techniques are considered only for the sake of modeling purposes,
a time-invariant model (GMM) and a time-variant model (HMM). In the coming
section we investigate the ultimate goal of this modeling which is the recognition of
anomalous points or regions. At this stage, before exploring the anomaly detection
territory, we briefly itemize the modeling functionalities and propose some simple
tests to verify the more qualified model.

The potential functionalities of the locations characterization and modeling are
listed as following:

• Classification of the locations, represented by APs, in terms of utility and tem-
poral patterns.

• Recognition of the similarities and distinction of the locations.

• Grouping the most related APs and propose mixture models for the groups
[12].

To investigate the competency of the two proposed models and estimate the ca-
pacity of each, we conduct a simple test. First of all, we measure the log-likelihood
of the models in modeling the training data of the two samples, crowded AP and
less crowded AP, and then we select a random day from each AP and calculate the
log-likelihood of the models towards the test data which is new to both models.
We use log-likelihood values (LLV) to measure the goodness of fit of our models.
The model with larger log-likelihood value surpasses the model with smaller log-
likelihood value.
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Given data x with independent multivariate observations x1, ..., xn, the likelihood
of a Gaussian mixture model with M components is defined as [122]:

likelihood(x|λ) =
n

∏
i=1

M

∑
k=1

ωk g(xi|µk, Σk) (5.4)

where g(x|µk, Σk) is the kth component’s Gaussian density, as already defined
in Equation 5.2, and ωk is the probability that an observation belongs to the kth
component.

The log-likelihood function takes the following form:

log-likelihood(x|λ) =
n

∑
i=1

log(
M

∑
k=1

ωk g(xi|µk, Σk)) (5.5)

In the EM process, the parameters of the GMM, λ, are estimated so that the likeli-
hood of the GMM given the training data is maximized, using Maximum Likelihood
Estimation (MLE). Ensuing several iterations, the MLE yields the likelihood of the
GMM given the training data. We applied MClust R package [123] to fit the Gaussian
mixture components and estimate the log-likelihood of the training and test data.

The likelihood of a HMM is basically the first key problem of HMMs stated ear-
lier, the probability of an observation sequence given the model parameters:

P(O|λ) = ∑
all H

P(O|H, λ)P(H|λ)

= ∑
h1,h2,...hT

πh1bh1(O1)ah1,h2bh2(O2)...ahT−1,hTbhT(OT)
(5.6)

We utilized GHMM library in Python [124] for the formation of HMMs and esti-
mation of log-likelihoods.

Table 5.1 contains the log-likelihood values of the trained GMM and HMM mod-
els for the selected APs, regarding the training and test data. Comparing the log-
likelihood values of the training data, HMM provides higher values (less negative)
both for the crowded AP and the less crowded AP. Note that the training data con-
tains 25 days data and the test data consists of only one day data selected randomly
from the unobserved days. Concerning the test data, it is expected that the se-
lected day from the same AP obtains higher log-likelihood value rather than the
data from another AP due to the possible similarity of daily usage in a specified lo-
cation. The first GMM (built over the crowded AP data) provides the same amount
of log-likelihood for both test data, thus yields no distinction between its own usage
pattern and the other AP. However, the second GMM (trained with the less crowded
AP data) provides higher log-likelihood value for its own data rather than the other
AP.

TABLE 5.1: Log-likelihood Values (LLVs) of the Training and Test
Data Belong to the Selected APs for GMM and HMM Models

````````````````
Test Data LLVs

Trained Model GMM
Crowded

AP

GMM
Less Crowded

AP

HMM
Crowded

AP

HMM
Less Crowded

AP

The same train data -3468 -2154 -2553 -2131
Test data from the crowded AP -189 -189 -134 -209
Test data from the less crowded AP -509 -95 -195 -115



64
Chapter 5. Hidden Markov Model Analysis for Anomaly Detection: Time Variant

Modeling

HMMs, on the other hand, provide higher log-likelihood value for their own test
data than for the other AP, which shows the better matched model for self data. It
must be considered that the test data is selected randomly and the pattern of the se-
lected day is not determined in terms of normal or abnormal usage. In Section 5.2.4,
the experiments are conducted on a Testbed data set with recognized anomalies so
that the conclusion will be based on the known ground truth. In the next section, we
investigate the time-variant specifications of HMMs towards the simplicity of the
time-independent GMM concerning the anomaly detection objectives.

5.2.3 Anomaly Detection in AP Usage Data

Network administrators are generally concerned about anomaly detection as well
as prediction. These two important tasks enable them not only to make immediate
decisions to alleviate the complications of the network, but also to establish long-
standing plans to support the expansion of the network and its dynamic usage over
time.

In this section we show how the aforementioned models in Section 5.2.2 are uti-
lized for the purpose of anomaly detection.

GMM Estimation: Divergence from Gaussian Densities

The most generic definition of the anomalies asserts those points or small regions
isolated from the normal zones which contain the majority of the observations. Thus,
a straightforward approach to detect anomalies, when there is no ground truth avail-
able, is to define the normal zones and distinguish those rare observations which
hardly belong to those normal zones.

In the GMM model discussed earlier, a number of Gaussian mixture compo-
nents are determined and each component contains normal density parameters. The
model is built based on several training data and the newly arrived records are in-
clined to the most compatible component with the least distance. Hence, to detect
abnormal points we need to estimate the affinity degree of each point, as already de-
scribed in Equation 5.4 and 5.5, and mark outliers as having the slightest probability
of belonging to any cluster.

HMM Estimation: Likelihood Series

HMM, as a time-variant model, considers the temporal dependency between con-
secutive data records. Calculating the log-likelihood of a single data point or a se-
ries of sequential data points as already expressed in Equation 5.6, emanates the
mis-behaving records comparing to the log-likelihoods of the norm of the data. The
unexpected low values of the log-likelihood in HMM are generally due to: 1) large
distance from the assigned hidden state, 2) less likely state transition, or 3) hidden
states’ unbalanced separation, explained earlier in Section 4.4.1.

Anomaly Detection: Case Study

We explore the addressed methodologies to detect anomalous data points or data
sequences in the same two APs that GMM and HMM models were trained for them.
Figure 5.3 highlights the outliers detected by measuring the largest distance from the
Gaussian components. The data used in this experiment belongs to the same test day
of the previous section. The result of the first AP (crowded AP) is displayed in blue
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FIGURE 5.3: GMM Estimation of Anomalous Data Points Based on
the Largest Distance from the Assigned Gaussian Component

FIGURE 5.4: HMM Estimation of Anomalous Data Points Based on
the Lowest Log-likelihood

circles and the second AP (less crowded AP) is demonstrated in green Xs. Two de-
tected outliers are marked in red that both belong to the first model of the crowded
AP. These outliers are appointed to a Gaussian component of the first model, but
with the lowest probability (less than 60%). Here we selected the normality thresh-
old to be 60%, however it could differ from model to model and the most appropriate
value of threshold could eventually be tuned by the network manager.

Figure 5.4 displays the anomalous points detected by HMM based on the lowest
value of the log-likelihood. In this approach, two different data points are marked as
outliers which belong to the first AP training data, the crowded AP. The cut-off value
is considered to be log-likelihoods below -100, note that this value could also be con-
figured. More strict cut-off value should yield higher false positive rate. We inves-
tigated the likely origins of the outliers emerged in this case and we observed that
the Mahalanobis distance of the marked data points are maximal with the assigned
hidden state in the Viterbi path. That must have caused the low log-likelihood value
in the likelihood series. No outliers were detected for the second AP (less crowded
AP) neither by GMM nor by HMM.

In this case study we demonstrated how the anomaly detection analysis work in
our proposed framework. In the next section, we evaluate both models based on the
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achieved results of the deployed Testbed 3.3, as we can determine which points are
detected correctly.

5.2.4 Experimental Results: Testbed Deployment

In order to validate anomaly detection techniques proposed in this work we de-
ployed an exploratory Testbed with one single AP and generated a number of anoma-
lies in a controlled environment for experimental purposes. More technical details
on this data set can be found in Section 3.3.

In the following paragraphs we show how the modeling and anomaly detec-
tion techniques operate in the presence of the ground truth - data obtained from the
Testbed deployment.

GMM vs. HMM Modeling: Pros and Cons

For the first experiment, a GMM model is built with 10 randomly selected normal
days as training data. From then on, the likelihood of the generated model is com-
puted against the training data as well as 10 unobserved normal days and 10 abnor-
mal days as test data. The same process is performed on the HMM model, with the
same set of training and test data. The summary of this experiment is displayed in
Figure 5.5 and 5.6.

Both figures demonstrate overall higher likelihood values for the training data.
The likelihood values of the unobserved data set is divided into normal and ab-
normal outputs which are displayed in graphs with different colors and shapes. In
both models there are higher likelihood values for the normal days rather than the
abnormal days. However, there is a discernible boundary between the normal and
abnormal results in HMM while in GMM the likelihood values are not clearly sepa-
rated and there are even some instances that the likelihood value of the normal day
is lower than the abnormal day. The daily likelihood of abnormal days are appar-
ently lower than the normal days, and this value varies with the number of abnormal
occurrences and duration of each event. However, it is more straightforward to de-
fine a threshold for HMM rather than GMM model, to decide if a day is normal or
abnormal.

Anomaly Detection

In this section we determine the anomalous time-slots with the proposed methodolo-
gies and compare the achieved results from the model with the Testbed anomalous
ranges recorded for the abnormal instances. Note that various thresholds for each
technique produce different results as the detection and false positive rates change
based on the selected threshold. We use some statistical metrics to measure the de-
tection accuracy and false alarms such as fall-out or false positive rate (FPR), speci-
ficity (SPC) or true negative rate (TNR), sensitivity or true positive rate (TPR), and
eventually accuracy (ACC) and F1 score. We follow the definitions in [125].

The summary of the analysis on the normal and anomalous test data are pre-
sented in Table 5.2 for GMM modeling and in Table 5.3 for HMM modeling ap-
proaches.

Table 5.2 shows that higher thresholds increase the possibility of anomaly de-
tection (24.9% rather than 4.7%), however the false positive rates also increase ac-
cordingly (19% rather than 9.9% and 3%). In normal test data, when we expect no
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FIGURE 5.5: Likelihood values of the training and test data belong to
Testbed for GMM Model

FIGURE 5.6: Likelihood values of the training and test data belong to
Testbed for HMM model

TABLE 5.2: Anomaly detection of the normal and anomalous test data
belong to Testbed for GMM

``````````````````̀
Data - Threshold

Statistical Metrics
FPR TNR TPR ACC F1

Score
Normal Testset (Threshold: 0.6) 2.5% 97.5% 0% 97.5% 0%
Normal Testset (Threshold: 0.7) 5.5% 94.5% 0% 94.5% 0%
Normal Testset (Threshold: 0.8) 10.5% 89.5% 0% 89.5% 0%
Anomalous Testset (Threshold: 0.6) 3% 97% 4.7% 81% 8.1%
Anomalous Testset (Threshold: 0.7) 9.9% 90.1% 4.7% 75% 7.2%
Anomalous Testset (Threshold: 0.8) 19% 81% 24.9% 70% 20.75%
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TABLE 5.3: Anomaly detection of the normal and anomalous test data
belong to Testbed for HMM

``````````````````̀
Data - Threshold

Statistical Metrics
FPR TNR TPR ACC F1

Score
Normal Testset (Threshold: -50) 0.5% 99.5% 0% 99.5% 0%
Normal Testset (Threshold: -20) 1.75% 98.25% 0% 98% 0%
Normal Testset (Threshold: -10) 3.75% 96.25% 0% 96% 0%
Anomalous Testset (Threshold: -50) 0% 100% 39% 90% 49%
Anomalous Testset (Threshold: -20) 0% 100% 43% 91% 52%
Anomalous Testset (Threshold: -10) 1.1% 98.9% 75% 95% 74%

anomalies to occur, from 2.5% to 10.5% fall-out is observed. Comparing this fall-
out ratio to the results of Table 5.3 for normal test set, it is noted that much lower
false alarms is marked for HMM (from 0.5% to 3.75%). Furthermore, the FPR for the
anomalous data in HMM is quite small relative to GMM FPR output (1.1% in HMM
vs. 19% in GMM). The highest detection rate or TPR in HMM modeling is achieved
with Threshold equals to -10 which is 75% in average for 10 abnormal days of the
experiment.

Regarding the FPR or fall-out ratio recorded for normal data in HMM, a careful
consideration on each false alarm is performed and it is noted that the HMM model
is slightly sensitive to extreme download ratio and in some cases both download and
upload volumes. As the Testbed is deployed in a real home environment with real
wireless users, although in normal days that no anomaly is generated deliberately,
there might be some evidences of rather high download or upload by the users as
it happens quite often in every wireless network. Therefore the false positive exam-
ples occurred in normal days could be introduced as real anomalies appearing in
normal days, however for this experiment we assumed that normal days contain no
anomalies.

TABLE 5.4: Detection rate of various anomalous patterns of the
Testbed

```````````````̀
Model

Anomalous Patterns
Jamming
Channel
(Short Inter-
vals)

Jamming
Channel
(Long
Intervals)

Heavy
Usage
(Single
User)

Heavy
Usage
(Multiple
Users)

AP
Power
Off

GMM (Threshold: 0.8) 28.5%
(4/14)

17.3%
(4/23)

8.3%
(1/12)

0% (0/3) 35.2%
(6/17)

HMM (Threshold: -10) 71.4%
(10/14)

73.9%
(17/23)

83.3%
(10/12)

100%
(3/3)

82.3%
(14/17)

Table 5.4 displays the total proportion of different anomalies’ occurrences in the
Testbed and presents the detection rate of each anomalous pattern by GMM and
HMM. Here we consider the anomalous test data and the highest likelihood thresh-
olds of both models (0.8 for GMM and -10 for HMM) that provide the maximal detec-
tion rate. Detection ratio is determined by the overall number of time-slots marked
as anomaly divided by the total number of time-slots.Comparing GMM and HMM
once more demonstrates the superior capability of HMM in recognition of anoma-
lous events, while providing unnoticeable false positive rate (Table 5.3). Among the
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various types of anomalies generated for the Testbed, the highest detection rate be-
longs to heavy usage pattern, producing by multiple users and then single user. The
lowest detection ratio, however, originates from jamming channel with short inter-
val. Although there are some specific anomalous points that are never detected by
the model, regardless of the cut-off threshold, the overall detection rate of the HMM
is quite satisfactory.

5.2.5 Summary

Proposing time-invariant and time-variant modeling approaches and utilizing those
models for anomaly detection in addition to a RADIUS Testbed deployment with
simulated anomalies compose the key contributions of this work.

We presented GMM as time-invariant and HMM as time-variant modeling tech-
niques. As a case study for each approach we selected two different locations in the
university campus - a highly crowded AP and a less crowded AP - to apply the fore-
named methodologies on them. We then defined the log-likelihood for each method
separately to examine the goodness of fit for the proposed models in terms of train
and test data. Having conducted a simple experiment on the selected APs revealed
that HMMs are more likely to provide a robust model to distinguish between their
own pattern and an unfamiliar pattern.

Furthermore, we described the anomaly detection techniques by GMM and HMM.
In GMM we define anomalies as the distant data points that hardly belong to any
Gaussian component, and in HMM anomalies are the data points with the minimum
likelihood value. We analyzed the root cause of the low likelihood values in GMM
as distance from the Gaussian components, and in HMM as divergence from the
assigned hidden states as well as the low probability in state transition. We further
explored the addressed methodologies to detect anomalies at the same two APs. We
justified the detected anomalous points, however in absence of the ground truth in
the large data set it was not possible to thoroughly evaluate the anomalous points,
so we left the evaluation process for the Testbed experimental results.

We then applied our proposed models to detect anomalous points in an ex-
ploratory Testbed deployed in a home environment, and discussed the effectiveness
of each model. We measured the false positive rate (FPR), true negative rate (TNR),
true positive rate (TPR), accuracy (ACC) and F1 score in normal and anomalous test
data. The experimental results demonstrated that HMM outperformed GMM in ob-
taining higher detection ratio while producing minor false alarm.

5.3 Improved Initialization Modeling and Anomaly Detec-
tion Results

5.3.1 Background

In the current study we improve our Hidden Markov Model (HMM) formerly pro-
posed in Section 4.3 and 5.2 by integrating it with the concept of Universal Back-
ground Model (UBM). HMM-UBM is a large HMM trained to represent the AP-
independent distribution of features by pooling plenty of data by the EM algorithm,
or by pooling the sub-population models trained by individual UBMs [121]. The
independency of the model applies both to APs and to anomalies, meaning that a
large set of data from every AP is utilized for initialization regardless of containing
anomalies or not. We apply UBM to initialize the HMM models using all the data
available assuming general initial values provide more robust model estimates.



70
Chapter 5. Hidden Markov Model Analysis for Anomaly Detection: Time Variant

Modeling

The simulation data previously addressed in Section 3.4 are utilized to evalu-
ate HMM and HMM-UBM models and compare the anomaly detection results with
baseline approaches (RawData and PCA).

The key steps of the present work include: 1) Conducting 802.11 wireless net-
work simulation in OMNeT++/INET to resemble normal and anomalous scenarios.
2) Reiterating the simulations with different seeds to provide miscellaneous repli-
cates. 3) Extracting the wireless users’ data, and converting it to AP usage data. 4)
Building HMM and HMM-UBM models from the prepared data set. 5) Applying
the proposed anomaly detection algorithms. 6) Calculating the detection rate and
sensitivity for evaluation purposes.

Regarding the anomaly detection techniques we analyze three main approaches:
1) detection of anomalous time-series in a database of time-series, 2) distinction
of anomalous patterns, and 3) detection of anomalous points within a given time-
series.

Furthermore, this study explores the following research questions: 1) whether
HMM and HMM-UBM models are capable of anomaly detection and anomalous
pattern recognition in AP usage data, 2) whether HMM and HMM-UBM models are
required for anomaly detection or the baseline approaches are enough, 3) whether
HMM-UBM have any advantages over HMM.

5.3.2 Methodologies

We use Hidden Markov Models adapted from a Universal Background Model for
1) detection of anomalous time-series, 2) distinction of anomalous patterns, and 3)
detection of anomalies within a given time-series.

Universal Background Model

A universal background model (UBM) is a model used in a biometric verification
system to represent general, person-independent feature characteristics to be com-
pared against a model of person-specific feature characteristics when making an ac-
cept or reject decision. For example, in a speaker verification system, the UBM is
a speaker-independent Gaussian mixture model (GMM) trained with speech sam-
ples from a large set of speakers to represent general speech characteristics. Us-
ing a speaker-specific GMM trained with speech samples from a particular enrolled
speaker, a likelihood-ratio test for an unknown speech sample can be formed be-
tween the match score of the speaker-specific model and the UBM. The UBM may
also be used while training the speaker-specific model by acting as the prior model
in maximum a posteriori (MAP) parameter estimation [126].

We applied UBM to initialize the HMM models using the data available from
all AP experiments regardless of containing anomalies or not. This is advantageous
as in unsupervised learning approach the anomalous events are not known before-
hand. Assuming that the HMM models adapted from a UBM produce as promising
results as HMM models trained with normal data, achieving a qualified model even
in the absence of the labeled data is more feasible. This in turn facilitates the pro-
cess of unsupervised modeling. We later compare the detection results of the HMMs
initialized with and without UBM in Section 5.3.3.

Given the data for training a UBM, there are many approaches that can be used
to obtain the final model. The simplest is to merely pool all the data to train the
UBM via the EM algorithm (Figure 5.7-a). One should be careful that the pooled
data are balanced over the sub-populations within the data. Otherwise, the final
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FIGURE 5.7: Data and model pooling approaches for creating a UBM.
(a) Data from subpopulations pooled prior to training the final UBM.
(b) Individual subpopulation models trained then combined to create

final UBM.
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FIGURE 5.8: Log-likelihood values of normal and anomalous experi-
ments.

model will be biased toward the dominant sub-population [127]. Another approach
is to train individual UBMs over the sub-populations in the data, and then pool
the sub-population models together (Figure 5.7-b). The latter approach has the ad-
vantages that one can effectively use unbalanced data and can carefully control the
composition of the final UBM [127]. In our model we used the first approach, and
to avoid a biased model we included the same amount of normal and anomalous
data sequences. Half of the data set contains normal samples and the rest consist of
anomalous events (equal portion for each anomaly).

Detection of Anomalous Time-Series

The goal of this type of anomaly detection is to find all anomalous time-series in a
database of time-series, and to distinguish normal days from those that contain a
number of anomalous events. Similar to traditional outlier1 detection methods, the
usual approach is to learn a model based on all the time-series in the database, and
then compute an outlier score for each sequence with respect to the model [127]. In
our case, we build an HMM model with UBM initialization using the training data
of all the simulation experiments. Then we calculate the log-likelihood values of
each time-series in the test data set. Those observation sequences that contain one
or more anomalous events are expected to get lower log-likelihood values.

Figure 5.8 shows the range of the log-likelihood values belonging to the normal
and anomalous experiments. The anomalous cases consist of AP Shutdown/Halt, AP
Overload, Noise, and Flash Crowd scenarios. As this figure displays there is a dis-
tinction between the log-likelihood values of the normal cases and the rest of the
anomalies. However, the anomalous cases are not completely separated and there is
an overlap between them. The log-likelihood values of the AP Overload, Noise and
AP Shutdown/Halt scenarios are approximately in a similar range. However, those
of the Flash Crowd scenario are slightly lower than the rest and take a widespread
range while the values of the AP Shutdown/Halt scenario are condensed in a lim-
ited range.

1We use outlier and anomaly interchangeably in this context.
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FIGURE 5.9: Detection results of the observations sequences by the
trained HMM models.

As a conclusion, all the anomalous cases obtain log-likelihood values less than
the normal range and thus it is feasible to distinguish the anomalous time-series
from the normal ones. However, due to the overlapping log-likelihood values of the
anomalies, it is not that simple to make a distinction between the anomalous sce-
narios just by inspecting their log-likelihood values. In the next section we consider
modeling the anomalous cases independently to facilitate the distinction process.

Distinction of Anomalous Patterns

To capture distinctive characteristics of the anomalous scenarios we build separate
HMM models for each anomalous scenario and also one model for the normal sce-
nario from the training set. Then we compute the probability of each observation
sequence from the test set getting generated by these models. The HMM model that
produces the highest log-likelihood value is considered to be the generative model
of the given time-series. At the end of this process we obtain a 2D matrix whose rows
and columns consist of HMM models and log-likelihood of observation sequences,
respectively. Choosing the best λ model among the competing models is termed as
scoring problem and is a function of log-likelihood values.

Figure 5.9 presents the detection results of the HMM models given the normal
and anomalous observation sequences from the test set. The x-axis contain the
trained HMM models and the blue parts of the bars demonstrate the percentage
of time-series correctly detected by their corresponding models. The top pieces of
the bars in pink show the mis-detection ratio that occurs in AP Overload and Flash
Crowd scenarios. 25% of time-series containing AP Overload anomaly are detected
to be generated by Flash Crowd model. Moreover, 12.5% of Flash Crowd sequences
are detected to be created by AP Overload model and 12.5% of them by Noise model.
Besides these small mis-detection errors, the distinction process yields promising re-
sults in recognition of different anomalous patterns.

Each anomalous time-series in our experiment contains a single anomaly, while
in reality each time-series can contain no anomaly (in normal cases) or various types
of anomalies (in anomalous cases). A methodology to detect anomalous periods
and distinguish between different anomalous patterns in unlabeled data is required
to be performed in an unsupervised manner. Here we propose the basic scheme of
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an algorithm which is based on the general model training in [128], and is adapted
to our specific modeling approach and requisites:

1. A general HMM model is estimated with a large number of training samples
(HMM-UBM).

2. Slice the first test sequence into fixed length segments. The segment(s) with
the lowest log-likelihood given the general model in 1 is identified as anomaly.

3. A new anomalous model is adapted from the general model using the detected
anomaly. A normal model is adapted from the general model using the other
segments.

4. Slice the next test sequence into fixed length segments. Estimate the log-likelihood
values of all segments given the previous adapted models (normal and anoma-
lous models of step 3).

5. Update the adapted models using those segments that achieve closer log-likelihood
to each model. Adapt a new anomalous model from the general model us-
ing any segment that achieves extremely low log-likelihood given the existing
models (a new anomaly that hardly belong to any previous model).

6. Repeat step 4 and 5 until there is no more test sequences.

There are a number of parameters in this algorithm that is to be learned and de-
termined, for example the length of the fixed-size segments, and the proper thresh-
old for anomaly detection. However, by the end of this algorithm we expect to have
one normal model and several anomalous models each presenting a specific anoma-
lous pattern. Further post-processes are also applicable to merge the very similar
models (by measuring models’ distance) and yield the most optimized set of final
models. More accurate explanation and implementation of this algorithm is out of
the scope of the current study and is set aside for the future work.

Detection of Anomalous Points within a Given Time-Series

In this approach the anomaly score (log-likelihood) is computed for each data point
given the trained HMM model. The unexpected low log-likelihood values show the
divergence from the normal model and are typically indicative of anomalies. This
method localizes the anomalous points or sub-sequences more precisely in the test
sequence.

To detect the anomalous points in the log-likelihood series automatically, we pro-
pose a technique called threshold detection to define a boundary where the lower val-
ues belong to the anomalous set.

As many anomaly detection algorithms presume, outliers are the minority group
not following the common pattern of the majorities. Accordingly we look for the ex-
treme data points (outliers) with the lowest log-likelihood values. To this end a uni-
variate histogram is constructed and the relative frequency (height of the histogram)
is computed. The frequency of samples falling into each bin is used as an estimate of
the density. We assume the samples with the highest density (mode) are the normal
data points, and thus the bins containing the lowest frequencies and farther from the
mode are the outliers. As a rule of thumb we mark bins with frequencies lower than
a quarter of mode as outliers. Like any other change detection algorithm ours as
well produce false positives, however in all the performed experiments of this work
the false positive ratio is insignificant.
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FIGURE 5.10: Log-likelihood of the normal model together with an
example anomaly related to AP Overload experiment.

We use the same algorithm to detect the outliers or anomalies in RawData and
PCA for the purpose of comparison. However, as RawData contains seven features,
we conduct the algorithm on each single feature and aggregate the detected points
as the final outcome. For example for the likelihood series of s1s2...s40, the algorithm
detects s2 and s4 as outlier points for the first feature and s4 and s15 for the third
feature and for the rest of the features no anomaly is detected. In this case the final
anomalous set contains {s2, s4, s15}. The same method is applied to the PCA compo-
nents to detect the anomalous points for three principal components.

Figure 5.10 demonstrates the log-likelihood values of an example anomalous
case (AP Overload) generated by simulation. The red points are the anomalies de-
tected by threshold detection algorithm and the black diamond points show the real
anomalous period.

We further explore this type of anomaly detection in the following section and
analyze each anomalous case specifically in more detail.

5.3.3 Experimental Results: Wireless Network Simulation

In this section we explore a set of simulated anomalous scenarios, present the HMM
and HMM-UBM results for anomaly detection, and compare them to baseline ap-
proaches (RawData and PCA) for evaluation. In terms of HMMs, we consider fully
connected models (ergodic), continuous observations with Gaussian distributions,
and 3 hidden states. We believe that the HMMs with 2 states are too simple to cap-
ture the diverse characteristics of the locations (APs), while there is not enough va-
riety in day-long sequential data for 4 or higher number of states. The simulations
in this section are performed for 5 APs and 30 wireless stations that are basically a
smaller version of simulations addressed in Section 3.4. Each experiment is repeated
at least 20 times with different seeds in order to provide richer data set on slightly
different samples. 80% of the data sequences are used for training the model and
20% is kept for testing.
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(A) HMM (B) HMM-UBM

FIGURE 5.11: The log-likelihood series and detected anomalies of AP
shutdown/halt scenario in HMM and HMM-UBM models.

AP Shutdown/Halt

When there is no session recorded for a given AP in RADIUS accounting table in
a period of time, it is likely that the AP has stopped working - possibly due to a
technical problem or power failure. In our simulation, we reproduced this anomaly
by turning off the AP power deliberately during the halt-period for some time-slots.

Figure 5.11 demonstrates the HMM likelihood series and the anomalies detected
for the test data set of this scenario. The valley shapes in this image shows the sud-
den drops of the likelihood values during the anomalous periods, and the marked
points are the anomalies detected by the aforementioned Threshold Detection algo-
rithm. The black diamonds show the actual anomalous points generated during the
simulation.

Both HMM and HMM-UBM detect shutdown periods, even the short ones that
only last one time-slot. However, Figure 5.11a shows that the HMM model built with
only normal data gives a clearer model rather than the HMM-UBM model built with
the entire data set including the anomalous cases in 5.11b. Despite this, HMM-UBM
obtain adequate values for precision and recall, and even higher precision results in
some cases.

Figure 5.12 shows the boxplot diagram of the anomaly detection’s precision and
recall computed for RawData, PCA, HMM, and HMM-UBM models. In these ex-
periments both HMM and HMM-UBM achieve higher precision values and smaller
false positive ratios compared to the baseline approaches (RawData and PCA).

Note that this type of anomaly is not very difficult to be detected just by look-
ing at RawData as there is a visible change in data set features when the power is
gone and no session is recorded. That is the reason RawData attains 100% recall.
However, it produces relatively high false positive result that yields low precision.

AP Overload

In this anomalous case, excessive channel utilization occurs that could be the con-
sequence of excessive download or upload by a number of wireless users. In this
experiment we simulated AP heavy usage caused by all of the users of a given AP.
Burst server (srvHostBurst) sends UDP packets to the given IP addresses in bursts



5.3. Improved Initialization Modeling and Anomaly Detection Results 77

FIGURE 5.12: Precision and recall boxplot of RawData, PCA, HMM
and HMM-UBM belong to AP shutdown/halt scenario.

(A) burst-duration < sleep-
duration

(B) burst-duration = sleep-
duration

(C) burst-duration > sleep-
duration

FIGURE 5.13: The log-likelihood series and detected anomalies of AP
overload scenario (HMM).

during the burst-duration period which resembles the heavy downloads of the wire-
less users. In the sleep-duration period the burst flow stops and the channel utilization
gets back to normal.

Figure 5.13 and 5.14 display the log-likelihood series of three types of burst-
duration and sleep-duration obtained for AP overload scenario applying HMM and
HMM-UBM methodologies. As it is shown in these figures, during the burst pe-
riod the log-likelihood values drop drastically and in the sleep period it raises again
to the normal level. The longer the burst period the wider is the valley shape in
the log-likelihood series, and both HMM and HMM-UBM effectively detect heavy
utilization periods in all these cases.

Figure 5.15 displays the boxplot diagram of the precision and recall results of
RawData, PCA, HMM and HMM-UBM models. The low precision ratios of Raw-
Data and PCA show that this type of anomaly is not that straightforward to be
detected directly from the data and needs more advanced techniques. The HMM
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(A) burst-duration < sleep-
duration

(B) burst-duration = sleep-
duration

(C) burst-duration > sleep-
duration

FIGURE 5.14: The log-likelihood series and detected anomalies of AP
overload scenario (HMM-UBM).

FIGURE 5.15: Precision and recall boxplot of RawData, PCA and
HMM belong to AP overload scenario. Left: burstduration < sleep-
duration, middle: burstduration = sleepduration, right: burstdura-

tion > sleepduration.

and HMM-UBM results, both in precision and recall, outperform the baseline ap-
proaches.

Noise

Thermal noise, cosmic background noise, and other random fluctuations of the elec-
tromagnetic field affect the quality of the communication channel. In the current
experiment we change the level of noise power by adjusting the value of Isotrop-
icBackgroundNoise parameter in the simulator. The default value of this parameter is
set to -110dBm which is the minimum noise level in Wi-Fi networks 802.11 variants.
We gradually increase the noise power to -90dBm and record the simulation results
repeated 10 times for each experiment.

Figure 5.16 and 5.17 demonstrate the log-likelihood series of this anomalous sce-
nario, and like previous cases the valley shapes represent the anomalies. The simu-
lated anomalous period is during the first 10 time-slots which is marked with black
diamond points. In the first experiment all the anomalous points are detected and
the ratio of false positive is quite low. In the next two experiments the detection
precision and sensitivity decline. The reason behind this downturn is that as the
noise power decreases (higher negative value), it gets more difficult to detect the
anomalous periods because the data becomes closer to the normal case (noise power
of -110dBm).
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(A) -90 dBm (B) -95 dBm (C) -100 dBm

FIGURE 5.16: The log-likelihood series and detected anomalies of
noise scenario (HMM).

(A) -90 dBm (B) -95 dBm (C) -100 dBm

FIGURE 5.17: The log-likelihood series and detected anomalies of
noise scenario (HMM-UBM).

FIGURE 5.18: Precision and recall boxplot of RawData, PCA, HMM
and HMM-UBM belong to noise scenario. Left: -90dBm, middle: -

95dBm, right: -100dBm.

As the noise power increases, the packets are less likely to be received at the
STAs. Therefore two data features are affected directly by the alteration of noise
level: OutputOctets and OutputPackets. Hence the RawData detector is expected to
produce satisfactory detection results. However, as Figure 5.18 shows, HMM and
HMM-UBM models in all the experiments present higher precision values rather
than RawData and PCA.

Flash Crowd

In wireless networks an unexpected surge of traffic occurs mostly due to the begin-
ning or ending of an event when the majority of the wireless users abruptly enter
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(A) Flash crowd arrival scenario (B) Flash crowd departure scenario

FIGURE 5.19: The log-likelihood series and detected anomalies of
flash crowd scenario (HMM).

(A) Flash crowd arrival scenario (B) Flash crowd departure scenario

FIGURE 5.20: The log-likelihood series and detected anomalies of
flash crowd scenario (HMM-UBM).

or leave a place and consequently associate to or disassociate from an AP. Such inci-
dents are not necessarily an anomaly in terms of performance or connectivity issues,
but could be considered as a sudden change to a routine network. To see whether
the HMM and HMM-UBM models are able to detect such alterations in the normal
usage pattern, we simulate this example in two experiments:

• Arrival: simultaneous association of 7 new nodes to the current AP.

• Departure: simultaneous disassociation of 7 existing nodes from the current
AP.

Figure 5.19 and 5.20 represent the log-likelihood series of this scenario, detected
anomalous points as colored circles, and simulated anomalies as black diamonds.
Only in one test case in departure scenario which is related to Rician Fading path
loss, anomalous period is not detected neither in HMM nor in HMM-UBM. In the
rest of the experiments the anomaly detection technique performs accurately both in
arrival and departure scenarios.
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FIGURE 5.21: Precision and recall boxplot of RawData, PCA and
HMM belong to flash crowd scenario. Left: arrival scenario, right:

departure scenario.

As it is illustrated in the boxplot diagram of Figure 5.21, HMM and HMM-UBM
easily outperform the RawData and PCA results in both Arrival and Departure sce-
narios. However, due to the aforementioned exception in the departure scenario, the
arrival experiments achieve higher precision and recall.

5.3.4 Summary

The key contributions of this section consist of: 1) HMM modeling and threshold
detection technique for anomaly detection, 2) proposing HMM-UBM technique for
a robust initialization of the hidden states and unsupervised learning, 3) simulation
of a small WLAN and a number of anomalous scenarios to evaluate the anomaly
detection results.

The precision and recall outcomes of the anomalous cases are computed and
compared to the baseline approaches (RawData and PCA). The experimental results
show that HMM and HMM-UBM models are both capable of detecting a great por-
tion of anomalies while producing only a trivial false positive ratio. This is promis-
ing for in HMM-UBM model all the data, regardless of being normal or containing
anomalous events, is utilized to initialize the HMM model. Thus, in unsupervised
learning, when the normal data is not known beforehand, HMM-UBM yields a ro-
bust model, as reliable as HMM initialized with normal data, for anomaly detection
purposes.

5.4 Conclusion

In the first section of this chapter we proposed time-invariant (GMM) and time-
variant (HMM) modeling approaches and utilized those models for anomaly detec-
tion evaluated on a RADIUS Testbed deployment with simulated anomalies.

We conducted an experiment as a case study on large data set of FEUP (3.2),
and examined the goodness of fit using log-likelihood values. Results showed that
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HMMs are more likely to provide a robust model to distinguish between their own
pattern and an unfamiliar pattern rather than GMMs. Furthermore, we described
the anomaly detection techniques by GMM and HMM, and we explored the ad-
dressed methodologies to detect anomalies at the same experimental data of the pre-
vious case study. We justified the detected anomalous points, however in absence
of the ground truth in the large data set it was not possible to thoroughly evaluate
the anomalous points, so we left the evaluation process for the Testbed experimental
results. We measured the false positive rate (FPR), true negative rate (TNR), true
positive rate (TPR), accuracy (ACC) and F1 score in normal and anomalous test data
belong to Testbed data set (3.3). The experimental results demonstrated that HMM
outperformed GMM in obtaining higher detection ratio while producing minor false
alarm.

In the second section of this chapter we carried out HMM modeling and thresh-
old detection technique for anomaly detection, in addition to proposing HMM-UBM
technique for a robust initialization of the HMM models. The experimental results
are performed on wireless simulation data set (3.4), and the precision and recall
outcomes of the anomalous cases are computed and compared to the baseline ap-
proaches (RawData and PCA). The experimental results show that HMM and HMM-
UBM models are both capable of detecting a considerable portion of anomalies while
producing only a small false positive ratio. This is promising for in HMM-UBM
model all the data, regardless of being normal or containing anomalous events, is
utilized to initialize the HMM model. Thus, in unsupervised learning, when the
normal data is not known beforehand, HMM-UBM yields a robust model, as reli-
able as HMM initialized with normal data, for anomaly detection purposes.
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Chapter 6

Hidden Markov Models on
Self-Organizing Maps for
Spatio-Temporal Anomaly
Detection

6.1 Introduction

This chapter introduces a hybrid integration of the Self-Organizing Map (SOM) and
the Hidden Markov Model (HMM) for the purpose of anomaly detection in 802.11
wireless networks. The Self-Organizing Hidden Markov Model Map (SOHMMM)
deals with the spatial connection of HMMs along with the inherent temporal de-
pendency of data sequences. In essence, with each neuron of the SOHMMM lat-
tice, an HMM is associated. In this thesis the SOHMMM algorithm is employed for
anomaly detection in 802.11 wireless AP usage data. Furthermore we extend the
online gradient descent unsupervised learning algorithm of SOHMMM for multi-
variate Gaussian emissions. Experimental analysis consist of two parts: Synthetic
Data to investigate the accuracy and convergence of the SOHMMM algorithm, and
Wireless Simulation Data to verify the significance and efficiency of the algorithm
in anomaly detection. The sensitivity and specificity of the SOHMMM algorithm
in anomaly detection is compared to two other approaches, namely HMM-UBM
(HMM initialized with Universal Background Model addressed in chapter 5 section
5.3) and Z-SOHMMM (SOHMMM with zero neighborhood). The results from the
wireless simulation experiments show that SOHMMM outperformed the aforemen-
tioned approaches in all the presented anomalous scenarios.

6.2 Background

In the previous chapter, we analyzed the AP usage data of 802.11 WLAN and pro-
posed an anomaly detection technique for AP level anomalous events. We modeled
the time-varying data sequences using Hidden Markov Models, and showed that
HMMs are capable of detecting a considerable portion of anomalies while produc-
ing only a small false positive ratio. However, in these models the HMMs are learned
individually (one per AP) and no connection is considered between them. In chap-
ter 4, we studied individual HMMs versus single HMM (one model for all APs) and
mixture of HMMs (groups of HMMs). While modeling an independent HMM per
AP misses the opportunity to explore similarities between APs to improve learning,
a single HMM for all APs loses the flexibility to learn AP specific behavior.
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Using a single HMM common to all APs, which fail to have the flexibility to
adapt to specificities of each AP, or using an HMM per AP learned independently
from the others, failing to leverage the relations between observations of neighbour-
ing APs, do not perform adequately. The UBM-HMM [11] is an improvement in
the right direction but the relations between APs are only used in the initial phase,
where one learns the UBM to then initialize the individual HMM models per AP.
Thereafter the individual HMMs evolve independently, benefiting of the AP’s own
data only. Although this is a very sensible approach in the biometrics and speech
modelling fields, where UBM-HMM has been used to robustly learn user specific
models, in our setting it fails to properly explore the dependencies between data
from APs with similar behavior.

In the current work we focus on actual proximity of APs as a determinant factor
in connectivity and performance problems. Anomalous cases such as across AP
vicinity interference, AP overloads or AP Shutdown/Halt could eventually affect
the usage behavior of the other APs in the neighborhood. To take into account such
behavioral changes in the local area and their respective influences, we employ the
synergic approach of Self-Organizing Hidden Markov Model Map (SOHMMM) to
exploit the semantic connectivity between adjacent HMMs.

The Self-Organizing Map is an artificial neural network that defines a nonlinear
transformation from the input space to the set of nodes in the output space [81].
Each node or neuron in SOM is associated with a model of the input space. Through
an unsupervised learning process, the models become tuned and organized in a
lattice topology according to input patterns. In SOHMMM each neuron is literally
associated with an HMM.

The training process of SOM and HMM subunits are in most cases disjoint and
conducted independently. There are two main approaches regarding these hybrid
techniques. First approach consider SOM as a front-end processor (e.g. vector quan-
tization, preprocessing, feature extraction), and HMMs are then used in higher pro-
cessing stages [81, 82]. While the second approach places the SOM on top of the
HMM [80, 83].

In SOHMMM, the SOM unsupervised learning approach is well combined with
the HMM dynamic programming technique. The structure of both corresponding
components are unified in an integrated super-model. The presented online gradient
descent unsupervised learning algorithm is inspired from the SOHMMM algorithm
previously proposed in [80] and originated from [129]. We extend the model to fit
the requirements of our anomaly detection problem and improve the algorithm in
[80] for multivariate Gaussian emissions1.

Thus the key contributions of the current work are: 1) extension of the previ-
ously proposed SOHMMM algorithm for multivariate Gaussian emissions, and 2)
implementation, application, and validation of SOHMMM methodology on AP us-
age data for the purpose of anomaly detection in 802.11 wireless networks.

6.3 Self-Organizing Hidden Markov Model Map- Background
and Notation

6.3.1 Estimating Model Parameters

For a more comprehensive definition of Hidden Markov Models please refer to
Chapter 4 Section 4.3.1.

1 [80] only addresses the discrete observations.
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To adjust the model parameters (A, B, π) from the corpus of data O, an iterative
procedure for optimization must be used, such as Expectation Maximization (EM)
in the form of the Baum-Welch algorithm, or gradient descent technique. The Baum-
Welch learning equations can be found in detail in [105, 106]. However, in certain
cases the Baum-Welch algorithm can become problematic. For example when there
is only a single training sequence, the algorithm resets a transition or emission prob-
ability to its expected frequency at each iteration. In such situations the Baum–Welch
algorithm can cause abrupt jumps in parameter space, thus the procedure is not suit-
able for online learning e.g. for application after each training example [80, 129].
Another drawback of the Baum–Welch algorithm is the absorbing zero probabilities,
meaning that once a transition or emission probability is set to 0, it remains equal to
0 in all iterations.

Consequently it is advantageous to resort to iterative and stochastic methods
such as gradient descent. The gradient descent equations can be derived using a
useful re-parameterization in the form of normalized exponentials [80, 129]:

aij = ewij
/ N

∑
l=1

ewil , bj(t) = erjt
/ M

∑
l=1

erjl , πj = euj
/ N

∑
l=1

eul (6.1)

The new variables can be arranged in a set of matrices, namely W = {wij},
R = {rjt} and U = {uj}. In the online learning algorithm of SOHMMM these
new variables get updated first and then the primary HMM model parameters are
adapted subsequently.

6.3.2 Self-Organizing Hidden Markov Model Map

Studies show that the learning procedure of self-organization can be simplified into
two partial processes [130, 131, 132]. For each input sample:

1. Find the best match neuron or the winner on the map by using the chosen
similarity measure.

2. Update the model of the winner neuron as well as the neighborhood of neu-
rons centered around the winner.

These two steps are repeated during the training process until the maximum
number of iterations is reached or there is not enough improvement in the loss func-
tion. The model updating in the second step can be done incrementally after each
input sample or in a batch process [132].

Figure 6.1 shows the lattice of SOHMMM, which is a mapping from the input
observation sequence space onto a two-dimensional array of neurons. In general
there are E neurons and with every neuron an HMM (λe) is associated. The shaded
area is the topological neighborhood of the winner neuron which can be defined to
any shape.

The unsupervised learning algorithm of SOHMMM is based on the optimization
via stochastic gradient descent of an energy based cost function. The definition of
the energy function given in [80] is:

ξ =

〈
E

∑
d=1

K(O, λd)
E

∑
e=1
{−hdeP(O|λe)}

〉
(6.2)

where 〈· · · 〉 denotes averaging over the distribution of input sequences, hde cor-
responds to the neighborhood function of the lattice, and P(O|λe) is likelihood or
the probability of O given λe,
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FIGURE 6.1: SOHMMM lattice. Each neuron is associated with a 3-
state HMM. The HMM model in highlight is supposed to be the win-
ner HMM (λc) and the shaded area is the neighborhood of the winner

HMM. [80]

and

K(O, λd) =

1, c = argmax
d

∑E
e=1 hde(y)P(O|λe)|y.

0, otherwise.
(6.3)

The energy function in 6.2 measures the adaptability and capability of SOHMMM
to describe a corpus of observation sequences and is continuous for finite sets of se-
quences.

Given an observation sequence O, the aforementioned energy function yields the
sample function:

ξ(O) =
E

∑
d=1

K(O, λd)
E

∑
e=1
{−hdeP(O|λe)}. (6.4)

Each online learning step conforms to a local gradient descent on such a sample.
A stochastic gradient descent with respect to the parameter x of the SOHMMM has
the following form:

x(next) = x(now) − η∂ξ(O)/∂x|x=x(now) . (6.5)

where η is the learning rate, and can be fixed or adjusted during the learning
process. Having performed the differentiation we have:

∂ξ(O)/∂x =
E

∑
d=1

∂K(O, λd)/∂x
E

∑
e=1
{−hdeP(O|λe)}

+
E

∑
d=1

K(O, λd)
E

∑
e=1
{−hde∂P(O|λe)/∂x}.

(6.6)

The first term on the right hand side vanishes according to [133] for a detailed
evaluation/justification, and the second term on the right hand side yields the de-
sired learning rule:

x(next) = x(now) + η
E

∑
d=1

K(O, λd)
E

∑
e=1
{hde∂P(O|λe)/∂x|x=x(now) . (6.7)
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Having used stochastic gradient descent on an energy function optimizes a global
measure of performance throughout the learning process.

Adjusting the parameters of the HMM in order to minimize the corresponding
energy function is what SOHMMM algorithm accomplishes during an iterative pro-
cedure. However, as already stated in section 6.3.1, the parameters of the HMM are
adjusted through the parameters of interest, namely W(e), R(e) and U(e). The best
matching HMM (winner) corresponds to the maximum weighted likelihood and is
given by:

c = argmax
d

E

∑
e=1

hde(y)P(O|λe)|y (6.8)

where y = 1, 2, 3, ... is the discrete time coordinate. With the use of 6.7 and Propo-
sition 1 (8.2) in Appendix, the online gradient descent equation with respect to wij
is:

w(e)
ij (y + 1) = w(e)

ij (y) + η(y)hce(y)

·
[

aij

T−1

∑
l=1

[
αl(i)bj(ol+1)βl+1(j)− αl(i)βl(i)

]∣∣∣∣∣
λe,y

]
,

1 ≤ i ≤ N, 1 ≤ j ≤ N

(6.9)

Similarly by using 6.7 and Proposition 2 (8.4) in Appendix, the stochastic learning
rule with respect to rjt is:

r(e)jt (y + 1) = r(e)jt (y) + η(y)hce(y)

·
[

T

∑
l=1

[
I{ol = t|λ}αl(j)βl(j)− bj(t)αl(j)βl(j)

]∣∣∣∣∣
λe,y

]
,

1 ≤ j ≤ N, 1 ≤ t ≤ M

(6.10)

Eventually, with the use of 6.7 and Proposition 3 (8.6) in Appendix, the stochastic
gradient descent equation with respect to uj is:

u(e)
j (y + 1) = u(e)

j (y) + η(y)hce(y)

·
[[

πjbj(o1)β1(j)− πjP(O|λ)
]∣∣∣∣∣

λe,y

]
,

1 ≤ j ≤ N

(6.11)

The function η(y) denotes a scalar learning rate factor (0 < η(y) < 1), and can be
fixed or decreasing monotonically as time passes. The function hce(y) is the neigh-
borhood function, a smoothing kernel defined over the lattice points and it is re-
quired that hce(y)→ 0 when y → ∞. The smoother neighborhood kernel defined in
[80] is in terms of the Gaussian function:

hce(y) = exp(−||δc − δe||2/2σ2(y))) (6.12)

where δc, δe ∈ R2 are the location vectors of HMM λc and λe on the array, and
σ(y) corresponds to the radius of the neighborhood.

6.3.3 The SOHMMM Learning Algorithm

We denote the set of D observation sequences as OS = O1, O2, · · · , OD, where O(d) =
{o1, o2, · · · , oTd} is the d-th observation sequence. In discrete mode each observation
is supposed to be a value from the set of alphabets V = {v1, v2, · · · , vM} , and Td is
the number of observations in the sequence O(d).
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The SOHMMM consists of E HMMs that are assigned to the nodes of a two-
dimensional lattice. There are E1 HMMs per lattice row and E2 HMMs per lattice
column (E1 · E2 = E). The SOHMMM online gradient descent unsupervised learning
algorithm in discrete mode, as presented in [80], is demonstrated in Algorithm 1.

6.4 Extension of the SOHMMM Algorithm

The SOHMMM algorithm addressed in [80] only deals with the discrete observation
setting. In this section we extend the aforementioned learning algorithm to incor-
porate the multivariate Gaussian emissions, as well. Moreover, we adapt this new
algorithm to conform to the requirements of our anomaly detection problem in AP
usage data.

6.4.1 SOHMMM Algorithm for Gaussian Observations

Univariate observations

Based on Lemma 2 (8.3) in Appendix 8 we have:
∂P(O|λ)
∂bx(y)

=
ᵀ

∑
l=1

1
bx(ol)

I{ol = y|λ}αl(x)βl(x), (6.13)

where bx(y) is the emission probability of observation y, which is 1-dimensional,
given the state x. In case of continuous Gaussian emissions, we have y|x ∼ N (y|µx, σ2

x),
thus:

bx(y) = P(y|x) = N (y|µx, σ2
x) =

1√
2πσx

exp
(
− (y− µx)2

2σ2
x

)
, (6.14)

∂bx(y)
∂µx

=
y− µx

σ2
x
N (y|µx, σ2

x), (6.15)

∂bx(y)
∂σx

=

(
(y− µx)2

σ3
x

− 1
σx

)
N (y|µx, σ2

x). (6.16)

We also need the derivative of P(O|λ) with respect to the parameters µx and σx,
which may be obtained using the chain rule:

∂P(O|λ)
∂θ

=
T

∑
l=1

∂P(O|λ)
∂bx(ol)

∂bx(ol)

∂θ
=

T

∑
l=1

1
bx(ol)

∂bx(ol)

∂θ
αl(x)βl(x), (6.17)

where θ can be either µx or σx. Now, using these equations together with Equa-
tion 6.7, we have all that we need to update parameters µx and σx.

Multivariate observations

In this setting, observations y are d-dimensional, so we need to use a multivariate
Gaussian to model the distribution of y|x:

bx(~y) = P(~y|x) = N (~y|~µx, Σx) =
1√

(2π)n|Σx|
exp

(
−1

2
(~y−~µx)

ᵀΣ−1
x (~y−~µx)

)
,

(6.18)
where ~µx ∈ Rd and Σx ∈ Rd×d and is symmetric and positive semidefinite.
The fact that Σx is positive semidefinite poses some difficulties to gradient-based

optimization, so we use the fact that any matrix Σx is positive semidefinite if and
only if it can be factorized as:

Σx = Sᵀ
x · Sx, (6.19)
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Algorithm 1 SOHMMM Learning Algorithm for Discrete HMMs [80]

1: for y=1 to trainIterations do

2: O← selectObservationSequence(HMM_list, Observation_list)

3: for e=1 to E do

4: α
(e)
1 (j) = π

(e)
j b(e)j (o1), 1 ≤ j ≤ N;

5: α
(e)
t+1(j) =

[
∑N

i=1 αt(e)(i)a
(e)
ij

]
b(e)j (ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N;

6: β
(e)
T (j) = 1, 1 ≤ j ≤ N;

7: β
(e)
t (j) = ∑N

i=1 a(e)ji b(e)i (ot+1)β
(e)
t+1(i), T − 1 ≤ t ≤ 1, 1 ≤ j ≤ N;

8: c← argmax
e

∑E
ε=1 exp(−||δe − δε||2/2σ2(y)))P(O|λε);

9: for e=1 to E do

10: w(e)
ij ← w(e)

ij + η(y)exp(−||δe − δε||2/2σ2(y))

11: ·
[

aij ∑T−1
l=1

[
αl(i)bj(ol+1)βl+1(j)− αl(i)βl(i)

]∣∣∣∣∣
λe

]
, 1 ≤ i ≤ N, 1 ≤ j ≤ N;

12: r(e)jt ← r(e)jt + η(y)exp(−||δe − δε||2/2σ2(y))

13: ·
[

∑T
l=1
[
I{ol = t|λ}αl(j)βl(j)− bj(t)αl(j)βl(j)

]∣∣∣∣∣
λe

]
, 1 ≤ j ≤ N, 1 ≤ t ≤ M;

14: u(e)
j ← u(e)

j + η(y)exp(−||δe − δε||2/2σ2(y))

15: ·
[[

πjbj(o1)β1(j)− πjP(O|λ)
]∣∣∣∣∣

λe

]
, 1 ≤ j ≤ N;

16: a(e)ij ← ew(e)
ij
/

∑N
l=1 ew(e)

il , 1 ≤ i ≤ N; , 1 ≤ j ≤ N

17: b(e)j (t)← er(e)jt
/

∑M
l=1 er(e)jl , 1 ≤ j ≤ N; , 1 ≤ t ≤ M

18: π
(e)
j ← eue)

j
/

∑N
l=1 eu

l(e) , 1 ≤ j ≤ N;
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where Sx ∈ Rn×n. Using this decomposition, equation 6.18 becomes:

bx(~y) =
1√

(2π)n|Sx|2
exp

(
−1

2
(~y−~µx)

ᵀ(Sᵀ
xSx)

−1(~y−~µx)

)
. (6.20)

Now, we can compute our desired derivatives:

∂bx(~y)
~µx

= N (~y|~µx, Sᵀ
xSx)(S

ᵀ
xSx)

−1(~y−~µx), (6.21)

∂bx(~y)
Sx

= N (~y|~µx, Sᵀ
xSx)(−S−ᵀx + S−ᵀx (~y−~µx)(~y−~µx)

ᵀ(Sᵀ
xSx)

−1), (6.22)

Thenceforth we apply Equations (6.17) and (6.7) to update the parameters~µx and
Sx:

~µ
(next)
x = ~µ

(now)
x + η(y)exp(−||δe − δε||2/2σ2(y))

·
[

1
N (~y|~µx, Sᵀ

xSx)
N (~y|~µx, Sᵀ

xSx)(S
ᵀ
xSx)

−1(~y−~µx)αl(x)βl(x)

]

= ~µ
(now)
x + η(y)exp(−||δe − δε||2/2σ2(y)) ·

[
(Sᵀ

xSx)
−1(~y−~µx)αl(x)βl(x)

]
(6.23)

S(next)
x = S(now)

x + η(y)exp(−||δe − δε||2/2σ2(y))

·
[

1
N (~y|~µx, Sᵀ

xSx)
N (~y|~µx, Sᵀ

xSx)(−S−ᵀx + S−ᵀx (~y−~µx)(~y−~µx)
ᵀ(Sᵀ

xSx)
−1)αl(x)βl(x)

]
= S(now)

x + η(y)exp(−||δe − δε||2/2σ2(y))

·
[
(−S−ᵀx + S−ᵀx (~y−~µx)(~y−~µx)

ᵀ(Sᵀ
xSx)

−1)αl(x)βl(x)

]
(6.24)

Eventually in Algorithm 1 instead of updating rjt probabilities of matrix R, we
directly update µx and σx in univariate observations or ~µx and Σx in multivariate
observations.

Thus the SOHMMM online gradient descent unsupervised learning algorithm
for multivariate Gaussian emissions is formulated in Algorithm 2.

6.4.2 Anomaly Detection with the Extended SOHMMM Algorithm

In SOHMMM adapted to the problem of anomaly detection in AP usage data, the
learning process of self-organization (addressed in Section 6.3.2) is elaborated as fol-
lows. In this work the models associated with the SOM neurons are three-state
Hidden Markov Models (according to our best practice in our previous works in
[10, 11]). As the new observation sequence arrives, an HMM with the highest log-
likelihood value is selected as the winner model. In the AP usage data, as the newly
arrived sequence belongs to a pre-determined AP, in most cases the winner model
is related to the same AP that has originated the observation sequence. However,
it is not always the case and the competition defines the winner HMM eventually.
Thereafter, the HMM model of the winner AP is updated by the new data sequence
and the HMMs in the neighborhood of the winner AP get updated, as well.
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Algorithm 2 SOHMMM Learning Algorithm for Continuous HMMs

1: for y=1 to trainIterations do

2: O← selectObservationSequence(HMM_list, Observation_list)

3: for e=1 to E do

4: α
(e)
1 (j) = π

(e)
j b(e)j (o1), 1 ≤ j ≤ N;

5: α
(e)
t+1(j) =

[
∑N

i=1 αt(e)(i)a
(e)
ij

]
b(e)j (ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N;

6: β
(e)
T (j) = 1, 1 ≤ j ≤ N;

7: β
(e)
t (j) = ∑N

i=1 a(e)ji b(e)i (ot+1)β
(e)
t+1(i), T − 1 ≤ t ≤ 1, 1 ≤ j ≤ N;

8: c← argmax
e

∑E
ε=1 exp(−||δe − δε||2/2σ2(y)))P(O|λε);

9: for e=1 to E do

10: w(e)
ij ← w(e)

ij + η(y)exp(−||δe − δε||2/2σ2(y))

11: ·
[

aij ∑T−1
l=1

[
αl(i)bj(ol+1)βl+1(j)− αl(i)βl(i)

]∣∣∣∣∣
λe

]
, 1 ≤ i ≤ N, 1 ≤ j ≤ N;

12: ~µ
(next)
x = ~µ

(now)
x + η(y)exp(−||δe − δε||2/2σ2(y))

13: ·
[
(Sᵀ

x Sx)−1(~y−~µx)αl(x)βl(x)

]

14: S(next)
x = S(now)

x + η(y)exp(−||δe − δε||2/2σ2(y))

15: ·
[
(−S−ᵀx + S−ᵀx (~y−~µx)(~y−~µx)ᵀ(S

ᵀ
x Sx)−1)αl(x)βl(x)

]

16: Σ(next)
x = S(next)ᵀ

x · S(next)
x

17: u(e)
j ← u(e)

j + η(y)exp(−||δe − δε||2/2σ2(y))

18: ·
[[

πjbj(o1)β1(j)− πjP(O|λ)
]∣∣∣∣∣

λe

]
, 1 ≤ j ≤ N;

19: a(e)ij ← ew(e)
ij
/

∑N
l=1 ew(e)

il , 1 ≤ i ≤ N; , 1 ≤ j ≤ N

20: π
(e)
j ← eue)

j
/

∑N
l=1 eu

l(e) , 1 ≤ j ≤ N;
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At this point it should be noted that the APs in the vicinity of the winner AP
get updated to some extent relative to their proximity (or similarity) to the win-
ner AP. In our case, the neighborhood area has an irregular shape and contains the
first-level adjacent APs in the vicinity of the winner AP. In the wireless simulation
experiments in Section 6.5.2, as the location of the APs are already determined in the
wireless ground, the Euclidean distances between all APs are calculated and kept
in a complete graph. Then a filter is applied to update only APs with a certain dis-
tance from the winner AP (in this case half of the maximum distance the distance
graph). During the learning process, the nearby HMMs up to a certain distance
activate each other to gain some information from the new observation sequence.
As the distant HMMs can only gain insignificant amount of information from the
new observation sequence, we utilized the aforementioned filter to avoid updating
very distant HMMs and speed up the process. The neighborhood function that we
used in our algorithm is based on the relative distance of the winner AP and all its
adjacent neighbors:

hce(y) = exp(−10 · d(c, e)/
N

∑
i=1

d(i, e)) (6.25)

where d(c, e) is the Euclidean distance between APc and the winner AP, APe, N
is the number of adjacent APs of APe.

6.5 Experimental Study

In this section we consider two types of experiments to analyze the capabilities of
SOHMMM algorithm in nonlinear projection and unsupervised clustering. We first
validate the accuracy and convergence of SOHMMM using synthetic data, and then
explore its significance and efficiency in anomaly detection using wireless simulation
data.

6.5.1 Synthetic Data

In this experiment we generate observations from 2 reference HMMs, with one third
of the observations coming from one of the models, and the remaining two thirds
from the second reference model. Then we train a SOHMMM with 6 nodes, ran-
domly initialized, with the data from the reference models. We expect that the
SOHMMM nodes will converge to the reference models, with majority of nodes
grouping around the dominant reference model.The SOHMMM nodes (HMMs ini-
tialized randomly) are organized in a 2× 3 rectangular lattice, displayed in Figure
6.2. This figure shows the position and connections of the HMMs. The Euclidean
distance between adjacent HMMs is set to 1 and the other distances get computed
accordingly. For example distance between hmm0 and hmm4 is 2, and between hmm0
and hmm3 is

√
2.

Equation 6.26 demonstrates how the distance (dis-similarity) between two HMMs
is estimated, in this example λ1 and λ2:

D(λ1, λ2) =
1
T
[logP(OT|λ1)− logP(OT|λ2)]. (6.26)

where OT = o1, o2, ..., oT is a sequence of observations generated by λ1 and T is
the number of observations in OT. Equation 6.26 is a Monte Carlo approximation of
the Kullback-Leibler divergence between two HMMs [134], and is a measure of how
well model λ1 matches observations generated by model λ2, relative to how well
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FIGURE 6.2: 2× 3 rectangular lattice.

FIGURE 6.3: Monte Carlo approximation of the Kullback-Leibler di-
vergence between random HMMs and reference HMMs before and

after applying SOHMMM algorithm.

model λ2 matches observations generated by itself [106]. The distance measure of
Equation 6.26 is non-symmetric. Hence the symmetrized version of this measure is:

Ds(λ1, λ2) =
D(λ1, λ2) + D(λ2, λ1)

2
. (6.27)

Figure 6.3 demonstrates the initial and final distances between the random HMMs
and reference HMMs upon applying the SOHMMM algorithm. The training set con-
tains 60 observation sequences from the two reference HMMs (ref0 model generates
40 observation sequences and ref1 generates 20). We train the random HMMs with
these observation sequences.

As the heatmap plots of Figure 6.3 show, initially hmm4 is assigned to ref1 cluster
as there is a shorter distance between these two models, and after applying the algo-
rithm hmm4 gets closer to ref0. As another example hmm3 is closer to ref0 before and
after applying the algorithm, however the overall distance to the reference models
decreases and hmm3 gets closer to both of them maintaining its relative distance to
the references. The minimum distance between a given random HMM and the refer-
ence HMMs define the cluster that HMM belongs to. In this experiment the random
HMMs belong to (re f 1, re f 1, re f 1, re f 0, re f 1, re f 0) and (re f 1, re f 1, re f 0, re f 0, re f 0, re f 0)
clusters before and after applying the algorithm, respectively. The later clusters
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FIGURE 6.4: Monte Carlo approximation of the Kullback-Leibler di-
vergence between random HMMs and reference HMMs with differ-

ent neighborhood sizes and sequence lengths.

show that {hmm2, hmm3, hmm4, hmm5} belong to re f 0 cluster, the dominant refer-
ence models, and {hmm0, hmm1} are assigned to re f 1 cluster, the reference model
generating less data. Having analyzed the Euclidean distances of HMM nodes in
Figure 6.2 shows that nearby HMMs are grouped in the same cluster.

We repeat the experiment for various observation sequence lengths and different
types of neighborhood in terms of vicinity. We select large neighborhood and update
the winner neuron in addition to all the other neurons in the SOM lattice based on
their relative distances addressed in Equation 6.25. The large neighborhood exper-
iment employs the SOHMMM algorithm in its original form. In other experiments
we make some changes to the SOHMMM algorithm in terms of nearby HMMs that
need to be updated. In medium neighborhood experiment the winner HMM is up-
dated in addition to its adjacent neighbors. In small neighborhood experiment only
the winner HMM gets updated. The small neighborhood experiment is equivalent
to Z-SOHMMM experiment.

Figure 6.4 displays the Monte Carlo approximation of the Kullback-Leibler di-
vergence between random HMMs and reference HMMs with large, medium, and
small neighborhood sizes and sequence lengths of 10, 20, and 50. In each experi-
ment the sum of random HMMs’ distance with the assigned reference HMM is com-
puted. As Figure 6.4 shows, the sum of distances to the assigned reference HMMs
decreases as the observation sequence length increases. Also the lower distance val-
ues are obtained in large neighborhood experiment rather than medium and small
neighborhood experiments. It shows that the SOHMMM algorithm provides bet-
ter estimation of the reference models including all the HMMs in the vicinity. The
heatmap plots of Figure 6.3 belong to the large neighborhood experiment with ob-
servation sequence length of 50 that produces the best overall distance estimate in
Figure 6.4.

The learning rate of the SOHMMM algorithm follows a decay function which
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FIGURE 6.5: Learning rate decay over time.

is computed according to Equation 6.28. The intuition behind slowly reducing the
learning rate is to speed up the training and avoid large steps as the learning process
approaches the end. Thus, the convergence becomes more feasible.

learning_rate = learning_rate× (1./(1. + decay_rate× epoch_number)) (6.28)

The initial value of the learning rate for this experiment is set to 1e−2 and the
decay rate is tuned to 1e−2. The learning rate evolution over time is depicted in
Figure 6.5.

To inspect the convergence of the algorithm, the evolution of the SOHMMM’s
loss function, previously calculated in Equation 6.2, is demonstrated in Figure 6.6.
The SOHMMM evolves rapidly, yet as it reaches the approximate shape of the data,
the rate of changes decreases. We performed the algorithm for 40 epochs, however
the loss value declines drastically before the 20th epoch, so performing the training
phase for about 20 epochs produces promising results. In order to speed up the
training process we considered 10 epochs for each experiment.

6.5.2 Wireless Simulation Data

Our simulation consists of one normal scenario and four anomalous scenarios: AP
Shutdown/Halt, AP Overload, Noise, and Flash Crowd. In a normal scenario, there
are 10 access points and 100 wireless stations (STA). Each STA is initially associated
to one of the available APs depending on its location. During the simulation STAs
are handed over to other APs, based on their mobility models, when moving around
the simulation ground. Furthermore, according to the defined traffic plans, each
node sends and receives packets to the existing servers. More details on the mobility
models of the wireless stations, traffic generation, available servers, and path loss
models can be found in Chapter 3 Section 3.4.

In our HMM approach one observation sequence contains 40 consecutive time-
slots of 15s simulation time each. We simulated 15 instances of 3000s simulation
time for normal scenario, and 5 instances of 3000s simulation time for each of the
anomalous scenarios.
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FIGURE 6.6: Convergence of the SOHMMM’s loss.

Our data set is divided into train set (80%) and test set (20%). We compare the
SOHMMM algorithm to two other approaches: 1) Hidden Markov Model initialized
with Universal Background Model (HMM-UBM), addressed in details in chapter 5
section 5.3, and 2) SOHMMM algorithm with zero neighborhood which is just utiliz-
ing the incremental learning part of the SOHMMM algorithm without updating the
hmms in the vicinity (Z-SOHMMM). To initialize the HMM with UBM, the amount
of normal and anomalous data need to be equivalent. So we use 5 weeks of simula-
tion data from the normal data set, and 1 week of each anomalous cases (5X), which
in overall provides us with 10 weeks data, and each week contains 5 working days.
In anomalous cases the time and period of anomalies are different in each day. We
then use one more week of each scenario to train the model and use one remaining
week of each case to test the model. The results are represented as Receiver Operat-
ing Characteristic (ROC) curves [135], and belong to the test set only. The learning
rate follows a decay function defined in Equation 6.28, and its initial value is set
to 1e−3. The duration of the training phase is set to 10 epochs for SOHMMM and
Z-SOHMMM algorithms.

AP Shutdown/Halt

In our simulation, we reproduced this anomaly by turning off the AP power of two
APs, AP2 and AP4, deliberately for some time-slots. The halt-period of these two
anomalous APs are not exactly the same, but has some overlaps. These two APs
have different type of wireless users with different mobility patterns, but equal num-
ber of users. In AP2 users mostly remain connected to the same AP and have less
freedom in movement (e.g. resembling the usage pattern of a classroom), while in
AP4 users have more random movement (e.g. resembling the usage pattern of a
public corridor).

Figure 6.7 and 6.8 demonstrate the ROC curves of anomaly detection results be-
long to AP2 and AP4, respectively. In these figures the detection sensitivity and
specificity of three models are compared: HMM-UBM, SOHMMM, and Z-SOHMMM
(SOHMMM with zero neighborhood). The results of this experiment show that the
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FIGURE 6.7: ROC
curves of AP shut-
down/halt Scenario

(anomalous AP2).

FIGURE 6.8: ROC
curves of AP shut-
down/halt Scenario

(anomalous AP4).

SOHMMM algorithm outperformed the HMM-UBM and Z-SOHMMM techniques
in both examples.

In both anomalous APs, SOHMMM achieved higher true positive rate (TPR)
rather than the other two approaches, and only produced minor false positive rate
(FPR), thus the area under curve (AUC) for both APs are very high (0.99 and 1.0).
The Z-SOHMMM detection results, however, are slightly beneath the SOHMMM
(0.95 and 0.93), and the HMM-UBM results are in the third place (0.91 and 0.71). De-
spite the fact that detection of this type of anomaly in AP4 is more challenging due
to the mobility pattern of its users, SOHMMM achieved similar performance as in
AP2 while the other two approaches performed inadequately.

AP Overload

In this experiment we simulated AP heavy usage caused by half of the users of AP2
(10 out of 20 users) during the burst-period for a number of time-slots. To resemble the
heavy downloads of the wireless users, a burst server sends UDP packets in bursts,
to the IP addresses of mobile users associated with AP2, during the burst-period. In
the time of sleep-period the burst flow stops and the channel utilization gets back to
normal.

In this simulation scenario, AP2 is the anomalous AP and the rest of the APs
are supposed to be in a normal condition. Figure 6.9 depicts the ROC curves re-
garding the anomalous AP2. As this figure shows all the aforementioned models -
HMM-UBM, SOHMMM, and Z-SOHMMM - performed quite well, basically close to
perfect in terms of high TPR and low FPR. However, SOHMMM still outperformed
the other two models and achieved ideal AUC (1.0).

Noise

In the current experiment we changed the level of noise power of AP2 by adjusting
the value of IsotropicBackgroundNoise parameter in the simulator during the noisy-
period. The default value of the background noise parameter is set to -110dBm in the
simulator which is the minimum noise level in Wi-Fi networks 802.11 variants. In
this anomalous scenario we increased the noise power to -95 dBm. This noise power
only affects the users of AP2.
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FIGURE 6.9: ROC
curves of AP overload
scenario (anomalous

AP2).

FIGURE 6.10: ROC
curves of noise sce-
nario (anomalous

AP2).

Figure 6.10 displays the ROC curves related to this anomalous scenario depicted
in AP2. As the AUC values demonstrate, in this example, the TPR versus FPR
outcome could not achieve a close to perfect result similar to the previous anoma-
lous cases. However the highest detection rate is obtained by the SOHMMM algo-
rithm (AUC=0.81). The SOHMMM algorithm improved the basic detection results
of HMM-UBM (AUC=0.76), while updating no neighbour in Z-SOHMMM approach
got inferior results (AUC=0.65).

Flash Crowd

In wireless networks an unexpected surge of traffic occurs mostly due to the begin-
ning or ending of an event when the majority of the wireless users abruptly enter or
leave a place and consequently associate to or disassociate from an AP. We simulated
this setting in two different cases:

• Arrival: simultaneous association of 10 new nodes to AP2.

• Departure: simultaneous dis-association of 10 existing nodes from AP2.

Figure 6.11 and 6.12 present the ROC curves of flash crowd anomaly regarding
the arrival and departure scenarios, respectively. In arrival scenario in Figure 6.11,
the SOHMMM algorithm achieved the highest AUC value (0.89), while the other two
approaches, HMM-UBM and Z-SOHMMM, obtained almost identical AUC values
(0.80), and lower than the SOHMMMM outcome. However, in departure scenario in
Figure 6.12, the AUC values of the three approaches were very close to each other,
while SOHMMM and Z-SOHMMM still achieved slightly higher value (0.97 in both
models) rather than HMM-UBM model (0.96).

Miscellaneous Anomalies

In this experiment we simulated a number of anomalous cases together in one day
data. The purpose of this experiment is to verify whether the proposed methodolo-
gies are capable of detecting a combination of different kinds of anomalies. It should
be taken into consideration that anomalous periods of these different anomalies do
not necessarily overlap with each other. In this scenario two adjacent APs are con-
sidered to be anomalous: AP2 and AP3. The wireless users of these two APs have
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FIGURE 6.11: ROC
curves of flash crowd
arrival scenario

(anomalous AP2).

FIGURE 6.12: ROC
curves of flash crowd
departure scenario

(anomalous AP2).

FIGURE 6.13: ROC
curves of miscel-
laneous anomalies
scenario (anomalous

AP1).

FIGURE 6.14: ROC
curves of miscel-
laneous anomalies
scenario (anomalous

AP3).

alike mobility patterns and mostly remain connected to their initial AP (e.g. resem-
bling a classroom usage pattern), however the number of users in AP2 is twice the
number of users in AP3. The anomalies are sequentially ordered in these APs as
follows:

• AP2 : APShutdown/Halt + APOverload + Noise

• AP3 : APShutdown/Halt + Noise + APOverload

The intervals of two anomalous cases consist of normal interactions between
wireless users and APs. The duration of anomalous scenarios are different from
each other. Figure 6.13 and 6.14 demonstrate the ROC curves of anomaly detection
results regarding these two anomalous APs. In both cases the highest AUC value is
achieved by SOHMMM algorithm (0.81 for AP2 and 0.72 for AP3). In the following
paragraphs we analyze more profoundly the detection results of different anoma-
lous cases in AP2 as an example.

Figure 6.15 displays the obtained likelihood results by HMM-UBM and SOHMMM
models, respectively. The results from the Z-SOHMMM algorithm are similar to
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FIGURE 6.15: The log-likelihood series and actual anomalous points
of miscellaneous anomalies scenario in AP2. diamond: AP shut-
down/halt, star: AP overload, and square: noise. Left) HMM-UBM,

right) SOHMMM.

SOHMMM, therefore to avoid repetition we only compare the recognition results
of HMM-UBM and SOHMMM. The valley shapes in these figures show the sudden
drops of the likelihood values during the anomalous periods. The black markers
display the actual anomalous points generated during the simulation, diamond for
AP shutdown/halt, star for AP overload, and square for noise anomalies.

Having examined the detected anomalies more carefully, it is observed that
SOHMMM is able to detect AP shutdown/halt and AP overload anomalous points
more accurately than the noise anomaly. While HMM-UBM is fitted to AP over-
load anomalous case and is not able to detect nor AP shutdown/halt neither noise
anomaly. As the outcome of Section 6.5.2 also shows, the detection of noise anoma-
lous case is not that straightforward. However, recognition of AP shutdown/halt
in addition to AP overload anomaly by SOHMMM is a significant result, because
these two types of anomalies are very different in nature. AP shutdown/halt is a
silent period where there is minimum or no activity recorded, while AP overload is
high utilization of the network by wireless users. Detection of these two contrasting
anomalies in the same observation sequence by SOHMMM, while HMM-UBM only
reacted to AP overload anomaly, show that SOHMMM improves the HMM-UBM
model and plays an important role in anomaly detection scheme.

The experimental results show that including spatial information of the neigh-
boring APs in the SOHMMM algorithm improve the anomaly detection results in
various simulated anomalous cases. The reason is that in SOHMMM, every time
a new observation sequence is arrived, not only the winner HMM, but also the
nearby HMMs activate each other to gain some information from the new obser-
vation. Hence, the HMM models learn from the usage pattern of their neighbors in
addition to their own. The spatial intuition that supports SOHMMM improved the
anomaly detection results in AP usage data, because in the real scenario the usage
pattern of the neighboring APs affect each other. For instance when an AP stops
working, the wireless users that were already connected to that AP connect to other
APs in the neighborhood, and this might have some influences on the usage pattern
of the nearby APs.
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6.6 Conclusion

In this chapter we applied a hybrid integration of the Self-Organizing Map (SOM)
and the Hidden Markov Model (HMM), called SOHMMM for anomaly detection
in 802.11 wireless network. We further extended the online gradient descent unsu-
pervised learning algorithm of SOHMMM for multivariate Gaussian emissions. We
employed this algorithm specifically for anomaly detection in 802.11 wireless AP
usage data.

Experimental analysis consists of two main parts: Synthetic Data, and Wireless
Simulation Data. In synthetic data analysis we generated six random HMMs and
trained them with the observation sequences of the two reference HMMs with pre-
defined parameters. We then estimated the distance between HMMs as Monte Carlo
approximation of the Kullback-Leibler divergence, and computed the final HMM
clusters based on the minimum distance between random HMMs and reference
HMMs. We repeated the experiment for various observation sequence lengths and
different neighborhood sizes, and showed that the SOHMMM algorithm with the
large neighborhood and the longest observation sequence provides better estima-
tion of the reference models including all the HMMs in the vicinity. Moreover, we
presented the decay of the learning rate and the convergence of the loss function.

In Wireless Simulation Data analysis, we showed how the SOHMMM algorithm
improved the anomaly detection accuracy and sensitivity compared to HMM-UBM
and Z-SOHMMM techniques in AP shutdown/halt, AP overload, noise, and flash
crowd anomalous scenarios. We further investigated the combination of several
anomalies in one observation sequence as miscellaneous anomalies and showed that
SOHMMM is capable of detecting contrasting anomalous cases while HMM-UBM
is not.
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In 802.11 Wireless Networks, detecting faulty equipment, poor radio conditions, and
changes in user behavior through anomaly detection is of great importance for net-
work managers. The traffic load and users movement on different access points
(APs) in a wireless covered area vary from time to time, making these network man-
agement tasks harder. AP usage modeling and anomaly detection in hotspots would
assist network administrators to ensure long-term quality of service by analyzing
various connectivity factors of wireless users in particular localities. One of the ob-
jectives of this work is to inspect and characterize the usage pattern of the wireless
networks and its inherent dynamics by exploring the spatial proximity of access
points and their timely usage pattern simultaneously and to provide robust models
for anomaly detection.

We proposed an automatic diagnostic tool that analyzes the usage data of the
APs collected from a RADIUS authentication server, a similar but smaller Testbed,
and a middle-sized wireless simulation network. The large log data of RADIUS
authentication is collected from FEUP in approximately two years, and contains the
connection summary of more than 45 thousands users associated to 364 APs. The
small exploratory Testbed is deployed in FreeRADIUS server and consists of one AP
and six wireless users. The wireless simulation is performed in infrastructure mode
in OMNeT++/INET and consists of 10 APs and 100 wireless stations. The FEUP
data set is conducted on a real university campus, however do not contain ground
truth of anomalous events. The Testbed deployment and wireless simulation data set
contain ground truth of a number of anomalous cases generated in them deliberately,
however they are reproduced in smaller scales.

We applied probabilistic learning algorithms, specifically Hidden Markov Model
and its variations, to build a single model for all APs, individual models for each AP,
and several models for group of APs, and identified anomalous events with a margin
of certitude. We further presented several indicators of outliers by HMM parame-
ters’ analysis, and provided a number of anomalous patterns associated with such
networks in terms of HMM state transitions. The results showed that HMM models
were able to discover a portion of the state of the art’s outliers (univariate, multi-
variate and temporal). The HMM models also introduced some additional outliers
that could be justified by HMM parameters indicators (large distance to assigned
HMM state, low transition probability, and rare state modification). The single and
mixture models outperformed the individual HMMs in terms of accuracy and HMM
indicators conformity.

We extended the analysis by proposing time-invariant (GMM) and time-variant
(HMM) modeling approaches and utilizing these models for anomaly detection. We
conducted an experiment as a case study on FEUP data set, and examined the good-
ness of fit using log-likelihood values. Furthermore, we described the anomaly de-
tection techniques by GMM and HMM, and explored the addressed methodologies
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to detect anomalies at the same experimental data of the previous case study. We
justified the detected anomalous points in absence of the ground truth in the large
data set, and measured the false positive rate (FPR), true negative rate (TNR), true
positive rate (TPR), accuracy (ACC) and F1 score in normal and anomalous test data
belong to Testbed data set. The experimental results demonstrated that HMM out-
performed GMM in obtaining higher detection ratio while producing minor false
alarm.

Moreover, we proposed Universal Background Modeling (UBM) approach for
a robust initialization of the HMM models. The experimental results, performed
on wireless simulation network, showed that HMM and HMM-UBM models are
both capable of detecting a considerable portion of anomalies while producing only
a small false positive ratio. This is promising for in HMM-UBM model all APs’
data, regardless of being normal or containing anomalous events, is utilized to ini-
tialize the HMM model. Thus, in unsupervised learning, where the normal data is
not known beforehand, HMM-UBM yields a robust model, as reliable as HMM ini-
tialized with normal data. The anomaly detection results are compared to baseline
approaches, RawData and PCA, and showed that HMM is required to detect such
sort of anomalies while the simpler baseline approaches are inadequate for anomaly
detection.

We applied a hybrid integration of the Self-Organizing Map (SOM) and the Hid-
den Markov Model (HMM), called SOHMMM for anomaly detection in 802.11 wire-
less network. The Self-Organizing Hidden Markov Model Map (SOHMMM) deals
with the spatial connection of HMMs along with the inherent temporal dependency
of data sequences. We further extended the online gradient descent unsupervised
learning algorithm of SOHMMM for multivariate Gaussian emissions. Experimen-
tal analysis consist of two main parts: synthetic data, and wireless simulation data.
In synthetic data analysis we generated six random HMMs and trained them with
observation sequences of two reference HMMs with predefined parameters. We
then estimated the distance between HMMs as Monte Carlo approximation of the
Kullback-Leibler divergence, and computed the final HMM clusters based on the
minimum distance between random HMMs and reference HMMs. We repeated the
experiment for various observation sequence lengths and different neighborhood
sizes, and showed that the SOHMMM algorithm with the large neighborhood and
the longest observation sequence provides better estimation of the reference mod-
els including all the HMMs in the vicinity. Further, we presented the decay of the
learning rate and the convergence of the loss function. In wireless simulation data
analysis, we showed how the SOHMMM algorithm improve the anomaly detection
accuracy and sensitivity compared to HMM-UBM and Z-SOHMMM (SOHMMM
with zero neighborhood) techniques in AP shutdown/halt, AP overload, noise, and
flash crowd anomalous scenarios. We further investigated the combination of sev-
eral anomalies in one observation sequence as miscellaneous anomalies and we
showed that SOHMMM is capable of detecting contrasting anomalous cases while
HMM-UBM is not.

Overall, all our investigations in this thesis are original and to the best of our
knowledge could not have been done before our contributions. In future work, we
plan to explore anomalous pattern recognition techniques to distinguish between
various anomalous scenarios. We intend to focus on micro modeling approaches
based on HMMs to characterize the sub-sequences of time-series and distinguish the
anomalous cases. In this regard, we also intend to fully develop our previously pro-
posed unsupervised anomaly detection algorithm in Section 5.3.2, to detect anoma-
lous periods and distinguish between various anomalous types in unlabeled data
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sets. We also intend to explore other types of anomalous patterns such as intrusion,
and rough APs among others. Furthermore, we plan to apply the SOHMMM algo-
rithm on our large data set (in Section 3.2) and analyze the impact of physical and
logical proximity of APs in spatial connection of HMMs. The logical proximity can
be estimated according to the ping-pong algorithm proposed in [21]. Further analy-
sis regarding the classification of APs in a large network are among the compelling
future lines of research. Such classification efforts arise the question of usage similar-
ity or difference in formed categories with different characteristics. Lastly, if we had
a large network data set and a network manager willing to annotate the data and
provide us with some expert intuition in terms of anomalous, suspicious, or normal
type of events, we would like to apply the proposed techniques on such data and
evaluate the presented algorithms in real scenarios.
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Appendix A

Lemma 1.
∂P(O|λ)

∂ars
=

T−1

∑
l=1

[
αl(r)bs(ol+1)βl+1(s). (8.1)

Proposition 1.

∂P(O|λ)
∂wij

= aij

T−1

∑
l=1

[
αl(i)bj(ol+1)βl+1(j)− αl(i)βl(i)

]
. (8.2)

Lemma 2.
∂P(O|λ)
∂bx(y)

=
1

bx(y)

T

∑
l=1

I{ol = y|λ}αl(x)βl(x). (8.3)

Proposition 2.
∂P(O|λ)

∂rjt
=

T

∑
l=1

[
I{ol = t|λ}αl(j)βl(j)− bj(t)αl(j)βl(j)

]
. (8.4)

Lemma 3.
∂P(O|λ)

∂πr
= br(o1β1(r)). (8.5)

Proposition 3.
∂P(O|λ)

∂uj
= πjbj(o1)β1(j)− πjP(O|λ). (8.6)

The proof of Lemma 1 can be found in [136]. And the proof of Lemma 2 and
Proposition 2 can be found in [80].
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