180 research outputs found

    Review of deep learning approaches in solving rock fragmentation problems

    Get PDF
    One of the most significant challenges of the mining industry is resource yield estimation from visual data. An example would be identification of the rock chunk distribution parameters in an open pit. Solution of this task allows one to estimate blasting quality and other parameters of open-pit mining. This task is of the utmost importance, as it is critical to achieving optimal operational efficiency, reducing costs and maximizing profits in the mining industry. The mentioned task is known as rock fragmentation estimation and is typically tackled using computer vision techniques like instance segmentation or semantic segmentation. These problems are often solved using deep learning convolutional neural networks. One of the key requirements for an industrial application is often the need for real-time operation. Fast computation and accurate results are required for practical tasks. Thus, the efficient utilization of computing power to process high-resolution images and large datasets is essential. Our survey is focused on the recent advancements in rock fragmentation, blast quality estimation, particle size distribution estimation and other related tasks. We consider most of the recent results in this field applied to open-pit, conveyor belts and other types of work conditions. Most of the reviewed papers cover the period of 2018-2023. However, the most significant of the older publications are also considered. A review of publications reveals their specificity, promising trends and best practices in this field. To place the rock fragmentation problems in a broader context and propose future research topics, we also discuss state-of-the-art achievements in real-time computer vision and parallel implementations of neural networks

    A new weakly supervised learning approach for real-time iron ore feed load estimation

    Get PDF
    Iron ore feed-load control is one of the most critical settings in a mineral grinding process. It has direct impact on the quality of final iron products. The setting of the feed load heavily replies the characteristics of the ore pellets. However, such characteristics are challenging to acquire in many production environments, requiring speical equipments and complicated modelling process with a high cost. To provide an low-cost and easier-to-implement solution, in this paper, we present our work on using deep learning models for direct ore feed load estimation from ore pellet images. To address the challenges caused by the large size of ore images and the shortage of accurately annotated data, we proposed to use a weakly supervised learning apporach with a two-stage model training algorithm and two neural network architectures developed. The experiment results show competitive model performance, and the trained models can be used for real-time feed load estimation for grind process optimisation

    A new weakly supervised learning approach for real-time iron ore feed load estimation

    Get PDF
    Iron ore feed-load control is one of the most critical settings in a mineral grinding process. It has direct impact on the quality of final iron products. The setting of the feed load heavily replies the characteristics of the ore pellets. However, such characteristics are challenging to acquire in many production environments, requiring speical equipments and complicated modelling process with a high cost. To provide an low-cost and easier-to-implement solution, in this paper, we present our work on using deep learning models for direct ore feed load estimation from ore pellet images. To address the challenges caused by the large size of ore images and the shortage of accurately annotated data, we proposed to use a weakly supervised learning apporach with a two-stage model training algorithm and two neural network architectures developed. The experiment results show competitive model performance, and the trained models can be used for real-time feed load estimation for grind process optimisation

    Computer Vision-based Monitoring of Harvest Quality

    Get PDF

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    New Methods for ferrous raw materials characterization in electric steelmaking

    Get PDF
    425 p.In the siderurgical sector, the steel scrap is the most important raw material in electric steelmaking,contributing between 70% of the total production costs. It is well-known how the degree of which thescrap mix can be optimized, and also the degree of which the melting operation can be controlled andautomated, is limited by the knowledge of the properties of the scrap and other raw-materials in thecharge mix.Therefore, it is of strategic importance having accurate information about the scrap composition of thedifferent steel scrap types. In other words, knowing scrap characteristics is a key point in order to managethe steel-shop resources, optimize the scrap charge mix/composition at the electric arc furnace (EAF),increase the plant productivity, minimize the environmental footprint of steelmaking activities and tohave the lowest total cost of ownership of the plant.As a main objective of present doctoral thesis, the doctorate will provide new tools and methods of scrapcharacterization to increase the current recycling ration, through better knowledge of the quality of thescrap, and thus go in the direction of a 100% recycling ratio. In order to achieve it, two main workinglines were developed in present research. Firstly, it was analysed not only the different existingmethodologies for scrap characterization and EAF process optimization, but also to develop new methodsor combination of existing, Secondly, it was defined a general recommendations guide for implementingthese methods based on the specifics of each plant

    Mineral identification using data-mining in hyperspectral infrared imagery

    Get PDF
    Les applications de l’imagerie infrarouge dans le domaine de la géologie sont principalement des applications hyperspectrales. Elles permettent entre autre l’identification minérale, la cartographie, ainsi que l’estimation de la portée. Le plus souvent, ces acquisitions sont réalisées in-situ soit à l’aide de capteurs aéroportés, soit à l’aide de dispositifs portatifs. La découverte de minéraux indicateurs a permis d’améliorer grandement l’exploration minérale. Ceci est en partie dû à l’utilisation d’instruments portatifs. Dans ce contexte le développement de systèmes automatisés permettrait d’augmenter à la fois la qualité de l’exploration et la précision de la détection des indicateurs. C’est dans ce cadre que s’inscrit le travail mené dans ce doctorat. Le sujet consistait en l’utilisation de méthodes d’apprentissage automatique appliquées à l’analyse (au traitement) d’images hyperspectrales prises dans les longueurs d’onde infrarouge. L’objectif recherché étant l’identification de grains minéraux de petites tailles utilisés comme indicateurs minéral -ogiques. Une application potentielle de cette recherche serait le développement d’un outil logiciel d’assistance pour l’analyse des échantillons lors de l’exploration minérale. Les expériences ont été menées en laboratoire dans la gamme relative à l’infrarouge thermique (Long Wave InfraRed, LWIR) de 7.7m à 11.8 m. Ces essais ont permis de proposer une méthode pour calculer l’annulation du continuum. La méthode utilisée lors de ces essais utilise la factorisation matricielle non négative (NMF). En utlisant une factorisation du premier ordre on peut déduire le rayonnement de pénétration, lequel peut ensuite être comparé et analysé par rapport à d’autres méthodes plus communes. L’analyse des résultats spectraux en comparaison avec plusieurs bibliothèques existantes de données a permis de mettre en évidence la suppression du continuum. Les expérience ayant menés à ce résultat ont été conduites en utilisant une plaque Infragold ainsi qu’un objectif macro LWIR. L’identification automatique de grains de différents matériaux tels que la pyrope, l’olivine et le quartz a commencé. Lors d’une phase de comparaison entre des approches supervisées et non supervisées, cette dernière s’est montrée plus approprié en raison du comportement indépendant par rapport à l’étape d’entraînement. Afin de confirmer la qualité de ces résultats quatre expériences ont été menées. Lors d’une première expérience deux algorithmes ont été évalués pour application de regroupements en utilisant l’approche FCC (False Colour Composite). Cet essai a permis d’observer une vitesse de convergence, jusqu’a vingt fois plus rapide, ainsi qu’une efficacité significativement accrue concernant l’identification en comparaison des résultats de la littérature. Cependant des essais effectués sur des données LWIR ont montré un manque de prédiction de la surface du grain lorsque les grains étaient irréguliers avec présence d’agrégats minéraux. La seconde expérience a consisté, en une analyse quantitaive comparative entre deux bases de données de Ground Truth (GT), nommée rigid-GT et observed-GT (rigide-GT: étiquet manuel de la région, observée-GT:étiquetage manuel les pixels). La précision des résultats était 1.5 fois meilleur lorsque l’on a utlisé la base de données observed-GT que rigid-GT. Pour les deux dernières epxérience, des données venant d’un MEB (Microscope Électronique à Balayage) ainsi que d’un microscopie à fluorescence (XRF) ont été ajoutées. Ces données ont permis d’introduire des informations relatives tant aux agrégats minéraux qu’à la surface des grains. Les résultats ont été comparés par des techniques d’identification automatique des minéraux, utilisant ArcGIS. Cette dernière a montré une performance prometteuse quand à l’identification automatique et à aussi été utilisée pour la GT de validation. Dans l’ensemble, les quatre méthodes de cette thèse représentent des méthodologies bénéfiques pour l’identification des minéraux. Ces méthodes présentent l’avantage d’être non-destructives, relativement précises et d’avoir un faible coût en temps calcul ce qui pourrait les qualifier pour être utilisée dans des conditions de laboratoire ou sur le terrain.The geological applications of hyperspectral infrared imagery mainly consist in mineral identification, mapping, airborne or portable instruments, and core logging. Finding the mineral indicators offer considerable benefits in terms of mineralogy and mineral exploration which usually involves application of portable instrument and core logging. Moreover, faster and more mechanized systems development increases the precision of identifying mineral indicators and avoid any possible mis-classification. Therefore, the objective of this thesis was to create a tool to using hyperspectral infrared imagery and process the data through image analysis and machine learning methods to identify small size mineral grains used as mineral indicators. This system would be applied for different circumstances to provide an assistant for geological analysis and mineralogy exploration. The experiments were conducted in laboratory conditions in the long-wave infrared (7.7μm to 11.8μm - LWIR), with a LWIR-macro lens (to improve spatial resolution), an Infragold plate, and a heating source. The process began with a method to calculate the continuum removal. The approach is the application of Non-negative Matrix Factorization (NMF) to extract Rank-1 NMF and estimate the down-welling radiance and then compare it with other conventional methods. The results indicate successful suppression of the continuum from the spectra and enable the spectra to be compared with spectral libraries. Afterwards, to have an automated system, supervised and unsupervised approaches have been tested for identification of pyrope, olivine and quartz grains. The results indicated that the unsupervised approach was more suitable due to independent behavior against training stage. Once these results obtained, two algorithms were tested to create False Color Composites (FCC) applying a clustering approach. The results of this comparison indicate significant computational efficiency (more than 20 times faster) and promising performance for mineral identification. Finally, the reliability of the automated LWIR hyperspectral infrared mineral identification has been tested and the difficulty for identification of the irregular grain’s surface along with the mineral aggregates has been verified. The results were compared to two different Ground Truth(GT) (i.e. rigid-GT and observed-GT) for quantitative calculation. Observed-GT increased the accuracy up to 1.5 times than rigid-GT. The samples were also examined by Micro X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) in order to retrieve information for the mineral aggregates and the grain’s surface (biotite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine, and quartz). The results of XRF imagery compared with automatic mineral identification techniques, using ArcGIS, and represented a promising performance for automatic identification and have been used for GT validation. In overall, the four methods (i.e. 1.Continuum removal methods; 2. Classification or clustering methods for mineral identification; 3. Two algorithms for clustering of mineral spectra; 4. Reliability verification) in this thesis represent beneficial methodologies to identify minerals. These methods have the advantages to be a non-destructive, relatively accurate and have low computational complexity that might be used to identify and assess mineral grains in the laboratory conditions or in the field

    OCM 2015 - 2nd International Conference on Optical Characterization of Materials: March 18th - 19th, 2015, Karlsruhe, Germany

    Get PDF
    Each material has its own specific spectral signature independent if it is food, plastics, or minerals. During the conference we will discuss new trends and developments in material characterization. You also will be informed about latest highlights to identify spectral footprints and their realizations in industry

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle
    • …
    corecore