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Résumé

Les applications de l’imagerie infrarouge dans le domaine de la géologie sont principalement
des applications hyperspectrales. Elles permettent entre autre l’identification minérale, la car-
tographie, ainsi que l’estimation de la portée. Le plus souvent, ces acquisitions sont réalisées
in-situ soit à l’aide de capteurs aéroportés, soit à l’aide de dispositifs portatifs. La découverte
de minéraux indicateurs a permis d’améliorer grandement l’exploration minérale. Ceci est en
partie dû à l’utilisation d’instruments portatifs. Dans ce contexte le développement de sys-
tèmes automatisés permettrait d’augmenter à la fois la qualité de l’exploration et la précision
de la détection des indicateurs.
C’est dans ce cadre que s’inscrit le travail mené dans ce doctorat. Le sujet consistait en
l’utilisation de méthodes d’apprentissage automatique appliquées à l’analyse (au traitement)
d’images hyperspectrales prises dans les longueurs d’onde infrarouge. L’objectif recherché
étant l’identification de grains minéraux de petites tailles utilisés comme indicateurs minéral
-ogiques. Une application potentielle de cette recherche serait le développement d’un outil
logiciel d’assistance pour l’analyse des échantillons lors de l’exploration minérale.
Les expériences ont été menées en laboratoire dans la gamme relative à l’infrarouge thermique
(Long Wave InfraRed, LWIR) de 7.7µm à 11.8 µm. Ces essais ont permis de proposer une
méthode pour calculer l’annulation du continuum. La méthode utilisée lors de ces essais utilise
la factorisation matricielle non négative (NMF). En utlisant une factorisation du premier ordre
on peut déduire le rayonnement de pénétration, lequel peut ensuite être comparé et analysé
par rapport à d’autres méthodes plus communes. L’analyse des résultats spectraux en com-
paraison avec plusieurs bibliothèques existantes de données a permis de mettre en évidence
la suppression du continuum. Les expérience ayant menés à ce résultat ont été conduites en
utilisant une plaque Infragold ainsi qu’un objectif macro LWIR. L’identification automatique
de grains de différents matériaux tels que la pyrope, l’olivine et le quartz a commencé. Lors
d’une phase de comparaison entre des approches supervisées et non supervisées, cette dernière
s’est montrée plus approprié en raison du comportement indépendant par rapport à l’étape
d’entraînement.

Afin de confirmer la qualité de ces résultats quatre expériences ont été menées. Lors d’une
première expérience deux algorithmes ont été évalués pour application de regroupements en
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utilisant l’approche FCC (False Colour Composite). Cet essai a permis d’observer une vitesse
de convergence, jusqu’a vingt fois plus rapide, ainsi qu’une efficacité significativement accrue
concernant l’identification en comparaison des résultats de la littérature. Cependant des essais
effectués sur des données LWIR ont montré un manque de prédiction de la surface du grain
lorsque les grains étaient irréguliers avec présence d’agrégats minéraux. La seconde expérience
a consisté, en une analyse quantitaive comparative entre deux bases de données de Ground
Truth (GT), nommée rigid-GT et observed-GT (rigide-GT: étiquet manuel de la région,
observée-GT:étiquetage manuel les pixels). La précision des résultats était 1.5 fois meilleur
lorsque l’on a utlisé la base de données observed-GT que rigid-GT. Pour les deux dernières
epxérience, des données venant d’un MEB (Microscope Électronique à Balayage) ainsi que d’un
microscopie à fluorescence (µXRF) ont été ajoutées. Ces données ont permis d’introduire des
informations relatives tant aux agrégats minéraux qu’à la surface des grains. Les résultats ont
été comparés par des techniques d’identification automatique des minéraux, utilisant ArcGIS.
Cette dernière a montré une performance prometteuse quand à l’identification automatique
et à aussi été utilisée pour la GT de validation. Dans l’ensemble, les quatre méthodes de
cette thèse représentent des méthodologies bénéfiques pour l’identification des minéraux. Ces
méthodes présentent l’avantage d’être non-destructives, relativement précises et d’avoir un
faible coût en temps calcul ce qui pourrait les qualifier pour être utilisée dans des conditions
de laboratoire ou sur le terrain.
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Abstract

The geological applications of hyperspectral infrared imagery mainly consist in mineral iden-
tification, mapping, airborne or portable instruments, and core logging. Finding the mineral
indicators offer considerable benefits in terms of mineralogy and mineral exploration which
usually involves application of portable instrument and core logging. Moreover, faster and
more mechanized systems development increases the precision of identifying mineral indica-
tors and avoid any possible mis-classification. Therefore, the objective of this thesis was to
create a tool to using hyperspectral infrared imagery and process the data through image
analysis and machine learning methods to identify small size mineral grains used as mineral
indicators. This system would be applied for different circumstances to provide an assistant for
geological analysis and mineralogy exploration. The experiments were conducted in laboratory
conditions in the long-wave infrared (7.7µm to 11.8µm - LWIR), with a LWIR-macro lens (to
improve spatial resolution), an Infragold plate, and a heating source. The process began with a
method to calculate the continuum removal. The approach is the application of Non-negative
Matrix Factorization (NMF) to extract Rank-1 NMF and estimate the down-welling radiance
and then compare it with other conventional methods. The results indicate successful suppres-
sion of the continuum from the spectra and enable the spectra to be compared with spectral
libraries. Afterwards, to have an automated system, supervised and unsupervised approaches
have been tested for identification of pyrope, olivine and quartz grains. The results indi-
cated that the unsupervised approach was more suitable due to independent behavior against
training stage. Once these results obtained, two algorithms were tested to create False Color
Composites (FCC) applying a clustering approach. The results of this comparison indicate
significant computational efficiency (more than 20 times faster) and promising performance
for mineral identification. Finally, the reliability of the automated LWIR hyperspectral in-
frared mineral identification has been tested and the difficulty for identification of the irregular
grain’s surface along with the mineral aggregates has been verified. The results were com-
pared to two different Ground Truth(GT) (i.e. rigid-GT and observed-GT) for quantitative
calculation. Observed-GT increased the accuracy up to 1.5 times than rigid-GT. The samples
were also examined by Micro X-ray Fluorescence (µXRF ) and Scanning Electron Microscope
(SEM) in order to retrieve information for the mineral aggregates and the grain’s surface (bi-
otite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine,
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and quartz). The results of µXRF imagery compared with automatic mineral identification
techniques, using ArcGIS, and represented a promising performance for automatic identifica-
tion and have been used for GT validation. In overall, the four methods (i.e. 1.Continuum
removal methods; 2. Classification or clustering methods for mineral identification; 3. Two
algorithms for clustering of mineral spectra; 4. Reliability verification) in this thesis represent
beneficial methodologies to identify minerals. These methods have the advantages to be a
non-destructive, relatively accurate and have low computational complexity that might be
used to identify and assess mineral grains in the laboratory conditions or in the field.
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Chapter 1

Introduction

Hyperspectral imagery has recently been considered as one of the important active research
area which involves many researchers in different fields. This technique provides a wealth of
spectral information and has been successfully applied in various domains such as environmen-
tal monitoring, satellite imagery, agriculture and mineralogy. Remote sensing data normally
suffers due to low spatial resolution in the hyperspectral sensor. This creates critical problems
in the interpretation of hyperspectral data and the overall accuracy of the analysis. But nowa-
days the instruments used for spectroscopy have been developed to create good opportunities
and provide precise measurements in the different infrared wavelength. Thereby giving better
spectral and spatial emissivity information from the surface of materials. The automatic/semi-
automatic/ non-automatic approaches in the identification of minerals are extensively related
to this information. One of the critical elements in hyperspectral mineralogy relates to identify-
ing the endmember which is the best representative for the mineral group. High categorization
ability requires an adjustment of the spectral information. However, categorization based on
chemical and physical properties themselves provide a reasonable outcome. A hyperspectral
image contains detailed information recorded from the reflection of the energy source in the
spatial position (in hyperspectral remote sensing the energy source is solar energy, whereas
in the laboratory situation it is the heating element). hyperspectral becomes a technique for
the identification of various materials according to their spectral fingerprint. However, due
to non-uniform radio-metrical conditions in the laboratory and rough spatial resolution and
many other factors, most of the pixels are composed of several different ground materials
which are known as mixed pixels or mixtures. This influences the image classification and
mineral identification performance. However, the extraction of abundance fractions from pure
materials, a spectral unmixing known as an endmember 1 within a pixel has been developed as
a solution of such mixed-pixel problems. But before going into the identification of minerals,
there is an issue which is more concerned with the reflection from the mineral grains that
is a radiometric property within visual observation in acquisition. This matter concerns the

1An endmember in mineralogy is a mineral that is at the extreme end of a mineral series in terms of purity.
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current research at the initial steps to retrieve the emissivity of reflection information so as to
conduct a comparison among the hyperspectral libraries (i.e. ASTER/JPL (Baldridge et al.
2009)). The information obtained is highly sensitive to certain parameters in the experimental
setup such as non-uniformity of thermal exposure, acquisition angles and many similar other
parameters. It controlled to minimum the influence and disruption on the data. For the past
three decades, spectrometric imaging has been used to provide necessary information in the
field of mineralogy and geology (Goetz 2009). The community of hyperspectral remote sensing
has developed general datasets which are considered to be reasonably similar to the collection
of the spectral libraries in the laboratory or field. The generated hyperspectral data can sup-
port the hyperspectral analysis and information extraction through the development of the
algorithms. The signature of the natural materials present in such spectral libraries provides
opportunities for feature extraction and classification techniques to be applied to imagery and
thereby define the spectral endmembers as inputs or ground truths for comparison among
the spectra. The number of spectral libraries is increasing and the publicly available libraries
are widely used in the applications of hyperspectral image analysis. Direct comparison of the
spectra attained from materials and with the spectra available in the libraries is influenced by
the disparities of illumination and viewing measurement (Rivard et al. 2008). In this study, a
laboratory spectroscopy has been conducted along with computational algorithms to identify
the mineral samples automatically. The paradigm follows several pure mineral grains on the
specific substrate and spectroscopy processes have then been conducted based on an active
thermography scenario which was involved heating an element in front of the hyperspectral
camera. Two experiments have been conducted in different resolutions and heating conditions.
One of the stages of analysis comprised the emissivity retrieval which is one of the vital steps
of the spectral analysis and provided continuum removal similar property to the spectra. The
analysis of mineral identification has required a spectral reference which included several anal-
ysis such as decomposition and supervised and unsupervised learning algorithms to make the
mineral identification automated.

The main objective of the present thesis was to create a tool for using hyperspectral infrared
imagery data and process the data through image analysis and machine learning methods
to identify small size mineral grains used as mineral indicators. This research has striven to
develop a contribution in providing segmentation and automated mineral identification using
data-mining and machine learning approaches.
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Chapter 2

Literature Review

Hyperspectral infrared imagery is defined as the sensing of reflected, scattered or emitted heat
from the targeted surface by any source such as the sun or a heating element, which have elec-
tromagnetic or thermal content. Hyperspectral infrared imagery is one of the latest infrared
imaging technologies which was created by developments in infrared acquisition in different
spectral band and obtained by concatenation of these images. Hyperspectral imaging mea-
sures contiguous spectra unlike Multispectral Scanning System (MSS) which measures spaced
spectral bands. The signature in the hyperspectral imaging is considered at the molecular level
while the photon scattering and absorption and it can be distinguished due to the mineral’s
characteristics and chemical properties (chemical bond between molecules). The images are
combined to form a three-dimensional data cube, where the first two dimensions represent the
spatial information (spatial resolution) and the third dimension designates the spectral infor-
mation (spectral resolution). The spectral range in the hyperspectral sensors is dependent on
the characteristics of the sensor and most of the time spectral and spectral resolution have a
relationship between each-other, increasing in one of them decreases the other one.
Hyperspectral imagery has been considerably developed during the recent decades and its
applications with infrared thermography have been the subject of several studies in different
fields (Goetz, 2009). This variety provides remarkable researches and contributions in different
areas (i.e. geology/mineralogy, remote sensing, optics, infrared and thermography, computer
science, and optimizations).
Mineralogy has been an intriguing subject in geology from the very beginning (Borie, 1965;
Adams, 1975; Farmer, 1974; Hunt, 1977; Nash and Conel, 1974; Gamble, 1972; Kinsey, 1977;
Preissler and Loercher, 1995), and has been carried out through manual categorization of
minerals by the experts or using an automated system (later). Even after the development
of spectroscopy instruments (Herrmann and Onkelinx, 1984; Siegbahn and Axel, 1966), the
process of mineral recognition has been done by manual spectral categorization. After the de-
velopment of computer-aided applications for mineral identification, many automated /semi-
automated techniques were developed (i.g. Kruse, 1996a, 2012; Kruse et al., 1993a). The
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hyperspectral mineral identification process is based on comparison of a Region Of Interest
(ROI) spectra in the mineral hyperspectral image with a targeted spectrum available from the
Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER)/Jet Propul-
sion Laboratory (JPL) (Baldridge et al., 2009) or the United States Geologic Survey (USGS)
(Clark et al., 2007) mineral libraries, or mineral sample’s spectra that are known (e.g. Yousefi
et al., 2016a).
The application of hyperspectral imagery in remote sensing is also very common and involves
the identification or analysis of possible mines (Zabcic et al., 2014; Koch et al., 2017) or par-
ticular targets (Zhang et al., 2014; Jin et al., 2009; Chang et al., 2000), drill core analysis
(Speta et al., 2013), urban area development (Kotthaus et al., 2014) and different types of
mapping (Cui et al., 2015; Xiaojia et al., 2010) or even the hyperspectral image from other
planets in order to identify particular minerals or the existence of life (Ehlmann et al., 2011;
Capaccioni et al., 2001; Gou et al., 2015; Smith et al., 2013). In contrast to the wide diversity
of hyperspectral imagery’s applications, the basic technique for hyperspectral mineral identifi-
cation follows only one principle which involves finding the difference between the targeted and
reference spectra. Consequently the hyperspectral mineral identification research is divided
into several categories:
- The approaches based on the geological and mineralogical points of view;
- Endmember Estimation Algorithm (EEA) methods which use the estimation of the endmem-
ber as the reference spectrum and then carry out a hyperspectral unmixing process which gives
a recognition profile of the mineral spectra.
- Mineral mapping methods which usually involve finding the targeted mineral reference spec-
trum and then applying the spectral comparison methods to segment the hyperspectral images.
Here, the application of hyperspectral imaging for mineral identification is briefly reviewed.
The research in this field is vast and a review requires the categorization in terms of similarity
of the applications, techniques or wavelengths.

2.1 Infrared spectroscopic and hyperspectral imagery

Infrared spectroscopic and hyperspectral imagery follow developments in infrared, optical and
instrumental methods (Herrmann and Onkelinx, 1984; Siegbahn and Axel, 1966). In this
section the hyperspectral analysis regarding the geology/mineralogical techniques are briefly
reviewed.

2.1.1 Spectroscopy

Spectroscopy is defined as the analysis and study of light as a function of wavelength. Light
is normally reflected, emitted or scattered from a gas, liquid, or solid. A summary of min-
eral spectroscopy and its principle applied to a variety of materials is briefly discussed in this
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section (Adams, 1975; Farmer, 1974; Clark and Roush, 1984; Clark et al., 1990; Gaffey et al.,
1993; Hunt, 1977, 1982; Salisbury, 1993).

2.1.2 Scattering and Absorption

When a mineral is exposed to photons, some photons enter into the mineral, some pass through
the grain, a few are absorbed, and some are reflected from the surfaces of the grains. The
reflectance or refraction of photons through a particle from the surface of the grain is called
scattered photons. Scattered photons may encounter another grain’s surface or be scattered
away from the surface so they might be detected by the instrument and to be measured. There
are certain photons which originate from the surface and are referred emission. Normally all
of the surfaces which have a natural origin emit photons when they are above absolute zero
temperature. This emission is subject to the physical laws of refraction, reflection, and ab-
sorption. Absorption of the photons in minerals depends on several conditions. The variation
in absorption level and its dependence on wavelength can provide the information on mineral
chemical properties by the light which is emitted and reflected.

2.1.3 Spectroscopy terms

Spectrometry 1 is derived from spectro-photometry and the wavelength function and has been
used to measure photons for years. The capability of a spectrometer is described by four
parameters:
i) Spectral sampling;
ii) Spectral bandwidth;
iii) Signal-to-Noise Ratio (SNR);
iv) Spectral range which is important to cover sufficient analytic spectral absorptions as a
solution for the desired problem.
There are normally lower spectral details and resolution systems between the remote sensing
and laboratory spectrometry. Sampling conducted at greater than 25 nm quickly leads to a
loss of the absorption of the minerals. The Near Infrared Mapping Spectrometer (NIMS) and
the Visual and Infrared Mapping Spectrometer (VIMS) systems measure out to 5 µm, and
consequently the absorption bands can be seen (the band-pass profile shape is also important).
Every channel of a spectrometer ideally refuses all light apart from the desired particular nar-
row wavelength range; however due to optical influences, light may occasionally leak in from
beyond the band-pass (e.g. insufficient blocking filters, or spreading inside the optical system).
The Gaussian profile is the most common band-pass in spectrometry (Hagen et al., 2007; Guo,
2011). The optical system aberrations usually smear for a profile close to the Gaussian shape
while the designs of specific spectrometers are theoretically well-defined in band-pass profiles.

1"Imaging spectroscopy has many names in the remote sensing community, including imaging spectrometry,
hyperspectral, and ultraspectral imaging" from the USGS library (Clark et al., 2007).
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The band-pass width is usually defined as the wavelength width at 50% of the function re-
sponse level named as Full Width at Half Maximum (FWHM) (Weisstein, 2017). The distance
between the wavelengths of the spectral band-pass profile for every spectrometer channel is
considered as the spectral sampling which is often confused with band-pass. According to the
Nyquist theorem, the maximum of the information obtained from the sampling in one-half
the FWHM, in the spectrometers are designed with a ratio of half-Nyquist (Grenander, 1959;
Mishali and Eldar, 2010) amount. The precision of recording in the spectrometer and the
SNR (Johnson, 2006) are important factors in solving the particular problem depending on
the detector sensitivity, intensity of light reflected or emitted from the surface, and the spec-
tral bandwidth (Swayze, 1997).

2.1.4 Imaging Spectroscopy

The specific chemical bonds in materials of all types and forms such as solid, liquid and gas, are
related to the emittance and reflectance spectroscopy of natural surfaces. The spectrometers
or hyper-cameras are used for application in the laboratories, as in the case of our research, or
for applications in the field, in aircraft (looking downwards or upwards), or in satellites and
remote sensing. Spectroscopy is a sensitive method to analyze the amorphous and crystalline
materials which considers the advantage of such a method over diagnostic methods such as
X-ray diffraction (Borie, 1965; Gamble, 1972). It also can be used in different distance ranges.
For example here we use it under laboratory conditions, while it can also be used in the obser-
vation of the Earth or even to look up at other planets. The disadvantage of spectroscopy is its
sensitivity to small changes in the chemical content and structure of materials. The change in
material composition regularly shifts the position and shape of the absorption spectral bands.
The vast variety of chemical characteristics is met in the real world and spectral signatures
can sometimes be unintelligible or quite complex. These changes increase the variation and
knowledge in spectral features and the causes of their shift. The previous drawback becomes
into a very substantial advantage, providing more details on chemical properties in the natural
environment. Following the development of detectors and computer technology, spectroscopy
entered into a new field of research and facilitated spectral analysis (Goetz et al., 1985; Vane
et al., 1993; Green, 1992; Mustard and Sunshine, 1999; Kruse, 1999). The spatial positions
in imaging spectroscopy represent the spectra related to that spatial information that can be
used to provide a recognizable image which can be a rock of any mineral in the laboratory, or
in field applications involving aircrafts, satellites, spacecrafts or Earth-based telescopes. By
analyzing the spectral features and specifications in the chemical bonds of the materials, the
researchers can generate the map representing the properties of the materials.

6



2.2 Hyperspectral technology in astronomy

2.2.1 Lunar hyperspectral research

Hyperspectral research has been used for space geological research for a several years (Goetz,
2009). Here, a brief summary of such research is presented (see Table 2.1 - for a review sum-
mary). A synthetic powder mixture of ilmenite, plagioclase, and pyroxene constituting the
major material phase for the lunar surface materials has been presented by Nash and Conel,
1974. Some parameters such as band depth, albedo 2, and blue to red ratios versus the com-
position of the mixture reveal that each mineral phase concentration in the mixture influences
the spectrum reflectance. Two major effects of principle mixing are: the persistence concen-
tration proportionality of the 1µm band of pyroxene and the depth versus darkening which is
inconsistent from opaque Ilmenite. The results show the ability to determine the crystalline
phase ratio in a material from the spectra telescopically obtained from lunar or other planet
surfaces. Hyperspectral research was also conducted on Saturn through Phoebe spectroscopy
imaging resulting from the Cassini-Huygens spacecraft on 11 June 2004. The results revealed
the presence of organics, ferrous-iron-bearing minerals, trapped CO2, bound water, probable
phyllosilicates, nitriles and cyanide compounds which are the most compositionally diverse
objects ever observed (Clark et al., 2005). A lunar mineralogical research has been conducted
for mineral mapping of the lunar surface for abundance of olivine, plagioclase, and clinopyrox-
ene. The wavelength covered was 480−960nm for Interference Imaging Spectrometer (IIM) of
Chang’E-1 with 32 bands and applying the modified Multiple Endmember Spectral Mixture
Analysis (MESMA) (Shuai et al., 2013). Moreover, a smooth surface inferred from the Digital
Elevation Models (DEM) for the impact melt flows and ponds, and Moon Mineralogy Mapper
(M3) study and the Lunar Prospector data from Gamma Ray Spectrometer instrument has
been conducted by Wöhler et al., 2014.

2Albedo is defined as the ratio of light reflected by a planet or satellite to that received by it.
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Figure 2.1: The distribution of Clay mineral on Mars. This map was generated by the geologist
and surveyed for the clay mineral presence with respect to by geological setting (Figure is taken
from Ehlmann et al., 2011).
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2.2.2 Hyperspectral research in Mars

The observation of clay minerals shows the long duration of the interaction between the water
and rock for over 3.7 billion years which was more recently discovered on Mars’s Noachian
terrains (Amos, 2012; Tanaka, 1986; Carr and Head, 2010; Mustard et al., 2008). They have
basically used spectroscopic images, a Compact Reconnaissance Imaging Spectrometer for
Mars (CRISM) and the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (on
Mars Express (OMEGA) visible/near-infrared orbital imaging spectrometers (Mustard et al.,
2008). The images were taken by spectrometers on-board the Mars Reconnaissance and Mars
Express Orbiter spacecraft, respectively. They have shown thousands of outcrops with clay
minerals from the planet’s southern highlands (Mustard et al., 2008) and northern lowlands
(Ehlmann et al., 2011; Mustard et al., 2008; Carter et al., 2010) (Figure 2.1).
Infrared Microscope Analysis (IRMA) involves hyperspectral imaging spectrometers which can
quantitatively characterize the mineral and the microphysical structure in Martian rocks and
soils as a part of the sampling mechanism. This type of spectrometer has 38∼ tm in the 0.8-5
lxm infrared spectral range spatial resolution. The Italian Space Agency (ASI) selected the
experiment as an Italian framework to participate in NASA’s surveyor program. The ill-fated
Mars 2001 in a mission called Mars sample return 3, IRMA and IPSE 4 details information
regarding Martian material obtained. It includes the microphysical texture and characteristics
of the grains and mineralogical composition with no accuracy of 1% and a very high SNR.
The information provided the physical and chemical assessment of environmental conditions
on the surface of Mars (Capaccioni et al., 2001). Also mineral identification on the Gale crater
on Mars using near infrared spectral data from CRISM on board the Mars Reconnaissance
Orbiter (MRO) with enhancement in its spectral resolution provided information on a spatial
and time scale. The identification for mineral classes at the Martian Gale region was con-
ducted by analysis of the features using SAM which gave the identity of some minerals such as
jarosite, northupite, smectite, chlorites, and kaolinite (Xue and Jin, 2013). Thermal-infrared
and near-infrared spectroscopy was used to verify the degree of relativity for bulk SiO2 (less
diversity) and crystallinity abundance on Martian surfaces having hydrated silica, including
non-crystalline (hydrated glass) to weakly crystalline (opal) to crystalline (quartz) having a
silica deposit (Smith et al., 2013). An analysis of Interior Layered Deposits (ILDs) was con-
ducted using the instruments on board the Mars Odyssey, NASA’s Mars Global Surveyor,
ESA’s Mars Express spacecraft and Mars Reconnaissance Orbiter for Iani Chaos involving
topographic and visible-infrared hyperspectral datasets. Data from HRSC and CRISM (with
infrared (1.0-4.0µm) and visible/NIR (0.36-1.07µm) detectors) suggests kieserite and gypsum
(minerals such as jarosite and alunite) are present in most of the deposits on the surface of
Mars (Sefton-Nash et al., 2012). The Mars Global Surveyor Thermal Emission Spectrometer

3No Mars sample return mission has taken place yet. So far there have been Mars Exploration Rover
missions to prepare for a Mars sample return mission.

4the Italian Package for Scientific Experiments (IPSE).
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Spectroscopy and Hyperspectral imagery for astronomy 
 Paper  System Used Application Location (if 

available) 
Goetzet al. (2009)  Hyperspectral research space geological research for decades  

Nash & Conel (1974)   synthetic powder mixture of Ilmenite, plagioclase, and pyroxene that are, major 
material phase types virtually for the lunar surface materials 

Moon 

Clark et al. (2005) Phoebe spectroscopy imaging organics, ferrous-iron-bearing minerals, trapped CO2, bound water, probable 
phyllosilicates, nitriles and cyanide compounds mapping 

Saturn 

Ehlmann et al. (2011) A review  distribution of Clay mineral Mars 

Mars’s Noachian terrains : 
Amos (2012), Tanaka (1986),  
Carr (2010),  Mustard et al. 
(2008) 

Spectroscopic images, Compact Reconnaissance Imaging 
Spectrometer for Mars (CRISM) and Observatoire pour la 
Minéralogie, l’Eau, les Glaces et l’Activité (on Mars Express (OMEGA) 
visible/near-infrared orbital imaging spectrometers 

observation of Clay minerals Mars 

Ehlmann et al. (2011) , 
Carter et al. (2010), 
Mustard et al. (2008) 

The Mars Reconnaissance Orbiter CRISM instrument 
visible/near-infrared orbital imaging spectrometers 

clay minerals northern 
lowlands, 
southern 
highlands, Mars 

Bannon (2009) Spatial and spectral information combination chemical content of the materials  

Capaccioni et al. (2001) Infrared Microscope Analysis (IRMA) is hyperspectral imaging 
spectrometers 

characterize the mineral and the microphysical structure 
soil analysis 

Mars 

Shuai et al. (2013)  480–960 nm for Interference Imaging Spectrometer (IIM) of Chang’E-
1 with 32 bands and applying the modified Multiple Endmember 
Spectral Mixture Analysis (MESMA) 

mineral mapping 
for abundance of olivine, plagioclase, and clinopyroxene 

Moon 

Wohler et al. (2014) Gamma Ray Spectrometer Moon Mineralogy Mapper (M3) study Moon 

Clark et al. (2005)  Phoebe spectroscopy ferrous-iron-bearing minerals, trapped CO2, bound water, probable 
phyllosilicates, nitriles and cyanide compounds mapping 

Saturn 

Zambon et al. (2014)  Visible and Infrared (VIR) spectrometer Mineral mapping  

van Ruitenbeek et al. (2014) hyperspectral OMEGA imagery mapping Mars 

Smith et al. (2013) Thermal-infrared and near-infrared spectroscopy verify the degree of relativity for bulk SiO2 (less diversity) and crystallinity 
abundance of Martian surfaces having hydrated silica 

Mars 

Sefton-Nash et al. (2012) HRSC and CRISM (contains infrared (1.0–4.0 µm) and visible/NIR 
(0.36–1.07µm) detectors) 

Mineral mapping 
Kieserite,  gypsum, jarosite and alunite 

Mars 

Viviano et al. (2013)  visible/near-infrared wavelength range detection of phyllosilicates Mars 

Gou et al. (2015) HiRISE images Martian mineral analysis  

Fischer & Pieters (1994) combination of near-infrared and visible spectroscopy lunar soils 
Iron 

Moon 

Sgavett et al. (2007)  Stereo Camera (STC) with visible-near infrared and panchromatic 
filters plus a Visible-Near Infrared Hyperspectral Image (VIHI) with 
400-2000 nm spectral range 

geologic investigation surface of 
Mercury 

Xue et al. (2013)  near infrared spectral data from CRISM mineral identification 
minerals such as jarosite, northupite, smectite, chlorites, and kaolinite 

Mars 

Table 2.1: A brief summary of spectroscopy and hyperspectral imagery for astronomy appli-
cations.

(TES) was used to analyze data from the Mars Odyssey Thermal Emission Imaging System
(THEMIS) for the detection of phyllosilicates in the visible/near-infrared wavelength range
and simultaneously investigate the effects of spatial resolution (Viviano and Moersch, 2013).
The resolution of 100-m/pixel provided by THEMIS considerably enhanced the phyllosilicate
detection likelihood. Martian mineral analysis derived from the Multiple Endmember Spectral
Mixture Analysis (MESMA) indicated that the mineral abundance attained from HiRISE im-
ages and Mawrth Vallis: Al phyllosilicates and Fe/Mg phyllosilicates was conducted by (Gou
et al., 2015). CRISM determines Martian surface reflectance spectra in the visible to near
infrared (0.36-3.92µm) which showed that Al phyllosilicates such as hydrated silica, montmo-
rillonite and kaolinite as well as Fe/Mg phyllosilicates like saponite, nontronite and serpentine
are found on the light-toned outcrops.
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A study in hyperspectral OMEGA imagery of Mars reports that the wavelength position of
deepest absorption features mapping ranges between 2.1 and 2.4mm for mineral exploration
diversity (van Ruitenbeek et al., 2014). The mentioned range of absorption features provides
useful mineralogical information. A combination of near-infrared and visible spectroscopy for
Iron concentration of lunar soils was studied by (Fischer and Pieters, 1994).

2.2.3 Hyperspectral research for other geological-astronomical
applications

A Stereo Camera (STC) with visible-near infrared and panchromatic filters plus a Visible-Near
Infrared Hyperspectral Image (VIHI) with 400-2000nm spectral range integrated into spec-
trometers and imagers for BepiColombo Integrated Observatory-System (SIMBIO-SYS) were
used for a geological investigation on the surface of Mercury. Two sensors were used to evaluate
the feasibility of determining the diagnostic spectroscopic features of rock for the formation of
minerals and discriminating among different lithotypes considering the additional noise. For
STC and S/N 1/4200, the low reflectance of the rock’s surface can cause the band ratios to
partly overlap. VIHI and S/N 1/4100 performed well to define the spectral features with the
band depth of 0.1 reflectance unit. The band position shift gives less than 0.03 atoms/formula
unit of spectrally active phases (Sgavetti et al., 2007). The Visible and Infrared (VIR) spec-
trometer on-board Dawn for mineralogical analysis of Vesta’s surface 5. They have used some
spectral parameters such as band depths, band centers, and Band Area Ratio (BAR) for the
pyroxene bands at ∼0.9 and ∼1.9µm. They have found that the band depths are related to
the abundance of absorbing minerals and/or opaque materials; and it has positive correlation
with albedo (Zambon et al., 2014).

2.3 Spectroscopy and Hyperspectral imagery for Earth
Sciences and Mineralogy

2.3.1 Environmental analysis

Analysis of groundwater, soil, gas samplers and organic contamination is carried out Raman
spectroscopy (Graves and Gardiner, 1989), infrared spectrometry and Laser-Induced Fluores-
cence (Kinsey, 1977). Using the situ near-infrared spectroscopy, the water types speciation in
haplogranitic melts and glasses was determined by (Nowak and Behrens, 1995) and wildfires
airborne infrared (Worden et al., 1997). An air monitoring system using Fourier-Transform
Infrared (FT-IR) open-path for volcanic fumaroles gases monitoring was presented by (Chaf-
fin et al., 1995). The infrared spectrometer includes an infrared field source and a 1−mm 2

5Vesta means a giant object in asteroid belt, NASA’s Dawn spacecraft mission in 2012.
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Hg-Cd-telluride detector which was cooled down with liquid N2. The monitoring techniques
include passive and active techniques that analyze HC and SO2 in volcanic plume gases. Gas
monitoring using diode-laser-based NIR was described by (Martin and Fehér, 1996). This
spectrometer was used to analyze the waste or atmospheric gases. The measurements can
be made by applying extractive measurement and situ techniques and this research study
provides information on the design details and sensitivity of the spectrometer.
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Spectroscopy and Hyperspectral imagery for Earth Sciences and Mineralogy 
 Paper  System Used Application Location (if available) 
Graves & Gardiner (1989)  Raman spectroscopy Groundwater, soil, gas samplers and organic contamination analysis   

Kinsey (1977) Infrared spectrometry and Laser-Induced 
Fluorescence (LIF) 

Applications of the laser to various aspects of chemistry, physics, and biology  

Nowak & Behrens (1995)  Near-infrared spectroscopy  The water types speciation in haplogranitic melts and glasses Nowak and Behrans 

Worden et al. (1997) Airborne infrared Wildfires airborne infrared Worden and coworkers  

Chaffin et al. (1995) Fourier-Transform Infrared (FT-IR) open-path  Volcanic fumaroles gases monitoring  

Martin & Feher ( 1996) Diode-laser-based Near-Infrared (NIR) The infrared spectrometer includes an infrared field source and a 1-mm 2 Hg-Cd-
telluride detector that cooled down with liquid N2.  

 

Watson et al. (1996)  Free-flying hot-air balloons for carrying on the FT-
IR spectrometers,  multispectral imaging 
spectrometers, far- and mid-IR  cameras, 
radiometers, forward-looking IR cameras, plus a 
variety of other sensors 

 
Environmental analyzes 

 

Thompson & Reynolds (1978),  
Uden (1992) 

Atomic Emission Spectrometry (AES)  and FT-IR 
spectrometry 

Chemical effluents detection, finding the contamination of Hg, stack testing, the 
various pollutants atmospheric concentration situ vertical profiling and multisite air 
quality monitoring 

 

Hammaker et al. (1995) Remote FT-IR for monitoring Atmospheric volatile organic compounds  

Griffin (1996) Far-infrared spectroscopy Study of planetary and extraterrestrial or terrestrial atmospheres  

Zwicker (1996) Remote sensing FT-IR spectrometry Forestry studies North Carolina 

Malley et al. (1996) NIR Quantitative and rapid assessment from Precambrian shiled lakes Precambrian shiled lakes 

Howell (1995)  NIR visible spectroscopy Characterizing the composition of asteroid in the surface mineralogy  

Miller et al. (1995)  FT-IR spectroscopy Characterize interfacial water species in situ at mineralogy hydrophobic surfaces.  

Camy-Peyret et al. (1995) Remote sensing forms via balloon-borne Analyze the atmosphere  

Blake et al. (1996) Mid-infrared magnetic rotation spectrometer Atmospheric free radicals assessment  

Yang (1994) Short-wave infrared spectrometry Oil and gas resources  

Gao et al. (1995) An infrared micro-spectroscopy Rapid identification of gemstones  

Franca et al. (1995) Multispectral camera Recording the biomass burning West Africa 

Fischer & Pieters (1994) Near-infrared and visible spectroscopy Iron concentration and exposure levels of lunar soils  

Riaza et al. (2001) Hyperspectral imagery and spectral behaviour 
image processing 

The textural and mineralogical processes associated with geo-morphological in the 
various granitic facies, mapping ,  estimation of spatial erosion controls and soil 
studies 

laboratory condition 

Meteosat-8 (2007) Geostationary Earth Radiation Budget (GERB) and 
Spinning Enhanced Visible and Infrared 
Instruments (SEVIRI),  Meteosat-8 

Aerosols detection and radiative effect estimation at spatial and high temporal 
resolution which set in the Meteosat-8 

Meteosat-8 

MODIS (2017)  longwave and shortwave fluxes, 
thermal infrared SEVIRI channels 
Moderate Resolution Imaging Spectroradiometer 
(MODIS)  

Saharan dust outbreaks 
multiple-linear regression, 
dust aerosol detection and estimation of the optical depth at 0.55 µm. 

Sahara 
from Terra and Aqua platforms 

Brindley, HE and Russell (2006) Shortwave in the sun-glint and during the night Dust detection  

Applegarth et al. (2006) High-resolution remote sensing corresponds to 
airborne mid-infrared multispectral imagery and 
Thermal Infrared Multispectral Scanner (TIMS) 

Particle size which are utilized as a geomorphic tool in arid regions  

Elliott et al. (2007) GA-Multiple Linear Regression (GAMLR),  FT-IR Soil analysis  

van der Meijde et al. (2013) Thermal and short wave infrared Hydrocarbons detection, Soil analysis  

Hecker et al. (2010) Infrared techniques (0.7–25 µm) Identification of feldspar group minerals  

Soto-Càmara et al. (2012) near infrared spectroscopy- NIR (1100-2500 nm) 
and VISbNIR (400-2500 nm) 

Fungicide treatment detection for wheat samples 
Modified Partial Least Squared (MPLS) 

 

Reath and Ramsey (2013) Shortwave Iinfrared (SWIR), Thermal Infrared 
(TIR), and Visible Near Infrared (VNIR) remote 
sensing concerning more focus on TIR (8-12 µm) 

Linear mixing behavior of TIR emission 
mapping 

 

Wang et al. (2014) Near-infrared band Mineral identification 
Noise elimination approaches based on the altered mineral absorption peak. 

 

Gillespie et al. (2015)  potential prediction quality biomass  

Xiaojia et al. (2010)  EO-1 Hyperion Spectral Angle Matching (SAM) for classification of Hyperspectral Remote Sensing 
(HRS) 
Altered mineral mapping 

the east Kunlun of Qinghai-Tibet 
plateau 

Fan et al. (2011) hyperspectral imaging in 1.0 –2.50 µm 
wavelength range 

Hydrated silicate and hydroxylated mineral identification  

Pendock et al. (2012)  Image processing method  

Speta et al. (2013)  shortwave infrared See through the thin bitumen at the surface of oil sands  

Zhang et al. (2014) Airborne Visible/Infrared Imaging Spectrometer 
image 

Hyperspectral target, fabric and vehicle detection  

Li et al. (2014)  Hyperspectral imagery Target detection technique in forest area for finding the Ding-Ma gold deposit Zhenan 

Zhao et al (2014)  Identification of minerals and physical surface properties  

Cui et al. (2015) hyperspectral infrared imagery-thermal infrared 
remote sensing (8–12 µm ) (TIR) 
Thermal Airborne Spectrographic Imager (TASI) 

Mineral mapping and image analysis. 
The targeted minerals were quartz, diopside/hedenbergite, calcite, microcline and 
hornblende 

 

Fieldspec-spectroradiometers 
(2017) 

an ASD portable spectrometer (0.4–2.5 µm) using 
Thermo/Nicolet Nexus 6700 FTIR spectrometer 

Mineral mapping Nevada 

Calvin et al. (2015) Thermo/Nicolet Nexus 6700 FTIR spectrometer Mineral GIS databases maps 
targeted minerals such as Sinter, tufa, travertine, argillic 

 

Feng et al. (2013) long-wave (3–14 µm) spectral sensing from 
airborne SEBASS imagery 

Find lichens effects on mineral analysis  

Beiranvand & Hashim (2015) land imager and thermal infrared sensor 

Landsat-8 data for 2&4bands (VNIR), 6&7 bands 

of SWIR, 10th band for thermal infrared. 

Hydrothermal alteration mapping Sar Cheshmeh copper mining 
district, Urumieh-Dokhtar 
volcanic belt, south-eastern Iran 

Ross et al. (2013) Short-Wave Infrared (SWIR) and Visible (VIS) 
infrared wavelengths (0.3–2.5 µm) 

Identification of minerals Sao Paulo, Brazil. 

Chudnovsky et al. (2011) shortwave infra-red (2080-2380 nm) wavelengths Dust-laden flows (Saharan dust storm) 
clay minerals (include illite-moscovite, Fe-rich nontronite, and kaolinite) 

 

Rogge et al. (2014) AISA airborne hyperspectral imagery by 
spaceborne EnMAP scene (30 m spatial 
resolution) 

investigating lithologic maps subarctic region (Nunavik, 
Canada) 

Table 2.2: A breif summary of spectroscopy and hyperspectral imagery for earth sciences and
mineralogy application.
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Watson and his co-workers used free-flying hot-air balloons to carry FT-IR spectrometer in-
strumentation, multispectral imaging spectrometers, far- and mid-IR cameras, radiometers,
forward-looking IR cameras, plus a variety of other sensors, for environmental analyzes (Wat-
son et al., 1996). Their experiments used Atomic Emission Spectrometry (AES) (Thompson
and Reynolds, 1978; Uden, 1992) and FT-IR spectrometry which could provide chemical ef-
fluent detection, determine the contamination of Hg, conduct stack testing, use atmospheric
concentration situ vertical profiling to identify various pollutants and conduct multisite air
quality monitoring. A remote FT-IR was used to monitor the atmospheric volatile organic
compounds and the results were described by (Hammaker, 1995). Griffin, 1996 continued the
study of planetary and extraterrestrial or terrestrial atmospheres by applying far-infrared spec-
troscopy. Zwicker used the remote sensing FT-IR spectrometry for forestry studies in North
Carolina (Zwicker, 1996). NIR was used by Malley et al. for quantitative and rapid assessment
from Precambrian Shiled lake (Malley et al., 1996). A NIR visible spectroscopy technology
used in balloon-borne remote sensing forms to analyze the atmosphere (Camy-Peyret et al.,
1995). A mid-infrared magnetic rotation spectrometer was used for Atmospheric free radical
assessment by (Blake et al., 1996). SWIR spectrosmetry airborne has been used to study oil
and gas resources by Bailin (1994). Gao and his team showed that infrared micro-spectroscopy
can be used for rapid identification of gemstones (Gao et al., 1995). Ricardo et al. (1995)
chose multispectral instrumentation to record the biomass burning in West Africa. The partial
least square regression of near infrared spectroscopy for the prediction of the quality indices of
biomass pellet mixes was measured by Gillespie et al. (2015). The identification of the gross
calorific and moisture levels was of excellent and good accuracy, whereas the carbon and ash
levels were estimated to be fair and good, respectively. Consequently, the potential prediction
of the quality of biomass 6 pellets indices have been shown by (Gillespie et al., 2015).
The mapping and different evaluations of variation density for vegetation where covers the
land. Near infrared spectroscopy for fungicide treatment detection for wheat samples has
been performed by using NIR (1100-2500 nm) and VISbNIR (400-2500 nm). The study in-
volved the analysis of different mathematical pre-treatments for signals such as derivatives and
scatter correction to enhance discrimination accuracy using Modified Partial Least Squared
(MPLS) (Soto-Cámara et al., 2012).

2.3.2 Analysis of soil

The chemical and physical processes are used to assess a loose material mixture of the rocks
from soil in terms of textural variation and mineralogical perspective using spectral behavior
image processing in laboratory conditions. The help provided by hyperspectral imagery for
these purposes vitally rely on hyperspectral information. The maps obtained can provide
information on mineralogical and lithologies and this contributes to the estimation of spatial

6"A diverse range of biomass was used including wood, Miscanthusand herbaceous energy grasses" from
(Gillespie et al., 2015).
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erosion controls and other relevant information regarding soil studies (Riaza et al., 2001). The
Geostationary Earth Radiation Budget (GERB) and a combination of the Spinning Enhanced
Visible and Infrared Instruments (SEVIRI) was used for aerosol detection and radiative effect
estimation at spatial and high temporal resolution, installed in Meteosat-8 (Meteosat-8, 9 July
2007). The records showed the misidentification of Saharan dust outbreaks that can bias the
longwave and shortwave fluxes. An algorithm employs multiple-linear regression from selected
thermal infrared SEVIRI channels for dust aerosol detection and an estimation of the optical
depth at 0.55 µm. The test performance and results were compared to the Moderate Reso-
lution Imaging Spectroradiometer (MODIS)(MODIS, 2017) observation obtained from Terra
and Aqua platforms. The detection and identification using the algorithm is approximately
60-70 % of these points depending on the dust model employed. The capability of dust detec-
tion was also tested by using shortwave in the sun-glint and during the night (Brindley and
Russell, 2006). The differences between geomorphic and slopes backing two different desert
piedmont types gave a proxy indicator in the type of landform at the mountain base. An
airborne mid-infrared multispectral imagery and a Thermal Infrared Multispectral Scanner
(TIMS) showed the slope’s mantle and the particle size which are used as a geomorphic tool
in arid regions (Applegarth and Stefanov, 2006).
The investigation of soil as a complex environmental medium and the determination of its or-
ganic and biological characteristics was conducted using FT-IR. The data was first subjected
to Principal Component Analysis (PCA) and Discrimination Function Analysis (PC-DFA)
and Genetic Algorithms (GAs) to determine important discriminatory variables in the model.
The algorithm distinguishes between reclaimed soils of differing age, and GA-Multiple Linear
Regression (GAMLR) analysis has shown that the recovery of disturbed soils which may not
be complete for a period of 50 years. Secondly, it offers a possible well-organized method
to screen complex changes in soil (Elliott et al., 2007). Hydrocarbon detection, indirectly or
directly, in remote sensing has been achieved by the detection of hydrocarbons in soil through
laboratory sample spectral analysis utilizing thermal and short wave infrared regions. Spectral
analysis reveals the hydrocarbon development absorption features as the soil becomes increas-
ingly more contaminated (van der Meijde et al., 2013). SWIR and Visible (VIS) infrared
wavelengths (0.3-2.5µm) was used to determine soil mineralogy together with ASTER to map
mineral components of soils in a part of the state of São Paulo, Brazil. 42 soil samples have
been collected and the spectral data which is relevant was extracted using a FieldSpec FR spec-
trometer. Their spectral signatures were analyzed on ASTER SWIR (AST5-9: 1.60-2.43µm)
and VNIR (AST1-4: 0.52-0.86µm) reference spectra to achieve the mapping of minerals such
as kaolinite, gibbsite, and montmorillonite and the distinction between iron-poor and iron-rich
soils (Vicente and de Souza Filho, 2011). Analyzing of the longest division of SWIR (2080-
2380 nm) wavelengths was conducted for dust-laden flows (Saharan dust storm) and the results
show the possibly of clay minerals (include illite-moscovite, Fe-rich nontronite, and kaolinite)
used as tracers for atmospheric dust monitoring even above bright areas (Chudnovsky et al.,
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2011).

2.3.3 Mineralogical and Mineral exploration applications

The potential of Thermal Infrared Remote sensing (TIR) (8-12 µm) for the purposes of geolog-
ical remote sensing has been successfully demonstrated for planetary and terrestrial geological
studies involving the mapping of surface materials. The study describes how the new genera-
tion of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic
Imagers (TASI), is used for mineral mapping and image analysis. For that aim, a combination
of methods such as the ratio algorithm (RATIO), the Maximum-Minimum apparent emissivity
Difference (MMD), and the Normalized Emissivity Method (NEM) have been used in the mul-
tispectral data to verify emissivity retrieval suitability for TASI hyperspectral data. Calcite,
hornblende, microcline, quartz, and diopside/hedenbergite have been mapped by emissivity
images. The spectroscopy and X-ray powder diffraction was used for the identification of
minerals, and it appeared that both the combined temperature emissivity and atmospheric
correction methods were suitable for TASI images. Carbonate skarnization was found by the
spatial diopside extent and the information indicated the suitability of TASI for deposit and
prospect scale exploration (Cui et al., 2015).

The data attained from NIR visible spectroscopy has been used to characterize the mineral
composition the surface of asteroid by (Howell, 1995). Miller et al., 1995 used FT-IR spec-
troscopy in situ on mineralogy hydrophobic surfaces. The ability of infrared spectroscopy
to detect different types of feldspar has been investigated and appears that the detection of
feldspar is limited to around 5% and the plagioclase composition is mostly ± 4% anorthite
component and IR-spectroscopy cannot detect Zonation or certain different generations of
feldspars (Hecker et al., 2010). A geothermal exploration and major-rock mineral classifica-
tion approach involving analysis using SWIR, TIR, and VNIR remote sensing with afocus on
TIR (8-12 µm) has been presented by Reath and Ramsey (2013). The mapping was carried
out to study the linear mixing behavior of TIR emission. To investigate the distribution of
active geothermal surfaces and mineral composition, a Spatially Enhanced Broadband Array
Spectrograph System (SEBASS)sensor collected 128 wavelength channels having ∼ 1m spa-
tial resolution and provided hyperspectral TIR data. The identification of rare minerals is
associated with geothermal areas. Such methods are referred to as Mineral and Gas Identifier
(MAGI) airborne sensors. "indicator minerals" have been used in order to understand the
influence of the ground and surface of water and the ultimate location of the new geothermal
targets (Reath and Ramsey, 2013). The improvement of the accuracy level of mineral identifi-
cation has been investigated by Wang and his team through considering the noise elimination
approaches based on the altered mineral absorption peak. Their method is based on optimiz-
ing the position of the altered mineral absorption peak to increase the average accuracy rate
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to 17.7% (Wang et al., 2014).

The application of Spectral Angle Matching (SAM) for the classification of the Hyperspec-
tral Remote Sensing (HRS) technology for the purpose of automatic mineral identification and
information retrieval was used for the ZhongYang mountain in the east Kunlun of the Qinghai-
Tibet plateau, where altered mineral mapping areas used EO-1 Hyperion HRS image data.
The hydrated silicate and hydroxylated mineral identification using hyperspectral imaging in
the 1.0 to 2.50 µm wavelength range considers molecular variation. The analysis of hydrated
and/or hydroxylated minerals using the spectral library of common silicate minerals involving
the absorption features at ∼1.40, ∼ 1.91 and 2.20 - 2.40 µm wavelengths was presented by
Fan et al. (2011). It was shown in their work that the identification of hydrated silicate and
hydroxylated minerals cannot be based on these absorption features only but the integration
of environment and geology in situ is vital (Fan et al., 2011). Pendock et al. (2012) presented
an image processing method to handle the problem of multiple core trays and the separation
from the rock material which is robust and insensitive to rotation and contamination of tray
material (Pendock et al., 2012).

The evaluation of different transformation methods, for instance Fast Fourier Transform
(FFT), First Derivative (FD), Discrete Wavelet Transform (DWT), S-Transform (ST) and
Hilbert-Huang Transform (HHT) in spectral unmixing was investigated. A similarity evalu-
ation was carried out using Pearson’s Correlation Coefficient (PCC), t-test based approach,
spectral similarity scores and Root Mean Squared Error (RMSE) estimated using SAM. It re-
vealed that SAM and RMSE have relatively reasonable efficiency (Singh et al., 2012a). Speta
et al. (2013) presented an analysis of spectral imagery in the SWIR through the thin bitumen
at the surface of oil sands (Speta et al., 2013). Zhang et al. (2014) presented a Supervised
Metric Learning (SML) algorithm for the detection of hyperspectral targets, vehicle detection,
in Airborne Visible/Infrared Imaging Spectrometer images. In this approach, targeted pixels
are in the positive space and the background pixels are pushed to the negative space (mathe-
matical space). The algorithm initially maximizes the distance between negative and positive
samples through an objective function of supervised distance maximization. The similarity
propagation constraint of SML links the target pixels with positive samples and links the
background to negative samples. It rejects false alarms for the detection of the target. At the
end, the imposition of a manifold smoothness regularization to positive samples preserves a
local geometry (Zhang et al., 2014).

A target detection technique to identify Ding-Ma gold deposits in Zhenan was described by
Li et al. (2014). Some hyperspectral techniques were used, such as Constrained Energy Min-
imization (CEM), SAM, Orthogonal Subspace Projection (OSP), Adaptive Matched Filter
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(AMF), Adaptive Coherence/Cosine Estimator (ACE), and Elliptically Contoured Distribu-
tions (ECD) (Li et al., 2014). Absorption depth quantitative analysis of minerals for the
identification of minerals and physical surface properties was conducted by Zhao et al (2014)
to extract the absorption features and band range containing absorption factors. A Contin-
uum Removal (CR) was used along with a new feature called Reference Spectral Background
Removal (RSBR). It eliminates the effects of unwanted contribution factors and gives some
basic absorption feature parameters such as absorption width, absorption depth, and absorp-
tion center which provide more accurate absorption (Zhao et al., 2015). Thermal properties
have been used as surface indicators of geothermal resources as well as for mineral character-
ization in Nevada. Validation of spectral information was performed using an ASD portable
spectrometer (ASD, 2017) (0.4-2.5µm) and a Thermo/Nicolet Nexus 6700 FTIR spectrome-
ter. Another research study has been carried out to determine the effect of lichens on mineral
identification in long-wave (3-14 µm) spectral sensing using airborne SEBASS imagery. In this
research study the ability to identify the lichen’s effects on mineral analysis due to the lichen’s
organic compounds is focused on the reflectance in a particular wavelength band (3.41, 6.58,
8.13µm) (Feng et al., 2013a). An identification of altered rocks, lithological units and vegeta-
tion in the Urumieh-Dokhtar volcanic belt in south-eastern Iran using Landsat-8 (Landsat-8,
2017) operational land imager and thermal infrared sensor data was performed by (Pour and
Hashim, 2015b).
In another study, visible/near infrared spectrometry was employed with energy-dispersive,
volumetric magnetic susceptibility, and density using gamma-ray attenuation as well as X-ray
and fluorescence spectrometry for the identification of minerals (Ross et al., 2013).

An approach has been presented for atmospheric correction and converting radiance-at-sensor
to ground reflectance and correction of spectroscopic mis-identification of minerals in ASTER
VNIR / SWIR reflectance using SWIR Compact Airborne Spectrographic Imager (CASI).
The atmospheric correction using ASTER data has been completed and the mineral identi-
fication was achieved more quickly using the reflectance factor to the atmospheric-corrected
ASTER L1B data (Jing et al., 2014). A spatial distribution of the alteration minerals in
the Kap Simpson complex was conducted by analyzing of the HyMap airborne hyperspectral
data. ASTER VNIR-SWIR data enabled the detection of jarosite, Al-OH, and ferric oxides.
But, due to ASTER moderate spectral and spatial resolution imagery in the data, ASTER
data is appropriate merely for the reconnaissance level mineral study (Bedini, 2011). An ap-
proach for the estimation of the surface pH feasibility on airborne hyperspectral (HS) data
(HyMap) basis on the Sokolov lignite mine was presented by Kopackova (2014). Very low
pH(≤3.0) minerals such as jarosite, pyrite, or lignite were the diagnostic. goethite by itself
was characterized as almost neutral or lower pH (≥6.5). However, jarosite in association with
goethite showed a lower pH (3.0-6.5). A Multi-Range Spectral Feature Fitting (MRSFF) was
used for the pH indicator map in the HS dataset and it was sensitive enough to identify the
differences and a regression model was provided in the pH model. Another study covered the
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surface pH characteristics using Hyperspectral airborne imagery for mineralogy of pyrite mine
tailing and is described by Zabcic et al., 2014. They have used HyMap in 126 spectral bands
covering the 0.45-2.48 µm infrared (Kopačková, 2014). A Mineral mapping in the Maherabad
area, in eastern Iran was carried out using HyMap remote sensing data. Minimum Noise
Fraction (MNF) transform was coupled with a Pixel Purity Index (PPI). This was used on
HyMap images for the extraction of the alteration mineral endmembers which included mont-
morillonite, kaolinite, calcite, sericite (muscovite/illite), epidote, goethite, and chlorite. Also
a virtual verification was attained by USGS spectral library (Molan et al., 2014). Hyperion
Earth Observing-1 (EO1) and Advanced Land Imager (ALI) data for hydrothermal alteration
and lithological mapping was conducted using Hyperion images with ALI covering the Meiduk
and Sar Cheshmeh porphyry copper mining districts, is south-east Iran. Phyllic, propylitic
alteration zones and advanced argillic were associated with porphyry copper mineralization
(Pour and Hashim, 2015a). Another study for the investigation of lithologic maps in a sub-
arctic region (Nunavik, Canada) involving the use of AISA airborne hyperspectral imagery
of a spaceborne EnMAP scene (30 m spatial resolution). The extraction of Spatial Spectral
Endmembers was achieved for the Environmental Mapping and Analysis Program (EnMAP)
and Hyperspectral Sensor Surveying (AISA) data. The results of their research indicated that
AISA data were more suitable as compared with EnMAP (Rogge et al., 2014). The spatial
and spectral information combined some details and created a suitable opportunity for quick
analysis to discover the chemical content of the materials. The research conducted for iden-
tification of diamonds has indicated that diamonds form in ultrahigh-pressure rocks in the
Italian western Alps. Raman micro-spectroscopy has confirmed the presence of 42 diamond
inclusions (Frezzotti et al., 2011).

2.4 Hyperspectral unmixing techniques

The linear unmixing technique supposes that pixels in endmember spectra are in convex com-
binations, and consequently the identification of the endmember is required for unmixing
processes. Linear spectral mixtures in the thermal infrared are used with the pure pixels emis-
sivity and its thermal information using the temperature and emissivity separation (TES)
algorithm. Then abundance and the sub-pixel temperature estimation is applied which is
referred to as Thermal Remote sensing Unmixing for Sub-pixel Temperature (TRUST) in
urban area research (Cubero-Castan et al., 2015). An implementation of hyperspectral un-
mixing on GPU and mutli-code processors has been conducted by Bernabé et al. (2013) to
decrease the computational load for the process. Their full processes were divided into three
different stages: Endmember estimation, automated identification, and fractional abundance
fraction for every endmember. For testing, they have used an Airborne Visible / Infrared
Imaging Spectrometer (AVIRIS) data set (BernabÃ©é et al., 2013). An implementation of
the HySime Algorithm on FPGA to determine the numbers of endmember in hyperspectral
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data was carried out by Gonzalez et al. (2015).

2.4.1 Application of decomposition analysis for spectral unmixing

A Spectral unMixing Analysis (SMA) approach was performed in remote sensing images. Sev-
eral unmixing methods such as Bayesian Linear Unmixing (BLU) and VCA were shown as
alternative analysis methods such as least square fitting, PCA, Independent Component Anal-
ysis (ICA) on the Electron Energy-Loss Spectroscopy (EELS) data. The results show that
BLU leads to a more significant outcome as compared with other VCA (Dobigeon and Brun,
2012). Another SMA approach on Earth Observer 1 (EO-1) satellite for Visible (VIS) to SWIR
for Iron age copper mining in ASTER imagery used PCA for the unmixing (Savage et al.,
2012). An additional approach involved AVIRIS data and developed new Spatial-Spectral
Pre-Processing (SSPP), Endmember Identification Algorithms (EIAs) for endmember identi-
fication and spectral unmixing of remotely sensed hyperspectral images. They have compared
their proposed algorithm with well known algorithms such as N-FINDR, OSP, VCA, MVSA,
and SISAL. Then they have added SPP, RBSPP, and SSPP to each algorithm (Martin and
Plaza, 2012). Some endmember and SMA methods tried to develop robust endmember ex-
traction and SMA techniques in hyperspectral imaging such as the combination of Support
Vector Machine (SVM) classification with MNF, PCA and ICA (Dópido et al., 2011). Notice
that MNF had a relatively better response. Real-Time Endmember Extraction was compu-
tationally efficient for orthogonal subspace projection and N-FINDR (Remon et al., 2011).
This method was called HEEA and was tested along with IEA, OSP, SGA, SMACC, and
SSEE automatic endmember extraction methods (Li and Zhang, 2011). A novel unsupervised
SPP module which is basically a region-based EEA approach was proposed by Martin and
Plaza (2011). PCA and SAM in the supervised classification with the hyperspectral tools such
as Pixel Purity Index (PPI), MNF, and nD-visualizer has been studied by Rajendran et al.
(2013). For the mineral reference ASTER was used to provide the hydrothermal mineraliza-
tion (silicification, listwaenites, talc alteration and serpentinization) zones (Rajendran et al.,
2013). Mapping using a geological and the geochemical approach with PCA and ICA was pre-
sented by Yang & Cheng (2015) for the geochemical dataset in Pinghe, Fujian, Southern China
(Yang and Cheng, 2015). Also ICA has been used for the transformation on ETM images of
southern Masule, Iran (Gholami et al., 2012). Geological Mapping by ASTER SWIR and
lithological discrimination data in Udaipur area of Rajasthan, India was achieved by applying
Band Combination (BC) to component based approaches e.g. ICA over PCA and MNF trans-
form. The research targeted some metals such as copper, lead and zinc, micas and marbles
rocks using the same technology and unmixing (Kumar et al., 2015). One study addressed the
mineral identification of kaolinite-montmorillonite, sericite-illite, and chlorite-calcite-epidote
mapping using Spectral Information Divergence (SID), spectral angle Mapper (SAM), PCA
methods, and Directed Principal Component Analysis (DPCA) and employing the ASTER
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SWIR data (Khaleghi et al., 2014). For the extraction of the spectral information, four types
of algorithms were used on ASTER data:
(i) Principal PCA, MNF; (ii) SAM, Matched-Filtering (MF), and Mixture-Tuned Matched-
Filtering (MTMF), (iii) Linear Spectral Unmixing (LSU) and Constrained Energy Minimiza-
tion (CEM), (iv) Relative Absorption BandDepth (RBD) (Pour and Hashim, 2012a).
The performance of PCA, MNF, SAM, LSU, MF and MTMF methods and band ratio was
tested for the identification of hydrothermally altered rocks, lithological units and quartz rich
igneous rocks for copper and gold minerals (Pour and Hashim, 2012b). A research study on
Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) application in AVIRIS
was carried out by Zhang & Tauler (2013). This involves an EEA method for the extraction of
the spectral signature of the pure constituents from spectroscopic imaging fields such as VCA
and MVSA. The USGS library has been used for mineral identification comparison (Molan
et al., 2014). A comparative study was performed for three types of estimators (ENVI-SVD,
QP, Bayesian maximum a posteriori probability (MAP) estimator) on two different Obser-
vatoire pour la Minéralogie, l’ Eau, les Glaces et l’ Activité (OMEGA) hyperspectral data
sets to perform mineral and ice detection on large hyperspectral datasets. OMEGA employs
three special detectors, with, an average of 21 nm spectral resolution in the range of 2.65 to
5:2µm (LWIR), 7.5 nm spectral resolution in the 0:35-1:05µm wavelength range (VNIR) and
14 nm spectral resolution between 0.94 and 2:70µm (SWIR). The results indicate that, the
computational complexity of MAPs was much lower (Themelis et al., 2012b). A combination
of the SWIR, VNIR, and TIR for the 8-12µm wavelength range was used for the identification
of rare mineral assemblages associated with geothermally-active areas using SEBASS airborne
sensors with SEM and XRD analysis (Reath and Ramsey, 2013).

2.4.2 A brief on data fusion approaches for spectral unmixing

Kruse and coworkers conducted the following mineral identification: (i) in VNIR they have
analyzed in minerals such as goethite, hematite, and jarosite; (ii) in the SWIR they have iden-
tified micas, clays, sulfates, and carbonates, and in the long wave infrared (LWIR) carbonates
and silicates were identified (Kruse, 2012). AST-07XT and RefL1b were also employed as
two new crosstalk-corrections of ASTER SWIR. Research regarding geological information
and exploration of epithermal gold and porphyry copper in the semi-arid and arid regions
on ASTER data for SWIR was conducted by BeiranvandPour (2012). The determination of
relations between derived landforms and mineralogy has been analyzed using hyperspectral
imagery in combination with complimentary datasets for example Light Detection and Rang-
ing (LiDAR), Interferometric Synthetic Aperture Radar (InSAR), or photogrammetric-derived
(stereo) and Digital Elevation Models (DEMs) (Kruse, 2012). Another structural mapping of
the mineralized zones has been proposed by BeiranvandPour et al. (2013) employing Hyper-
ion and Phased Array type L-band Synthetic Aperture Radar (PALSAR), Landsat Enhanced
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Thematic Mapper+ (ETM+) data (Pour et al., 2013).
A mineral mapping to determine the clay, mica and carbonate mineral distributions and their
abundances has been investigated using Material Identification and Characterization Algo-
rithm (MICA) for spectral dominant identification and the results were joined with ASTER
data applying multinomial logistic regression to distribute the mineral maps. Results showed
a high correlation for calcite and mica, and a medium correlation for smectite and kaolinite
(Mulder et al., 2013). The hyperspectral data for the identification of kaolinite and smectite
and alteration mineral assemblages range from silicic to argillic to zeolite-type and were ob-
tained using a SVM algorithm on ASTER data (Brandmeier et al., 2013). Ayerdi & Grana
presented non-linear unmixing using Extreme Learning Machine (ELM) regression ensembles
that do not require endmember identification since it is implicit in the non-linear transforma-
tion. This method was employed on vegetation type recognition research (Ayerdi and Graña,
2016).

2.5 Endmember estimation

Spectral unmixing is frequently employed in the exploitation of hyperspectral data, and uses
the spectral signature as an important feature that is usually calculated for each pixel of data.
Here, endmember is defined as spectral pure constituent spectra. Abundances is defined as
a set of correspondent fractions that shows the proportion of every endmember in the mix-
ture which reveals a major role in the identification of the minerals. Automatic endmember
identification considers the presence of at least one pure spectral signature for the minerals
and over the last years, quite a few algorithms were developed in this area. Martin et al.
(2011) presented an investigation in the spatial information for endmember searching without
an assumption for the presence of pure pixels in data. They have used a spatial preprocessing
technique which does not require modification for the subsequent endmember. The identifi-
cation process is based on a minimum volume enclosing algorithm. It reveals the benefit of
spatial information to guide the identification process of the endmember (Martin et al., 2011).
Ambikapathi et al. (2011) proposed two pure-pixel based endmember extraction algorithm
named the p norm based pure pixel identification (TRI-P) algorithm and the simplex esti-
mation by projection (SIMPLE-Pro) algorithm. These algorithms were theoretically proved
under the assumption of pure pixels and they never need any initialization.
Jimenez et al. (2012) presented a new open source system for inter-comparing and evaluation
of spectral unmixing, called HyperMix. The created tool can perform the inter-comparison of
the algorithms for abundance estimation and endmember extraction (Jiménez et al., 2012).
The research was continued by developing the EEAs concerning the hyperspectral linear mixing
model and geometrical approach for endmember estimation and Geometry-based Estimation
for Number of Endmembers- Affine Hull (GENE-AH) algorithm and Convex Hull (GENE-
CH) algorithm were proposed. These algorithms follow the fact that all the observed pixel
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vectors lie under the endmember signatures in affine hull and convex hull. Neyman-Pearson
hypothesis testing has been used for both the algorithms as well as the TRI-P algorithm. The
algorithm was tested on the real AVIRIS hyperspectral data obtained over the Cuprite mining
site in Nevada.
The conventional endmember extraction and unmixing procedures in hyperspectral remote
sensing involved certain uncertainties. An algorithm that uses Pearson’s Correlation Coeffi-
cient (PCC) and Crude Low Pass Filter (CLoPF) was used to identify the endmember spectra
from spectral library. A Non-Negativity Fully Constrained Least Square (NNFCLS) optimiza-
tion approach was applied to determine the identified end-members and fractional abundances.
The method is similar to that of the GENE algorithms tested by SAM and Normalized Root
Mean Squared Deviation (NRMSD) and computational timing efficiency. The appropriate-
ness of identified candidates for the approach was also examined(Singh et al., 2012b). In the
hyperspectral remote sensing image, SNR often reduces due to processing on the images. The
sensor normally receives the radiance which has instrumental noise and atmospheric effects.
The noise related to instrument includes shot (photon) noise, quantization noise and thermal
(Johnson) noise. Quantization noise and thermal (Johnson) noise are modeled as Gaussian
additive noise which is independent from the signal. Shot noise is also modeled as additive
noise and its variance is dependent on the level of the signal (Kerekes and Baum, 2003; Land-
grebe and Malaret, 1986; Acito et al., 2011a; Qian and Ye, 2013). The additive Gaussian
noise which is from the atmospheric effects is compensated and the noise is assumed to have
spatial identical distribution and be spectrally uncorrelated. The hyperspectral imaging sys-
tems might also induce some artifacts referred to as pattern noise. Modeling and estimation
of the noise in hyperspectral images is an active research area in remote sensing (Kerekes and
Baum, 2003; Acito et al., 2011a; Curran and Dungan, 1989; Bioucas-Dias and Nascimento,
2008; Gao et al., 2008; Acito et al., 2011b; Xu et al., 2013). There are some methods which
focus more on noise modeling or minimization, such as MNF (Green et al., 1988) or Noise
Adjusted Principal Components (NAPC) transformation (Lee et al., 1990), in an effort to try
to reduce the hyperspectral image noise.

2.5.1 Component Analysis for finding Endmember

Signal processing depends on the characteristics of signal components and thus the process is
frequently called X-CA (X-Component Analysis). For example, if the independency among
the components is assumed, there will be ICA or if the assumption is linearly dependent on
the components, the analysis is PCA. Sparse component analysis (SCA) assumes that the
observed signal is comprised of sparse components which are linearly mixed. Moreover, it
assumes that there are different levels of sparsity for the components i.e. either intrinsically
sparse or sparse in some sparsifying dictionary or basis. This finding has many applications like
Blind Source Separation (BSS) and signal restoration (Model and Zibulevsky, 2006; Gribonval
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and Lesage, 2006), dimensional reduction (Zhou and Tao, 2013), and image super-resolution
(Gao et al., 2012). A method which is more similar to SCA is Morphological Component
Analysis (MCA) (Starck et al., 2005) which seeks the morphological difference among the
components and was developed for multivariate signals (multichannel MCA (MMCA) (Bobin
et al., 2005). MCA and BSS gives GMCA (Bobin et al., 2007) and for hyperspectral data it is
called hyperGMCA (Moudden and Bobin, 2011)). The X-CA method been used for a variety
of conditions and purposes. In the same applications a combination of the X-CAs is used
to cope with potentioal drawbacks and this provides a powerful alternative and very useful
tool. For example, PCA is an orthogonal projection based on the variance of the signal and is
broadly used for dimension reduction and data processing in various fields and particularly in
hyperspectral image analysis (Kaewpijit et al., 2002; Du and Fowler, 2008). But this method
has a drawback in high dimensional applications in that linear combinations of all variables
appear in PCs which reduces SNR.
The smoothed PCA involves the application of a smoothing regularization for data functioning
(Ulfarsson and Solo, 2006; Silverman et al., 1996; Ramsay, 2006) or a more recent method
automatically attempts to zero out noisy variables considering the penalty terms. For example,
the zero leading is performed by lasso exploiting (called SCOTLASS) (Tibshirani, 1996). There
are some other methods for this purpose, such as the optimization regularization frame-work
(Johnstone and Lu, 2009) and Elastic Net regularizer (Zou and Hastie, 2005). Moreover,
ASPCA is an algorithm which provides SPCA (Zou and Hastie, 2005) for cases involving the
comparison between the number of variables and observations. For that, a suitable basis is
used for the projection of the signal and then a data subset is chosen based on the number of
largest variances. Afterwards, a classical PCA is applied while the calculated eigenvectors are
filtered out by the hard thresholding function. The smoothed PCA and classical PCA were
outperformed by ASPCA. ICA is also broadly employed in BSS, whereas one of its drawback
involves the fact that several components have linear dependency. Consequently, an ICA
extension which is called Independence Vector Analysis (IVA) (Kim et al., 2006) is proposed
where the multivariate signal is observed (vectorized signal).

2.6 Infrared Spectroscopy in different band range

Application of a portable infrared spectroscopy instrument was initially reported by Takacs
and coworkers to analyze wheat (Takacs et al., 1996) and then, a real time gas analyzer
(GASMET) proposed by Ahonen et al., 1996, which was a portable FT-IR for industrial
hygiene situations. The application of this technology have being widely expanded till today.
Here, the infrared spectroscopic analysis categorized by different band range (NIR and VNIR,
SWIR, MWIR, LWIR and TIR, and Other types of spectroscopy) also table 2.3 presents a
brief summary of portable instrument infrared spectroscopy.
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2.6.1 NIR and VNIR

A portable instrument in the form of an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) from the Kelso Dunes and Granite Mountain areas of southern California was used
for the extraction of atmospheric effects, surface-reflectance, and identification of the spectral
relationship of composition and mineralogy (Sun et al., 2001). This study used an adapta-
tion of Crippen’s âregression intersection method" (RIM) to determine the homogeneity and
spatial relationship in rugged terrain. The AVIRIS airborne instrument and hyperspectral
data analysis have also been used for a study which took place in an area near Alto Paraíso
de Goías. The analysis involved mineral identification including mixtures of primary and sec-
ondary minerals which can be identified in the image based on spectral signatures of the pixels.
The mineral identification was confirmed by laboratory Scanning Electron Microscope (SEM)
analysis of the soil samples (Crósta and de Souza Filho, 2017). This is similar to another
diffuse reflectance near-infrared (350-2500 nm) spectroscopy for petroleum-contaminated soils
using PLS (Okparanma et al., 2014). An evaluation of NIR spectroscopy on soil as a tool
for case definition in agricultural and environmental applications at sub-Saharan Africa was
presented by Awiti et al., 2008. Soil research was more developed by Wang et al. (2015),
while principal component regression was used in (VIS/NIR) diffuse reflectance (FT-IR) spec-
troscopy to estimate the soil contents (i.e. pH of soil and OM, K, N, and P elements)(Wang
et al., 2015). This research was continued by O’Rourke et al. (2016) using VNIR spectroscopy
and X-ray fluorescence (XRF) spectrometers and the previous method was modified through
application of model averaging procedures to combine the model outcomes (O’Rourke et al.,
2016).
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Figure 2.2: Photograph showing measurements carried out with the PIMA II field spectrometer
(taken from: Kruse, 1996a).
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The location of contaminated areas and the mapping of the natural oil seepages or accidental
leaks was proposed using infrared hyperspectral remote sensing tools (HyspIRI; Hyperion;
EnMap) and multispectral (WordView-3) sensors, wavelet transform and analyzing of the soil
(Scafutto et al., 2016) (Figure 2.4). Wang et al. (2017) presented a determination of Rare
Earth Elements (REE) in soil using VNIR spectroscopy (350 to 2500 nm) involving Inductively
coupled plasma-emission spectrometry (ICP-ES), ICA-mass spectrometry (ICP-MS), 130 soil
samples near REE mines, and Partial Least Squares Regression (PLSR). This resulted in dis-
tinction of REE in soil spectra, for Nd at 798 nm, unlike 400-1000 nm spectral range (for Sm,
Nd, Pr, La, and total light REE (ΣLa-Eu excluding Pm)) (Wang et al., 2017). Soil Organic
Matter (SOM) estimation has been carried out through portable spectroscopy and Support
Vector Machine Regression (SVMR) to evaluate the Brown-Forest Areas of the Shandong
Peninsula, China, and good results were obtained for five sensitive wavelengths (2267 nm,
1996 nm, 1007 nm, 991 nm, and 917 nm) (Lulu et al., 2017). A graphic user interface soft-
ware for field spectroscopy with sub-nanometer spectral resolution was presented by Meroni
and Colombo (2009). Another mineral mapping comparison was proposed with AVIRIS and
airborne hyperspectral data using National Aeronautics and Space Administration Earth Ob-
serving 1 Hyperion sensor (EO-1 Hyperion) in the 0.4 - 2.5 µm wavelength range and involved
the following minerals for mapping: alunite, epidote, chlorite, hydrothermal silica, carbon-
ates, buddingtonite, zeolite, muscovite, and kaolinite (Kruse et al., 2003). Mineral mapping
of Regolith Materials and Landforms using hyperspectral visible-near infrared imagery from
the Olary Domain in South Australia was presented by Lau et al., 2003, using PIMA II and
MTMF (Mixture Tuned Matched Filtering) processing techniques in ENVI. Stenberg et al.
(2010) proposed VNIR spectroscopy of soil analysis, focusing on soil attributes: i.e. texture,
Soil Organic Matter (SOM), heavy metals, pH, minerals, water, and nutrients (Stenberg et al.,
2010). Ground-based NIR spectroscopy for the detection of molecules, conditions, and com-
positions of exoplanet atmospheres (such as carbon monoxide (CO), carbon dioxide (CO2),
Water (H2O), and methane (CH4)) was presented by Swain et al., 2010. Another application
of PIMA II for hydrothermal mineral alteration (devoted to the octahedral Al content and
the abundance of white mica (sericite)) at Hellyer, Tasmania was proposed by Yang et al.,
2011. A handheld Raman spectrometer with near infrared (785 nm) was used for miner-
alogical field examinations which involved plenty of minerals (e.g. Aragonite, Smithsonite,
Titanite) (Jehlička et al., 2011). An active volcano surveillance using infrared imagery was
proposed by Spampinato et al., 2011. VNIR (400 - 1200 nm) hyperspectral imagery was used
for mineralogy and ferric Iron crystal field absorption (at around 900nm). This imagery was
also used for mineral indicators to study the proportion of goethite in crushed rock mixtures
(Murphy et al., 2014). A soil contamination (total petroleum hydrocarbons (TPH)) investi-
gation was reported by Douglas et al. (2018) which used an analytical spectral device (ASD)
spectrophotometer (350-2500 nm) in diffuse reflectance mode, PLSR, and Random forest re-
gression (Douglas et al., 2018). A research study based on using NIR and XRF to determine
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the mineral elements in artichokes was proposed by Mir-Marqués et al.(2016) (Mir-Marqués
et al., 2016). Koch et al. (2017) presented an investigation of 419 samples of mine tailings
in South Africa using PXRF spectrometry and visible near infrared diffuse reflectance spec-
troscopy (VisNIR DRS). Then, XRD, Energy Dispersive X-ray Spectroscopy (EDAX) coupled
with Scanning Electron Microscopy (SEM) were used to confirm the tailings mineralogy and
revealed relatively satisfactory calibrations to PXRF analysis along with VisNIR DRS models
of prediction (Koch et al., 2017). FT-IR spectroscopy was used to study for fourteen samples
of tourmaline from the Real Museo Mineralogico of Federico II University at Naples along with
several methods and allowed the classification and identification of the following tourmalines:
tsilaisite, rossmanite, dravites, elbaites, uvites, and schorl (Mercurio et al., 2018).
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Portable Instrument Infrared Spectroscopy 
 Paper  System Used Application Location (if available) 

Goodacre et al. (1996) Machine learning based approach using FT-IR 
spectroscopy 

Identify and analyze of Streptococcus and Enterococcus species in 18 
hospitals 

 

Blakeney et al. (1996)} Portable infrared spectroscopy For determination  of leaf nitrogen  

Rivard et al. (1994) Field-Portable Thermal Infrared Grating 
Spectrometer (THIRSPEC) for 7.9-11.3µm (LWIR) 

Soil  

Rivard et al. (1994) FT-IR Determine the spectral emissivity of natural geological samples  
Preissler & Loercher (1995) Visible and Near Infrared and in short wave 

infrared 
Soil properties and parameters for reflectance spectra  

Ahonen et al. (1996) Portable FT-IR Real time gas analyzer (GASMET)  
Wilks (1996)  FI-IR portable instrument C-H stretch band of oils (fats)  
 PIMA II – 1.3 - 2.5 µm wavelengths Drill core at 1cm  
Egevskaya (1997) Double Cat’s Eye (DCE) Interferometer uses a movable beam-splitter and two spherical mirrors 

created the higher resolution against motion and lower sensitivity in 
misalignment 

Institute of Semiconductor Physics and 
the Russian Academy of Sciences 

Blakeney et al. (1996) Portable infrared spectroscopy Leaf nitrogen determination  
Alexay et al. (1996)  Patent Compound Parabolic Concentrators (CPCs)  
Crosta et al. (2017)   AVIRIS Soil  near Alto Paraíso de Goías 
Sun et al. (2001) SWIR-PIMA Finding alteration zones associated with the Elura zinc-lead-silver 

deposit 
Elura Mine, Cobar, Australia 

Yang et al. (2001) SWIR-PIMA Hydrothermal alterations  Broadlands-Ohaaki geothermal field, New 
Zealand 

Kruse et al. (2002) SWIR, AVIRIS and EO-1 Hyperion Geologic application (minerals mapped), zeolites, buddingtonite, 
chlorite, alunite, dolomite, muscovite, calcite, hydrothermal silica, 
montmorillonite, and dickite. 

northern Grapevine Mountains (NGM) site 
(located at the 
extreme north end of Death Valley, CAN). 

Cudahy & Barry (2002) Hyperion hyperspectral VNIR-SWIR satellite 
imagery 

Mapping of amphibole, chlorite-epidote, pyrophyllite, white mica (with 
Tschermak substitution variations) 

Panorama, Pilbara Block, Western 
Australia 

Hubbard et al. (2003)  0.4-2.4 µm visible and shortwave infrared 
ASTER, Advanced Land Imager (ALI), Hyperion 

Mineral alteration mapping area in the Central Andes between Volcan 
Socompa and Salar de Llullaillaco 

Kruse et al. (2003) 0.4–2.5 µm range with 242 spectral bands 
AVIRIS an EO-1 Hyperion 

Mineral mapping comparison Nevada, Death Valley, California 

Lau et al. (2003)  PIMA II and MTMF (Mixture Tuned Matched 
Filtering) processing technique in ENVI. 
hyperspectral visible-near infrared imagery 

Mineral mapping: Kaolinite and smectite (montmorillonite) Olary Domain, South Australia 

Vaughan and Calvin (2004) High spatial resolution (~2m) 
hyperspectral VNIR/SWIR and TIR images 
airborne spectrometers HyperSpecTIR and 
SEBASS 

Mineral resource exploration; 
Hydrothermal alteration; acid mine drainage 

The Comstock mining district, around 
Virginia City, Nevada 

Montero et al. (2005)  Visible to short-wave infrared range of light 
(0.35–2.5 µm) 

Acid mine drainage (AMD), Characterization of waste rock Penn Mine in the Foothills massive sulfide 
belt of the Sierra Nevada 

Piccinini et al. (2006) FT-IR micro-spectroscopy used for  Mapping of H2O and CO2 in volcanic minerals  SINBAD beamline, Frascati, Italy 
Kruse and Perry (2006) Commercial off-the-shelf (COTS) atmospheric 

correction software 
  

Hecker et al. (2008)  Ground-spectra 
PIMA II, HyMap, and USGS 

Endmember of minerals (illite, alunite, kaolinite)  

Meroni and Colombo (2009) Graphic user interface software Field spectroscopy with subnanometer spectral resolution  
Stenberg et al. (2010) VNIR spectroscopy Soil and more concentration on soil attributes (i.e. texture, Soil Organic 

Matter (SOM), heavy metals, pH, minerals, water, and nutrients 
 

Swin et al. (2010) Ground-based NIR spectroscopy Detection of molecules, conditions, and compositions of exoplanet 
atmospheres (such as carbon monoxide (CO), carbon dioxide (CO2), 
Water (H2O), and methane (CH4)) 

 

Yang et al. (2011) PIMA II Hydrothermal mineral alteration (more focus on the octahedral Al 
content and the abundance of white mica (sericite)), Hellyer massive 
sulfide 

Hellyer, Tasmania 

Jehlicka et al. (2011) Handheld Raman spectrometer with near 
infrared (785 nm) 

Mineralogical field examinations 
Aragonite, Kutnahorite, Ankerite, Hydromagnesite, Artinite, 
Strontianite, Smithsonite, Witherite, Alstonite, Cerussite, Muscovite, 
Titanite, Zircon, Spessantine, Grossular 

Albertov (Prague, Czech Republic), 
Vlastejovice quarry, Plesovice quarry,  
Zernez, Switzerland, Chiavenna, Italy, St. 
Leonhard im Pitztal 
 

Khanmohammadi et al. (2012)  MIR and NIR Characterization of petroleum products  
Vitek  et al. (2012) Raman spectrometer equipped with 1064 nm 

laser excitation 
Geological, forensic, and geobiological analysis which includes inorganic 
and organic minerals 

 

Tappert et al. (2012) Near and Mid wave infrared reflectance 
spectroscopy 

Mineral chemistry via degrees of hydrothermal alteration (phengite-
bearing rocks, high and low phengite) 

Olympic Dam iron oxide–copper–gold 
(IOCG) deposit, South Australia 

Soriano-Disla et al. (2013) Reflectance mid-infrared FT-IR spectroscopy Chemical element estimation  
totally 4130 soils sampling along with X-ray fluorescence (XRF) using 
partial least-squares (PLS) regression models 

the GEMAS European soil sampling 
program 

Okparanma  et al. (2014) Diffuse reflectance near-infrared (350-2500 nm) 
spectroscopy 

Petroleum-contaminated soils using PLS  

Kotthaus et al. (2014)  FT-IR spectroscopy, LWIR  Derivation of urban materials London Urban Micromet 
Murphy  et al. (2014)  VNIR (400–1200 nm) hyperspectral imagery Mineralogy and ferric Iron crystal field absorption  
Eisele et al. (2015)  Thermal infrared and LWIR (8-14 µm) in FT-IR 

spectroscopy 
Soil characteristics 
quantify and detect semi-arid soil properties 

 

Murphy  et al. (2015) SWIR (1002-355nm) hyperspectral imagery Mineralogy and ferric Iron crystal field absorption  

Greenberger et al. (2015)  Visible/shortwave infrared imaging spectroscopy Detection Of Organic-Rich Oil Shales Green River Formation, Utah, USA 
Awitti et al. (2015) NIR spectroscopy Soil propoerties sub-Saharan Africa 
Wang et al. (2015) Principal component regression in (VIS/NIR) 

diffuse reflectance (FT-IR) spectroscopy 
Soil contents (i.e. pH of soil and OM, K, N, , and P elements)  

O'Rourke et al. (2016) VNIR spectroscopy and X-ray fluorescence (XRF) 
spectrometers 

Soil properties 
model averaging procedures 

 

Black et al. (2016) Airborne hyperspectral thermal data Map Anchorage Island, Antarctica Anchorage Island, Antarctica 
Scafutto et al. (2016)  Infrared hyperspectral imaging 

HyspIRI; Hyperion; EnMap 
Soil  
Mineral characterization substrates impregnated by crude oils 

 

Liu et al. (2016) LIBS Soil 
Toxic metal contamination-review 

 

Mir-Marqués et al. (2016) NIR and XRF Determining the mineral elements in artichokes: 
magnesium, zinc, potassium, calcium, manganese and iron in artichoke 
samples 

Spanish areas (Benicarló, Valencia and 
Murcia) 

Calvin and Pace (2016) Field portable spectoradiometer Wide range of phyllosilicate minerals (hydroxides, calcite, iron oxides, 
opal, zeolites, and variety of 
phyllosilicates) identification 

 

Govil  (2016)  SWIR spectroscopy and Hyperion data (for 
regolith mapping)  

Hydrothermal alteration minerals  
clay minerals (i.e. montmorillonite and illite along with the dolomite, 
goethite, hornblende, clinochlore, epidote, and muscovite) 

Himalaya 

Salehi et al. (2017)  SWIR spectroscopy Affect of lichen in the signature of mineral (mica)  
Shin et al. (2017)  SWIR spectroscopy relationship between the moisture content and beach sand minerals 

Calcite-Quartz-Alkali Feldspar-Plagioclase and Quartz–Alkali Feldspar–
Plagioclase 

 

Wang et al. (2017) VNIR spectroscopy (350 to 2500 nm) Determination of Rare Earth Elements (REE) in soil  
Koch et al. (2017)  PXRF spectrometry, VisNIR DRS, XRD, EDAX 

coupled with SEM 
 

Tailings mineralogy mine tailing in South Africa 

Lulu et al. (2017) Portable spectroscopy Soil Organic Matter (SOM) estimation Brown-Forest Areas of the Shandong 
Peninsula, China 

Feng et al. (2018) Airborne hyperspectral VNIR-SWIR, LWIR Lithological mapping  
three ultramafic units (pyroxenite, peridotite, dunite) shown in SWIR 
and LWIR and a significant differences are observed for quartz-rich 
sediments in the SWIR 

 

Douglas et al. (2018)  Spectrophotometer (350–2500 nm) in diffuse 
reflectance mode 

Soil contamination  

Mercurio et al. (2018) FT-IR spectroscopy Classify and identify following tourmalines: tsilaisite, rossmanite, 
dravites, elbaites, uvites, and schorl 

Real Museo Mineralogico of Federico II 
University at Naples 

Table 2.3: Applications of portable instrument infrared spectroscopy.
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2.6.2 SWIR

A system called the Portable Infrared Mineral Analyzer II (PIMA II) is a field spectrome-
ter which is used to measure the reflectance spectra from the split drill core at 1cm (Figure
2.3). This spectrometer is used in 1.3 - 2.5 mum wavelengths. Both wavelengths, the along-
core and cross-core, have 600 spectral channels for the spectrometer image. This analytical
technique was developed for hyperspectral data analysis for field and laboratory experiments
(Kruse, 1996a; Boardman, 1989). Another application of the portable infrared spectroscopy
for leaf nitrogen determination is proposed by Blakeney et al., 1996. A comparison of AVIRIS
and EO-1 Hyperion covering the 0.4 to 2.5 µm spectral range was proposed by Kruse et al.,
2002a,b, for geological application (minerals mapping- Figure 2.4). Using Hyperion on the
validation sitesm, several minerals such as zeolites, buddingtonite, chlorite, alunite, dolomite,
muscovite, calcite, hydrothermal silica, montmorillonite, and dickite were identified. Sun et
al. (2001) used a SWIR PIMA in the Elura Mine, Cobar, Australia and identified white mica,
chlorite and carbinats in a hydrothermal region and the results were found to be consistent
with the mineralogical data from XRD and XRF analysis. The limitation of the alteration
zones was found to be at 80m distance around the ore bodies (Sun et al., 2001). A very similar
approach was performed by Yang et al. (2001) for hydrothermal alterations in the Broadlands-
Ohaaki geothermal field, New Zealand, and three major alteration zones were found: a lower
illite-chlorite, a middle illite, and an upper smectite (Yang et al., 2001a) and spectral mapping
of white micas with compositional variation (Yang et al., 2001b). An airborne hyperspectral
HyMap imagery in the VNIR-SWIR band was conducted for mineralogical purposes including
mapping of amphibole, chlorite-epidote, pyrophyllite, white mica (with Tschermak substitu-
tion variations) (Cudahy and Barry, 2002). A comparison on the mineral alteration mapping
in the 0.4 - 2.4 µm visible and shortwave infrared for three different spectral resources (i.e.
ASTER, Advanced Land Imager (ALI), Hyperion) was presented by Hubbard et al., 2003. A
visible to short-wave infrared range of light (0.35 - 2.5 µm) was used for the characterization of
waste rock (Acid Mine Drainage (AMD)), at Penn Mine in the Foothills massive sulfide belt of
the Sierra Nevada (Brimhall et al., 2005). A FT-IR micro-spectroscopy was used to map H2O

and CO2 in volcanic minerals at the SINBAD beamline, Frascati, Italy (LR46). Moreover, the
mineral identification using a hyperspectral infrared system in the 0.4 - 2.5 µm (VNIR/SWIR)
spectral range has been conducted and involved ASTER multispectral data (Kruse and Perry,
2007). A spectral matching algorithm (i.e. SAM) was used for the classification of airborne
and portable infrared instrument (ground spectra) data mapping applying the USGS standard
library (Hecker et al., 2008). This research was more focused on the endmembers of minerals
(illite, alunite, and kaolinite) but it also involved the comparison of the spectra; data for PIMA
II, HyMap, and USGS were included which make this study more innovative.
Murphy et al. (2014) used Gaussian processes to estimate the wavelength position of the
ferric Iron crystal Field Feature in SWIR (1002-1355nm) and used X-ray diffraction (XRD)
analysis to determine the proportions of geothite and hemitite (Murphy et al., 2015). A rapid
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Figure 2.3: The scheme of a Neural Networks consisting of five inputs (five scores of principal
components) and six outputs (each one corresponds to four streptococci and two enterococci)
with fully interconnected architectures is shown in (a)). The reflectance-absorbance spectra
of Strrprococcus pneumoniae 18 and Streptococcus pyogenes 7 are shown using FT-IT spec-
troscopy (b)). (Graph b) is adopted from Goodacre et al., 1996). The emissivity spectra of
gabbro and quartzite using the technique of Rivard et al. (1995) are shown in c) and d),
respectively.

hydrothermal alteration of minerals on drill core and chips was presented using a field portable
spectoradiometer to identify a wide range of phyllosilicate minerals (hydroxides, calcite, iron
oxides, opal, zeolites, and variety of phyllosilicates) (Calvin and Pace, 2016).
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Hydrothermal alteration minerals using SWIR spectroscopy and Hyperion data (for regolith
mapping) in the Himalayas was conducted which revealed the presence of clay minerals (i.e.
montmorillonite and illite along with the dolomite, goethite, hornblende, clinochlore, epidote,
and muscovite) (Govil, 2016). SWIR spectroscopy for modeling and wavelength displacements
was used for rock forming minerals covered by lichens, which have effects on SWIR band range
(Salehi et al., 2017). The mica group minerals show strong spectral signatures around 2200nm
and 2340-2350nm which are not affected when these minerals were encrusted by 30% lichen, but
when covered with a greater amount of lichen, there were shifts toward the shorter wavelengths
(Salehi et al., 2017). A regression modeling of the relationship between the moisture content
of beach sand minerals (i.e. average grain size, sand mineralogy, and band selection) in SWIR
reflectance using a hand-held spectrometer (3-6 nm spectral resolution) was proposed by Shin
et al. (2017). The mineral components were comprised of Calcite-Quartz-Alkali Feldspar-
Plagioclase and Quartz-Alkali Feldspar-Plagioclase (Shin et al., 2017). The results revealed
that three ultramafic units (pyroxenite, peridotite, dunite) were shown in SWIR and LWIR
and significant differences was observed for quartz-rich sediments in the SWIR.

2.6.3 MWIR

A diffuse reflectance mid-infrared FT-IR spectroscopy for chemical element estimation was
used for soil analysis (involving a total of 4130 soil samples from the GEMAS European soil
sampling program) along with X-ray fluorescence (XRF) using partial least-squares (PLS)
regression models (Soriano-Disla et al., 2013). A soil contamination research including a wide
range of organic compounds and synthetic/natural metallic and minerals has been reviewed
in terms of cost-efficiency and sampling design along with VNIR, mid and PXRF field spec-
troscopy (Horta et al., 2015). The chemistry of minerals using near and mid wave infrared
reflectance spectroscopy was investigated by Tappert et al. (2012) (Tappert et al., 2013) at
the Olympic Dam iron oxide-copper-gold (IOCG) deposit in South Australia.

2.6.4 LWIR and TIR

Previously a Field-Portable Thermal Infrared Grating Spectrometer (THIRSPEC) for 7.9-
11.3µm (LWIR) was proposed by Rivard et al., 1994. These authors proposed a laboratory
technique to determine the spectral emissivity of natural geological samples using FT-IR which
did not require sample temperature control (Rivard et al., 1994). Preissler & Loercher (1995)
proposed an extraction of soil properties and parameters for reflectance spectra (Preissler and
Loercher, 1995). Their research included the relationship between the reflectance spectra and
the chemical and physical properties of soil such as color, texture, organic material content,
and mineral composition.
A development in the internal structure of FT-IR patented by Alexay et al. (1996) for using
Compound Parabolic Concentrators (CPCs) which the reflectance returned through the CPC
and beam splitter and afterward a stationary filter and discrete detector array (Alexay et al.,
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1996). During a laboratory-based work using thermal infrared and LWIR (8-14µm) in FT-IR
spectroscopy, soil characteristics have been analyzed and applied to quantify and detect semi-
arid soil properties (Eisele et al., 2015). Vaughan and Calvin (2004) proposed a high spatial
resolution (∼ 2m) for hyperspectral VNIR/SWIR and TIR images in the Comstock mining
district in Virginia City in Nevada for mineral alteration using airborne spectrometers Hyper-
SpecTIR and SEBASS (Vaughan and Calvin, 2004). An application of FT-IR spectroscopy in
airborne and urban materials using Long Wave Infrared (LWIR) was proposed by Kotthaus
et al. (2014). Their study includes VNIR and SWIR spectra as well (Kotthaus et al., 2014).
An introduction to NASA Hyperspectral Infrared Imagery (HyspIRI) which was comprised of
VSWIR (380-2500 nm spectral range) and LWIR (4-13µm) and more was used for ecosystem
applications (Lee et al., 2015). Black et al. (2016) used the airborne hyperspectral thermal
data to map Anchorage Island, Antarctica (mapping Granodiorite (Gd), two-feldspar-pink
granite and medium crystalline diorite) and also used image processing techniques, linear un-
mixing, endmember extraction, segmentation and classification in the process (Black et al.,
2016). Airborne Hyperspectral Imaging Systems (AISA), SWIR, SEBASS, and LWIR were
used for geological mapping using Continuous Wavelet analysis (CWA) to enhance several pa-
rameters of images (e.g. radiometric quality, residual errors minimization in ISAC radiometric
correction and estimation of targeted temperature for LWIR, and improving the calibration)
and create a platform for SWIR and LWIR data combination (Feng et al., 2017).
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False color mineral mapping using AVIRIS (left image) and Hyperion 
(right image) (image adopted from Kruse et al. (2002))

MTMF mineral maps applying AVIRIS data (left image) and Hyperion data  (right 
image) false color pixels to depict the spectrally predominant mineral (more than 
10% concentration). (image adopted from Kruse et al. (2002))

Mineral maps
using SEBASS
(image in
bottom) and
HST (image in
top) data. The
spectra from
each selected
field site are
shown in the
plots: TIR
emissivity
spectra
(bottom) and
VNIR/SWIR
reflectance
spectra (top).
(taken from
Vaughan and
Calvin (2004))

The pictures represent the increase in HC contaminant in the samples 

(mineral substrate) (Figure is taken from Scafuttoet al. (2016).

This image shows the protocol applied to make the 

spectral library for HC combination of soil ((a) wavelet 

processed image. (b) 60 spectra from the ROI (average 

of 25 pixels in ROI). (c) the average spectrum which is a 

representative spectrum for the mixture (Figure is taken 

from Scafuttoet al. (2016)).

Figure 2.4: Several research works on mineral mapping which were taken from (Scafutto et al.,
2016; Kruse et al., 2002b; Vaughan and Calvin, 2004).
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2.6.5 Other types of spectroscopy

Egevskaya, from the Institute of Semiconductor Physics and the Russian Academy of Sciences,
(1997) proposed a portable FT-IR spectrometer based on the Double Cat’s Eye (DCE) in-
terferometer which uses a movable beam-splitter and two spherical mirrors creating a higher
resolution against motion and lower sensitivity in misalignment (Egevskaya, 1997). An actual
machine learning based approach using FT-IR spectroscopy and Artificial Neural Networks
(ANN) and PCA to identify and analyze of Streptococcus and Enterococcus species in 18
hospitals (Goodacre et al., 1996) (Figure 2.2.a-b). The application of infrared spectroscopy
was performed in a modern way which involved back-propagation algorithm with the scores of
principal components of spectra for the FT-IR spectra strains recognition. A portable Raman
spectrometer equipped with 1064 nm laser excitation was used for geological, forensic, and
geobiological analysis which includes inorganic and organic minerals (Vítek et al., 2012). A
Laser-Induced Breakdown Spectroscopy (LIBS) technique used for terrestrial mineral rocks
was reviewed by Senesi, 2014. The adsorption tube method was compared in four factories
using organic solvent mixtures using modified classical least-squares lineshape fitting using
CALCMETTM software (CALCMET, 2017) to identify and quantify the compounds.

2.6.6 Review papers in spectroscopic analysis

An in-depth review concerning the applications of portable infrared spectroscopy has been
published (Workman Jr, 1999). Another review summarized toxic metal contamination (agri-
culture applications) which involved soil analysis using LIBS was presented by Peng et al.,
2016. NIR spectroscopy for monitoring the soil contamination was reviewed by Cozzolino
(2016) (Cozzolino, 2016). The estimation of the bidirectional reflectance distribution function
(BRDF) from directional reflectance measurements was also reviewed by Meroni & Colombo,
(2009). Twenty years of development in field spectroscopy and reflectance factor calculation
has been reviewed by Milton et al. (2009). The applications of infrared spectroscopy and
chemometric for the characterization of petroleum products was reviewed by Khanmoham-
madi et al. (2012) (Khanmohammadi et al., 2012). A geological remote sensing application
is reviewed by Bishop et al. (2018) (Bishop et al., 2018) which involved many applications of
airborne infrared spectroscopy.

2.7 summary

In view of the above mentioned research studies, the variety of the parameters for applications
of hyperspectral infrared imagery in the form of portable instruments is significant in terms of
mineral identification and utilization of the system on a small grain scale (indicator minerals).
Numerous research studies have used hyperspectral infrared imagery and particularly mineral
mapping large-sized mineral samples located at a significant distance from the infrared cameras
(Feng et al., 2017; Mercurio et al., 2018; Lee et al., 2015; Black et al., 2016; Mir-Marqués et al.,
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2016; Calvin and Pace, 2016; Scafutto et al., 2016; Kruse et al., 2002b; Vaughan and Calvin,
2004). However, the proposed applications of this research are limited for LWIR hyperspectral
infrared imagery for small grains. Therefore, the identification of these small grains could lead
to the identification of new mines or the abundance of a particular mineral presence which
would not only provide a great benefit in terms of mineralogy but could also demonstrate
that the system can be considerably beneficial and can represent an efficient computer-aided
identification which can be used to assist geologists and mineralogy experts in the field or
laboratory conditions.
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Chapter 3

Issue, hypothesis and objectives

3.1 Problem Statement

The identification of minerals is challenging in the field of geology and mineralogy. The prob-
lem of mineral identification initially relates to geological research and is usually conducted
by geologists. The manual process is time consuming, but also requires specially trained
geologists. Poor identification can cause mis-classification of the minerals. The recent techno-
logical advancements in hyperspectral infrared technology have led to extensive investigations
involving by hyperspectral portable instruments for the identification of minerals, giving rise
of many research studies, and the development of many methods developed to perform the
identification process. However, the identification of small grains has not received much at-
tention and one of the reasons might be due to the a new level of challenges which involve
different research perspectives such as mineralogy and chemical composition of the minerals,
thermography and infrared analysis, spectral analysis, and data-mining. Small grain iden-
tification through the hyperspectral camera requires higher spatial resolution. Conducting
hyperspectral infrared acquisitions in laboratory conditions involves a detailed investigation
on a small scale to confirm the accurate identification. The collected geological samples re-
quire detailed analysis to identify the targeted mineral, which can then be also used for system
validation. Furthermore, an automated mineral identification system which creates reasonable
results mainly depends on the pre- spectral analysis. Without research development in this
field, the process of small grain mineral identification would remain a geological and manual
identification problem which is a time-consuming process and involves a high level of disparity
due to fatigue or any other method for this specific application.
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3.2 Objectives

The main objective of this research is to create a tool to use hyperspectral infrared imagery
data and process the data through image analysis and machine learning methods to identify
small size mineral grains. This research targets the analysis and development of the current
existing techniques for spectral comparison and mineral identification. The research objective
involves the development of hyperspectral techniques through data-mining approaches and
their use for the identification purposes. The development and modification focuses on labo-
ratory applications and can be generalized for any other type of spectroscopy or hyperspectral
infrared bands. The objectives of this project can be summarized as follow:
1) Preparing grains and making a setup to take hyperspectral infrared images;
2) Retrieving the spectra obtained by acquisitions (Continuum Removal);
3) Using data-mining approaches to automatize the mineral identification process;
4) Create corresponding Ground Truth sets to validate and benchmark the automated ap-
proaches.

3.3 Hypothesis

Hyperspectral infrared imagery has the potential of being a useful tool to identify the small
mineral grains through spectral data assessment. This system can be developed to auto-
matically perform the process through the application of automated/semi-automated or su-
pervised/unsupervised data analysis. This involves pre-processing spectral analysis to create
viable spectral data and spectral comparison analysis between Advanced Space-borne Ther-
mal Emission and Reflection Radiometer (ASTER) mineral library at NASA Jet Propulsion
Laboratory (JPL) (Baldridge et al. 2009) or United States Geological Survey (USGS) spectral
library (Clark et al. 2007) and targeted spectra within the region of interests. The aforemen-
tioned techniques may be useful to study the impact of hyperspectral infrared imagery and
data-mining analysis on small grain identification which can be validated by using a ground
truth data-set. A brief summary of proposed hypothesis is presented as below:
- Hyperspectral infrared imagery is a useful tool to identify the small mineral grains;
- Pre-processing spectral analysis create a possibility to use spectral comparison analysis;
- Supervised and Unsupervised learning approaches can make the process automatized;
- Other analysis such as (X-ray) can be a potential method to make a ground truth sets.

38



3.4 Scope and Significance of Study

The scope of the study is defined by the replacement of geologist/mineralogy manual work
into an automated/semi-automated segmentation system having hyperspectral images as its
input. The mineral identification by the developed methods can eliminate some of the dispar-
ities which occur during mineral identification and alleviate the computational complexity.
The mentioned research subject can contribute in various research topics and has applications
which principally can involve many fields such as: thermography, data-mining, pattern recog-
nition, and hyperspectral infrared image analysis. However, the major definition lies under
geological/mineralogy sciences and it also includes applied science. There is basically an in-
terconnection among the above mentioned fields in geological applications related to mineral
identification.

3.5 Methodology

The proposed system follows the segmentation of mineral regions in the hyperspectral infrared
images obtained by our experiments. There are two categories of mineral grains used in our
tests, unmixed grain samples (pure samples 1) and mixed grains samples, which are used in
training and testing stages, respectively, while supervised learning methods used. The methods
used for the system follow the hypothesis and objective of this research and mentioned as
follows:
- Data retrieval (for continuum removal);
- Evaluation of the supervised/unsupervised approaches for identification;
- Sensitivity check for automated approaches;
- Verification and reliability;

1This type of sample has only one mineral type and purity does not imply the purity on a chemical or
geological composition level.
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Data retrieval 
(Continuum Removal)

Mineral Identification 

(Supervised/unsupervised approaches)

Clustering sterategies

Reliability check

Step 1 (Chapter 4)

Step 2 (Chapter 5)

Step 3 (Chapter 6)

Step 4 (Chapter 7)

Contribution: New method of 
continuum removal by twice image 
acquisitions

Contribution: Comparison analysis of 
Classification and clustering
Generating spectral reference by Low rank 
Sparse PCA

Contribution: Comparison analysis of two 
clustering algorithms

Contribution: New way to assess the 
accuracy an reliability verification

Table 3.1: The flowchart of the proposed method is shown.

40



The automated methods are basically divided into two main categories: supervised approaches
which need training and testing stages and labeling the data; and unsupervised learning ap-
proaches that involve direct grouping of the spectra into the different categories. It is expected
that spectral references (such as ASTER/JPL or USGS mineral libraries) will be used in both
of the cases for segmentation or validation of the methods.
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Chapter 4

Continuum removal for ground based
LWIR hyperspectral infrared imagery
applying non-negative matrix
factorization

(Submitted in Applied Optics Journal, 2018).

4.1 Résumé

L’élimination du continuum est une étape essentielle dans le processus d’analyse d’images hyperspec-
trales qui permet d’utiliser les données pour toutes les applications et nécessite généralement certaines
approximations ou hypothèses à effectuer. Une de ces approximations est liée au calcul des spectres
de la température de corps noir de l’arrière plan. Nous présentons ici une nouvelle méthode pour
calculer le processus d’élimination du continuum qui élimine ce calcul pour l’imagerie infrarouge hy-
perspectrale au sol en appliquant deux ensembles d’acquisition avant et après l’utilisation de la source
de chauffage. L’approche décrit une expérience en laboratoire avec les ondes infrarouges longues (de
7.7µm à 11.8 µm), avec une lentille LWIR-macro, une plaque Infragold et une source de chauffage.
Pour calculer l’élimination du continuum, l’approche applique la factorisation matricielle non néga-
tive (NMF) pour extraire le NMF de rang 1 et estimer le rayonnement de downwelling, puis compare
le résultat avec d’autres méthodes conventionnelles. Pour obtenir le NMF de rang 1, on utilise des
algorithmes d’optimisation basés sur la descente de gradient (GD) et des moindres carrés non négat-
ifs (NNLS). L’analyse comparative est réalisée avec un bruit additionnel de 1 − 10% pour tous les
algorithmes utilisant Spectral Angle Mapper (SAM) et la Normal Correliation Corrélation (NCC).
Les résultats indiquent une performance relativement prometteuse en utilisant NMF-GD (moyenne de
72.5% pourcentage de similarité en utilisant NCC) et NMF-NNLS (moyenne de 77.6% de similitude
en utilisant la NCC).
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General Explanation
Although the process of mineral identification is highly depended on the comparison of spectra between
the minerals and references from spectral libraries, a major issue in terms of having the comparable
spectral data is always challenge the process. To alleviate such matter, here a method for Contin-
uum Removal (CR) process is proposed for Long Wave Infrared (LWIR) which modified a previously
mentioned approach Balick et al. (2009) and employs two times hyperspectral acquisitions, with and
without the heating source. In addition, Non-Negative Matrix Factorization (NMF) is also deployed
to robustness of down-welling spectra.

The results of this study were partially presented at the poster session of the International Congress
on Thermal Infrared Applications XXXVIII (Thermosense), May 2016, Baltimore, USA.

Contributing authors:

Bardia Yousefi (Ph.D. candidate): a part of the experiment planning, data collection, data anal-
ysis, designing and implementing the algorithm. Moreover, testing their accuracy and robustness
throughout the process and writing the manuscript.

Saeed Sojasi: assisting the experiment planning, data collection, mineral preparation.

Clemente Ibarra Castanedo: the experiment planning, data collection, mineral preparation, revi-
sion and correction of the manuscript.

Xavier P.V. Maldague and Georges Beaudoin: (The main research director and co-director, re-
spectively): supervision, revision and correction of the manuscript.
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4.2 Abstract

Continuum removal is vital in hyperspectral image analysis. It enables data to be used for any appli-

cation and usually requires approximations or assumptions to be made. One of these approximations

is related to the calculation of the spectra of the backgroundâs blackbody temperature. Here, we present

a new method to calculate the continuum removal process. The proposed method eliminates the cal-

culation for ground-based hyperspectral infrared imagery by applying two acquisition sets before and

after using the heating source. The approach involves a laboratory experiment on a long-wave infrared

(7.7µm to 11.8µm - LWIR), with a LWIR-macro lens, an Infragold plate and a heating source. To cal-

culate the continuum removal process, the approach applies non-negative matrix factorization (NMF)

to extract Rank-1 NMF, estimate the downwelling radiance and compare it with that of other con-

ventional methods. NMF uses gradient-descent-based multiplicative rules (GD) and non-negative least

squares (NNLS) optimization algorithms to obtain Rank-1 NMF. A comparative analysis is performed

with 1%20% additive noise for all algorithms by using the spectral angle mapper and normalized cross

correlation (NCC). Results reveal the promising performance of NMF-GD (average of 72.5% similarity

percentage using NCC) and NMF-NNLS (average of 77.6% similarity percentage using NCC).

Keywords: Long-wave infrared hyperspectral imaging; Continuum removal; spectral com-

parison method; Ground based hyperspectral imagery; Mineral identification.
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4.3 Introduction

Hyperspectral infrared imagery has been used in remote sensing and airborne imaging in the

past three decades. Apart from optical and thermographic equipment improvements, the pro-

cess and data mining developments in this field have also displayed remarkable growth and have

been adopted in various applications, such as target detection (Nasrabadi, 2014; Mayer et al.,

2003), aviation (Wang et al., 2016), spectral unmixing (Eismann and Hardie, 2004) and geol-

ogy (Kruse, 1996b; Yajima et al., 2004; Davis, 2001; Hirsch and Agassi, 2010). An important

element in successful data analysis is proper spectral information retrieval, that is, continuum

removal (CR), at the beginning of the analysis. A continuum in hyperspectral infrared imagery

is mainly caused by solar energy or the heating source. Many methods have been developed to

retrieve spectra and perform CR. These methods were proposed for remote sensing, airborne-

type data analysis (Thulin et al., 2004; Sanches et al., 2014), endmember-based algorithms

(Filippi and Jensen, 2007) and retrieval of emissivity and downwelling radiation by using the

spectral radiance of rocks (Balick et al., 2009b). The process for ground-based hyperspectral

imagery (Kruse, 1996b; Yajima et al., 2004; Sun and Khan, 2016; Krupnik et al., 2016) is

similar but involves close-range acquisitions. It has been extensively used in different applica-

tions, including quality control in chemical reactions (Aksenova et al.; Ghasemzadeh-Barvarz

et al., 2013), raw material sorting in the tobacco industry (Garcia-Allende et al., 2008), in-

vestigation of anomalies in target detection (Heinz et al., 2010), checking of exhaust from

diesel-fuelled turbine technologies (Bradley et al., 2010) and geology (Balick et al., 2009b).

Active-thermography ground-based close-range imagery allows for the use of a heating source

in the place of any other source (e.g. solar energy in airborne or remote sensing applications).

The process of hyperspectral analysis is similar in long- and close-range hyperspectral imagery,

but the use of a heating source usually allows for increased control on the experiment (Yousefi

et al., 2016b). One of the early studies on determining sample emissivity was conducted by

Salisbury et al. (1991) (Salisbury and Vergo, 1991), who estimated the reflectance and trans-

mittance spectra of 78 minerals in mid-wavelength infrared. The authors calculated the effect

of different particle size ranges and the scattering effect. Thermal infrared for remote sensing

and Kirchhoff’s law were investigated for directional hemispherical reflectance and directional

emittance measurements of rock and soil in a laboratory (Salisbury et al., 1994). Korb et

al. (1996) calculated the radiance (downwelling) and emissivity for a Fourier transform in-
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frared spectroradiometer (FTIR) for 3-5 µm and 8-14 µm atmospheric windows (Hecker et al.,

2010), followed by the development of the µFTIR system (Reath and Ramsey, 2013) and lab-

oratory technique for measurement and calibration (Ruff et al., 1997) and for the emissivity

and reflectance of soil (Sobrino et al., 2009). Gomez et al. (2008) also presented a partial

least-squares regression (PLSR) method for clay and calcium carbonate content estimation at

visible and near-infrared (VNIR, 400-1200 nm) and shortwave infrared (SWIR, 1200-2500 nm)

for airborne hyperspectral measurements (Gomez et al., 2008). Malenovsky et al. (2013) pro-

posed a neural network-based CR for spruce leaf chlorophyll content estimation (Malenovskỳ

et al., 2013). The continuum-removed absorption features used for predicting in situ pasture

quality adopted the standard first derivative reflectance (FDR), band depth (BD) and band

depth ratio (BDR) in airborne imaging spectrometers (Mutanga et al., 2004). Moreover, a

continuum removal analysis was performed in a previous study to estimate foliage nitrogen

concentration in HYMAP sensor data by using modified partial-least squares (MPLS) (Huang

et al., 2004b). Balick et al. (2009) (Balick et al., 2009a) presented an emissivity retrieval

method using field-portable imaging radiometric spectrometer technology mid-wave extended

(FIRST-MWE) and calculated atmospheric downwelling spectral radiance. The research in-

volved a similar continuum removal method although the calculation was for non-ground based

spectroscopy.

The proposed approach modifies the Balick method (Balick et al., 2009a) by eliminating its

dependency on the blackbody spectra at surface temperature. Our approach involves a series

of experiments conducted using a Telops Long Wave Infrared (LWIR) hyperspectral camera

in close range for small mineral grains. Moreover, the approach proposes another modification

for CR calculation by applying first-rank NMF instead of the previously used spectral averag-

ing or random selection of spectra, thus increasing efficiency. The remainder of the paper is

organized as follows. Section 2 provides information about the hyperspectral infrared camera

and targeted minerals. Section 3 presents the methodology and explains how continuum re-

moval and segmentation are performed. Section 4 describes the experimental and simulation

results. A short discussion is presented in Section 5, and the conclusions and directions for

future work are provided in Section 6.
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Table 4.1: A brief review of the characteristics of the minerals investigated in this study.

 

 

Minerals 

 

 

Chemical formula 

 

 

Short Description  

 

Biotite K(Mg,Fe)2-3Al1-2Si2-3O10(OH,F)2  substantial group of dark mica minerals.  

Diopside MgCaSi2O6 Forms complete solid solution series with 

hedenbergite (FeCaSi2O6) and augite, and 

partial solid solutions with orthopyroxene 

and pigeonite.  

Epidote Ca2(Al2,Fe)(SiO4)(Si2O7)O(OH)  silicate mineral. 

Tourmaline ((Na, 

Ca)(Mg,Li,Al,Fe2+)3Al6(BO3)3Si6O18(O

H)4) 

boron silicate minerals compounded with 

element such as Al, Fe, Mg, Na, Li or K. 

Olivine (Mg+2, Fe+2)2 SiO4  

Pyrope Mg3 Al2 (SiO4)3 garnet group minerals. 

Quartz SiO2 the most abundant mineral in the Earth’s 

crust. 
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Grains of biotite & quartzGrains of olivine & quartz Sample of olivine & quartz

Experimental setup 

hyperspectral infrared cameraHeating Source

Scheme of the experimental setup

Radiation Source
Display and 
Acquisition

Hyperspectral 
Infrared Camera 

Infragold plate and 
grains sample

Control

~25cm

1
3

 c
m

Infragold 
plate

Figure 4.1: The experimental setup is shown along with the binocular image of the samples
and the scheme of the experimental setup.

48



4.4 Data

4.4.1 Sensor

The sensor used to make the measurements was a lightweight FIRST hyper-camera imag-

ing spectroradiometer (HYPER-CAM LW) (Telops, 2016) operating in the long-wave infrared

(LWIR) band (from 7.7 to 11.8µm). The sensor has a Stirling-cooled indium antimonide

(InSb) focal plane array (FPA) that contains 320× 256 pixels. It has a spectral resolution of

0.25 cm−1. The spectral resolution of the spectrometer, 6 cm−1(∼ 0.0119µm at 7.7µm and

∼ 0 : 0465µm at 11.8 µm), provided 88 spectral bands. The spatial extent of the scene was

windowed to a small field of view (FOV) to increase the temporal resolution. The spectra were

measured using a Fourier transform spectrometer (FTS), and the hyper-camera measured a

complete spectrum for every pixel using an LW macro 50 ×104µm lens providing an instan-

taneous FOV of 0.35 mrad (Kruse, 1996a). Measurements were performed from a distance of

35 cm, which provided a pixel footprint of 0.1 ×104µm. Figure 4.1 presents the experimen-

tal setup and binocular images of the samples. A heating source was placed in front of the

samples (active thermography 1) and provided heating energy during the experiment. Image

acquisition was continued after turning off the heating source to achieve a gradual cooling

effect (several minutes). For optimal results, the grains were attached to adhesive carbon-

based tape, and an Infragold plate was placed on the background. Its reflectance assisted in

removing the continuum from the spectrum. The images were obtained perpendicular to the

mineral grains under uniform heating by the source.

4.4.2 Grain samples and reference panels

The problem of spatial resolution was not an issue because a magnification lens was used

for the FOV of the sensor. Figure 4.1 shows a photograph of the minerals obtained with a

binocular microscope and the scheme of the experimental setup. Seven mineral grains (biotite,

diopside, epidote, tourmaline, pyrope, olivine and quartz) are presented in Table 4.1, which

provides a brief review of the minerals and their chemical formulas. A square InfraGold plate

(Labsphere, North Sutton, NH, USA) (r19) was placed in the scene of the grains as a reference

1Active thermography occurs once an energy source creates thermal contrast for the specimens and back-
ground (Maldague, 2001). An example of active thermography was provided in (Zhang et al., 2016b).
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Hyperspectral Infrared Image
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Figure 4.2: Flowchart which shows the proposed approach for the estimation of the down-
welling radiance among all the possible points. In the figure, W1 = Li(ON&OFF ) represents
the spectral of Infragold with and without the heating source.

panel. According to the information provided by the manufacturer, the panel has a reflectivity

of 92% − 96% for 104µmto16 × 104µm wavelength radiation. For the range of the FIRST

camera, the spectral reflectance is approximately between 96% and 97% by DuraflectÂ®

coatings of 0.94-0.96 (r19). The emissivity of the panel is very low, which makes it insensitive

to temperature. The panel was placed in a perpendicular position in front of the hyperspectral

camera.
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4.5 ANALYSIS

Here, the proposed method is presented by downwelling radiance calculation, continuum re-

moval and Infragold and thermal image analyses using Rank1 NMF (Figure 4.2 presents the

flowchart of proposed approach).

4.5.1 Downwelling radiance calculation

Following the protocols for accurate determination of sample emissivity (Hecker et al., 2010;

Reath and Ramsey, 2013; Ruff et al., 1997; Resnick et al., 1999) and considering the modifi-

cation of Balick et al. (2009) (Balick et al., 2009a) while noting that the distance between the

samples and camera is short, the downwelling spectral radiance (Li(λ)) in the atmospheric

environment was calculated with the equation

Li(λ) =
L∗(λ)− εBB(λ, Ts)

ρ
(4.1)

where L∗ is the measured spectral radiance of the panel and BB(λ, Ts) is the spectra of the

blackbody at a surface temperature of Ts. ε and ρ are the emissivity and reflectivity of the

panel, respectively (Balick et al., 2009a). In ideal conditions, the surface temperature of the

panel and the measured temperature are similar. Considering that the specimen has a very

low transmission of infrared energy (∼ 0), then according to Kirchhoff’s law (Kirchhoff, 1860;

Salisbury et al., 1994), 1 = ε+ ρ. Thus, the aforementioned equation can be rewritten based

on the measured spectral radiance.

L∗(λ) = εBB(λ, Ts) + (1− ε)Li(λ) (4.2)

The measured spectral radiance is a parameter that is related to the emissivity of the panel

and blackbody spectral radiance.

4.5.2 Continuum removal

To calculate the reflectance spectrum that contains no continuum, the measured spectral

radiance of the specimen was divided by the entire spectrum radiated from the heating source

(Fig. 4.3). The InfraGold plate was used to estimate the total radiance from the source (or

downwelling radiance Li) because it ideally reflects ∼ 100% of the input radiance. Given

that these experiments strive to calculate the ground spectra and control of the heat source is
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Figure 4.3: The spectral radiance from the source and its reflection from the mineral grain is
shown.

possible, we performed image acquisition twice: once while the heating source was switched

on and once while the heating source was switched off (4.7). Then, we obtained L∗ON (λ) = εBB(λ, Ts) + (1− ε)LiON (λ)

L∗OFF (λ) = εBB(λ, Ts) + (1− ε)LiOFF (λ)
(4.3)

Considering that the temperature of the blackbody with or without heating is the same, if we

subtract the two previous equations from each other, then we will have

L∗ON (λ)− L∗OFF (λ) =

εBB(λ, Ts)− εBB(λ, Ts) + (1− ε)LiON (λ)− (1− ε)LiOFF (λ) (4.4)
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In Equation (4), the blackbody spectral radiance of the panel at the surface temperature,

BB(λ, Ts), and the emissivity of the plate, ε, have the same value when the heating source is

in the circuit or out of the experiment. Thus, the return radiance amount from the mineral

grain is given by

L∗ON (λ)− L∗OFF (λ) = (1− ε)(LiON (λ)− LiOFF (λ)) (4.5)

The reflectivity spectra of a factor that is independent of the blackbody spectral radiance were

then calculated, and we obtained

ρ =
L∗ON (λ)− L∗OFF (λ)

LpiON
(λ)− LpiOFF

(λ)
(4.6)

This equation has reflectivity spectral radiance whose continuum is already suppressed. Equa-

tion (6) represents the continuum removal for our ground-based spectra that is solely depen-

dent on the measured spectral radiance from the surface of mineral grains and the Infragold

plate. In the equation, LiON (λ) and (LiOFF (λ) are converted to LpiON
(λ) and LpiOFF

(λ) to

emphasis the pixel-scale dependency of the downwelling spectral radiance.

4.5.3 Infragold and thermal image analysis using Rank-1 NMF

Following Equation (6), the spectral radiance of the Infragold plate is needed to calculate the

downwelling spectral radiance Li (for LiON and LiOFF ). Since the Infragold plate reflects the

entire radiance, we calculated a representative spectral radiance to include in Equation (6).

To measure the spectral radiance, some pixel spectra in Infragold were manually selected and

used to calculate downwelling radiance. Multifarious techniques, such as random selection and

spectra averaging, are often adopted to achieve this purpose, but these techniques are attenu-

ated when faced with noise or incorrect selection of the Infragold region. Random selection of

downwelling spectral radiance is not an appropriate means of determining the spectra because

this method may select the wrong spectrum. By contrast, spectral averaging is a more rea-

sonable means to estimate the spectra, but it is theoretically insensitive to non-homogeneous

spectral grouping. For example, if the selected region of the Infragold plate extends beyond

the plate itself, the averaging might be influenced by the spectral radiance of other regions.

Several other approaches, such as eigen decomposition methods, improve spectrum selection

(Golub and Van Loan, 2012; Franklin, 2012). For example, principal component analysis

(PCA) (Pearson, 1901; Jolliffe, 1986) is a popular method that can select the principal com-

ponent spectrum of a selected region, but having negative values in its calculation leads to
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c

f
Binocular Heating source ON Heating source OFF

Figure 4.4: The IR-images were taken before (left-side thermal images in each mineral(c,f))
and after (right-side thermal images in each mineral (b,e)) heating the mineral grains. The
binocular images from the grains are also shown on left side of each example (a,d).

an uncertainty in its application in choosing the best representation of reconstructed spectra

(first basis vector). This problem is solved by different modifications (such as (Panagakis

et al., 2010)) or non-negative matrix factorization (NMF) (Sra and Dhillon, 2006; Ding, 2005;

Lee and Seung, 1999).
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The approach presented in this study calculates the aforementioned radiance (particularly

for a non-uniform heating source) by applying NMF. NMF is a factor analysis method that

provides an unsupervised linear representation of the data similar to PCA. However, by us-

ing non-negative coefficients in the calculation of eigenvalues, the issue with PCA is solved.

NMF produces the basis from data representations and can be formulated using the following

optimization problem (Ding et al., 2005).

minW,H‖Li −WH‖F s.t. W ≥ 0, H ≥ 0 (4.7)

Li refers to all possible points of spectral radiance in the Infragold plate while the heating

source is switched on and off, with the assumption that the measured T in our data consists

of N non-negative scalar variables.

LN×M ≈WN×THT×M (4.8)

W is an N × T matrix that includes the basis vectors wi as its columns. Every measured

vector is shown by the same basis vectors. W has N basis vectors and can be represented

by "building blocks" of the data having T-dimension. H denotes the coefficient matrix and

explains the level of power for every building block, where `i is a measurement vector. H

includes the coefficient vector ht corresponding to the measurement vector `t, which produces

a linear data representation obtained from data factorization. In general, M is the number

of observations in matrix Li. W contains the basis vectors that are needed to determine the

best representative of spectral radiance and is even used for clustering (Lee and Seung, 1999).

LN×M =



`i 1,1 `i 1,2 ... `i 1,m

`i 2,1 `i 2,2 ... `i 2,m

. .

. .

. .

`i n,1 `i n,2 ... `i n,m


(4.9)
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WN×T =



wi 1,1 wi 1,2 ... wi 1,t

wi 2,1 wi 2,2 ... wi 2,t

. .

. .

wi n,1 wi n,2 ... wi n,t


(4.10)

In the equation, [`i 1,1, `i 2,1, ..., `i n,1]
T shows the first pixel spectrum selected from the In-

fragold plate that has W 1 = [wi 1,1, wi 2,1, ..., wi n,1]
T basis vectors corresponding to it. T = 1

is a very particular case because the optimal solution is given by SVD, and performing succes-

sive minimization by H with fixed W and vice versa is not needed. This case is used for the

extraction of the best spectral representative of the Infragold plate (downwelling spectrum),

W 1. NMF performs as a clustering method to group the spectra in different categories (similar

to (Lee and Seung, 1999)), whereas Rank-1 NMF does not allow further grouping because it

limits the clustering to abundant spectra existing in the input data (ROI mainly consists of

the Infragold region). NMF is still considered a linear method for non-negative approximation

(standard NMF can be calculated by two optimization algorithms: gradient-descent-based

multiplicative rules (GD) and non-negative least squares (NNLS)) (Lee and Seung, 1999;

Panagakis et al., 2010; Cho and Choi, 2005). NNLS is a constrained form of the least-squares

problem and applies a similar minimization strategy for the minimization of NMF, considering

the non-negative constraints to control the coefficients. NMF is applied by NNLS to Equation

(7), given a matrix W and vectorized matrix Li. The goal is to solve the Euclidean norm

problem and ultimately perform the mentioned minimization (Chen and Plemmons, 2010).

NMF through GD converts the minimization problem to a first-order iterative optimization

algorithm. It finds the local minimum by applying gradient calculation and its direction to-

wards the minimization through steps proportional to the negative gradient from the current

point. If Equation (7) is represented by G(w) and wn represents the current observation point,

then the minimization wn+1 should be selected based on wn+1 = wn−γG(wn), where γ is the

step size and G(wn) ≥ G(wn+1) (Kiwiel, 2001).
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Figure 4.5: The similarity percentage of spectra while Infragold region wrongly selected based
on the mis-selection percentage is also mentioned.
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Table 4.2: The computational time (CPU time) is shown for each part of the method for
around 1000 pixels of Infragold plate.

 

 
 

Mineral 

 

Computational Complexity 
 

Averaging NMFGD NMFNNLS Random 

Biotite 0.2 0.79 1.18 0.28 

Diopside 0.18 0.68 1.31 0.28 

Epidote 0.18 0.98 1.33 0.26 

Tourmaline 0.18 0.62 1.32 0.26 

Pyrope 0.16 0.60 1.21 0.23 

Olivine 0.17 0.76 1.11 0.23 

Quartz 0.19 0.79 1.12 0.24 
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Table 4.3: The similarity percentage of the continuum removed approach in comparison with
the reference spectra from the ASTER/JPL spectral library is measured. Also the robustness
of the approach is shown applying additive noise.

 

 
Mineral 

 
Noise 

Method (%) 
NCC SAM 

Average NMFGD NMFNNLS Random selection Average NMFGD NMFNNLS Random selection 
 0% 90.3 89.9 86.8 90.1 72.3 71.9 69.9 72.2 

 1% 93.1 92.9 89.9 90.2 78.9 78.8 76.5 73.5 

Biotite 2% 89.3 89.3 85.2 75.1 70.9 70.9 68.3 51.2 

 5% 92.9 91.7 89.4 21.4 78.7 76.9 75.9 <1 

10% 89.2 78.5 83.2 6.3 70.9 59.2 64.7 <1 

20% 74.1 66.4 76.3 <1 62.2 49.8 59.8 <1 

 0% 72.2 72.8 74.3 71.8 57.5 58.3 60.8 56.9 

 1% 71.4 71.2 74.2 69.7 57.9 57.6 62.6 57.1 

Diopside 2% 71.8 72.5 75.4 64.5 57.8 58.6 62.7 49.4 

 5% 71.7 70.4 73.6 16.8 57.7 57.1 60.8 <1 

10% 71.5 56.2 71.5 <1 57.7 40.9 59.01 <1 

20% 68.4 51.1 69.2 <1 56.8 38.5 57.4 <1 

 0% 84.4 82.1 84.8 84.6 66.1 62.8 68.4 66.4 

 1% 85.3 85.7 87.7 82.8 63.5 63.9 67.2 61.6 

Epidote 2% 82.8 82.9 86.8 79.9 64.1 64.3 69.8 61.7 

 5% 84.3 84.7 83.9 4.8 65.9 65.5 67.2 <1 

10% 79.8 57.9 81.1 <1 62.7 39.7 63.9 <1 

20% 76.2 44.1 77.02 <1 61.4 28.02 61.8 <1 

 0% 52.6 51.9 53.4 52.1 38.5 33.2 32.9 32.9 

 1% 47.5 47.8 50.4 46.5 36.9 37.2 40.1 35.4 

Tourmaline 2% 47.4 48.1 51.1 43.2 36.9 37.4 39.7 35.2 

 5% 46.5 45.9 47.1 7.6 35.1 34.6 35.2 <1 

 10% 50.8 29.6 55.9 9.6 30.3 26.8 34.1 <1 

20% 45.7 12.1 52.8 <1 28.01 22.9 31.2 <1 

 0% 93.5  94.1 75.4 93.5 44.9 46.1 28.4 44.5 

 1% 93.9 93.9 86.6 88.4 54.8 56.1 41.5 51.8 

Pyrope 2% 92.7 93.4 85.9 75.2 55.8 56.5 43.1 48.3 

 5% 92.2 93.3 87.5 4.1 62.3 63.7 53.1 <1 

 10% 92.9 55.9 84.2 <1 56.2 33.3 45.1 <1 

20% 87.01 32.2 81.2 <1 52.2 28.2 42.1 <1 

 0% 84.9 84.9 80.8 84.7 64.9 64.6 56.8 64.5 

 1% 86.4 86.1 85.5 86.1 66.7 66.01 64.2 66.4 

Olivine 2% 87.6 88.2 87.2 75.5 68.3 69.1 65.7 53.9 

 5% 86.1 82.1 81.1 16.01 65.9 61.7 58.3 <1 

10% 86.1 28.1 81.1 <1 65.8 51.4 59.2 <1 

20% 80.9 21.5 80.4 <1 61.2 47.5 57.9 <1 

 0% 73.6 75.2 82.3 75.3 62.2 62.8 65 62.5 

 1% 70.4 69.6 80.7 66.5 61.9 61.7 65.9 58.7 

Quartz 2% 73.5 75.5 80.3 64.1 62.1 62.9 63.3 53.7 

 5% 68.6 63.4 77.1 11.6 63.7 57.5 66.8 <1 

 10% 69.7 50.5 73.3 11.8 61.5 38.8 60.3 <1 

 20% 64.2 47.9 70.6 5.8 57.3 28.1 57.8 <1 
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Figure 4.6: Some examples of the continuum removed spectra of pyrope, and quartz in the
7.7 µm to 11.8µm wavelength range are shown. The plot diagrams in each mineral depicts
the spectra for the Infragold plate and some spectra from the surface of the mineral while
the heating source is On and Off. Spectral radiance corresponding to the Infragold plate and
three minerals space (quartz, biotite, and pyrope) are also shown in i,ii,iii. The spectral of
radiance the Infragold panel and spectral of Olivine before continuum removal process are
shown (iv). The downwelling radiance is calculated by subtracting these two spectra. The
downwelling spectra of the other minerals are shown using this subtraction and presented with
the reference spectra of the targeted mineral from the ASTER library.
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4.5.4 Spectral comparison methods

Spectral angle mapper (SAM) is a method based on the physical property of a spectrum. It

provides features for discrimination among spectra through an error generated by the angle dif-

ference between two vectors (target spectrum and its reference). SAM is used for n-dimensional

geometrical space and determines the dissimilarity between the unknown spectrum t and the

reference spectrum r by using the equation (Kruse et al., 1993a)

α = cos−1

[ ∑n
i=1 tiri[∑n

i=1 t
2
i

]1/2 [∑n
i=1 r

2
i

]1/2
]

(4.11)

where n is the number of bands. For each pixel spectrum selected in the hyperspectral image

cube, the spectral angle reference spectrum calculates an error. The radian values regarding

every corresponding pixel at the output of SAM represent the difference in the spectral vector

direction from that of the reference.

Normalized cross correlation (NCC) is a method to determine the correlation between two

spectral data. NCC uses two types of entry: the data and their reference. It uses a formula

for r through substitution-estimation of the covariances and variances based on a sample in

the formula. If the dataset presented by {x1, ...xn} includes n values and {y1, ...yn} presents

another dataset having n values, then the formula for r is

NCC =
1

n
Σ

1

σfData
σrRef

(fDatarRef ). (4.12)

where n is the number of pixel spectrum in fData and rRef (fData and rRef are normalized) and

σfData
and rRef are standard deviations of f (data) and r (reference spectra) sets, respectively.

4.6 Results

A selected set of the spectra from the targeted minerals is given in Figure 4.6 along with

the calculation of downwelling spectral radiance for the selected minerals. The proposed

approach presented two novelties, namely, spectral (radiometric) information and statistical

analysis. The computational analysis of hyperspectral data from both perspectives are pre-

sented here. The continuum-removed spectra using random selection, averaging, NMF-GD

and NMF-NNLS for downwelling radiance are shown in Figures 4.6 i-iv. To compare the

different radiance calculated by different methods, all radiance spectra are presented on the
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same graphs. For a more quantitative assessment of the spectra obtained by each method, a

reference spectral library was used, and the difference between targeted and reference spec-

tra was calculated. The Advanced Space-borne Thermal Emission and Reflection Radiometer

(ASTER) (Baldridge et al., 2009) library contains the spectra of nearly 2000 types of soils,

rocks, minerals, snow, water and artificial minerals. Several of these spectra cover the wave-

lengths measured in this study (0.4-14 µm). The spectral data for each mineral cover visible,

near-IR, mid-IR and thermal-IR wavelengths.

The difference between targeted and reference spectra was obtained using NCC and SAM.

The main difficulties were related to using two different spectral resolutions in the calcula-

tion, which was performed by downsampling the high spectral resolution to a low resolution.

Thus, NCC and SAM were applied to the four continuum-removed spectra obtained (spec-

tral averaging, NMF-GD, NMF-NNLS and random selection). The computation results are

presented in Figure 5 and Table 4.3 in percentages that express the quantitative similarity of

these spectra with the reference spectra for additive noise and mis-selection of the Infragold

plate, respectively. The level of similarity was reduced by adding noise for all of the meth-

ods, but random selection of spectra showed the highest sensitivity against noise compared

with the three other methods. At a high level of noise, NMF showed a robust behavior (with

the exception of pyrope and olivine). At a low level of additive noise, NMF-NNLS showed

considerably higher robustness in the presence of noise for diopside, epidote, tourmaline and

quartz, whereas in the pyrope case, NMF-GD showed higher robustness compared with the

other methods. This result is due to the minimal dependency of NNLS on the amplitude of

spectra in the calculation compared with the other methods involving NMF-GD, averaging

and random selection of spectra (Figure 4.6). The signal-to-noise Ratio (SNR) was calculated

for this approach by following the formulation

SNR =
µS
σN

(4.13)

where µS and σN are the average of the signal in the ROI region in the hyperspectral image

and the standard deviation of noise, respectively (Figure 7 shows the graph of SNR when the

additive noise level increases). Spectral averaging showed higher similarity with the reference

spectra for biotite and olivine because of the higher reflectance of these minerals compared

with the other minerals (Table 4.3). In general, SAM produced a lower similarity percentage
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compared with NCC, but the similarity trend was nearly the same. Figure 5 shows the

similarity percentage when the Infragold ROI includes other parts of the hyperspectral image

(this region was added by additive pixel-spectral percentage). The results presented in Figure

5 reveal the higher robustness of averaging compared with random selection and the higher

similarity measure for NMF compared with the two other methods (with the exception of 3%

where the similarity of averaging is higher than that of NMF-GD).

Table 4.4: Comparative accuracy of the proposed approach is shown with PLSR.

 

 
Average NCC 

 
Comparative accuracy  

PLSR Random 
selection 

Averaging NMFGD NMFNNLS 

Biotite 63.2 90.1 90.3 89.9 86.8 

Diopside 61.2 71.8 72.2 72.8 74.3 

Epidote 68.8 84.6 84.4 82.1 84.8 

Tourmaline 44.7 52.6 51.9 53.4 52.1 

Pyrope 90.1 93.5 93.5  94.1 75.4 

Olivine 69.6 84.7 84.9 84.9 80.8 

Quartz 70.7 75.3 73.6 75.2 82.3 
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The computation complexity (in seconds) of these calculations is presented in Table 4.2. NMF-

GD and NMF-NNLS calculations proceeded for 1000 and 200 iterations, respectively. The

computation of these algorithms was about 20 times more demanding than that of the algo-

rithms for random and average selection of radiance. NMF-NNLS showed a higher computa-

tional complexity than NMF-GD, thus indicating the difference between a first-order iterative

optimization algorithm and a constrained version of the least-squares problem, which is equiv-

alent to a quadratic programming problem (Franc et al., 2005). The average accuracy of the

proposed approach was compared with that of previous methods (PLSR) (Gomez et al., 2008;

Huang et al., 2004b), as shown in Table 4.4. For each method, continuum removal was cal-

culated and compared using NCC to its corresponding spectra in ASTER/JPL. To calculate

the continuum removal using PLSR, the spectral radiance with heating source was used to

estimate the continuum. The results of the comparison indicated that the proposed approach

(using spectral radiance without a heating source) has a high average accuracy in suppressing

the spectral continuum from spectra (ACC) is: ACCNMFGD = 78.9%, ACCNMFNNLS =

76.7%, ACCAveraging = 78.6%, ACCRandom = 78.8%, ACCPLSR = 66.9%) (Yousefi, 2018).
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Figure 4.7: Signal to noise ratio along with similarity level of continuum removed to
ASTER/JPL spectral library are shown.
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4.7 Discussion

The presented approach proposes a new modification of the continuum removal technique for

ground-based hyperspectral imagery. The method facilitates the calculation of continuum re-

moval for hyperspectral image acquisitions with and without a heating source. This feature

alleviates the difficulty of the process by suppressing the blackbody temperature on the pan-

elâs surface. An experiment was conducted within the 7.7µm to 11.8µm LWIR wavelength

range using a FIRST FTIR LW hyperspectral camera of Telops. Another novelty of this

approach is related to applying NMF analysis to downwelling radiance. The proposed algo-

rithm uses Rank-1 NMF to determine the downwelling radiance and ensures the best basis

radiance selection. The application of NMF in comparison with other linear Eigen decom-

position methods (e.g. PCA (Jolliffe, 1986)) showed better basis representative calculation

due to non-negative coefficients in the process (Ding, 2005). Negative coefficients indicate the

relationships among some of the bases that occurs in eigen decomposition approaches, such

as PCA. In addition, Rank-1 NMF represents the basis corresponding to the heat matrix in

the factorization process, which is a guarantee for obtaining a better representative of the

input data (downwelling radiance set) (Lee and Seung, 1999). The standard NMF optimized

by GD and NNLS algorithms were tested for the evaluation of the performance of Rank-1

NMF calculation from downwelling radiance through each of these algorithms. These results

were in agreement with those obtained using the averaging and random selection of spectra.

The use of random spectrum selection from the Infragold panels provided a sensitive radiance

that did not reliably denote the downwelling radiance. Furthermore, incorrect selection of the

Infragold panel (in the image) for spectrum calculation is another potential source of error

that may influence the calculation. The application of NMF provided a solution and led to

enhanced robustness in the presence of such complications.

The comparison of continuum-removed radiance with ASTER spectra as a reference through

NCC provided an estimate of the similarity level. The results indicated that continuum-

removed radiance was highly consistent with the reference spectra. The NNLS algorithm

showed higher similarity compared with the GD algorithm. This result indicates the difference

between a constrained least-squares algorithm (in NNLS) and local minimum calculation in the

GD algorithm, which resulted in a better response of NNLS to amplitude variations compared

with the GD algorithm. However, the computational complexity of the GD calculation was
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lower than that of NNLS.

4.8 Conclusions

The approach proposed is a modification of the continuum removal process of spectral radiance

for ground-based spectroscopy. It alleviates the calculation of the blackbody temperature on

the panelâs surface by conducting the acquisition before and after heating the samples. The

calculation was verified by using data generated from an experiment conducted within the

7.7µm to 11.8µm LWIR wavelength range using a FIRST FTIR LW hyperspectral camera of

Telops. Subsequent calculations of continuum removal were also modified by an estimation

of the downwelling spectral radiance using NMF optimized by GD and NNLS. The result

was then compared with the results obtained using spectral averaging and random selection

of spectra in the presence of 1% − 20% additive noise. The similarity percentage of the

continuum-removed spectra with each method was compared with the spectra of the minerals

from the ASTER spectral library by using SAM and NCC. The method was also subjected

to 2% − 15% wrong pixel spectrum selection of Infragold, and its similarity percentage was

measured by SAM and NCC. The results showed a higher similarity value when NMF is

used compared with the situation when the other approaches are utilized. In general, NMF-

NNLS showed more robustness to noise in comparison with NMF-GD, averaging and random

selection. The computation complexity of the proposed algorithms may be affected by other

possible artifacts (e.g. inaccurate selection of reference radiance spectra). A cross-validation

method to determine the number of iterations involved when applying NNLS and GD can be

a subject for future work. Moreover, NMF can be employed with semi- optimized NMF using

multiplicative rules, NNLS or non-negative quadratic programing rules, which may improve

the NMF calculation and its possible sensitivity to spectral radiance calculation.
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Chapter 5

Automatic Mineral Identification

using Ground-based Hyperspectral

LWIR Infrared Spectral Analysis and

Extreme Learning Machine

(Submitted to Infrared Physics and Technology Journal, 2018).

5.1 Résumé

Les développements de la technologie hyperspectrale dans différentes applications sont connus dans
de nombreux domaines, en particulier dans la télédétection, l’imagerie aérienne, l’identification des
minéraux et l’exploitation des carottes. Le système d’ identification automatique des minéraux four-
nit une aide considérable en géologie pour identifier les minéraux. Ici, l’approche proposée consiste
en un système automatisé pour l’identification minérale (c’est-à-dire, pyrope, olivine, quartz) dans la
spectroscopie du sol par ondes infrarouges longues (7.7 µm à 11.8 µm - LWIR). Des méthodes de com-
paraison spectrale telles que Spectral Angle Mapper (SAM), Spectral Information Divergence (SID),
NCC (Normalized Cross Correlation) ont été utilisées pour extraire les caractéristiques sous forme
d’images composite de fausses couleurs. L’analyse des composantes de principe clairsemées (SPCA)
est utilisée pour extraire la référence spectrale pour l’utilisation de telles techniques et montre une
grande similarité avec la bibliothèque spectrale ASTER (JPL / NASA). Une machine ELM (Extreme
Learning Machine) utilisée pour la prise de décision donne une précision de classification allant jusqu’à
76.69% en utilisant un noyau polynomial basé sur SAM pour le mélange de pyrope et 70.95% en
utilisant un noyau sigmoide ELM pour le mélange d’olivine. Cette précision est légérement inférieure
à celle de la classification, ce qui donne une précision de 84.91% (NCC) pour le pyrope et de 69.9%

69



(SAM) pour l’identification de l’olivine. Cependant, la classification supervisée dépend de maniére sig-
nificative du nombre d’échantillons d’ entraînement et est considérablement plus difficile par rapport à
la classification en raison des limites d’ étiquetage et d’ entraînement. De plus, les résultats indiquent
une similarité considérable entre les spectres de calcul SPC1 et les spectres de la bibliothèque spectrale
ASTER.

General Explanation
An automated system for mineral identification in long-wave infrared (LWIR) ground-based spec-
troscopy is proposed in this chapter. Several spectral comparison methods have been applied to create
false colors composite. The similarity between the ASTER (JPL/NASA) spectral library and the
spectra from Sparse Principle Component Analysis (SPCA) for each mineral is tested. But the main
contribution of this article is testing a supervised learning method for decision making and compared
it with unsupervised learning algorithm. For that, a kernel Extreme Learning Machine (ELM) used
for classification and its results have been compared to clustering. We concluded that the supervised
classification significantly depends on the number of training samples and is considerably more difficult
as compared to clustering due to the nature of supervised learning process.

The results of this study were partially presented at the poster session of the International Congress
on Thermal Infrared Applications XXXVIII (Thermosense), May 2016, Baltimore, USA.
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Bardia Yousefi (Ph.D. candidate): a part of the experiment planning, data collection, data anal-
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sion and correction of the manuscript.
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5.2 Abstract

The developments in hyperspectral technology in different applications are known in many fields par-

ticularly in remote sensing, airborne imagery, mineral identification and core logging. The automatic

mineral identification system provides considerable assistance in geology to identify mineral automat-

ically. Here, the proposed approach addresses an automated system for mineral (i.e. pyrope, olivine,

quartz) identification in the long-wave infrared (7.7µm to 11.8µm - LWIR) ground-based spectroscopy.

Spectral comparison methods such as Spectral Angle Mapper (SAM), Spectral Information Divergence

(SID), Normalized Cross Correlation (NCC) have been used to extract the features in the form of

false colors composite. Sparse Principle Component Analysis (SPCA) is used to extract the spectral

reference for using such techniques and show high similarity with the ASTER (JPL/NASA) spectral

library. A kernel Extreme Learning Machine (ELM) used for decision making yields classification ac-

curacy up to 76.69% using SAM based polynomial kernel ELM for pyrope mixture, and 70.95% using

SAM based sigmoid kernel ELM for olivine mixture. This accuracy is slightly lower as compared to

clustering which yields an accuracy of 84.91% (NCC) for pyrope and 69.9% (SAM) for olivine identifi-

cation. However, the supervised classification significantly depends on the number of training samples

and is considerably more difficult as compared to clustering due to labeling and training limitations.

Moreover, the results indicate considerable similarity between the spectra from SPC1 calculation and

the spectra from the ASTER spectral library.

Keywords: Thermal image analysis, Hyperspectral infrared image analysis, Mineral identifi-

cation, Sparse principle component analysis, Extreme learning machine.
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5.3 Introduction

Technological developments in different wavelength bands in spectroscopy have created in-

teresting opportunities, providing spectral and spatial information from the surface of ma-

terials. The automatic/semi-automatic/non-automatic approaches in mineral identification

extensively depend on this information. The proposed approach is to develop a ground-

based spectroscopy system for automatic mineral identification using Extreme Learning Ma-

chine(ELM). It uses spectral comparison technique for creating the false color composite and

the spectral reference calculated by applying Sparse Principal Component Analysis (SPCA)

and selecting the first sparse principal component(SPC1) of the spectra from mineral’s sample.

Spectrometric imagery gives information which can be exclusively used in geology and miner-

alogy field (Goetz, 2009; Van der Meer et al., 2012). Several spectral databases (e.g. ASTER

(Baldridge et al., 2009)), have been widely used as reference for spectral analysis and con-

tain a collection of the spectral libraries including sample in laboratory or field conditions.

The signature of the natural materials in such spectral libraries provides opportunities for

data-mining techniques to be applied to imagery. The spectra from these libraries can serve

as reference or ground truth to enable comparison among the spectra. Recent hyperspectral

methods focus on spectral techniques; for estimation of abundance of quartz and clays in oil

sand (Entezari et al., 2017) or identifying minerals for mapping (Feng et al., 2013b). These

methods typically compare the targeted spectra in the hyperspectral images to the spectra of

the minerals in libraries (Cloutis (Cloutis, 1996) and Plaza et al. (Plaza et al., 2009)). There

are many spectral comparison approaches developed and applied for spectral analysis such as

SAM and NCC, which more commonly used (Baldridge et al., 2009). Moreover, for better

spectral representation, several features which are dealing with wavelength position and the

spectral absorption have been developed.

The objective of this study concerns a ground-based mineral identification deploying super-

vised and unsupervised approach similar to airborne imagery (Murphy et al., 2014; Deng et al.,

2014; Wan et al., 2017) and core logging (Salisbury et al., 1994; Korb et al., 1996; Hook and

Kahle, 1996). The absorption information (signature) and the wavelength position are depend

on the mineral composition and change based on geochemical information which leads to min-

eral identification (Crowley et al., 2003; Morris et al., 1985; Scheinost et al., 1999). The local

and global minima or maxima (extrema) in different wavelengths lead to distinguishing the
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minerals and this method is becoming a commodity for mineral identification (e.g. effect of

lichen in mineral identification (Feng et al., 2013b)).

Short Wave Infrared (SWIR) band range is relatively confined (Feng et al., 2017; Clark et al.,

1990; Murphy, 1995) comparing to other band such as visible and near infrared (VNIR) and

Long Wave Infrared (LWIR). This matter creates level of difficulties for precise determina-

tion of extrema and comparative analysis (Murphy et al., 2014). Selection of the spectral

representative for identification of the pure minerals may involve prior knowledge of physical

(roughness, particle size, etc) and chemical properties of the material, its surface and illumina-

tion geometry of measurement (i.e. background continuum, particular albedo, and absorption

features) (Clarke, 1999; Clark and Roush, 1984). This involves some research in order to min-

imize such effects (Clarke, 1999; Clark et al., 2003). Contain approaches have a more suitable

shape of the known continuum spectra and attempt to fit either locally or entirely in linear or

curved baseline approaches (Clarke, 1999; Sunshine and Pieters, 1993). Spectral comparison

methods such as SAM, spectral feature fitting (SFF, (Clark and Swayze, 1995) and Tetra-

corder (Clark et al., 2003)) can be applied after continuum removal. The data is sensitive to

a variety of factors including the non-uniform thermal property and background reflection of

the minerals, angle of acquisition, and several other parameters, whereas continuum removal

provides a correction to the spectra and prepares the spectra for comparison. This minimizes

the influence of such parameters on the data by removing the continuum from the spectrum.

In this study, the experiments involve to study a set of pure and mixed mineral grains and

active thermography which involves placing a heating source in front of the hyperspectral cam-

era to illuminate the samples. Continuum removal uses Non-negative Factor Analysis (NMF)

to find the best spectral representative from down-welling radiation. The analysis of mineral

identification uses SPCA to find the spectra reference and compared with the ASTER spectral

library (Baldridge et al., 2009). After, spectral comparison techniques use these references and

creates the false colors and ultimately segmentation of the mineral grains is conducted. The

proposed approach uses hyperspectral imaging in the wavelength range of 7.7 µm to 11.8 µm

(Long Wave Infrared-LWIR) for certain mineral grains, in laboratory conditions using a FTIR

hyperspectral camera equipped with a magnifying lens to improve spatial resolution. The

remainder of the paper is organized as follows. In Section 2, we introduce the methodology

and explains, how the continuum removal and segmentation processes are performed. Section

3 describes the experimental and simulation results. We discuss the challenges and advantages
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Figure 5.1: The scheme of the proposed algorithm.

of the approach in Section 4. Finally, we conclude and describe future work in Section 5.
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5.4 Method

Here, an automated mineral identification for ground-based spectroscopy has been challenged

through application of supervised (Extreme Learning Machine-ELM) and unsupervised ap-

proaches (clustering). But before that to have the classification attributes, several spectral

comparison techniques used (i.e. SAM, SID, and NCC). To apply spectral comparison tech-

niques, spectral references are requires that the proposed method deployed Sparse Principal

Component Analysis (SPCA) to extract the spectral references from single mineral samples

and even compared them with ASTER spectral library.

5.4.1 Spectral Comparison techniques

textitSpectral Angle Mapper (SAM) technique calculates angle between the reference and

targeted spectra as an error between them (Kruse et al., 1993a, 1992) which represents their

physical composition property and uses the n − D angle to match the targeted spectra to

reference spectra. The spectral references for using SAM usually involve using the spectral

libraries whereas the proposed approach modified it by extracting it directly from the spectra

of pure samples (such as those presented here). The amount of the error generated by SAM

represents the significant difference between the mineral compositions (Kruse et al., 1993a).

Spectral information divergence (SID)

SID is another spectral comparison techniques. x = (x1, x2, . . . xL)T represents the pixel-

spectra, Xl component, in hyperspectral data cube and considered to be a probability dis-

tribution aim to estimate the correlation between the spectra (targeted and reference spec-

tra). y = (y1, y2, . . . yL)T is additional pixel vector that has the probability distribution of

q = {ql}Ll = 1 and qj =
yj∑L
l=1

yl and compose SID through following formula:

SID(x, y) = D(x||y) +D(y||x) (5.1)

where p = {pl}Ll=1 is the desired probability vector from the x and pj =
xj∑L
l=1 xl

, and

D(x||y) =
∑L

l=1 pl log(plql ). The D(y||x) =
∑L

l=1 ql log(plql ) is the relative entropy or a di-

rected divergence (cross entropy) of x and y through Kullack-Leibler function (Chang, 1999.

Normalized Cross Correlation (NCC)

NCC involves a simple correlation comparison between the spectral. The images should first

be normalized due to many factors such as the image brightness variation, exposure conditions,
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and lighting caused by the mineral grains non-uniform shape. This is performed through divi-

sion of the mean by standard deviation subtraction. NCC provides a correlation number as a

valuable information showing the spectral difference between the reference spectrum (similar

SAM the reference spectra calculated by the spectral of pure samples) and the targeted spec-

trum. This method has been used for template matching and image analysis (Zou et al., 2006).

SPCA to extract spectral reference

PCA is a linear transformation that can be presented by S = XL (L is an orthonormal basis

matrix and X is a mean-zero data matrix) which maximizes the projected data (S) variance

(even hybrid methods such as Two-dimensional principal component analysis(2DPCA)(Huang

et al., 2016) are still linear). Principle components (PCs) are extracted from the vectors in X

and are the compact representation of the basis vectors while K < p. This is not the first time

that sparse computation is used in spectral analysis (Iordache et al., 2012, 2014; Themelis

et al., 2012a). However, their research was related to unmixing and endmember analysis in

hyperspectral remote sensing imagery which is different from the perspectives of this paper.

The regularization terms imposed for mathematically solving the sparse unmixing in three

types of methods such as convex relaxation methods (Iordache et al., 2012, 2014), greedy

algorithms (Iordache et al., 2011), and sparse Bayesian methods (Themelis et al., 2012a) but

here we use it for extraction of spectral reference through using the first basis attained by

SPCA calculation. The replacement of the non-smooth l0 with l1 or lp norm imposes the well-

defined optimization problems to a tractable solution (Tropp and Wright, 2010) in the convex

relaxation methods: e.g. the alternating direction method of multipliers (ADMM) method

(Afonso et al., 2011; Mei et al., 2015). The l0 regularization problem in the greedy algorithm

is solved by an iterative identification of potential endmembers from the spectral library until

the advent of best reconstruction in the mixed pixel (Tropp and Wright, 2010).

SPCA involves additional regularization parameters which maximizes the uncorrelated PCs

variance and converts PCA into the nonlinear transformation (Zou et al., 2006; Sjöstrand

et al., 2012). The SPCA elastic-net has a relaxation l2 and l1-penalty terms as it is shown in

the following formulation:

{ζ̂k, γ̂k} = argminζk‖X −Xγkζ
T
k ‖2F + δ‖γk‖22 + λ‖γk‖1,
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s. t. ATkAk = I. (5.2)

where Xζk is the response vector, γ̂k = (XTX + δI)−1XTXζk , and ζ̂k = argminζk‖X −

Xγkζ
T
k ‖2F s.t.ζTk ζk = 1, ζTk A(k−1) = 0. In the case where the l2 regularization parameter δ is

changing, the second term of the equation above would be influenced (the γk approximation

can be done by a soft-thresholding rule (Zou et al., 2006). The SPCA deployed to unmixed

sampled spectra to extract the spectral references (one example of quartz is shown in Figure

5.2). Since the experiment involves two types of grain samples: the group that they do not

have any aggregation with other minerals (called "pure samples") and other samples that

several grain types mixed with other grains (e.g. quartz). By applying the SPCA to the

spectra of pure samples, we excerpt the spectra which one can deploy as spectral reference

in the application of spectral comparison techniques (as the classification attributes). For

example once the SAM is used, the spectral angle between the first SPC in the basis matrix

(called SPC1), and every other pixel-spectra in the image cube are calculated and it provides

the attributes that been used in classification step.

5.4.2 Segmentation

Segmentation is essential to identify the minerals and it can be done by simple approaches

such as spectral information segmentation and implying discrimination ratio (threshold) or

applying the more sophisticated techniques such as Extreme Learning Machine (ELM) or

K-means clustering. This section briefly reviews the methods employed for segmentation.

Extreme Learning Machine (ELM)

Artificial Neural Networks (ANN) can estimate a difficult nonlinear mappings from the in-

put sample. A Single Layer Feed-forward Network (SLFNs) structural design called Extreme

Learning Machine (ELM) proposed by Huang et al. (Huang et al., 2004a) which solved

the initiation problem in the case of using gradient descent application. This reduces the

computational complexity for training and enhances learning performance compare to con-

ventional approaches and its capability for nonlinear kernel and activation functions (Rajesh

and Prakash, 2011).

Clustering

To cluster hyperspectral image cubes obtained from the experiments in an unsupervised way, a

Hue-Saturation-Value (HSV) based K-means clustering has been used. It categorizes the false
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colors created to different groups where these groups labels as different mineral using spectral

comparison techniques. In general, false color composites are obtained from putting parts of

wavelength in different color group (around the wavelengths of 1150 µm = red; 960 µm =

green; 1060 µm = blue) but we got them through spectral comparison techniques by putting

different values of spectral comparison attributes into the color (for example SAMpyrope =

red, SAMolivine = green, and SAMquartz = blue).

5.5 Results

The proposed approach is based on statistical analysis and computer simulations on the hyper-

spectral data. The properties of the data-set, the acquisition properties, and the experimental

setup are described.
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Figure 5.2: Experimental setup and spectra of minerals are shown in the figure. Upper
image represents the spectra of the minerals used in the experiment (pyrope and quarts mixed
sample) along with spectra from ASTER spectral library (a,b). Lower left hand-side image
is the scheme of experimental setup (c) along with three pictures taken from the conducted
experiment (d).
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5.5.1 Mineral Grains and LWIR spectroscopy

Since the field of view (FOV) of the sensor was small and the grains were between 0.6 mm

to 2.0 mm, a special lens was used for higher spatial resolution (which is described in next

section). The mineral samples were divided into groups of mixed and pure samples and

three minerals which have distinguishable spectra in LWIR (i.e. Olivine (Mg+2, Fe+2)2SiO4,

Pyrope Mg3Al2(SiO4)3, and Quartz SiO2 (Mindat, 2012). Figure 5.2.a-b show the spectra

of mineral and one example of mixed samples. The image acquisition in this paper were

conducted while the heating source were turned on and off (for performing the continuum

removal (Kirchhoff, 1860), and for both conditions, the spatial resolution is 200× 256 and 87

spectral channels were recorded. The sensor used to make the measurements was a lightweight

Hyper-Camera imaging spectroradiometer (HYPER-CAM LW) (Ding, 2005 operating in the

long-wave infrared (LWIR) band (from 7.7 to 11.8 µm). It has spatial resolution of 320 × 256

LWIR PV-MCT focal plane array detector and having spectral resolution up to 0.22µm. The

spectra is obtained using a Fourier-Transform Spectrometer (FTS) and the Hyper-camera

measures complete spectrum for every pixel and having an instantaneous FOV of 0.35 mrad

(Ding, 2005). A Long-Wave LW Macro lens provides a pixel footprint of 0.1 mm with working

distance of 30 cm (Figure 5.2.b). A heating source was located in front of the samples for

providing the active thermographical conditions in the experiment (Figure 5.2.c). However, the

image acquisition was continued after turning off the heating source. The grains were attached

to adhesive carbon-based tape during the experiment and were placed on an infra-gold plate.

The hyperspectral images were taken perpendicularly having the spectral resolution of 6 cm−1

(∼ 0.0119µm at 7.7µm and ∼ 0.0465µm at 11.8 µm) in 87 spectral bands. Since an infragold

was placed in the background, its reflectance assisted in removing the continuum from the

spectrum (Kirchhoff, 1860).

5.5.2 Results

The results of the proposed approach are presented in this section and it is divided by two

stages. First, the results of the application of SPC1 from the pure samples versus ASTER

spectral library as the reference spectra in spectral comparison techniques is shown and then

the results of using two different learning system are analyzed.
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5.5.3 ASTER spectral library and the result of SPCA as reference spectra

The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) imaging

program at NASA (Baldridge et al., 2009) comprises compilations of spectral information from

the Jet Propulsion Laboratory, Johns Hopkins University, and the United States Geological

Survey. The library contains the spectra of nearly 2000 types of soils, rocks, minerals, snow,

water and artificial minerals. Several of these spectra cover the wavelengths measured in this

study (0.4 to 14 µm). The spectral data for each mineral covers the visible, near-IR, Mid-

IR and thermal-IR wavelengths. To apply the spectral comparison techniques, the spectral

reference has a key role in the calculations. In general, the ASTER spectral library is used as a

reference spectrum for each minerals. Here, the possibility of using SPCA as spectral reference

was analyzed through generating the spectral references from pure mineral grains. PCA itself

can give a reasonable representation of the statistical information but SPCA provides more

robust data facing noise (Iordache et al., 2011, 2012, 2014; Tropp and Wright, 2010; Afonso

et al., 2011; Mei et al., 2015; Zou et al., 2006; Sjöstrand et al., 2012). The first sparse principal

component (SPC1) extracted from the basis matrix (sparse calculated eigenvector matrix)

having the spectra of pure samples as their input and since the abundance spectra of pure

samples are usually belong to one mineral, the extracted spectra (SPC1) are also belong to

same mineral and used as reference spectra. This matter confirmed by comparing the ASTER

spectra to SPC1 spectra which showed identical similarity (Table 5.1) and used SAM and NCC
1. To calculate the reference spectra using SPCA, a pixel spectra set of pure sample minerals

is used as a training set with no overlap to the testing set (testing sets contain pyrope-quartz

or olivine-quartz grains- mixed samples).

1This calculation is just a score of difference and it is different from using spectral comparison for generation
classification attributes or false colors images.
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Table 5.1: Comparison among the SPC1 spectral references and ASTER mineral spectra using
SAM and NCC (percentage of the similarity).

Spectral Comparison 
Technique 

Quartz Quartz 
Similarity (%) 

Olivine Olivine 
Similarity (%) 

Pyrope Pyrope 
Similarity (%) 

SAM 0.4830 51.70 0.2698 73.02 0.2330 76.70 
NCC 0.6055 60.55 0.9336 93.36 0.9520 95.20 
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Table 5.2: Accuracy of ELM for mineral identification.

 

 
 

Minerals 

Accuracy of Classification (%) 

 
Spatial 

resolution 
of RoI 

ELM 

Linear kernel Polynomial  
kernel 

RBF Sigmoid 

SAM NCC SAM NCC SAM NCC SAM NCC 
background Pyrope 160*161 99.8 98.9 99.9 99.4 99.9 99.1 99.9 99.1 

Olivine 157*139 94.1 98.4 97.2 99.9 95.5 99.9 92.5 98.8 

Non-
background 

Pyrope 160*161 97.7 10 99.1 43.35 98.95 10 98.95 10 

Olivine 157*139 94.8 87.95 97.7 99.55 96.3 99.05 93.55 93.65 

5.5.4 Segmentation performance

Results of spectral comparison techniques

The performance of the spectral comparison techniques are presented in this section. Apply-

ing SAM and NCC showed higher performance as compare to SID due to direct calculation

of the difference between the targeted and referenced spectra. These algorithms calculate

the difference between the reference and targeted spectra and this difference is given in the

form of an error (in the case of SAM), correlation similarity (in the case of NCC), and cross

entropy (in the case of SID). Topological similarities among the mineral’s spectra create more

suffice performance for SAM and NCC due to their dependency to the shape of the spectra

as compared to SID that estimate the difference entropy based on statistical information.

Moreover, applying spectral comparison techniques showed good improvement in generating

the false colors which led to better identification of the minerals using clustering (Figure 5.4).

The main reason behind this improvement is elimination of unrelated part of the spectrum

which decrease inconsistently between the target and reference spectra. The comparison took

place for each pixel spectrum and it provides the amount of the spectral difference for tar-

geted pixel-spectrum and continued by looping over all the spectral pixels in the hyperspectral

cube. Consequently, the spectral variation provides a map which represents the similarity of

the spectra to targeted spectra, a false color map. These metrics are the input for the seg-

mentation section in the approach and used as classification attributes or directly false color

images for to be grouped in different sets.
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Table 5.3: Computational load for ELM classification is shown.

 

 
 

Minerals 

Computational Cost (time in second) 

 
Spatial 

resolution 
of RoI 

 
Spectral 

comparison 
techniques 

 
 

ELM 

Linear kernel Polynomial  
kernel 

RBF Sigmoid 

Training 
Time 

Testing 
Time 

Training 
Time 

Testing 
Time 

Training 
Time 

Testing 
Time 

Training 
Time 

Testing 
Time 

Pyrope 
 

 
160*161 

SAM 21.16 63.10 0.61 71.91 7.67 65.68  4.06 126.07 3.08 

NCC 27.74 59.83 0.68 73.68 7.67 64.95 4.15 119.55 3.02 

Olivine 
 

 
157*139 

SAM 20.64 55.63 0.61 66.16 6.98 61.99 3.93 107.09 2.71 

NCC 26.89 54.61 0.64 64.18 7.07 57.65 3.76 110.41 3.02 
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Figure 5.3: The results of spectral comparison analysis (SAM, SID, and NCC) are revealed
by false colors in the figure.
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Figure 5.4: The results of the clustering by SAM (a.), NCC (b.), and SID (c.). The mineral
grains have been automatically detected through their false colors. a. and b. show the
hyperspectral and binocular images from olivine and pyrope, respectively. Columns i. and iv.
show the false colors results using the spectral comparison techniques. Columns ii., iii., v.,
and vi. depict the clustering results for each minerals and every spectral methods.
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Results of ELM and clustering

Identification of the minerals took place in different settings involving supervised/unsupervised

approaches. For the supervised approach, there is a training set randomly selected from pix-

els of mineral grains. In contrast, the unsupervised approach does not require a training

stage, but the selection of the clusters needs to be interference of training information (labeled

data). Before explaining the performance of segmentation, analyzing the performance of spec-

tral comparison techniques is vital as the segmentation depends on it. Spectral comparison

techniques provided the classification attributes and false colors images which facilitated the

performing the classification and clustering segmentation of mineral grains in the hyperspectral

images, respectively. Here the results of different segmentation methods to identify minerals

are shown. Two techniques were tested ELM and k-means clustering. Three different minerals

have different signatures in the LWIR band plus the spectra correspond to the sample’s back-

ground. Consequently, there are four different classes, including the background, that were

explored in the hyperspectral images for the presence of alternative classification/clustering

methods.

Automated mineral identification using ELM classification followed training and testing sce-

nario. The classification with ELM (with Linear, Polynomial, Radial Based Function(RBF),

and Sigmoid kernels)(Huang et al., 2004a; Rajesh and Prakash, 2011; Huang et al., 2006; Ruff

et al., 1997) was directly related to the training stage. Training and testing are done based

on NCC and SAM feature’s values as the attributes separately calculated for each mineral.

The number of observations for every spectral analysis and mineral is different due to extra

enhancing filtering performed to eliminate inconsistency in the training and testing data. Ta-

bles 5.2,5.3 show the accuracy and computational load for ELM classification.

The unsupervised segmentation of the mineral was performed by HSV color based K-means

clustering approach. The entire processes of clustering were executed knowing the number of

interested clusters and the relevant data to select the particular cluster afterward. The result

of HSV based K-mean clustering is shown in Figure 5.5. Given accuracy of the clustering tech-

niques in Tables 5.4 is directly related to accuracy of segmentation using clustering and global

accuracy of the approaches can be calculated by multiplying the accuracy of each step by the

segmentation results. Table 5.5 shows the computational complexity of false color generation

and applying the clustering for mixed sample sets.
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Table 5.4: Accuracy of the HSV based clustering for three different samples.

 
MAM 

 
HSV-based clustering 

 
Quartz (%) 

 

 
Pyrope (%) 

 

 
Olivine (%) 

 

 
Total accuracy 

(%) 

 
 

NCC 

Accuracy of mineral 
detection 

77.95 94.59 85.39 85.98 

Misclassification 22.06 5.41 14.61 14.02 

 
 

SAM 

Accuracy of mineral 
detection 

75.82 91.40 99.75 88.99 

Misclassification 29.56 29.34 4.03 20.98 

 
 

SID 

Accuracy of mineral 
detection 

68.52 72.01 92.19 77.57 

Misclassification 31.48 27.99 7.81 22.43 

 

Table 5.5: Computational complexity of the false color generation and clustering approach.

Computational Cost (time in second) 

Minerals Spatial Resolution  NCC SAM SID 

Mixture of Pyrope & Quartz 144*152 362.3 325.4 354.2 

Mixture of Olivine & Quartz 157*139 497.7 331.3 368.6 

 

The entire computational process has been done with a PC (Intel Core 2Quad CPU, Q6600,

2.40GHz, RAM 8.00GB, 64 bit Operating System) and data analysis has been conducted

using MATLAB programming language. In order to apply these techniques, a MATLAB

hyperspectral image index analysis toolbox (Isaac, 2015) was used. Figure 5.5 depicts the

segmentation results through clustering. Due to the similarity between first SPCA (SPC1)

and ASTER (see table 5.1), either the SPC1 or the ASTER library data can be used as the

reference spectrum. Table 5.1 represents an estimation of the spectral similarity among the

spectra in percentage. It indicates the sensitivity of the spectral comparison methods which

used for spectral comparison calculation.
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Accuracy of the classification

The proposed approach provided accuracy based on counting the correct detected pixels of

hyperspectral images. For that, a ground truth was required to compare the results of system

in order to obtain quantitative assessment. Ground truth was made by rigid manual labeling

the images for different types of minerals. This labeled image is verified using Micro X-

ray fluorescence (µXRF) images from the samples and ArcGIS to map them with the labeled

images or with results of automatic detection (Figure 5.6). Local accuracy (ACC) is calculated

by:

ACC(%) =
Correct detected pixels

Total pixels of mineral
∗ 100 (5.3)

It is noticeable that the location of the detected pixels is vital to identify the mineral grains.

The total accuracy of both methods is calculated while the total accuracy of each method

multiplies to the sensitivity percentage of spectral comparison techniques (table 5.1) which

might decrease the current accuracy. But the accuracy here does not indicate the reliability of

the system because the main objective is to identify the grains and pixel calculation performed

as a comparison criterion and even two or three pixels in the grains provide satisfactory

outcome for the system (as these pixels represent the grain’s content).
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Figure 5.5: The binocular images from the grains of pyrope, olivine, and mixed with quartz
grains are shown. Also the /muXRF image of the samples are also shown in the image to verify
the ground truth images and labeling. (g1-g3 and h1-h3 depict the images of pyrope-quartz
and olivine-quartz samples using Micro X-ray fluorescence (µXRF), respectively. i1,i2,j1,j2
show a point in the grains of olivine and pyrope, respectively.
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5.6 Discussion

The main objective of this research was to identify the minerals automatically. For this pur-

pose, we used the statistical and spectral information in the form of applying hyperspectral

comparison analysis. Segmentation and mineral identification in the hyperspectral images

underlined a set of feature combinations using such information. This study has shown the

application of hyperspectral infrared imagery in the 7.7-11.8 µm wavelength range for min-

eral identification through supervised/unsupervised categorization techniques. The presented

approach challenged two different types of segmentation involving classification (using SAM

and NCC) and clustering (using SAM, SID, and NCC). As the classification is a supervised

approach, it suffers from dependency on the number of training samples in training stage. Mis-

classifications are ultimately inevitable because of small size of the grains and consequently

lack of proper training in the system. Moreover, the nature of the classification approach

unequivocally creates two stages data-processing which is considered as an inauspicious short-

coming which debilitates supervised system versus unsupervised system (particularly for this

application). In addition, application of the supervised procedure (e.g. ELM) might create too

much sensitivity against acquisition’s parameters such as experimental setup, background, or

special temperature of heating source. This might be attributed by specific values of weights in

the training matrix (in the case of using ELM or any other neural networks). On the contrary,

the clustering leads a direct grouping of the spectral data and is more simple and propitious to

be used for such applications. It does not have training stage which considerably decreases the

pre-processing analysis and labeling costs but also more robust against acquisition parameters.

The contributions of the proposed approach applying for two major points of view, i.e. ge-

ological and spectral analysis perspective. In geology, the presented method increased the

perspective of mineral identification from remote sensing, airborne imagery, and core logging

to the small mineral grains which includes the analysis for estimation of spectral radiation

(continuum removal) and identification computations. There are some related works included

hyperspectral mineral identification in core logging (i.e. (Salisbury et al., 1994; Korb et al.,

1996; Hook and Kahle, 1996)) which have more similarity to this research which is more in

terms of close range (distance between target and hyperspectral camera) experimental condi-

tion but their complex mineral aggregate and the shape of the mineral targets are compara-

tively different. The second point of the contribution is related to major comparison between
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two methods for automation of mineral identification and spectral analysis which scrutinizingly

compared ELM and clustering approaches for the same sample sets.

5.7 Conclusions

The presented approach involved an experiment in the hyperspectral imagery in the 7.7µm

to 11.8µm LWIR wavelength range conducted using a FTIR hyperspectral camera. The ob-

jective was automatic identification of the minerals (pyrope, olivine, and quartz). For that,

spectral comparison methods such as SAM, SID, and NCC, have been used to extract the

features in the form of false colors. Spectral references provided by the statistical information

using SPCA which extracted the SPC1 from the pure sample grains. These spectral references

have shown identical similarity compared to ASTER (JPL/NASA) spectral library. For final

decision making, two approaches were investigated ELM and HSV based K-means clustering

to identify the mineral grains in a supervised/unsupervised manner (respectively) and the re-

sults indicated promising accuracy. Comparison can cautiously be made by keeping the study

limitations in mind as such the non-homogeneous surface of mineral grains that creates the

radiometric variation as changing parameters within the test. The supervised classification

accuracy reached up to 76.69% using SAM based polynomial kernel ELM for pyrope mixture

and 70.95% using SAM based sigmoid kernel ELM for olivine mixture as overall hyperspectral

image classification accuracy. The classification accuracy was slightly lower as compared to

clustering which indicates an accuracy of 84.91% (NCC) for pyrope and 69.9% (SAM) for

olivine identification by adding the sensitivity percentage into the accuracy calculations. The

supervised classification showed significant dependency on the number of training samples

and considerably more difficult as compared to clustering. The results of SID showed lower

efficiency as compared to SAM and NCC. In future work, more analysis to increase the per-

formance of automatic identification of the mineral grains is required.
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Chapter 6

Comparative clustering analysis

applying K-means rank1-NMF and

FCC on mineral identification in long

wave hyperspectral infrared imagery

(Submitted to GIScience & Remote Sensing journal Journal, 2018).

6.1 Résumé

Les applications géologiques de l’imagerie infrarouge hyperspectrale consistent principalement en l’
identification de minéraux à l’aide d’images de télédétection, d’instruments aéroportés ou portatifs
et de diagraphie. Les méthodes de classification montrent une influence considérable sur de nom-
breux algorithmes développés récemment. La stratégie de regroupement des spectres dans l’imagerie
hyperspectrale modifie la capacité de performance des algorithmes et joue un rôle important dans le
processus d’ identification. Ici, nous abordons une analyse par clustering pour la cartographie minérale
dans les spectres au sol et nous comparons deux algorithmes. Le premier algorithme utilise des tech-
niques de comparaison spectrale pour tous les spectres de pixels et crée les images composites RGB
de fausses couleurs (FCC). Ensuite, un regroupement K-means basé sur la couleur regroupe les ré-
gions. Cet algorithme s’appelle FCC-K-means. Cependant, le second algorithme regroupe tous les
spectres de pixels pour regrouper directement les spectres. Ensuite, le premier rang de factorisation
matricielle non négative (NMF) extrait le représentant de chaque groupe et compare les résultats avec
la bibliothèque spectrale de JPL/NASA par des techniques de comparaison spectrale. Ces techniques
donnent les valeurs de comparaison sous forme de caractéristiques qui se convertissent en résultats par
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RGB-FCC. L’algorithme s’appelle K-means rank 1 -NMF. Les résultats de l’algorithme K-means rank
1 -NMF indiquent une efficacité de calcul significative (plus de 20 fois plus rapide que l’approche précé-
dente) et une performance prometteuse pour l’identification minérale ayant une précision moyenne de
52.5% et 57.1% pour FCC-K -means et K-means-rank 1 algorithmes NMF (en utilisant Spectral Angle
Mapper (SAM)), respectivement. En outre, plusieurs techniques de comparaison spectrale sont égale-
ment utilisées, telles que le détecteur AMSD (Adaptive Matched Subspace Detector), l’algorithme de
projection orthogonale de sous-espace, l’ analyse PCA (Principal Component Analysis), le filtre local
assorti (SAM) et la corrélation croisée normalisée pour les deux algorithmes. La plupart d’ entre eux
montrent une gamme de précision similaire. Cependant, SAM et NCC sont préférés en raison de leur
simplicité. La caméra hyperspectrale que nous avons utilisée pour notre acquisition au sol (conditions
de laboratoire) fonctionne dans le spectre d’ondes infrarouges longues (LWIR, 7.7-11.8 µm) et nos
algorithmes tentent d’ identifier onze grains minéraux différents (biotite, diopside, épidote, goethite,
kyanite, scheelite, smithsonite, tourmaline, pyrope, olivine et quartz).

General Explanation
Since it is already shown in the previous chapter that clustering (unsupervised) methods are more suit-
able for spectral categorization, here two different algorithms involve clustering have been proposed
to groups the spectra and ultimately mineral identification. The first algorithm creates FCC using
spectral comparison techniques and then group these color categorizes into the different mineral com-
position. The second algorithm, used direct clustering for spectra and then used spectral comparison
methods to create FCC and ultimately identified the minerals. The algorithms strive to identify eleven
different mineral grains (biotite, diopside, epidote, goethite, kyanite, scheelite, smithsonite, tourma-
line, pyrope, olivine, and quartz) and performed in the Long Wave Infrared (LWIR, 7.7-11.8 µm). We
concluded based on the results that the second algorithm has about twenty times faster performance
than the first algorithm having relatively similar accuracy.

The results of this study were partially presented at TELOPS Scientific Workshop, September 2016,
Baltimore, USA; Quebec-Mines 2016, Quebec city, Canada.
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6.2 Abstract

The geological applications of hyperspectral infrared imagery mainly consist in mineral identification

using remote sensing imagery, airborne or portable instruments, and core logging. Clustering methods

show considerable influence on many recent developed algorithms. The strategy to cluster the spectra

in the hyperspectral imagery changes the performance ability of the algorithms and plays an important

role in identification process. Here, The hyperspectral camera was used for ground-based acquisition

(laboratory conditions) worked in the Long Wave Infrared (LWIR, 7.7-11.8 µm) and our algorithms

strive to identify eleven different mineral grains (biotite, diopside, epidote, goethite, kyanite, scheelite,

smithsonite, tourmaline, pyrope, olivine, and quartz). we address an analysis on clustering for mineral

mapping in ground based spectra and compare two algorithms. The first algorithm uses spectral com-

parison techniques for all the pixel-spectra and creates the RGB false color composites (FCC). Then

a color based K-means clustering groups the regions. This algorithm will be called FCC-K-means.

However, the second algorithm clusters all the pixel-spectra to directly group the spectra. Then the

rank-one of Non-negative Matrix Factorization (NMF) extracts the representative of each cluster and

compares results with the spectral library of JPL/NASA through spectral comparison techniques. These

techniques give the comparison values as features which convert into RGB-FCC as the results. The al-

gorithm will be called K-means rank1-NMF. The results of the K-means-rank1-NMF algorithm indicate

significant computational efficiency (more than 20 times faster than previous approach) and promising

performance for mineral identification having 52.5% and 57.1% average accuracies for FCC-K-means

and K-means-rank1 NMF algorithms (using Spectral angle mapper (SAM)), respectively. Further-

more, several spectral comparison techniques are used also such as Adaptive Matched Subspace Detec-
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tor (AMSD), Orthogonal subspace projection (OSP) algorithm, Principal Component Analysis (PCA),

Local Matched Filter (PLMF), SAM, and Normalized Cross Correlation (NCC) for both algorithms

and most of them show a similar accuracy range. However SAM and NCC are preferred due to their

simplicity.

Keywords: Long-wave infrared hyperspectral imaging, Mineral identification, clustering of

hyperspectral data, spectral comparison method.

6.3 Introduction

Hyperspectral infrared imagery provides the spectral and spatial information from the ma-

terial’s surface and has many applications in different fields particularly in geology (Kruse,

1996a; geotechnos, 2004; Yajima et al., 2004; HUZIKAWA et al., 2001; Davis, 2001). From

several past decades (Goetz, 2009), the spectral analysis technology has showed considerable

interest in airborne (Zhang et al., 2014; Van der Meer et al., 2012; Boardman et al., 1995;

Herrmann et al., 2001; Clark et al., 2003; Goetz, 2009), portable instruments and core logging

(Kruse, 1996a; geotechnos, 2004). The need for an automatic system to analyze of hyper-

spectral imagery led to many investigations in the field of datamining (i.e. a Spectral Image

Processing System (SIPS) (Kruse et al., 1993a), expert system for mineral mapping in (Kruse

et al., 1993b) or many other similar examples (Boardman, 1989, 1991; CSES, 4; Gillespie et al.,

1986, 1987)). Applying classification methods (e.g. support vector machine (SVM) (Tuia and

Camps-Valls, 2011; Dópido et al., 2012; Pompilio et al., 2014; Izquierdo-Verdiguier et al., 2014;

Khodadadzadeh et al., 2014a; De Boissieu et al., 2017; Shao et al., 2014) or neural networks

(Zhang et al., 2016c; Yousefi et al., 2016a; Chen et al., 2013) are expensive due to the nature

of supervised learning which involves the system to have a training step and hence separate

samples for training. The training’s quality plays important role in the process in terms of

training number and labeling samples (Ma et al., 2016; Persello and Bruzzone, 2014; Shao

et al., 2014; Dópido et al., 2013). Semi-supervised approaches alleviate the problem of super-

vised approaches by decreasing the training with labeled samples (Su et al., 2011; Ma et al.,

2016; Chabane et al., 2017; Persello and Bruzzone, 2014; Shao et al., 2014; Dópido et al., 2013;

Zhang et al., 2016c; Khodadadzadeh et al., 2014b). On the other hand, clustering approaches

do not need training to ultimately label samples, by techniques such as K-means clustering

(Funk et al., 2001; Zhong et al., 2006; Paoli et al., 2009; Su et al., 2011; Zhang et al., 2016a;
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Pompilio et al., 2014), Fuzzy C-means (Bilgin et al., 2008; Li et al., 2013b; Ghamisi et al.,

2015; Kowkabi et al., 2017; Ghaffarian and Ghaffarian, 2014), and other types of clustering

(Chang et al., 2011; Tuia and Camps-Valls, 2011; Chabane et al., 2017). However, clustering

scheme is important in terms of computation requirement and similarity measurements. Here,

the strategy to use clustering is investigated for ground-based spectra (laboratory conditions)

to identify the minerals for portable instrument applications. We present in this paper a

brief overview of the application of the hyperspectral imagery for the purpose of portable

instruments with more concentration of its applications in geology. One very good example

of using hyperspectral thermal infrared (TIR) for core logging was presented by Kruse in

1994 and was called Portable Infrared Mineral Analyzer II (PIMA II) it was in fact a Short

Wave Infrared spectrometer (SWIR - 1.3 - 2.5 /mum). It used Spectral Angle Mapper (SAM)

for split drill core at the size of 1 cm intervals in both the cross- and along- core directions

(Kruse, 1996a). Two other comparable approaches were presented by Yajima et al. (2004)

for POSAM (Portable Spectroradiometer for Mineral identification) which has been devel-

oped by the Metal Mining Agency of Japan (former organization of JOGMEC (geotechnos,

2004) in 1993 (Yajima et al., 2004; HUZIKAWA et al., 2001) and Coulter et al. (2007) that

reviewed the airborne hyperspectral system from visible infrared spectroscopy (Davis, 2001).

Hecker et al. (2008) analyzed the influence of reference spectra on classification of minerals

(i.e. kaolinite) using SAM, and used synthetic images of three mineral endmembers to try

to classify them applying reference libraries derived from ground spectra (portable infrared

analyzer), USGS (United States Geologic Survey) and airborne imagery, this led to increase in

classification’s accuracy. Moreover, Hecker et al. (2008) used some preprocessing methods to

suppress the influence of different referencing sources such as two types of continuum removal

(hull subtraction, hull quotient), and a combination thereof (Hecker et al., 2008). The classifi-

cation of this approach was efficient but it was more a matching process between the targeted

and reference spectra rather than relying on any type of clustering or machine learning ap-

proaches. The similarity of this approach is due to the ground based spectra and the matching

algorithm used in the method. The matching algorithms are not the only methods used as

feature extraction and Continuous Wavelet Analysis (CWA) is one of the feature extraction

algorithm. CWA is known to increase the processing time during the identification process

in spectral imagery. Bruce Li (2001) used wavelet analysis into hyperspectral data (Bruce

and Li, 2001) and was followed by Rivard et al. (2008) to create a better representation of
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spectral libraries and to minimize the viewing and illumination measurement disparities (Ri-

vard et al., 2008). Moreover, the estimation of oil sands was done applying Gaussian singlets

and derivative of Gaussian wavelets (Rivard et al., 2010). The CWA used for hyperspectral

longwave infrared (3-14 µm) for rock encrusting lichens using airborne SEBASS (spatially

enhanced broadband array spectrograph system, Aerospace Corp.) imagery where performed

based on finding the display peaks in reflectance (maximum reflectance) in the mineral’s spec-

tra (Feng et al., 2013b). These approaches increased the level of processing whereas they do

not transform the process into an automatic identification system. Another research effort on

portable instrument which functions for shortwave infrared (SWIR) and visible near-infrared

(VNIR) wavelength was proposed for spectropolarimetric imaging. This system was based

on acousto-optic tunable filter (AOTF) technology for desert soils analysis is presented by

Grupta (2014). The wavelength band covered 450-800nm and 1000-1600nm and enabled a

tuned optical wavelength and Radio Frequency (RF) (for piezoelectric transducer of AOTFs)

along with the spectral band (Gupta, 2014).

The unsupervised classification (clustering) methods are countlessly used in hyperspectral

field. Clustering also employed for various purposes such as improving matched filter (Funk

et al., 2001; Dópido et al., 2012), mixed agriculture and forestry application (Jia and Richards,

2002), anomaly finding in target detection (Chang and Chiang, 2002), endmember identifi-

cation (Martin and Plaza, 2012), urban area (Zhong et al., 2006; Tuia and Camps-Valls,

2011; Tarabalka et al., 2012; Bajorski, 2012; Li et al., 2013b; Izquierdo-Verdiguier et al.,

2014; Ghamisi et al., 2015) for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

data. A semisupervised band clustering on AVIRIS Indian pines (Su et al., 2011) with Non-

Negative Least Squares (NNLS) used for endmember estimation in Hyperion and AVIRIS data

(Canham et al., 2011) (which was more superivised classification approach). A color based

clustering used for mapping Kaolinite presented by Tyo et al. (2003) (Tyo et al., 2003). A

GustafsonâKessel clustering and fuzzy clustering (Bilgin et al., 2008) with Multi-Objective

Particle Swarm Optimization (MOPSO) framework was used for AVIRIS and ROSIS sensor

data (Paoli et al., 2009). Clustering Signal Subspace Projection (CSSP) and Maximum Corre-

lation Band Clustering (MCBC) were employed based on PCA for AVIRIS data (Chang et al.,

2011). A Neighborhood Homogeneity Index (NHI) for spectralâspatial clustering (Li et al.,

2013a) and a Spectral Angle Mapper (SAM) based clustering were used employing of k-means,

CLUES, and SVM analysis for AVIRIS (Pompilio et al., 2014). Most of these applications
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Figure 6.1: The block-diagram of proposed approach is shown here.

provide hybrid approaches employed in various applications rather than specifically analyze

the strategy and hierarchy of clustering in their proposed method.

The applications of spectral comparison techniques such as SAM (Kruse, 1996a; Hecker et al.,

2008) or matched filter (Funk et al., 2001; Dópido et al., 2012; Padma and Sanjeevi, 2014) and

many others could be combined with machine learning approaches (Funk et al., 2001; Dópido

et al., 2012; Pompilio et al., 2014; Padma and Sanjeevi, 2014) to increase their performance.

Another way is to combine them with other preprocessing approaches such as Continuous

Wavelet Analysis (CWA) (Bruce and Li, 2001; Rivard et al., 2008, 2010; Feng et al., 2013b;

Scafutto et al., 2016; Feng et al., 2017) in order to increase the performance and efficiency

of decision making processes (and deployed in to supervised or unsupervised ways (Dópido

et al., 2012; Pompilio et al., 2014; Padma and Sanjeevi, 2014; Scafutto et al., 2016)). A

Dynamic Self-Organizing Maps (DSOM) and Fuzzy ART algorithms combination approach

has been present for Sonar images segmentation (Chabane et al., 2017) for ocean research

and mineral mapping based on blind spectral unmixing method based on sparse component

analysis (BSUSCA) (Zhong et al., 2016) and are considered more advanced approaches in

terms of datamining analysis.
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Application of RGB false color composites (FCC) with wavelet transform used for noise and

continuum separation combined with PCA was employed for natural oil seepages identification

of the concentration due to the effects that oil in the soil causes on the spectral signatures

of vegetation (Scafutto et al., 2016). The last approach has similarity with our approach in

terms of using RGB-FCC in the mapping.

The main contributions of this paper lie in: (1) the application of hyperspectral analysis in

laboratory conditions using the spectra obtained from portable instrument; (2) the compara-

tive analysis on RGB-FCC and colored based k-means clustering versus rank-one Non-negative

Matrix Factorization (NMF) based k-means clustering; (3) The analysis of three different spec-

tral comparison techniques combined with both these algorithms to assess the performance of

each one for mineral identification. Figure 6.1 depicts the block-diagram of each algorithm to

illustrate the comparison between the two.

The rest of this paper is organized as follows. In the next section (Section 2), the methodology

of the approach will be briefly described with different spectral comparison approaches and

the two algorithms will be presented. The experimental and computational results, as well as

the discussion are presented afterward in Sections 3 and 4, respectively. Conclusion section

(Section 5) finally states that the automatic mineral identification in LWIR through the K-

means-rank1 NMF algorithm has lower computational complexity but considerable accuracy

as compared to the FCC-K-means algorithm and that fulfills the objectives of this research.
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Figure 6.2: The scheme of the proposed approach. Two strategies applied in this system are shown
by different pathways in the flowchart.
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6.4 Methods

The methodology is summarized by comparing two algorithms for the identification of min-

erals. Both of them involve spectral comparison techniques and clustering approaches. They

both compare the targeted minerals spectra to the ASTER-JPL NASA spectral library (as

reference spectra). The difference between these two algorithms is when clustering is applied

(Figure 6.2). Here, a brief summary of the spectral techniques used for both algorithms is

provided.

6.4.1 Spectral comparison techniques

Matched Filter

Matched Filter(MF) is a technique used for spectral mapping between the targeted and refer-

ence spectra. Particularly, MF applies the maximization of the targeted spectrum responses

that theoretically suppresses the cluttered background (Turin, 1976). One of the forms of

the MF is that it normalizes every component in the space of Principal Component Analysis

(PCA), applying the maximum between the global and local eigenvalue in the pixels. The

MF algorithm regularization normalizes every component of the PCA space through local and

global covariance eigenvalue linear combination. Also, two other forms of this combination

were involved by summation of the local and global MF =
∑

i
TT
i yi

λlocal,λGlobal
or average of the

local eigenvalue MF =
∑

i
TT
i yi

avg(λlocal)
. The condition of regularization effects on the matched

filter is named regularized matched filter (RMF) (Caefer et al., 2008).

Orthogonal subspace projection (OSP) algorithm

Orthogonal Subspace Projection (OSP) considers as the first design, a method for projection

of an orthogonal subspace to eliminate the non-target response, and then a matched filter is

used to match the designed target from the data. OSP is a method that applies a structured

subspace model to describe spectral variability (Sanches et al., 2014; Balick et al., 2009a).

The original OSP is described as TOSP (x) = dTP⊥U x. This form of OSP is appropriate for

the purpose of classification, but is not suitable regarding spectral unmixing and abundance

map estimation. Thus another form of OSP has been introduced which is a scaled version of

the OSP classifier and can estimate an abundance map. Let P⊥U = IL×L − UU∗ being the

projector of orthogonal subspace, x is the pixel spectrum, and d is the target spectrum. U is
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the spectra matrix for non-target, U∗ = (UTU)−1UT is the pseudo-inverse of U , and L is the

bands number. OSP needs the spectra matrix of non-targeted area (region in the image) and

the spectral signatures of the non-targeted can directly be extracted through the endmember

from the hyperspectral image (Sanches et al., 2014; Balick et al., 2009a).

Adaptive matched subspace detector (AMSD) algorithm

Based on the assumption of a linear mixing model for a pixel and its endmembers and their

abundance, the endmembers are representative of materials spectrally present in the HIS.

Thus, the mathematical concept follows:

x = Ea, ai ≥ 0∀i,
M∑
i=1

ai = 1 (6.1)

where M is the image number of endmembers, E is an L×M matrix and its columns signify

the ith endmember, a is an M × 1 vector where the ith entry reveals the abundance value

ai, and x is the vector of current pixel spectral signature L × 1. It is assumed that the lin-

ear mixing model also involves the abundance values with two constraints: sum-to-one and

non-negativity. Considering the interaction of the spectra within a pixel (or the region in this

study), a hypotheses set can be made to discriminate those pixels holding targeted pixels that

entirely include background spectra. The hypotheses are

H0 : x = Bab + n (6.2)

H1 : x = Tat +Bab + n (6.3)

where T is an interested endmembers matrix of the target, B is a matrix representing those

endmembers that are considered as background, n is considered zeromean, white Gaussian

noise with variance σ2ab are the abundances of those endmembers, x is the pixel under test, and

are the targets abundances. The AMSD algorithm uses the GLRT as a statistical test (Garcia-

Allende et al., 2008); but, the sum-to-one constraints and non-negativity on the abundance

estimation is not satisfied. So the AMSD leads to a solution of a closed-form approach having

the advantages of Constant False Alarm Rate (CFAR) property. Since the AMSD algorithm

follows GLRT, the first stage is the calculation of the unknown parameters through Maximum

Likelihood Estimates (MLE) employing log-likelihood and solving every unknown parameter

that gives the abundance estimation of MLE âb = (BTB)−1BTx and the noise variance
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estimation of MLE σ2 = 1
L(x − Bâb)T (x − Bâb). The GLRT then considers the ratio of the

hypothesis functions:

f1
f0
⇒ xT (I −B(BTB)−1BT )x

xT (I − E(ETE)−1ET )x
=
XTP⊥B x

XTP⊥Z x
(6.4)

As B and E are associated, it is not easy to identify this detection statistic distribution;

consequently, a new detection statistic is used

DAMSD =
XT (P⊥B − P⊥Z )x

XTP⊥Z x
(6.5)

This provides independency to the denominator and numerator. Moreover, it does not depend

on the estimation of the variance and abundance under the null hypothesis so the detection

possesses the property of CFAR (Garcia-Allende et al., 2008; Manolakis et al., 2001).

6.4.2 Clustering and Proposed Algorithms

Clustering is a term used for unsupervised learning approach (unlike classification which is

a supervised learning approach), to discriminate the spectra for the mineral identification

in hyperspectral imagery. A clustering method provides a fast performance and reduces the

typical difficulties of supervised approaches such as training and labeling that particularly

occur when the number of mineral samples are limited (Yousefi et al., 2016a). The proposed

approach applies the K-means clustering approach for both algorithms. However, the FCC-

K-means algorithm used HSV (Sra and Dhillon, 2006)(color) based K-means to cluster the

RGB-FCC and the K-means-rank1 NMF algorithm directly applies the K-means to group the

spectra. FCC-K-means and K-means-rank1 NMF algorithms are presented in Tables 6.1,6.2,

respectively. The spectral comparison techniques used in these two algorithms are referred to

as Mj(x, y) and it changes for comparison assessment in both algorithms following different

technique used for comparison assessment.

6.4.3 Mineral Grains and Experimental set up

The experiment was conducted in a laboratory environment with a lightweight Hyper-Camera

imaging spectroradiometer (HYPER-CAM LW) (Telops, 2016) operating in the long-wave

infrared (LWIR) band (from 7.7 to 11.8 µm). It has spatial resolution of 320 × 256 with a

LWIR PV-MCT focal plane array detector and has a spectral resolution of 4cm−1 which gives
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Table 6.1: The FCC-K-means algorithm works by applying the clustering of false colors.

 

 

FCC-Kmeans ALGORITHM 

 

Given 

 

Input data I(x,y,z) ∈ 𝑹𝑵×𝑴×𝒁 is a continuum removed 

spectral data where I(x,y) ∈ 𝑹𝑵×𝑴 is the spatial dimension 

for RoI and its unit is pixels, z is the spectral resolution. 

Step 1 Calculation of the spectral comparison techniques: 

𝐌𝒋 (𝒙, 𝒚) = 𝑺𝑻𝒋(𝑰(𝒙, 𝒚), 𝚽𝒊)  

𝑺𝑻𝒋 is represents the spectral techniques and j reveals the 

number of techniques exploited (e.g. 𝐣 = 𝟏 → 𝐌𝟏 = 𝐍𝐂𝐂). 

𝚽𝒊 ∈ 𝑹𝒛 denotes the reference spectra (i.e. ASTER/JPL) 

and i is the number of spectra corresponds to number of 

targeted minerals. 

Step 2 FCC, Ψ𝑹𝑮𝑩, generation is dependent on the amount of 𝐌𝒋 

(for every j). Three lowest 𝐌𝒋 create(𝑹, 𝑮, 𝑩) applying 

thresholding criterion. The output will be, Ψ𝑹𝑮𝑩, an image 

where the materials have been marked by different color. 

Step 3 Let Ψ𝐻𝑆𝑉 a representation of FCC in HSV color system, 

Ψ𝐻𝑆𝑉(𝒙, 𝒚, 𝟑) =  Ψ𝑹𝑮𝑩(𝒙, 𝒚, 𝟑). K-means method Clusters 

 Ψ𝐻𝑆𝑉(𝒑, 𝟑), 𝒑 ∈  ℝ𝑵×𝑴 into k categories.  

 𝑱𝒌 =  ∑ ∑ ‖Ψ𝐻𝑆𝑉𝒊
−  Ψ̅𝒌‖

𝟐

𝟐𝟑

𝒊=𝟏

𝑲

𝒌=𝟏

 

Output 𝑱𝒌 represents the targeted mineral grains clustered from 

other minerals by different color.  

  

the spectra from 868 to 1270 cm−1. The individual spectra are gathered using the Fourier-

Transform Infrared Spectrometer (FT-IR) for every pixel with an instantaneous field-of-view

of 0.35 mrad (Telops, 2016). There is a heating source between the hyperspectral camera and

the grain samples (Figure 6.2 depicts the experimental setup), to closely and uniformly radiate

the samples. Having the heating source located to the side of the sample and camera enables to

radiate the heat more uniformly. There are eight mineral grains targeted to be automatically

identified using the spectral analysis. Figure 6.5 shows the spectra from mineral grains used

in the experiments together with the spectra from ASTER JPL-NASA spectral library to

demonstrate the qualitative similarity among experimental and reference spectra. A brief

description of targeted minerals is presented in Table 6.1.
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Table 6.2: The K-means-rank1 NMF algorithm for direct spectral clustering.

 

Kmeans-Rank1NMF ALGORITHM 

 

Given 

 

Input data I(x,y,z) ∈ 𝑹𝑵×𝑴×𝒁 is a continuum removed 

spectral data where I(x,y) ∈ 𝑹𝑵×𝑴 is the spatial dimension 

for RoI and its unit is pixels, z is the spectral resolution.  

Step 1 Clustering 𝑿(𝒑, 𝒛) , 𝒑 ∈  ℝ𝑵×𝑴 into k categories. The 

clustering is based on the spectral difference among the 

clusters (0≤J≤k). 

 𝑱𝒌 =  ∑ ∑ ‖𝑿𝒊 − �̅�𝒌‖𝟐
𝟐

𝑪(𝒊)=𝒌

𝑲

𝒌=𝟏

 

Step 2 𝒉𝟏
𝒒

 is the rank one NMF (i=1) of each cluster 𝑪𝒊
𝒒

 after 

clustering application. 

∀ 𝒒 | 𝟏 < 𝒒 < 𝒌 ,      𝑪𝒊
𝒒

=  𝑾 × 𝒉𝒊 , 𝒊 = 𝟏 ⇒ 𝒉𝟏
𝒒

 , 𝑞 = 1, … , 𝑘 

Step 3 Calculation of the spectral comparison techniques: 

𝐌𝒋 (𝒙, 𝒚) = 𝑺𝑻𝒋(𝒉𝟏
𝒒
, 𝚽𝒊)  

𝑺𝑻𝒋 is represents the spectral techniques and j reveals the 

number of techniques exploited (e.g. 𝐣 = 𝟏 → 𝐌𝟏 = 𝐍𝐂𝐂). 

𝚽𝒊 ∈ 𝑹𝒛 denotes the reference spectra (i.e. ASTER/JPL) and 

i is the number of spectra corresponds to number of targeted 

minerals. 

Output FCC, Ψ𝑹𝑮𝑩, generation is dependent on the amount of 𝐌𝒋 

(for every j). By thresholding, three lowest 𝐌𝒋 

create(𝑹, 𝑮, 𝑩). The output will be, Ψ𝑹𝑮𝑩, an image where 

the materials have been marked by different color. 
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Experimental setup

Hyper-Cam (MWIR)
Hyper-Cam’s aperture + Macro lense

Heating source
Lense aperture in heating source

Grains sample
Carbon surface

InfraGold plate

InfraGold plate

Hyper-Cam’s aperture 
+ Macro lense

Hyper-Cam (MWIR)

Heating source

Figure 6.3: Experimental setup and mineral grains are shown in the figure. The experiments in the
7.7µm to 11.8µm wavelength took place twice with the heating source is turned on and switched off
to calculate the continuum removed spectra (Mayer et al., 2003). The image shows the experimental
setup which depicts the location of the hyper-camera, heating source, infragold plate, and mineral
grains in the experiment.
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Magnesium 12 K 1783 17.58 23.43 0.073

Chromium 24 K 2578 0.49 0.30 3.9E-05

Vanadium 23 K 4599 1.14 0.72 0.0001
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Figure 6.4: Some example binocular images from the grains of biotite a,b, diopside c,d, tourmaline
e,f and mixed with quartz grains are shown. Also the /muXRF image of the samples are also shown
in the image to verify the ground truth images and labeling. (g1-g3 and h1-h3 depict the images
of diopside-quartz and epidote-quartz samples using Micro X-ray fluorescence (µXRF), respectively.
The presence of magnesium and aluminum elements in diposide and epidote are shown in g4 and h4,
respectively. i1,i2,j1,j2 show a point in the grains of diopside and epidote. Moreover, the lower raw
in the figure shows SEM images of diopside, epidote, tourmaline, pyrope to indicate surface of these
grains.
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Table 6.3: Characteristic of minerals studied by LWIR. 

 

Minerals 

 

 

Chemical formula 

 

Biotite K(Mg,Fe)2-3Al1-2Si2-3O10(OH,F)2  

Diopside MgCaSi2O6 

Epidote Ca2(Al2,Fe)(SiO4)(Si2O7)O(OH)  

Goethite (FeO(OH)) 

Kyanite Al2SiO5 

Scheelite CaWO4 

Smithsonite (ZnCO3) 

Tourmaline ((Na, Ca)(Mg,Li,Al,Fe2+)3Al6(BO3)3Si6O18(OH)4) 

Olivine (Mg+2, Fe+2)2 SiO4 

Pyrope Mg3 Al2 (SiO4)3 

Quartz SiO2 

6.4.4 Properties of Hyperspectral Image

The image acquisitions have been performed while the minerals were attached to a carbon sub-

strate (shown in Figure 6.4) and had an infragold plate in the background. The infragold plate

reflects all the radiation and is used to calculate the overal radiation’s amount for Continuum

Removal (CR)(Mayer et al., 2003). The experiment was performed while the heating source

was first on and then off. It is required to perform CR and avoid calculation of black-body’s

temperature (Mayer et al., 2003). The size of hyperspectral images is 180× 300 pixels in the

spatial resolution and 122 channels of spectral resolution.

Mineral identification using hyperspectral technology depends on spectral comparison tech-

niques and mineral spectral signature. The spectra for some of these minerals (e.g. figure 6.6)

are represented by maximum or minimum in particular wavelength (it is called signature).
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Such a signature is used to identify the minerals. The location and types of these particular

features within the wavelength band play an important role in the identification’s accuracy.

The minerals for this research have reasonable signatures in the 7.7-11.8 µm band. Smith-

sonite, scheelite and goethite have more similar spectra to each other in terms of spectral

shape (location of extrema). This causes a problem for identification of the minerals once

they are combined in a mixture form as their spectral features would be similar. In this ex-

ample only scheelite has a maximum peak before 11.8 µm and it makes scheelite detectable.

In contrast, goethite and smithsonite have a peak after 11.8 µm band (not in the range of

our hyper-camera) and this makes them undetectable for both algorithms (geothite example

in Figure 6.6) with the used system.

6.4.5 Accuracy of the proposed approach

The accuracy of the algorithms are based on counting the correct detected pixels in the

hyperspectral images (Tables 6.2, 6.4). For that, a ground truth is used following the rigid

manual labeling of the known location of the mineral grains in the samples and verified by

the results of µ X-ray fluorescence (µXRF (Figure 6.4). The number of ground truth pixels in

each cases are also mentioned for all the samples with spatial resolution of ROI. For every case

of mineral mixture, the targeted mineral grains are mixed with quartz grains, hence for each

mixed samples accuracy is estimated through the accuracy of discrimination between these two

types of grains. Two types of error are shown by false positive that represents wrong mineral

identification and false negative that reveals misidentification of the mineral grains and both

are calculated in each cases. Total accuracy of each algorithm is calculated by subtraction of

the correct identification and two errors for every samples.

Total accuracy = ACC(%)− (FN(%)− FP (%)) (6.6)

where local accuracy (ACC) is calculated by:

ACC(%) =
Correct detected pixels

Total pixels of mineral
∗ 100 (6.7)

Let FN being the false negative error and estimates using below mentioned formulas:

FN(%) =
Total pixels of mineral − Correct detected pixels

Total pixels of mineral
∗ 100 (6.8)

The False Positive (FP) error is the wrongly classified pixels and calculates by:

FP (%) =
Wrong classified pixels

Total pixels of image
∗ 100 (6.9)
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6.5 Results

6.5.1 The results of spectral comparison techniques

The results are shown for the FCC-K-means proposed algorithm using the RGB-FCC (Figures

6.5, 6.6). This provides a better visualization of the spectral differences among the minerals

by placing each mineral target as a certain weight amount in colors. FCC provides a good

difference criterion which can be easily discriminated by a clustering approach (the results

of the FCC-K-means algorithm is shown in Figure 6.5). Some of the spectral techniques

applied to the images are not necessarily for spectral comparison approaches such as NCC or

SAM. However, these techniques have been used to investigate the strength of the method

with respect to the extraction of spectral differences. In order to apply these techniques, a

MATLAB hyperspectral image index analysis toolbox (Isaac, 2015) was used. The quantitative

results of the FCC-K-means algorithm is shown in table 6.2.

6.5.2 Results of the two algorithms

The results of the spectral comparison technique were presented in the previous section, in this

section the K-means clustering results are shown in figures 6.5 and 6.6. This includes the clus-

tering approach for both algorithms. The results of the FCC-K-means strategy are presented

in comparison to the second method of hyperspectral unmixing. As aforementioned, applying

the clustering in a different hierarchy with spectral analysis techniques creates two approaches

which have two similar outcomes. Figure 6.5 shows the performance of the color based clus-

tering approach for the algorithms. Besides the computational load which is considered as

significantly different between these methods (table 6.3), clustering after using spectral anal-

ysis (in the FCC-K-means algorithm), is considered as a more sensitive algorithm and this

is caused by the dependency of the clustering to the generated color (RGB-FCC). A low

performance in spectral comparison techniques creates misclassification in the algorithm, for

instance: diopside applying NCC has lower performance than SAM and it created more false

negatives after clustering (Table 6.2). However, the sensitivity of the K-means-rank1 NMF

algorithm lies under the application of clustering techniques. The same example of diopside

which has more false negatives because of clustering poor performance (Table 6.2). Sometimes

due to the spectral curve which does not have significant extrema in the band of the hyper-

spectral information, the clustering method cannot discriminate the clusters from each other
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(i.e. in the case of goethite and smithsonite minerals). In such a situation, increasing the

number in the clustering initialization partially solves the problem. Even though this solves

the problem in the clustering, the clusters selected as different categories might have similar

content materials. This is corrected by the application of the spectral comparison techniques

which categorize all these similar grouping in one category. However, in the case of similar

mineral spectra or unspecified spectral exterma in mineral, the problem remains unsolved.
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Diopside & Quartz mixture - NCC

Biotite & Quartz mixture - NCC

Kynite & Quartz mixture - NCC

Epidote & Quartz mixture - NCC

Scheelite & Quartz mixture - NCC

Pyrope & Quartz mixture - NCC

Quartz

Pyrope

Original Hyperspectral image False color image Cluster contains Quartz Cluster contains Pyrope

Original Hyperspectral image

Original Hyperspectral image False color image Cluster contains Biotite Cluster contains Quartz

Original Hyperspectral image False color image Cluster contains Epidote Cluster contains Quartz

Original Hyperspectral image False color image Cluster contains Kynite Cluster contains Quartz

Original Hyperspectral image False color image Cluster contains Scheelite Cluster contains Quartz

QuartzBiotite

QuartzEpidote
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Kynite

Quartz Scheelite

False color image
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Diopside
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Figure 6.5: Figure shows the qualitative presentation of mineral grains segmentation after applying
the clustering using FCC-K-means algorithm. The left hand-side column shows the hyperspectral
image, the second left column presents FCC images using NCC (it can be any other spectral compar-
ison techniques) before applying the clustering, and two right hand-side columns show the results of
segmented grains.
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Figure 6.6: Some examples of K-means rank1 NMF algorithm results are shown in the figure. Column
a shows the original hyperspectral images of minerals. Columns b, c represent the rank one NMF
of K-means clustering on spectra and d are the mineral signatures from JPL-ASTER spectral library
in 7.7-11.8 µm. FCC results of the algorithm using SAM are shown in column e. In each mixed
sample minerals, two different mineral signatures are present because the targeted grains are mixed
with quartz grains. In 4.c, there is no signature shown for geothite because the clustering was not
able to detect the signatures of goethite.
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Number of cluster

Biotite

Number of cluster
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Epidote
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Figure 6.7: The box plot of the spectral angle (SAM) between the spectra in every cluster and their
first rank NMF for every mineral segmentation using the K-means rank1 NMF algorithm (Similarity
per cluster by spectral angle difference). The Whisker and box plots are representing the similarity
between the best representation of each cluster using NMF and the entire spectra of the cluster itself
(to show the NMF functioning). The higher the median line in the whisker plot is, the more it
shows the numbers of spectral similarity in the clusters. In general, the bigger box and Whisker plots
represent the higher variation of similarity between the best representative spectrum in every mineral
and spectra of the cluster.
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Accuracy 

 

 Spatial 
resolution 

 First Algorithm Second Algorithm 

NCC SAM NCC SAM 
Mineral Quartz Acc (%) Acc (%) Acc (%) Acc (%) 

Biotite 123*138 496 885 52.45 68.79 78.58 78.58 

Diopside 126*143 299 888 40.21 71.59 70.17 59.906 

Epidote 123*148 260 890 48.64 70.54 81.66 81.66 

Geothite 118*141 235 718 33.76 64.36 55.94 55.94 

Kyanite 123*144 88 659 37.44 69.54 81.48 81.48 
Scheelite 123*158 168 1006 48.69 56.51 84.87 59.29 

Smithsonite 119*160 402 1117 28.39 47.24 50.91 67.15 

Tourmaline 58*80 122 14 75.81 49.73 57.77 68.08 

Pyrope 159*159 259 1654 <1 8.67 61.07 11.63 

Olivine 172*142 435 2649 6.53 18.49 <1 7.028 

 
Minerals 

  Computational Cost (time in second) 

 First Algorithm (FCC-K-means) Spatial 
resolution 

of RoI 

 Second Algorithm (K-means-Rank1NMF) 

Spatial 
resolution 

of RoI 

NCC SAM OSP AMSD MF NCC SAM OSP AMSD MF 

MF PLMF RMF MF PLMF RMF 
sum meanLocal meanGlobalLocal sum meanLocal meanGlobalLocal 

Biotite 131*143 310.39 273.74 808.21 865.07 609.35 376.20 376.36 383.67 377.87 123*141 15.25 15.23 15.63 15.69 15.36 15.20 15.19 15.20 15.63 

Diopside 128*145 288.62 254.89 717.27 792.97 619.64 421.45 447.48 405.89 380.92 124*125 14.78 14.76 15.23 15.02 14.89 14.74 14.73 14.74 15.23 

Epidote 125*157 332.82 320.90 863.70 907.06 608.15 433.59 440.40 459.21 468.72 125*157 22.12 22.11 22.49 23.1 22.23 22.08 22.08 22.08 22.49 

Geothite 124*144 298.09 261.75 751.28 794.36 545.00 374.33 374.12 381.94 376.25 120*149 21.72 21.69 22.06 23.18 21.81 21.67 21.67 21.69 22.07 

Kyanite 129*144 304.68 264.29 609.55 657.05 609.36 487.18 664.28 394.87 386.91 126*147 24.34 24.33 24.74 24.89 24.46 24.31 24.31 24.31 24.74 

Scheelite 136*172 514.34 462.17 834.13 886.73 846.71 582.24 621.27 658.24 634.79 125*160 22.99 22.96 23.36 23.92 23.07 22.95 22.95 22.94 23.36 

Smithsonite 120*163 384.92 293.94 783.89 826.86 641.74 409.60 411.54 417.70 410.70 119*160 22.37 22.35 22.89 23.51 22.51 22.35 22.35 22.34 22.88 

Tourmaline 50*55 211.01 205.60 269.15 289.13 252.78 213.70 213.57 214.16 213.51 56*62 7.79 7.78 8.12 8.83 7.89 7.75 7.75 7.75 8.12 

Pyrope 144*152 362.38 325.40 674.05 693.06 652.95 349.78 346.04 356..81 347.67 159*170 18.75 18.73 19.14 19.94 18.83 18.70 18.70 18.70 19.14 

Olivine 157*139 497.70 331.28 1.0067e+03 841.98 627.43 7.8214e+03 369.47 356.42 1.2252e+03 159*173 22.14 22.11 22.58 23.27 22.21 22.07 22.07 22.06 22.58 

Table 6.4. The quantitative accuracy of the two algorithms. 

Table 6.5. The computational complexity of two algorithms. 

Mineral Rigid GT 

Applying these algorithms provides an opportunity to compare them through the mineral iden-

tification task and resulting computational load. The FCC-K-means algorithm seems heavier

in computation time when compared to K-means-rank1 NMF algorithm due to the application

of the spectral analysis for each spectrum. Furthermore, the K-means-rank1 NMF algorithm

clusters all the spectra which results in heavy computations as well. Table 6.2 presents the

accuracy of both algorithms and Table 6.3 indicates the computational load for each algorithm

with different spectral analysis. Averaging and factor analysis can provide better outcome,

particularly the factor analysis provides more statistical information for the selection of the

spectral representative in the algorithm. We applied NMF to select a spectral representative

for each cluster. Figures 6.6 and 6.7 show some examples of NMF results and box-plots for

different categories of minerals and present the qualitative and quantitative representation for

the application of such techniques, respectively. Higher number of initialization for the clus-

tering allows a re-selection of the same spectral mineral in two or more different categories.

This difficulty can also be solved in the latter hierarchy by applying spectral analysis, which

means that these analysis select the same mineral categories for these selections.
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Table 6.2 represents the accuracy of both algorithms for comparison purposes. It is noticeable

that the location of the detected pixels is vital to identify the mineral grains. In other words,

we would like to have correctly detected pixels located on the surface of mineral grains and even

one or two pixels detected on the surface of minerals indicate the grain content and ultimately

could yield to an accurate identification (grain-based identification). We also provide pixel-

based accuracy percentages (at Tables 6.4 or 6.2). For example kyanite and scheelite have been

detected with a very limited number of pixels but very accurate because these pixels are in

the grain’s surface. In terms of spectral comparison technique accuracy of the algorithms, the

SAM and NCC provided better accuracy as compared to OSA and AMSD that required the

background spectra in their calculations. Matching filter (PLMF) did not succeed detecting

the minerals and was omitted from the accuracy calculations. Table 6.4 shows the accuracy

of spectral comparison techniques using the K-means-rank1 NMF algorithm. The accuracy

of biotite & quartz, epidote & quartz, geothite & quartz, and kyanite & quartz are the same

for NCC and SAM and this indicates the dependency of the K-means-rank1 NMF algorithm

to the clustering. This is also shown in Table 6.2 for the K-means-rank1 NMF algorithm.

However, the accuracy of NCC and SAM in the FCC-K-means algorithm is not similar and

indicates that the identification process in the FCC-K-means algorithm depends more on the

performance of the spectral comparison techniques than on clustering.

6.6 Discussion

6.6.1 Automatic identification process

Mineral identification has been studied and researched for several decades and most of these

approaches have been categorized under the hyperspectral remote sensing, airborne, portable

instruments (Lee and Seung, 1999), and core logging (Ding et al., 2005) applications. The pro-

posed research addressed the application of hyperspectral infrared in the LWIR (7.7-11.8 µm)

for the purpose of automated mineral identification applying two algorithms which involved

un-supervised segmentation and spectral comparison techniques. It has been previously shown

that clustering techniques are more suitable for categorizing the minerals as compared to clas-

sification (supervised) approaches. This is because of not having enough data to properly

train the classifier and expensive labeling (Yousefi et al., 2016a; Mayer et al., 2003). Applying

spectral comparison techniques and clustering approaches gave the opportunity to identify the
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Table 6.6. The quantitative accuracy for spectral comparison techniques in the second algorithm. 

 

Accuracy of spectral comparison techniques 

 

Minerals mixture 

 

 
NCC (%) 

 
SAM (%) 

 
OSP (%) 

 

 
AMSD (%) 

ACC FN FP ACC FN FP ACC FN FP ACC FN FP 

Biotite & Quartz 96.81 14.85 3.37 96.81 14.85 3.37 55.43 34.94 0.84 77.52 11.93 4.11 

Diopside & Quartz 87.02 13.67 3.18 82.42 4.33 18.18 80.57 52.61 1.87 71.25 26.05 1.08 

Epidote& Quartz 92.01 6.99 3.36 92.01 6.99 3.36 97.14 34.38 7.12 79.49 21.59 4.83 

Geothite & Quartz 80.86 21.77 3.15 80.86 21.77 3.15 79.01 55.36 1.25 67.39 17.66 1.92 

Kyanite & Quartz 90.86 5.66 3.72 90.86 5.66 3.72 71.84 24.30 1.39 86.29 6.01 7.04 

Scheelite & Quartz 96.60 7.58 4.19 81.24 2.30 19.64 95.76 30.19 1.43 90.25 8.49 2.51 

Smithsonite & Quartz 78.72 23.96 0 93.96 21.50 5.31 69.85 37.07 1.44 66.37 31.96 0.98 

Tourmaline& Quartz 73.76 12.96 4.31 86.28 15.16 3.03 75.32 22.55 2.26 86.24 21.56 2.36 

Pyrope & Quartz 72.13 4.28 6.78 81.74 0.68 69.43 86.83 12.54 2.07 51.08 6.65 5.17 

Olivine & Quartz 62.69 60.83 1.42 84.78 5.85 71.90 83.96 5.57 3.64 73.17 10.67 8.88 

minerals using two algorithms. The difference between these two approaches is in the utiliza-

tion of these techniques in different hierarchies. Applying clustering or spectral comparison

approaches for all data spectral points in these two algorithms is considered as the bottle

neck for both algorithms due to the categorization task. Each of these algorithms, for all the

data points can lead the entire algorithm to a high or low computational complexity. The

algorithms have reasonable performance in the identification of the minerals. Some minerals

such as goethite and smithsonite have no specific exterma in their LWIR spectra and their

identification failed, regardless of which algorithm is applied (it is shown in Figure 6.6 and also

table 6.2). In contrast, biotite, diopside, epidote, tourmaline, scheelite, quartz and kyanite

have been identified more clearly due to their distinctive spectral signature in the LWIR.
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6.6.2 Computational complexity of the algorithms

We analyzed two different algorithms using spectral comparison and clustering techniques ap-

plied in different hierarchies. The FCC-K-means algorithm calculates the spectral techniques

for all the pixels of hyperspectral image spectra and gave false colors to these features and

ultimately segmented these false color regions by applying clustering. On the contrary, the

K-means-rank1 NMF algorithm directly applies the clustering to all the pixels in the hyper-

spectral image. Then the first rank of NMF is selected as the spectral representative for each

cluster (the statistical relationship among the clusters are shown by box-plots in figure 6.7).

These spectra were compared with the reference spectra (ASTER spectral library) and this led

to finale the segmentation process. The FCC-K-means algorithm shows to be more computa-

tional costly as compared to the K-means-rank1 NMF algorithm because of the application of

the spectral comparison approaches to the entire pixel’s spectra of the hyperspectral images.

Nevertheless, the results presented in Table 6.3 indicate that the K-means-rank1 NMF algo-

rithm is also computational costly due to direct clustering for the whole spectral pixel points.

The computational complexity of the K-means algorithm for the fixed k and d (dimension)

is O(n(dk+1) log n) where n is the number of entities to be clustered (Aksenova et al.). Some

heuristic algorithms such as Lloyds algorithm have the complexity of O(nkdi), where k is the

number of clusters, i is the number of iteration and n is the number of d-dimensional vectors

(Ghasemzadeh-Barvarz et al., 2013). On the other hand, some algorithms such as SAM have

a cosine function and have approximately the computational complexity of cosine which is

O(M(n)logn)(for the algorithm of Arithmetic-geometric mean iteration) where M(n) stands

for the chosen multiplication algorithm complexity (Franc et al., 2005). Due to the division

into the cosine function in the SAM, the complexity of O(n2) corresponds to the division itself

which increases the whole complexity of the SAM function. The different computational com-

plexity between clustering and spectral comparison techniques is the reason why calculation

of the spectra for the K-means-rank1 NMF algorithm shows considerably lower complexity as

compared to the FCC-K-means algorithm.

The sensitivity of each algorithm depends on the spectral difference calculations. For example

the FCC-K-means algorithm is sensitive to spectral techniques used for extraction of the RGB-

FCC to finally clustering them. In the K-means-rank1 NMF algorithm, the sensitivity of the

system lies in the clustering approach and in particular, the number of initialization in K-
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means clustering. Besides this, there are other factors nominally involved in the sensitivity

of the proposed approaches such as the initialization of the clustering for the FCC-K-means

approach and the spectral analysis in the K-means-rank1 NMF method. In the K-means-

rank1 NMF algorithm, a spectrum from each selected cluster should be compared to reference

spectra from the ASTER JPL-NASA spectral library. Several methods can be applied to select

the best representative spectrum from each cluster such as randomly selecting one spectrum,

spectral averaging or using factor analysis. Random or averaging selection of the spectrum

might not be an efficient way to select the spectral representative in each cluster because of

averaging and random calculation sensitivity against bad spectra (wrongly grouped spectra or

noisy spectra) which may occur in the process. Some noisy spectra might be clustered into the

mineral’s category and random (or averaging) selection may not be able to exclude them from

the spectral grouping and this ultimately influences the mineral identification. This matter

can be a further research issue for correct identification of the spectra.

6.7 Conclusions

The proposed approach presented a geological hyperspectral infrared imagery (in the 7.7-

11.8 µm-LWIR range) in laboratory conditions. This paper addressed a quantitative and

qualitative assessments of two algorithms for the identification of several minerals. The FCC-

K-means algorithm applied the spectral comparison techniques on the entire pixel-spectra

of the input data cube and spectral library of JPL/NASA. It generated the spectral differ-

ence which was presented in RGB-FCC form and a K-means clustering grouped the different

composites. The K-means-rank1 NMF algorithm clustered all the pixel-spectra in different

categories. Then rank1 extracted from NMF as representative for each cluster were compared

to the spectral library of JPL/NASA through spectral comparison techniques which gener-

ated RGB-FCC results. The results of the K-means-rank1 NMF algorithm indicated more

significant computational efficiency (more than 20 times faster) than the FCC-K-means al-

gorithm. The K-means-rank1 NMF algorithm showed more dependency to clustering rather

then the FCC-K-means algorithm that was more sensitive to spectral comparison techniques.

Both algorithms had promising performance for mineral identification having approximately

55% average accuracy using SAM. Several comparative popular spectral techniques were used

such as AMSD, OSP, PLMF, SAM, and NCC but most of them showed similar accuracy
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range (although PLMF exhibited a lower accuracy). Eleven different mineral grains (biotite,

diopside, epidote, goethite, kyanite, scheelite, smithsonite, tourmaline, pyrope, olivine, and

quartz) were studied. Future work can be more focused on clustering approaches and the noise

effect in mineral identification to increase the performance of the system. Study of minerals

with poorly shaped spectra is another important future research avenue.
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Chapter 7

Automated LWIR Hyperspectral

Infrared mineral identification

reliability

(Submitted in Applied Optics Journal, 2018).

7.1 Résumé

L’ élimination du continuum est une étape essentielle dans le processus d’analyse des images hyperspec-
trales qui permet d’utiliser les données pour toutes les applications et nécessite généralement certaines
approximations ou hypothèses à effectuer. Une de ces approximations est liée au calcul des spectres de
la température de corps noir de l’arrière plan. Nous présentons ici une nouvelle méthode pour calculer
le processus d’élimination du continuum qui élimine ce calcul pour l’imagerie infrarouge hyperspectrale
au sol en appliquant deux ensembles d’acquisition avant et après l’utilisation de la source de chauffage.
L’ approche décrit une expérience en laboratoire avec les ondes infrarouges longues (de 7.7µm à 11.8
µm), avec une lentille LWIR-macro, une plaque Infragold et une source de chauffage. Pour calculer l’
élimination du continuum, l’ approche applique la factorisation matricielle non négative (NMF) pour
extraire le NMF de rang 1 et estimer le rayonnement de downwelling, puis le comparer avec d’ autres
méthodes conventionnelles. Pour obtenir le NMF de rang 1, NMF utilise des algorithmes d’ optimi-
sation basés sur la descente de gradient (GD) et des moindres carrés non négatifs (NNLS). L’ analyse
comparative est réalisée avec un bruit additionnel de 1 − 10% pour tous les algorithmes utilisant
Spectral Angle Mapper (SAM) et Normal Correliation Corrélation (NCC). Les résultats indiquent
une performance relativement prometteuse en utilisant NMF-GD (moyenne de 72.5% pourcentage de
similarité en utilisant NCC) et NMF-NNLS (moyenne de 77.6% de similitude en utilisant la NCC).

General Explanation
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An automated system for mineral identification in long-wave infrared (LWIR) using data-mining ap-
proaches represented a reasonably good performance to identify the mineral grains. In general, an
automated system to identify the mineral grains consists of spectral comparison methods, spectral li-
braries as reference spectra, and decision making unit which use the supervised or unsupervised method
for mineral identification. Here, an automated system for mineral identification has been challenged in
terms of reliability and correctness to identify eleven different mineral grains (biotite, epidote, goethite,
diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine, and quartz). The samples were
tested by Micro X-ray Fluorescence (µXRF ) and Scanning Electron Microscope (SEM) in order to
retrieve information of the mineral aggregates and the grain’s surface. The results of µXRF imagery
compared with automatic mineral identification techniques, using ArcGIS, and showed a promising
performance for automatic identification.

The results of this study were partially presented the 14th International Workshop on Advanced In-
frared Technology and Applications, AITA 2017, Quebec city, Canada.

Contributing authors:

Bardia Yousefi (Ph.D. candidate): a part of the experiment planning, data collection, data anal-
ysis, designing and implementing the algorithm. Moreover, testing their accuracy and robustness
throughout the process and writing the manuscript.

Clemente Ibarra Castanedo: the experiment planning, data collection, mineral preparation, revi-
sion and correction of the manuscript.

Xavier P.V. Maldague and Georges Beaudoin: (The main research director and co-director, re-
spectively): supervision, revision and correction of the manuscript.

Other contributors:
Annette Schwerdtfeger (research officer): manuscript preparation.

Kévin Liaigre: Conducting µXRF and SEM experiments, ArcGIS stimulation, Assisting to generat-
ing the observed ground truth.

Saeed Sojasi: Generating the observed ground truth, assisting in µXRF and SEM experiments.

Martin Chamberland : LWIR hyperspectral camera preparation, experiment planning, data collec-
tion.

125



Automated LWIR Hyperspectral Infrared mineral identification reliability

Bardia Yousefi1, Clemente Ibarra Castanedo1, Xavier P.V. Maldague1, Georges Beaudoin2

1 Computer Vision and System Laboratory, Department of Electrical and Computer Engineering, Laval Uni-

versity, 1065, av. de la Médecine, Quebec, QC, Canada
2 Department of Geology and Geological Engineering, Laval University, 1065, av. de la Médecine, Quebec, QC,

Canada

Corresponding author: bardia.yousefi.1@ulaval.ca

7.2 Abstract

Application of hyperspectral infrared imagery for mineral grain identification suffers from lack of

prediction on the irregular grain’s surface along with the mineral aggregates. Here, we present an

investigation on automatic mineral identification in the Long Wave Infrared (LWIR, 7.7-11.8 µm)

with a LWIR-macro lens having a spatial resolution of 100 µm. We attempt to identify eleven different

mineral grains (biotite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope,

olivine, and quartz). An automatic system compares all of the pixel-spectra to the ASTER spectral

library of JPL/NASA using Spectral Angle Mapper (SAM), and Normalized Cross Correlation (NCC)

to create false color maps. Then a hue-saturation-value (HSV) âPrinciple Component Analysis (PCA)

based K-means clustering approach groups the mineral regions in different categories. The results

were compared to two different Ground Truth (GT) (i.e. rigid-GT and observed-GT) for quantitative

calculation. Observed-GT increased the accuracy up to 1.5 times higher than rigid-GT, from 45.67

% to 69.39 %. The samples were also examined by Micro X-ray Fluorescence (µXRF ) and Scanning

Electron Microscope (SEM) in order to retrieve information of the mineral aggregates and the grain’s

surface. The results of µXRF imagery compared with automatic mineral identification techniques,

using ArcGIS, and represents a promising performance for automatic identification.

Keywords: Infrared and thermal image analysis, Mineral identification, Long wave infrared

spectroscopy, clustering.

7.3 Introduction

Hyperspectral imagery is an efficient tool that has been successfully employed in a variety of

applications ranging from food quality (Gowen et al., 2007) to mineralogy and geology (Kruse,

126



1996a; Liu et al., 2016; Calvin and Pace, 2016; Su et al., 2012; Eismann and Hardie, 2004) and

more recently it has been expanded to astronomical analysis (Wray et al., 2013; Meunier et al.,

2012; Clark et al., 2005). Here, a ground truth-based automatic mineral identification using

spectral analysis for hyperspectral infrared imagery in laboratory conditions is presented. In

contrast to remote sensing and airborne applications, the laboratory conditions used herein

are less affected by spatial resolution difficulties. However, the empirical and analytical out-

comes look different from theory. The incertitude is more related to the accuracy in identifying

the mineral and how much hyperspectral infrared imagery is useful for mineral grain identi-

fication. The proposed approach addressed an analysis on the surface of the mineral grains

involved in the process of automatic mineral identification to clarify the level of its reliability.

The approach includes a comparison between different microscopic techniques and uses an

automatic system to the system reliability. Hyperspectral imagery has been widely used for

remote sensing (satellite based hyperspectral imagery) and airborne applications particularly

in the mineralogy and geological field, especially in the area of hyperspectral unmixing and

endmember algorithms (e.g. (Bioucas-Dias et al., 2012; Kwon and Nasrabadi, 2005)). This is

due to the low spatial resolution of the images given the great distance between the hyper-

spectral camera and the targeted regions. In addition, data of remote sensing are affected by

several factors such as signal-to-noise ratio (SNR) (Kruse et al., 2003) and image acquisition

properties (Shahriari et al., 2015).
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Biotite grain

Sample of mixed Biotite & Quartz grains

Diopside grain

Sample of mixed Diopside & Quartz grains

Pyrope grain

Sample of Pyrope grains

Tourmaline grain

Sample of mixed Tourmaline & Quartz grains

Goethite grain

Sample of mixed Goethite & Quartz grains

Kyanite grain

Sample of mixed Kyanite & Quartz grains

a b

c d

e f

Figure 7.1: Images of the grain’s surface using a binocular microscope. The surface structure
of mineral grains are shown using binocular imagery. In each case, the targeted mineral grains which
are visualized on a larger scale, are randomly selected in the mixed samples (except for pyrope grains c
that is selected from pure set). The grains are attached to a carbon layer as substrate to allow them to
be more easily discriminated from the background. The scale of the larger images from mixed samples
are 50 µm and each zoom on the grain separately has more than 7.5 times higher magnification. As
shown in the images, the grain’s surface is irregular leading to caused by the reflection of the spectral
radiation. For example in biotite, pyrope, and tourmaline cases, the surface is rough with several sharp
edges. In contrast, diopside, kyanite, and goethite have a smoother surface. Hence, it is not possible
to generalize the property of the grain’s surface of these samples to all grains.
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Mineral 

 

 
Chemical formula 

 

 
Short Description  

 

Biotite K(Mg,Fe)2-3Al1-2Si2-3O10(OH,F)2  substantial group of dark mica minerals  

Diopside MgCaSi2O6 strong arrangements with hedenbergite (FeCaSi2O6)  

Epidote Ca2(Al2,Fe)(SiO4)(Si2O7)O(OH)  silicate mineral  

Goethite (FeO(OH))  

Kyanite Al2SiO5 high-weight polymorph, sillimanite, shaped at high 
temperature, and andalusite is the low weight 
polymorph  

Scheelite CaWO4 calcium tungstate mineral 

Smithsonite (ZnCO3) calcite group of minerals 

Tourmaline ((Na, Ca)(Mg,Li,Al,Fe2+)3Al6(BO3)3Si6O18(OH)4)  

Olivine (Mg+2, Fe+2)2 SiO4  

Pyrope Mg3 Al2 (SiO4)3 garnet group minerals 

Quartz SiO2 the most abundant mineral in the Earth’s crust 

Table 7.1. Characteristics of the minerals studied by LWIR. 
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The hyperspectral imagery in indoor conditions is usually limited to core logging applications

(e.g. Kruse (1996a), Calvin and Pace (2016)). The spatial resolution of the hyperspectral

camera is relatively better than in the remote sensing and airborne category given the shorter

distances between the imagery device and the samples. Hence, the algorithms in such appli-

cations are more focused on mineral identification rather than unmixing and identifying the

endmember. The experimental conditions are similar to the specimens studied herein with

the difference that, in our case, the mineral grains are of a smaller size and thus an increased

spatial resolution is required. In aqddition, similar to other hyperspectral infrared analysis,

the reflection of heating source spectral radiation , i.e. the continuum, that affects the entire

spectra needs to be removed. The process of removing this spectra is called the continuum

removal (CR) (Clark and Roush, 1984; Clark and King, 1987). Performing CR is vital to

allow spectral techniques to compare the targeted spectra to the reference spectra from a ref-

erence spectral library such as ASTER (Baldridge et al., 2009). CR corrects the radiometric

parameters by eliminating the spectral radiation from the thermal source, and the spectral

radiance from the environment (Yousefi et al., 2016b; Ruff et al., 1997). The method used

herein involves two acquisitions, one before and one after heating the samples. An InfraGold

reference panel (Labsphere, North Sutton, NH, USA) was used (Yousefi et al., 2016b, 2017;

r19. The proposed approach investigates the automatic mineral identification reliability. First,

minerals are automatically identified from their hyperspectral signatures and then results are

compared to microscopic techniques and X-ray analysis to determine the mineral existing on

the grains for better comparative assessments.
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Figure 7.2: Long-wave infrared hyperspectral imaging system and automated mineral
identification results. The figure represents the automatic mineral identification from the experi-
mental setup using false colors. a shows the experimental setup and test conducted using a hyperspec-
tral infrared camera in LWIR. Column b depicts the observed ground truth for epidote (b.1), Diopside
(b.2), and goethite (b.3). Columns c,d,e present the pure and mixed samples, and the hyperspectral
images after and before heating, respectively. Columns f and g show the false color results where
minerals are shown in different colors in the images. Columns f1, f2,g1, and g2 show the spectra
corresponding to every color in the false color images. However, for every mineral case, spectra from
the ASTER spectral library have been presented in columns f3, g3. As shown in a, each sample was
tested using an InfraGold (Labsphere: Technical guide: Integrating sphere theory and applications)
reference panel on the background image to estimate the down-welling radiation spectra (shown in
d.1,d.2,d.3,e.1,e.2, and e.3).
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7.4 Methods

Sample preparation. The mineral grains were first washed and categorized by sizes.

Selected grains were than glued to carbon substrates (sheets) in two different categories; pure

sets and mixed sample sets. The pure set was used for training or spectral referencing. ASTER

spectral library was not used at this stage techniques. The mixed sample sets consisted of

targeted mineral grains with in an array of quartz grains included for reference. The mineral

grains are diagonally (form bottom-left to top right, Figure 7.1) arranged in the samples and

used in testing stages or verification of the automatic mineral identification process.

Experimental setup and Image acquisition. A lightweight Hyper-Camera imaging

spectroradiometer (HYPER-CAM LW from Telops) (Ding, 2005) operating in the LWIR band

(from 7.7 to 11.8 µm) was used for our experiment conducted in a laboratory environment.

It has a spectral resolution of 0.22µm and a spatial resolution of 320 × 256 pixels with

a LWIR PV-MCT focal plane array detector. The Hyper-camera uses a Fourier-Transform

Spectrometer (FTS or FT-IR) and has an instantaneous field-of-view (FOV) of 0.35 mrad

(Ding, 2005). The image acquisitions were performed while the minerals were attached to

a carbon substrate with an infragold plate in the background which was used for CR. The

experiments were conducted before and after using the heating source. there are 88 channels

of spectral resolution. The studied mineral grains were selected as they possess a distinctive

a signature in the range of the hyperspectral-camera.

Classification models. A Hue-Saturation-Value (HSV) - Principal Component Analysis

(PCA) based K-means clustering segmented the false color images are provided by spectral

comparison techniques. As the clustering is performed based on applying the eigenvalues

extracted from the data to make dimensional reduction before grouping, the clustering is

considered as a spectral clustering method (Ng et al., 2002). This clustering has been used to

categorize the false colors map created by spectral comparison techniques. The major reason

for using HSV for clustering is due to the separation of the luma, which contains the intensity

information of the image, from the chroma comprising the color information. Unlike the RGB

color system, the HSV provides robustness to removing shadows or lighting variations. In

HSV the actual color components are in the target whereas in the RGB color system, the

implementation details concern the color display. This means that RGB represents more of
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a computer-treated means of representing the color whereas HSV provides the components

captured in the way in which humans perceive color. Response (or resonation) of the human

eye is surprisingly limited to three main light frequencies red, green and blue. It is not linear

and provides a pure color unique response of the retina combining three color component

responses. It works regardless of lighting changes in the value channel and therefore practical

clustering gives reasonable efficiency. K-means clustering efficiently provides categorization of

ROI in the hyperspectral image. The entire computational process was carried out with a PC

(Intel Core 2Quad CPU, Q6600, 2.40GHz, RAM 8.00GB, 64 bit Operating System) and data

analysis was conducted using the MATLAB programming language.

7.5 Results

Mineral grains and their spectra. The surface structure of the studied mineral grains

are illustrated in Fig. 7.1. The structure of the surface in mineral grains is irregular so our

study considered only the general mineralogical composite assessment through hyperspectral

infrared imaging for automatic grains identification, independent from the shape or geometry

of their surface. The eleven minerals analyzed here are listed in Table 7.1 together with their

chemical composition and a short description. The grain’s sizes are varied between 0.6mm

to 2.0mm. A special lens was used for better spatial resolution (which is described in the

next section). The grain groups were divided into two main sets containing pure and mixed

minerals. The pure mineral grains were selected to be used for training and spectral reference

along with the ASTER spectral library (Baldridge et al., 2009).

Hyperspectral Data Analysis. The first step of the identification process includes the

CR process to remove the heating source spectral radiation from the data. This process is

achieved by performing two image acquisitions, one before heating the sample and one after

heating the sample. The heating source radiation was obtained from the InfraGold reference

panel (Labsphere, North Sutton, NH, USA) which has a reflectivity of 92− 96% for 1− 16µm

wavelength radiation (r19). This CR process makes the spectral comparison between the

targeted and reference spectra possible. Mineral identification using supervised/unsupervised

approaches is a computational method to classify and segment the pixel-spectra. This is

highly dependent on the spectral comparison techniques that are used to extract the spectral

features from data. Using Spectral Angle Mapper (SAM) and Normalized Crossed Correlation
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(NCC) showed considerable performance since these methods are dependent on the topology

of spectra. These algorithms calculate the difference between the reference and targeted

spectra in the form of an error (in the case of SAM) and correlation similarity parameter

(in the case of NCC). The reference spectra for comparison is associated with the spectra

corresponding to the pure minerals (Fig. 7.2.c.1., Fig. 7.2.c.2., Fig. 7.2.c.3.) and the spectra

from the ASTER spectral library (Fig. 7.2.f3.i.,Fig. 7.2.f3.ii.,Fig. 7.2.f3.iii., Fig. 7.2.f3.iv.,

Fig. 7.2.g3.i., Fig. 7.2.g3.ii., Fig. 7.2.g3.iii., Fig. 7.2.g3.iv.)(Baldridge et al., 2009). The

targeted mineral grains in LWIR have spectral profile similar to the ones found on the ASTER

library (Fig. 7.2.f2.i.,Fig. 7.2.f2.ii.,Fig. 7.2.f2.iii., Fig. 7.2.f2.iv., Fig. 7.2.g2.i., Fig. 7.2.g1.ii.,

Fig. 7.2.g2.iii., Fig. 7.2.g2.iv.). The comparison was performed for each pixel spectrum

and it provided the spectral coefficient amount for the targeted pixel-spectrum and continued

by looping over all the spectral pixels in the hyperspectral cube. Ultimately, the spectral

variation provided a map which represents the spectra similarity to targeted spectra, a false

colors map that was segmented afterwards. Figure 7.2 depicts the experimental setup and

automatic mineral identification using hyperspectral infrared imagery. It is clear that the

spectra obtained for the targeted mineral grains in LWIR (Fig.7.2) compare very well with

the spectra of the pure minerals as well as with the spectra from the ASTER spectral library.
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Biotite samples

Aluminium

Barium Chlorine Caesium Iron Potassium

Element AN series Net [norm. 

wt.%]

[norm. at.%] Error in wt.% (1 

Sigma)

Iron 26 K-series 163658 31.836 20.097 0.075

Silicon 14 K-series 11915 23.609 29.636 0.218

Potassium 19 K-series 21563 16.236 14.640 0.0297

Titanium 22 K-series 16610 4.779 3.519 0.0028

Manganese 25 K-series 3386 0.685 0.439 0.0001

Aluminium 13 K-series 2047 10.277 13.428 0.0606

Magnesium 12 K-series 839 12.575 18.240 0.1105

Rhodium 45 K-series 0 0 0 0

Magnesium Manganese Silicon Strontium Titanium

ROI

Caesium Chlorine Iron Magnesium Silicon VanadiumROI

Diopside samples

Targeted point for  
chemical components 

inspection

Targeted point for  
chemical components 

inspection

Element AN series Net [norm. wt.%] [norm. at.%] Error in wt.% (1 

Sigma)

Silicon 14 K-series 28450 37.766 43.558 0.212

Calcium 20 K-series 80125 30.261 24.459 0.034

Iron 26 K-series 75197 12.279 7.1226 0.005

Magnesium 12 K-series 1783 17.587 23.439 0.072

Chromium 24 K-series 2578 0.497 0.309 3.897E-05

Vanadium 23 K-series 4599 1.147 0.729 0.0001

Potassium 19 K-series 722 0.459 0.381 4.747E-05

Rhodium 45 K-series 0 0 0 0

a

b

Figure 7.3: Two examples of µXRF imagery for biotite and diopside. the picture represents
two examples of µXRF microscopy for biotite and diopside along with the representation of the
mineral aggregates in the form of quantitative plots and tables. For each mineral there is an image
that illustrates the ROI and images of mineral aggregates corresponding to the ROI’s image. The
mineral aggregates map indicates the presence of some minerals in the grains and shows the location
of the grains in each sample.
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Mineral 

Spatial 
resolution of 

RoI 

 
Rigid-GT 

 
Observed-GT  

 
Accuracy by 

Rigid-GT  

 
Accuracy by 

Observed-GT  
Mineral 

 
Quartz 

 
Mineral 

 
Quartz 

Biotite 123*138 434 483 78 434 52.45 89.16 

Diopside 126*143 253 705 46 637 40.21 56.40 

Epidote 123*148 216 706 38 516 48.64 80.95 

Geothite 118*141 199 552 34 443 33.76 53.15 

Kyanite 123*144 68 510 11 657 37.44 32.39 

Scheelite 123*158 134 810 22 591 48.69 74.98 

Smithsonite 119*160 343 913 9 507 28.39 69.11 

Tourmaline 58*80 122 9 60 17 75.81 >99 

Table 7.2. Accuracy of automatic mineral identification is presented for Rigid-GT and Observed-GT. 
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Automatic grain identification. Unsupervised mineral identification was performed using

the HSV-PCA based K-means clustering approach. The clustering process was performed

knowing the number of interested clusters. The entire automated classification system is

shown in Figure 7.2 along with the processing results. The system accuracy was directly

calculated by discriminating false color images through color based clustering in each mineral

sample. The HSV-PCA clustering was constructed by using the first two eigenvectors (PCs)

corresponding to the image variables in the HSV color system. The clustering output variables

associated with index numbers for each segment were labeled to the targeted mineral which

led to their identification. Applying the clustering method for eigenvectors of the input data

converted the clustering process into the spectral clustering approach. As in each mineral

mixture case, the targeted grains were mixed with quartz grains, therefore for each mixed

sample the accuracy is estimated through the average accuracy for both two types of grains.

Two types of error are shown as a false positive that represents wrong mineral identification

and a false negative that reveals misidentified minerals and both are calculated in separate

cases. Total accuracy for each mineral calculated by subtraction of the correct identification

and the two errors for each sample. The overall accuracy of automatic mineral identification

was 45.67 % (averaging of all the accuracy using NCC) which is shown in Table 7.2.
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Live Time: 60,00 Count Rate: 1647 Dead Time: 17,77 %

Beam Voltage: 15,00 Beam Current: 1,00 Takeoff Angle: 30,00

Element Wt% At% ChiSquare

d

O 28,59 46,14 11,35

Al 7,67 7,34 7,46

Si 18,47 16,98 17,29

Fe 19,48 9,01 0,83

K 11,01 7,27 2,37

Mg 10,13 10,76 6,46

Ti 4,66 2,51 0,42

Total 100,00 100,00 3,31

Elemen

t

Gross 

(cps)

BKG 

(cps)

Net 

(cps)

P:B 

Ratio

Z Corr A Corr F Corr

O 99,1 6,1 93,0 15,3 0,908 3,170 0,999

Al 96,0 14,7 81,3 5,5 0,982 1,662 0,993

Si 194,8 13,9 180,9 13,0 0,996 1,499 0,998

Fe 32,6 4,6 28,0 6,1 1,128 1,012 1,000

K 72,0 17,5 54,5 3,1 1,057 1,097 0,993

Mg 98,5 15,8 82,8 5,2 0,969 1,823 0,995

Ti 20,3 6,8 13,5 2,0 1,090 1,051 0,985

Live Time: 60,00 Count Rate: 1867 Dead Time: 18,89 %

Beam Voltage: 15,00 Beam Current: 1,00 Takeoff Angle: 30,00

Element Wt% At% ChiSquared

O 40,83 58,05 19,11

Al 13,57 11,44 5,27

Si 20,14 16,31 15,98

Fe 14,11 5,75 1,32

K 4,19 2,44 1,29

Mg 5,67 5,31 6,25

Ti 1,50 0,71 0,28

Total 100,00 100,00 4,14

Element Gross 

(cps)

BKG (cps) Net (cps) P:B Ratio Z Corr A Corr F Corr

O 172,9 7,1 165,8 23,4 0,931 2,410 0,999

Al 157,0 17,2 139,8 8,1 1,007 1,533 0,993

Si 234,7 16,2 218,5 13,5 1,020 1,494 0,999

Fe 26,1 4,3 21,9 5,1 1,154 1,004 1,000

K 33,9 13,2 20,7 1,6 1,083 1,101 0,996

Mg 80,4 18,0 62,4 3,5 0,993 1,743 0,993

Ti 11,2 6,8 4,4 0,6 1,116 1,036 0,986

Live Time: 60,00 Count Rate: 1783 Dead Time: 17,95 %

Beam Voltage: 15,00 Beam Current: 1,00 Takeoff Angle: 30,00

Element Wt% At% ChiSquared

O 53,59 67,17 27,92

Al 35,58 26,45 37,95

Si 7,03 5,02 3,95

Fe 3,80 1,36 1,20

Total 100,00 100,00 5,28

Element Gross 

(cps)

BKG (cps) Net (cps) P:B Ratio Z Corr A Corr F Corr

O 213,7 6,8 206,9 30,5 0,959 1,864 0,999

Al 385,1 19,3 365,8 18,9 1,037 1,331 0,998

Si 78,0 18,8 59,2 3,2 1,051 1,665 1,000

Fe 6,8 3,0 3,8 1,3 1,187 0,998 1,000

SEM image from a Biotite grain

a

b

c

Figure 7.4: An example of SEM imagery for inspection of biotite’s surface. As shown in
the SEM image, the grain’s surface is irregular and has an unpredictable shape. This causes the non-
uniform scattering of the spectral reflection in the hyperspectral image and consequently inaccurate
signature for the mineral in the region. There are three randomly selected points in the grain’s surface
that have been analyzed for mineral component inspection.
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Ground truth. The quantitative assessment and percentage of the accuracy depends on

the ground truth and was carried out by comparing the identified mineral pixels with the

grain’s actual location. This called the Ground Truth (GT) and referred to a set of labeled

images constructed by an expert space (geologist or knowledgeable data-analyzer) observation

of the mineral positions, rigid-GT, or their spectra, observed-GT. GT has the size similarity

to spatial-resolution of the hyperspectral images. Rigid-GT and manual labeling might not

be a correct indicator for actual mineral presence for two reasons. First, the grains might not

be absolutely pure and might have other mineral aggregates. Second, grains have irregular

surfaces and might scatter the reflectance of the mineral and consequently the hyperspectral

camera might not correctly see the mineral. So generating another GT by manual observation

of the entire hyperspectral data cube is seemingly needed. To address this need, a Matlab user

interface was developed for the pixel observation and labeling. This provided an opportunity

to visually compare more than 200,000 pixel-spectra to those of the ASTER spectral library.

Fig. 7.2.d provides a sample of the observed-GT which shows the selected regions in the mixed

mineral sample. The number of the mineral samples in the observed-GT is lower than in the

rigid-GT due to a slight scattering of radiation and non-homogeneous reflection received by

the hyperspectral camera caused by the irregular surface of the grains. Table 7.2 presents the

accuracy of the system using rigid-GT and observed-GT. The average identification accuracy

using observed-GT is 1.5 time more accurate than when using rigid-GT, increasing from

45.67% to 69.39%.
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Biotite & quartz mixed sample 

Epidote & quartz mixed sample 

Goethite 
sample - SAM 

Diopside 
sample -SAM

Kynite 
sample - SAM 

Scheelite 
sample - SAM 

Smithsonite 
sample - SAM 

Tourmaline 
sample - SAM 

Diopside 
sample - NCC

Biotite 
sample - NCC

Epidote 
sample - NCC

Kynite 
sample - NCC

Olivine 
sample - NCC

Pyrope 
sample - NCC

b

a

c

d

1 2 3 4 5 6
ArcGIS:Binocular&µXRFresults AL ArcGIS:Binocular&µXRFresults Fe ArcGIS:Binocular&µXRFresults K ArcGIS:Binocular&µXRFresults Mg ArcGIS:Binocular&µXRFresults Si ArcGIS:Binocular&SAM results

ArcGIS:Binocular&µXRFresults AL ArcGIS:Binocular&µXRFresults Fe ArcGIS:Binocular&µXRFresults SiArcGIS:Binocular&µXRFresults Ca ArcGIS:Binocular&SAM results

Figure 7.5: The results of automatic identification fused by the µXRF and binocular
images to determine the reliability. The figure generated by ArcGIS v10.2 based on combining
mineral aggregates images using µXRF microscopic imagery and binocular images from the samples.
a,b show the results of µXRF along with the results of image fusion for biotite (a) and epidote (b),
respectively. Rows c,d are the results of SAM and NCC for targeted mineral grains in the mixed
samples.
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Micro X-ray Fluorescence (µXRF ). To provide a detailed investigation of the mineral

grain’s surface and mineral composition the Region Of Interest (ROI), an experiment was

conducted using a µXRF (M4 TORNADO, 60 mm2 XFlash SD detector); µXRF is a spec-

troscopy machine which enable an elemental analysis on very small samples.

µXRF uses direct X-ray excitation to induce the X-ray fluorescence emission and bombards

to the samples using X-ray optics to limit the excitation beam size to focus on a small spot

(TORNADO, 2015). The combined results of the automatic mineral identification and µXRF

can represent the misclassification. This also indicated the presence of additional mineral

aggregates within the ROI. The challenge in combining the information contained by these

images is related to the different resolution of the images. To address this issue, ArcGIS

software was used which fused the images of the automatic identification with the images

obtained from µXRF (and even binocular images) and ultimately provided an image map

that indicated different mineral content corresponding to the identification among the mineral

grains. Fig. 7.3 depicts biotite and diopside examples (pure and mixed grains), the targeted

point for the mineral decomposition at the grain and its corresponding result.

Scanning electron microscope (SEM). The difference in the rigid-GT and observed-GT

indicated that there are some non-smooth surfaces on the mineral grains. To better analyze the

grain’s surface, some microscopic imagery was used such as binocular imagery (some results

of binocular images from the grains are shown in Fig.7.1). However, a superior observation

was provided by scanning electron microscope (SEM) technique. In addition, SEM gives the

external morphological information and its chemical composition. Fig. 7.4 presents the SEM

image from the biotite grain’s surface and the chemical decomposition of three points on the

surface of biotite which mineral assemblage. This sample was smoother than some other

mineral grain samples, indicating that the scattering and non-homogeneous reflection process

were minimal during the hyperspectral image acquisition.
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Mineral 

Accuracy  

Pixel Based   

Accuracy -NCC Accuracy -SAM 

Biotite 51.25 71.32 6/6 6/6 

Diopside 50.81 74.3 5/5 5/5 

Epidote 82.4 72.14 5/5 5/5 

Geothite  53.53  5/5 

Kyanite 76.22 61.49 5/5 5/5 

Scheelite 75.29 65.73 5/5 5/5 

Smithsonite  45.47  4/5 

Tourmaline  17.11  1/1 

Table 7.3. Accuracy of automatic mineral identification using ArcGIS mapped our results on binocular image. 

Grains detected/ Total 
Number of grains (SAM) 

Grains detected/ Total 
Number of grains (NCC) 
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7.6 Discussion

Following the objective of this research, which was to verify the reliability of this process, we

automatically identified the mineral grains using hyperspectral comparison analysis such as

SAM and NCC to create false color images and segmentation was then performed by HSV-

spectral clustering. The accuracy was based on counting the correctly detected pixels in the

hyperspectral images. There are two possible types of errors: a false positive signifies a wrong

mineral identification and a false negative indicates mineral grain misidentification. Both of

these errors were considered in each case. The overall accuracy was calculated by subtraction

of the correct identification and two errors for each samples. Moreover, the accuracy of the

system using ArcGIS is shown in Table 7.3.

The quantitative results were first performed using rigid-GT for mineral identification. Then,

the quantitative comparison was performed by Observed-GT which increased the accuracy

percentage with the exception of kynite, where accuracy decreased from 37.44% to 32.39%

(Table 7.2) because of the presence of other minerals or irregular surface in its grain. The

lower number of selected pixels of the observed-GT as compared to rigid-GT is a result of

the non-smooth surface of the grains that led to non-homogeneous spectral reflectance and

eventually to weaker spectral signatures. The irregular surface of the mineral grains was ob-

served through SEM imagery along the points mineral composition of some randomly selected

points. The SEM image indicated the irregular surface for the mineral grains that resulted in

the scattering in the spectral radiation.

µXRF spectroscopy was used to test the mineral composition and the aggregates with other

minerals. This method revealed the mineral content of each mineral along with some random

exploration (Fig.7.3 presents the results of mineral identification). µXRF mineral composi-

tion indicated the different mineral contents, which ultimately led us to identify the grain. The

resulting image provides, the location of grains fitted to the mineral grains as an automatic

identification, thereby representing a good verification for the identification process. Fig.7.5

presents the results of ArcGIS image fusion.

For each mineral there are several key existing elements which were tracked by µXRF to verify

the identification. µXRF decomposes the mineral mapping based on the mineral composi-

tions. For example, biotite (K(Mg,Fe)3AlSi3O10(OH,F )2, Table 7.1) and µXRF provided

aggregates maps for all of these elements (Fig.7.5 a1-5). Finally, a good match between binoc-
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ular and automated results (Fig.7.5 a6) indicated a good system performance. For diopside

(CaMgSi2o6, Table 7.1) the key elements are Si, Ca, and Mg and consequently µXRF gave

a map for these minerals and ArcGIS mapped automatic detection into a binocular image.

The system’s results (Fig.7.5 c.1) show very good matching and correct identification. On the

other hand, for smithsonite (ZnCO3) and goethite (FeO(OH)) no Si aggregates exists for

these minerals but the automated system found a small amount of Si which can be considered

as a fault of the system.

7.7 Conclusions

The proposed approach investigated the automatic mineral grains identification using hyper-

spectral imagery in laboratory conditions. An experiment was conducted using a hyperspectral

camera in the Long Wave Infrared (LWIR, 7.7-11.8 µm) with a LWIR-macro lens providing

a spatial resolution of 100 µm per pixel (from a distance of 30 cm between the camera and

the specimen), an infragold plate, and a heating source to generate the data. For mineral

identification, first the system applied the spectral comparison techniques, SAM and NCC, on

the pixel-spectra of the input data cube and the ASTER spectral library of JPL/NASA. This

generated the spectral difference in the form of false colors so a HSV based spectral K-means

clustering then grouped them into different mineral categories. Eleven different minerals (bi-

otite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine,

and quartz) were tested in the targeted band and most of them had a signature in this band.

The results were compared with GT to calculate the quantitative assessment of the system.

Two types of GT were created and used; rigid-GT and observed-GT which led to an increase

in the overall accuracy of the system by 23.7% from 45.67 % to 69.39 %. Moreover, the mixed

samples have been examined by µXRF and SEM imagery systems to analysis the mineral

aggregates and surface of the grains. The results of µXRF compared well with automatic

mineral identification techniques using ArcGIS software and represented a promising perfor-

mance of automatic identification. The comparison indicated a very reasonable accuracy and

thus can be used to investigate additional minerals and wavelength bands of hyperspectral

infrared image acquisition as future work.
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Chapter 8

General conclusions and perspectives

8.1 Conclusions

The objective of the present thesis was to create an automated mineral identification system

approach technique which provides suitable accuracy and involves relatively low computational

complexity. The tool proposed herein uses hyperspectral infrared imagery data and processes

the data through image analysis and machine learning methods to identify small size min-

eral grains used as mineral indicators. Moreover, it allows the system to be an additional

computer-aided geological tool for mineral identification and creates a platform for any other

derivation of hyperspectral infrared imagery. The main hypothesis stated that hyperspectral

infrared imagery can be a useful tool to identify the small mineral grains through spectral

data assessment and that automated/semi-automated or supervised/unsupervised data anal-

ysis methods for spectral technology are effective tools that would allow the relatively precise

assessment of the mineral’s locations in the samples.

Overall, a modified continuum removal approach was proposed for ground based spectroscopy

which alleviated the process of calculating the blackbody temperature in the panels surface

by conducting the acquisition before and after heating the samples. The calculation was

verified by using data generated through an experiment conducted in the 7.7µm to 11.8µm

LWIR wavelength range. Moreover, the subsequent calculations of the continuum removal

were also modified by an estimation of the downwelling spectral radiance using Non-Negative

Matrix Factorization (NMF) optimized by Gradient Descent (GD) and Non-Negative Least

Square (NNLS) methods. The similarity percentage of the continuum removed spectra from
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each method was compared to the spectra of the minerals from the ASTER spectral library

using Spectral Angle Mapper (SAM) and Normalized Cross Correlation (NCC) which showed

promising performances in terms of spectral retrieval.

Then a supervised method (kernel Extreme Learning Machine-ELM) and unsupervised method

(K-means clustering) was used to create an automated system for mineral identification in

long-wave infrared (LWIR) ground-based spectroscopy. Based on the performance of each

system, the supervised classification significantly showed the dependence on the number of

training samples and is considerably less efficient as compared to clustering due to the nature

of the supervised learning process.

More favorable and easier to use unsupervised approaches (clustering) were studied in the third

part of the performed analysis which included testing two different algorithms involving clus-

tering strategies to group the spectra and ultimately achieve mineral identification for eleven

different mineral grains (biotite, diopside, epidote, goethite, kyanite, scheelite, smithsonite,

tourmaline, pyrope, olivine, and quartz). This clustering algorithm boosted a performance

about twenty times faster with also a noticeable accuracy.

The reliability of the proposed automated system was also verified applying Micro X-ray Flu-

orescence (µXRF ) and Scanning Electron Microscope (SEM) in order to retrieve information

of the mineral aggregates and the grain’s surface. The results of µXRF imagery were com-

pared with automatic mineral identification techniques, using ArcGIS, and showed a promising

reliability for automatic identification.

The analysis and the automated system used in this study was able to identify the grains and

differentiate the different types of the minerals in a sample using LWIR hyperspectral analysis.

However, the proposed system was not able to identify the minerals which have a significant

spectral signature in another wavelength band range. The results demonstrate how positive

is the impact of an automated system for mineral identification at LWIR and also highlight

the important effect of the mineral’s surface on the generated spectra and ultimately their

identification. Finally, the results of the hyperspectral infrared imagery showed a promising

performance as a good solution to identify small grains in a specific wavelength band range.
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8.2 Futures perspectives

8.2.1 Possible modification of mineral grains

The mineral grain samples of this thesis involved non-mixed and mixed samples. To the mixed

samples some more quartz samples were usually added into the arrangement. The mixed

samples can be expanded to several different grains (not only quartz). That would increase

the complexity of the analysis and demand a more powerful analyzer to perform the task and

correctly identify the minerals. Moreover, the background substrate of the samples consisted

of a carbon panel which had a particular signature which is easily eliminated. Unfortunately in

some experiments the used cardboard was not of the same quality as the previous experiments

which may have influenced the process. This background substrate can also be modified to a

more constant substrate.

8.2.2 Experimental conditions

The experimental setup for all of the presented tests in LWIR involved a hyperspectral infrared

camera, heating source, macro lens, and infragold plate. The setup in each of the conducted

experiments was changed and even the spectral resolution and bands were also varied which

created further variation requiring adjustment. This changed the analysis and would be more

problematic once the system would be used for real world applications. An important factor

to be considered in future efforts is to create a setup with fixed experimental conditions. It

would not only dramatically alleviate the changes in the process but also reduce (or even

eliminate) unnecessary disparities caused by setup variations.

8.2.3 Possible programming advancement

The entire programming implementation of this research work was deployed in MATLAB

coding language to create a convenient prototype programming tool to test and verify perfor-

mances of the proposed algorithms. Moreover the MATLAB programming provided a good

opportunity to test the hypothesis and quickly create or modify the algorithms, this software

exhibits lower computational efficiency as compared to other programing tools such as C++

and C. To increase the computational speed and reduce its complexity, such programming tools

could be a great alternative to fulfill the requirement and create a fast and robust system.
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8.2.4 Application of more advanced machine learning

The application of machine learning to perform the mineral identification in this thesis was just

a commencement for the tools that could be developed. Application of the clustering could be

unequivocally generalized into many different mathematical and computational models that

could provide great tools to perform the task. Moreover, there are many pattern recognition

methods that could be used to determine and discriminate the mineral classes which could

be a new challenge of this research. In addition, there are plenty of the signal and spectral

transforms techniques such as wavelet analysis that could pre-process the spectra before per-

forming any decision making stage. Application of these pre-processing steps could increase

the dimension of input data and ultimately might expand the precision of the system in the

identification task.

8.2.5 Modifying the infrared technology

The current approach used a hyperspectral infrared wavelength band in the long wave infrared

(7.7µm to 11.8µm). As it has been mentioned previously, there were some minerals that did

not have any signature in LWIR which caused no response for their identification. Addition of

other hyperspectral infrared bands such as Short-Wave Infrared band (SWIR) or Visible and

Near Infrared (VNIR) band could provide this opportunity to investigate more minerals that

might have a signature in SWIR or VNIR.
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Appendix A

List of publications

Here, the list of articles submitted or published in different journals and conferences are pre-

sented:

1. Continuum removal for ground based LWIR hyperspectral infrared imagery ap-

plying non-negative matrix factorization, was submitted for Applied Optics journal, on

January 5th 2018, Authors: Bardia Yousefi, Saeed Sojasi, Clemente Ibarra Castanedo, Xavier

P.V. Maldague, Georges Beaudoin, Martin Chamberland.

2. Automatic Mineral Identification using Ground-based Hyperspectral LWIR In-

frared Spectral Analysis and Extreme Learning Machine, was submitted for Infrared

Physics Technology journal, on February 5th 2018. Authors: Bardia Yousefi, Saeed Sojasi,

Clemente Ibarra Castanedo, Xavier P.V. Maldague, Georges Beaudoin, Martin Chamberland.

3. Comparative clustering analysis applying K-means rank1-NMF and FCC on

mineral identification in long wave hyperspectral infrared imagery, was submitted

for GIScience & Remote Sensing journal, on March 5th 2018. Authors: Bardia Yousefi, Saeed

Sojasi, Clemente Ibarra Castanedo, Xavier P.V. Maldague, Georges Beaudoin, Martin Cham-

berland.

4. Automated LWIR Hyperspectral Infrared mineral identification reliability and is
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submitted for Applied Optics journal, on January 5th 2018, Authors: Bardia Yousefi, Clemente

Ibarra Castanedo, Xavier P.V. Maldague, Georges Beaudoin.

5. Mineral Identification in LWIR Hyperspectral Imagery Applying Sparse based

Clustering and is going to be submitted for QIRT journal (was pre-selected from QIRT-Asia

2017), and to be submitted in their deadline, Authors: Bardia Yousefi, Clemente Ibarra Cas-

tanedo, Xavier P.V. Maldague, Georges Beaudoin.

6. Bardia Yousefi, Saeed Sojasi, Clemente Ibarra Castanedo, Georges Beaudoin, François

Huot, Xavier PV Maldague, Martin Chamberland, and Erik Lalonde. Mineral identifica-

tion in hyperspectral imaging using Sparse-PCA. In Thermosense: Thermal Infrared

Applications XXXVIII, vol. 9861, p. 986118. International Society for Optics and Photonics,

2016.

7. Bardia Yousefi, Saeed Sojasi, Clemente Ibarra Castanedo, Georges Beaudoin, François

Huot, Xavier PV Maldague, Martin Chamberland, and Erik Lalonde. Emissivity retrieval

from indoor hyperspectral imaging of mineral grains. In Thermosense: Thermal In-

frared Applications XXXVIII, vol. 9861, p. 98611C. International Society for Optics and

Photonics, 2016.

8. Bardia Yousefi, Saeed Sojasi, Kévin Liaigre, Clemente Ibarra Castanedo, Georges Beau-

doin, François Huot, Xavier PV Maldague, and Martin Chamberland. Modified algorithm

for mineral identification in LWIR hyperspectral imagery. In Thermosense: Thermal

Infrared Applications XXXIX, vol. 10214, p. 102141H. International Society for Optics and

Photonics, 2017.

9. Saeed Sojasi, Bardia Yousefi, Kévin Liaigre, Clemente Ibarra-Castanedo, Georges Beaudoin,

Xavier PV Maldague, François Huot, and Martin Chamberland. The role of the continu-

ous wavelet transform in mineral identification using hyperspectral imaging in the

long-wave infrared by using SVM classifier. In Thermosense: Thermal Infrared Appli-
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cations XXXIX, vol. 10214, p. 102141K. International Society for Optics and Photonics, 2017.

10. Bardia Yousefi, Clemente Ibarra Castanedo, Georges Beaudoin, Xavier PV Maldague,

François Huot, and Martin Chamberland. Mineral identification in LWIR hyperspectral

imagery applying sparse spectral clustering. QIRT Asia, 2017.
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Appendix B

Programming codes and

implementations

This appendix summarized the MATLAB codes which used for implementation of my pro-

posed algorithms. The documentation of these codes are based on presented chapters and

articles. For every chapter the relevant code mentioned a long with a link corresponds to the

code that can be downloaded online.

Note: The entire codes mentioned in this research are corresponded to LWIR hyperspectral

camera 7.7-11.8 µm wavelength band range at Telops Inc. (Telops 2016) and for reading

the raw hyperspectral image the relevant MATLAB codes must be used and they are under

copyright protection law. The presented codes are supposed the reading process is already

done and hyperspectral data cube are extracted.

B.1 Continuum Removal (Chapter 4)

This code requires two times reading the hyperspectral image with and without heating source

to obtain LiON (λ) and LiOFF (λ) spectral radiation through equation ?? in the 4th chapter. For

that, a spectral radiation representative of LiON (λ) and LiOFF (λ) separately calculated and

then applied to the equation ??.
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% by Bardia Yousefi. 10 April 2015 (bardia.yousefi@ieee.org) from MIVIM and E4M team Université 

Laval project under supervision of: Prof. Xavier P.V. Maldague and Prof. Georges Beaudoin 
% TELOPS Inc. provides the source codes for reading the hyperspectral images and this code 

respects the copy right and kept the integrity of this collaboration and does not release their 

codes. 
clear; clc; close all, warning off 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Select your mineral 
% 'ILM' = 1  % 'OL' = 2  % 'PYR' = 3   % 'CHR' = 4  % 'QTZ' = 5 % 'BKG' = 6 
% Min_num = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
esm =   {'ILM' 'OL' 'PYR' 'CHR' 'QTZ' 'Li'}; ,esm_color =   {'ob' '+k' '*' '.m' '.g' '*k'}; 

  
ShapeFeaturesNo = [6,33,34,52,65,81,82,85,87,90,95,100,107,129]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
cd 'E:\B\Dr-IR-sp\Dr-IR-MATLAB\MIVIM-HyperSpectral\' % General directory of this MATLAB code 

CF0 = cd(pwd); % saving the directory for further uses 
  addpath(CF0); 
    % codes path 
  CF1 = [CF0, '\Matlab_customer\p_files']; 
  addpath(CF1); 
  cd(CF1); 
  pathaddress = [CF1,'\Subfunctions']; 
  addpath(pathaddress); 

   
% ---------------------------------------------------------------------   
 FilePath = [CF0,'\mesures_2avril2015\']; 

 FileName = '20150402_211927875_OL_ON.radiance.sc'; % raw data heating source ON 

 filename = [FilePath,FileName]; 

 % reading the hyperspectral image 
 [Data_ON,DerivedFromHeader_ON,Header_ON] = readHyperCam(filename); 
    %Grid generation 
   sigma = buildSigmaGrid(DerivedFromHeader_ON);  
   %Plot broad band image 
   kk = (sigma>850 & sigma<1250); 
   IRimage = formImage(Header_ON,mean(real(Data_ON(kk,:)))); 
   Clims1 = imageScalingLimits(IRimage(:)); 
   figure;imshow(IRimage,Clims1) 
% --------------------------------------------------------------------- 
  

%% 
FilePath = [CF0,'\mesures_2avril2015\']; 
 FileName = '20150402_212156460_OL_OFF_after.radiance.sc'; % raw data heating source OFF 

 filename = [FilePath,FileName]; 

% reading the hyperspectral image 
 [Data_OFF,DerivedFromHeader_OFF,Header_OFF] = readHyperCam(filename);  
 

% --------------------------------------------------------------------- 
 

 % Here we are selecting spatial region corresponding to InfraGold to obtain the continuum 

spectra 
J = imadjust(IRimage,Clims1); 
BW = roipoly(J); 
[row,col] = find(BW == 1); 
infraGold = [row,col]; 
%finding the pixels indices of infragold region 

    pixels = getAoiIndices(Header_ON, buildAoi(1, 1, infraGold(:,2)-1, infraGold(:,1)-1)); 

 

 

% Down-welling radiation while heating source is ON; “Li_ON”  

  
 [Wo,Ho] = nnmf(Data_ON(:,pixels),2); %calculating Non-Negative Matrix Factorization  

 Li_ON = Wo(:,1); % selecting the first spectral basis from basis matrix 

%Li_ON = mean(Data_ON(:,pixels),2); If you do not want to calculate the down-welling spectra 

applying Non-Negative Matrix Factorization 

 
[Wf,Hf] = nnmf(Data_OFF(:,pixels),2);      

Li_OFF = Wf(:,1); % selecting the first spectral basis from basis matrix 

%Li_OFF = mean(Data_ON(:,pixels),2); If you do not want to calculate the down-welling spectra 

applying Non-Negative Matrix Factorization 

 

        
 

% Applying our simplification formula 

 

for i = 1 : size(Data_ON,2)        
      Reflectance(:,i) = (Data_ON(:,i) - Data_OFF(:,i)) ./ (Li_ON - Li_OFF); 
end 
  

% file “Reflectance” is Continuum Removed spectra ready to be used. 

This part of code performs 

the set path 

Here we read the 

hyperspectral image while 

there is a heating source. 

Here we read the 

hyperspectral image while 

there is no heating source. 

Calculating down-welling spectra using 

Non-Negative Matrix Factorization 
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B.2 Classification or clustering (Chapter 5)

This section shows the MATLAB codes correspond to applying Extreme Learning Machine

(ELM) and K-means clustering. 1. In order to apply these techniques, a MATLAB hyper-

spectral image index analysis toolbox (Isaac, 2015) and modified Kernel ELM (Huang, 2013)

were used.

1We provide the programming code in this link: http://vision.gel.ulaval.ca/~bardia/PublicCodes/
WebJ1-19May2017.zip
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% This code perform classification for mineral identification using Kernelled-ELM 

 
% Bardia Yousefi 12.May 2017 (bardia.yousefi.1@ulaval.ca) from MIVIM and E4M team Université 

Laval project under supervision of: Prof. Xavier P.V. Maldague and Prof. Georges Beaudoin 
% Université Laval, Quebec city, Canada 
% *************************************************** 
clear; clc; close all, warning off, imtool close all 

  
cd('\\gel.ulaval.ca\Vision\Usagers\bayou2\MATLAB\J1_finalization\WebJ1\files'), CF0 = pwd; 
addpath('\\gel.ulaval.ca\Vision\Usagers\bayou2\MATLAB\J1_finalization\WebJ1') 
addpath('\\gel.ulaval.ca\Vision\Usagers\bayou2\MATLAB\J1_finalization\WebJ1') 

 
Mineral = 'Olivine'; % Name of mineral grains tested the alternatives are: Pyrope Olivine 
load([Mineral,'_r.mat']); 
load(['BY_',Mineral,'_r.mat']); 
BW_J = imread([Mineral,'.png']); % Loading the first image from hyperspectral data cube. 
nclstr = 6; % Number of cluster for when we are using clustering 
th = 0.8;  
ii = 2; %ssn = {'NCC','SAM','OSP','AMSD','HUD','MF','PLMF','RMFs','RMFml','RMFgml'}; 
  

 
%% ASTER 
cd([CF0,'\ASTER\']) 
%%%%% 
ASTER_Pyrope = importdata('PYROPE-

jhu.nicolet.mineral.silicate.nesosilicate.solid.pyrope1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Pyrope.data(:,1) > min(BY.sigma) & 10000./ASTER_Pyrope.data(:,1) < 

max(BY.sigma)); 
ASTERO = [ASTER_Pyrope.data(bandes_IR,1),ASTER_Pyrope.data(bandes_IR,2)/100]; 
Pyrope = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Olivine = importdata('Olivine (Fo92) (Fe+2,Mg)2SiO4 (2) - 

jhu.nicolet.mineral.silicate.nesosilicate.solid.olivi12.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Olivine.data(:,1) > min(BY.sigma) & 10000./ASTER_Olivine.data(:,1) 

< max(BY.sigma)); 
ASTERO = [ASTER_Olivine.data(bandes_IR,1),ASTER_Olivine.data(bandes_IR,2)/100]; 
Olivine = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Quartz = importdata('QUARTZ-

jhu.nicolet.mineral.silicate.tectosilicate.solid.quartz1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Quartz.data(:,1) > min(BY.sigma) & 10000./ASTER_Quartz.data(:,1) < 

max(BY.sigma)); 
ASTERO = [ASTER_Quartz.data(bandes_IR,1),ASTER_Quartz.data(bandes_IR,2)/100]; 
Quartz = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 
%%%%% 
load('bckgnd.mat'); 

  
ASTER = struct('ASTER_Pyrope',ASTER_Pyrope,'ASTER_Olivine',ASTER_Olivine , 

'ASTER_Quartz',ASTER_Quartz,... 
    'Pyrope',Pyrope, 'Olivine',Olivine, 'Quartz',Quartz, 'bckgnd', bckgnd); 
clear ASTER_Pyrope ASTER_Olivine ASTER_Quartz Pyrope Olivine Quartz ASTERO bckgnd ... 
    BW row col infraGold pixels bckgnd0 
%% Identification of the minerals (samples of the clusters) 
 tic 
ss = {'Pyrope','Olivine','Quartz','bckgnd'}; % defining different classes for classification 
 %  cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])  
 for i0 = 1 : size(ss,2),  
     a = eval(['ASTER.',num2str(ss{1,i0})]); 
    for i = 1 : size(signals,2), disp(sprintf([num2str(i),'-',num2str(i0)]))  
        [results_SCT(i)] = NCC(Norm2(signals(:,i)), Norm2(a(:,2))); %SAM NCC 
    end 
     MINERL_res{i0} = results_SCT; 
 end, time_SCT = toc; 

This part of code performs the set path 
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% figure; imshow(reshape(MINERL_res{1,3},[159 159])), colormap(parula) 
for i = 1 : size(ss,2) 
    IM = max(max(MINERL_res{1,i})) - MINERL_res{1,i};%reshape(MINERL_res{1,i},[159 159]); 
    IMc{i} = IM - (max(max(IM)) - 1); 
end 
% IMc = MINERL_res; 
%  extracting the labels using GT 
cd([CF0,'\Labeled']); 
L_m = rgb2gray(imread([Mineral,'.png']));, L_m = imresize(L_m(1:end-1,1:end-2),[size(BW_J,1)-

1,size(BW_J,2)-2]); 
L_q = rgb2gray(imread([Mineral,' - Q.png']));, L_q = imresize(L_q(1:end-1,1:end-2),[size(BW_J,1)-

1,size(BW_J,2)-2]); 
BKG = (L_m + L_q)<200; 

  
L_m = (reshape(L_m,1,[])>200)*2; %=============================================== 
L_q = (reshape(L_q,1,[])>200) * 3; 
BKG = (reshape(BKG,1,[])) * 4; 

  
% merging the labels and the attributes 50% training 50%testing 
% % here we just get the mineral location to be more precise  
% km = find(L_m == 1); 
% % for i = 1 : size(km,2)/2 
%    M = IMc{1}(km); 
for i = 1 : size(L_m,2),i 
    if (L_m(:,i) ~= 0 & L_q(:,i) ~= 0)  
        Label(:,i) = L_m(:,i);%+ L_q(:,i) + BKG(:,i) 
    elseif (L_m(:,i) ~= 0) 
        Label(:,i) = L_m(:,i); 
    elseif (L_q(:,i) ~= 0 & BKG(:,i) ~= 0)  
        Label(:,i) = L_q(:,i); 
    else 
        Label(:,i) = L_m(:,i) + L_q(:,i) + BKG(:,i); 
    end 
end 
Label = Label'; 

  
% Overal label matrix 
Label_tt = [Label,IMc{1}',IMc{2}',IMc{3}',IMc{4}']; 

  

  
% Training set 
L_training = abs(Label_tt(1:((size(L_m,2)*2)/3),:)); 

  
% Testing set 
L_testing = abs(Label_tt(((size(L_m,2)*2)/3) + 1:end,:)); 

  
% Overlapping for minerals existance 
[km] = find( Label_tt(:,1)== 1 ); 
KM = abs(Label_tt(km,:)); 

  
L_testing = [L_testing;KM]; 
clear idx a ans bandes_IR c i I i0 j Li_ON sample resultsNormXCorr  
%% correction in training and testing 

  
% L_training0 = L_training;  
L_training2 = L_training(1,:); 
for i = 1 : size(L_training,1) 
    [m,ind]=max(L_training(i,2:end)); 
    if L_training(i,1) == ind; 
       L_training2 = [L_training2;L_training(i,:)];  
    end 
end 
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% testing 
L_testing2 = L_testing(1,:); 
for i = 1 : size(L_testing,1) 
    [m,ind]=max(L_testing(i,2:end)); 
    if L_testing(i,1) == ind; 
       L_testing2 = [L_testing2;L_testing(i,:)];  
    end 
end 
%% 
tic 
% TXT training for ML; 5 classes only = no BKG class 
cd([CF0,'\elm_kernel']);  
    nameTXT = ['training.txt']; 
    fid = fopen( nameTXT , 'wt' ); 
    for i = 1 : size(L_training2,1) 
        fprintf( fid, '%f %f %f %f %f \n',L_training2(i,1),L_training2(i,2),... 
          L_training2(i,3),L_training2(i,4),L_training2(i,5));   
    end 
    fclose(fid); 

  
%% 
cd([CF0,'\elm_kernel']); 
    nameTXT = ['testing.txt']; 
    fid = fopen( nameTXT , 'wt' ); 
    for i = 1 : size(L_testing2,1) 
        fprintf( fid, '%f %f %f %f %f \n',L_testing2(i,1),L_testing2(i,2),... 
          L_testing2(i,3),L_testing2(i,4),L_testing2(i,5));   
    end 
    fclose(fid); 

  
%% Applying ELM for classification 
tic 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                KERNEL = 'lin_kernel';% lin poly RBF sig 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    addpath([CF0,'\elm_kernel\elm_kernel']); 
    addpath([CF0,'\elm_kernel\elm_kernel\results']); 
    cd([CF0,'\elm_kernel']); 
    v = [0.000001 0.1 0.1];   %wave %v=[-0.47 0.1]; RBF %v = 1; Sig v=[-0.47 0.1];  
    %lin v = [0.000001 0.1 0.1]; poly v = [0.1 10]; 
    Nameac = ['accuracy',num2str(KERNEL),'.txt']; 
    fid = fopen(num2str(Nameac), 'wt' ); 

          
    nametraining = ['training.txt']; 
    nametesting = ['testing.txt']; 
%     ['Classification accuracy for mineral ' num2str(Min_num) ' which represents' 

esm{1,Min_num}] 
    [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy,TY,AC] = ... 
        elm_kernel2(nametraining, nametesting, 1, 1,KERNEL,v);%testing 
    fprintf( fid, 'TrainingTime= %f \n TestingTime= %f \n TrainingAccuracy= %f \n 

TestingAccuracy= %f \n',... 
        TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy);  
time_elm = toc 
    fclose(fid); 
    Namety = ['AC',num2str(KERNEL)]; 
cd([CF0,'\elm_kernel\results']); 
    save(Namety,'AC');  
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% %%%%%%%%%%%%%%%%%%%%% Target %%%%%%%%%%%%%%%%%%%%%%%%% 
%  making the manual target for creation of the confusion matrix 
%   AC2 = [AC(:,1),AC(:,4),AC(:,2),AC(:,3)]; % enhanced pyrope 
   AC2 = [AC(:,4),AC(:,1),AC(:,2),AC(:,3)]; % enhanced olivine  
%   AC2 = [AC(:,2),AC(:,4),AC(:,1),AC(:,3)]; % enhanced 
% AC2 = [AC(:,3),AC(:,1),AC(:,4),AC(:,2)]; % non-enhanced 
% AC2 = AC; 
 ACC = zeros(size(AC2)); 
    for i = 1 : size(L_testing2,1) 
        ff = L_testing2(i,1); 
          if ff ~= 0 
              ACC(i,ff) = 1; 
          end 
    end 
%  ACC(1,1:1000) = 1;ACC(2,1001:2000) = 1; ACC(3,2001:3000) = 1; ACC(4,3001:4000) = 1; 

ACC(5,4001:5000) = 1; ACC(6,5001:6000) = 1; 
% ACC = [ACC(:,1),ACC(:,3),ACC(:,4)]; 
 plotconfusion(ACC',AC2') %  plotting confusion matrix   

  
 Namex = ['ConfusionMatrix_NCC_', Mineral,'_',num2str(KERNEL)]; 
saveas(gcf,[Namex,'.jpg']) 
saveas(gcf,[Namex,'.fig']) 

 

 

159



B.3 Two algorithms for clustering (Chapter 6)

B.3.1 K-means rank1-NMF algorithm

The algorithm clusters all the pixel-spectra to directly group the spectra. Then the rank-

one of Non-negative Matrix Factorization (NMF) extracts the representative of each cluster

and compares results with the spectral library of JPL/NASA through spectral comparison

techniques. These techniques give the comparison values as features which convert into RGB-

FCC as the results. The algorithm will be called K-means rank1-NMF. This section shows the

MATLAB codes correspond to applying K-means clustering (K-means-rank1 NMF algorithm).
2. In order to apply these techniques, a MATLAB hyperspectral image index analysis toolbox

(Isaac, 2015) was been used.

2We provide the programming code in this link: http://vision.gel.ulaval.ca/~bardia/PublicCodes/
J2-10May2017.zip
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% This code represents two strategies regarding the clustering of the 
% hyperspectral  
% Here, we have images ready to use as the preprocessing codes are under copy right of 
% TELOPS company and we can not provide them. 
% 
% Author:      Bardia YOUSEFI (bardia.yousefi.1@ulaval.ca) 
%  
% ©2017. MIVIM research group. All rights reserved 
%  
% Created:           May 12, 2016. 
% Last modification: May 15, 2017. 
% 
%************************************************************************** 
clear; clc; close all, warning off, imtool close all 
% your folder address 
cd('H:\B\Dr-IR-sp\Dr-IR-MATLAB\MIVIM_Hyperspectral_s2\web_J2'), CF00 = pwd; 
cd('H:\B\Dr-IR-sp\Dr-IR-MATLAB\MIVIM_Hyperspectral_s2\web_J2\files') 
% Choose your mineral name 
Mineral = 'Biotite'; % Biotite Diopside Epidote Geothite Kyanite Scheelite Smithsonite Tourmaline 

Pyrope Olivine 
load([Mineral,'_r.mat']); 
load(['BY_',Mineral,'_r.mat']); 
BW_J = imread([Mineral,'.png']); 
nclstr = 6; % initial number of clustering 
th = 0.8; 
ii = 2; %ssn = {'NCC','SAM','OSP','AMSD','HUD','MF','PLMF','RMFs','RMFml','RMFgml'}; 
%% Second strategy using direct clustering first and then MAMs 

  
%  Clustering 
   [idx] = kmeans(signals',nclstr);  % Clustering the spectra 
    ta = tabulate(idx); 

  
% --------------------- Correcting the clusters for better identification -----------------------

--- 
acul = idx; 
for i = 1 : size(idx,1)-10 
    if i > 5 
     if (idx(i) ~= idx(i+3)) && (idx(i) == idx(i+2)) && (idx(i) == idx(i+1)) && ... 
             (idx(i) == idx(i-1)) && (idx(i) == idx(i-2)) && (idx(i) == idx(i-3)) 
        acul(i+3) = idx(i); 
     elseif (idx(i) == idx(i+3)) && (idx(i) ~= idx(i+2)) && (idx(i) == idx(i+1)) && ... 
             (idx(i) == idx(i-1)) && (idx(i) == idx(i-2)) && (idx(i) == idx(i-3)) 
        acul(i+2) = idx(i); 
     elseif (idx(i) == idx(i+3)) && (idx(i) == idx(i+2)) && (idx(i) ~= idx(i+1)) && ... 
             (idx(i) == idx(i-1)) && (idx(i) == idx(i-2)) && (idx(i) == idx(i-3)) 
        acul(i+1) = idx(i); 
     elseif (idx(i) == idx(i+3)) && (idx(i) == idx(i+2)) && (idx(i) == idx(i+1)) && ... 
             (idx(i) ~= idx(i-1)) && (idx(i) == idx(i-2)) && (idx(i) == idx(i-3)) 
        acul(i-1) = idx(i); 
     elseif (idx(i) == idx(i+3)) && (idx(i) == idx(i+2)) && (idx(i) == idx(i+1)) && ... 
             (idx(i) == idx(i-1)) && (idx(i) ~= idx(i-2)) && (idx(i) == idx(i-3)) 
        acul(i-2) = idx(i); 
     elseif (idx(i) == idx(i+3)) && (idx(i) == idx(i+2)) && (idx(i) == idx(i+1)) && ... 
             (idx(i) == idx(i-1)) && (idx(i) == idx(i-2)) && (idx(i) ~= idx(i-3)) 
        acul(i-3) = idx(i); 
%      elseif (idx(i) ~= idx(i+3)) && (idx(i) == idx(i+2)) && (idx(i) == idx(i+1)) && ... 
%              (idx(i) == idx(i-1)) && (idx(i) == idx(i-2)) && (idx(i) == idx(i-3))  
%         acul(i+1) = idx(i); 
%      elseif (idx(i) ~= idx(i+3)) && (idx(i) == idx(i+2)) && (idx(i) == idx(i+1)) && ... 
%              (idx(i) == idx(i-1)) && (idx(i) == idx(i-2)) && (idx(i) == idx(i-3)) 
%         acul(i+1) = idx(i); 
     end 
    end 
end 
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% --------------------- Correcting the clusters for better identification -----------------------

--- 

  
CLSTR = struct('idx',idx, 'ta',ta, 'signals', signals,'J',BW_J, 'BW',BW_J, 'nclstr',nclstr); 
%  clear J BW row col crd RoI_pixels idx ta signals J2 i j pix_x pix_y rect 

  
%% ASTER 
cd('H:\B\Dr-IR-sp\Dr-IR-MATLAB\MIVIM_Hyperspectral_s2\web_J2\files\ASTER')  

  
ASTER_Biotite = 

importdata('Biotite.jpl.nicolet.mineral.silicate.phyllosilicate.coarse.ps23a.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Biotite.data(:,1) > min(BY.sigma) & 10000./ASTER_Biotite.data(:,1) 

< max(BY.sigma)); 
% Biotite = resample(ASTER_Biotite,size(BY.Reflectance,1),size(bandes_IR,1)); 
ASTERO = [ASTER_Biotite.data(bandes_IR,1),ASTER_Biotite.data(bandes_IR,2)/100]; 
Biotite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Diopside = 

importdata('Diopside.jhu.nicolet.mineral.silicate.inosilicate.solid.diopsi1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Diopside.data(:,1) > min(BY.sigma) & 

10000./ASTER_Diopside.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Diopside.data(bandes_IR,1),ASTER_Diopside.data(bandes_IR,2)/100]; 
Diopside = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Epidote = 

importdata('Epidote.jhu.nicolet.mineral.silicate.sorosilicate.solid.epidot1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Epidote.data(:,1) > min(BY.sigma) & 10000./ASTER_Epidote.data(:,1) 

< max(BY.sigma)); 
ASTERO = [ASTER_Epidote.data(bandes_IR,1),ASTER_Epidote.data(bandes_IR,2)/100]; 
Epidote = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Goethite = 

importdata('Goethite.jhu.nicolet.mineral.hydroxide.none.solid.goethi2.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Goethite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Goethite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Goethite.data(bandes_IR,1),ASTER_Goethite.data(bandes_IR,2)/100]; 
Goethite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Kyanite = 

importdata('Kyanite.jhu.nicolet.mineral.silicate.phyllosilicate.coarse.kyanit1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Goethite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Goethite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Kyanite.data(bandes_IR,1),ASTER_Kyanite.data(bandes_IR,2)/100]; 
Kyanite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Scheelite = 

importdata('Scheelite.jpl.nicolet.mineral.tungstate.none.coarse.t01a.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Scheelite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Scheelite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Scheelite.data(bandes_IR,1),ASTER_Scheelite.data(bandes_IR,2)/100]; 
Scheelite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Smithsonite = 

importdata('Smithsonite.jpl.nicolet.mineral.carbonate.none.coarse.c11a.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Smithsonite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Smithsonite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Smithsonite.data(bandes_IR,1),ASTER_Smithsonite.data(bandes_IR,2)/100]; 
Smithsonite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

Recalling the spectra corresponding the tested minerals 
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%%%%% 
ASTER_Tourmaline = 

importdata('Tourmaline.jhu.nicolet.mineral.silicate.cyclosilicate.solid.tourma1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Tourmaline.data(:,1) > min(BY.sigma) & 

10000./ASTER_Tourmaline.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Tourmaline.data(bandes_IR,1),ASTER_Tourmaline.data(bandes_IR,2)/100]; 
Tourmaline = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Pyrope = importdata('PYROPE-

jhu.nicolet.mineral.silicate.nesosilicate.solid.pyrope1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Pyrope.data(:,1) > min(BY.sigma) & 10000./ASTER_Pyrope.data(:,1) < 

max(BY.sigma)); 
ASTERO = [ASTER_Pyrope.data(bandes_IR,1),ASTER_Pyrope.data(bandes_IR,2)/100]; 
Pyrope = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Olivine = importdata('Olivine (Fo92) (Fe+2,Mg)2SiO4 (2) - 

jhu.nicolet.mineral.silicate.nesosilicate.solid.olivi12.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Olivine.data(:,1) > min(BY.sigma) & 10000./ASTER_Olivine.data(:,1) 

< max(BY.sigma)); 
ASTERO = [ASTER_Olivine.data(bandes_IR,1),ASTER_Olivine.data(bandes_IR,2)/100]; 
Olivine = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Quartz = importdata('QUARTZ-

jhu.nicolet.mineral.silicate.tectosilicate.solid.quartz1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Quartz.data(:,1) > min(BY.sigma) & 10000./ASTER_Quartz.data(:,1) < 

max(BY.sigma)); 
ASTERO = [ASTER_Quartz.data(bandes_IR,1),ASTER_Quartz.data(bandes_IR,2)/100]; 
Quartz = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 
%%%%% 

  
%  Background spectrum selection 

  
% % tv3 = toc; 
% BW = roipoly(BY.J); , tic, title(['Select Background region']); 
%     [row,col] = find(BW == 1); 
%     infraGold = [row,col]; 
% addpath('H:\B\Dr-IR-sp\Dr-IR-MATLAB\New Exp. Dec2014 TELOPS\TELOPS') 
% addpath('H:\B\Dr-IR-sp\Dr-IR-MATLAB\New Exp. Dec2014 TELOPS\TELOPS\Matlab_customer\p_files') 
%   pixels = getAoiIndices(BY.Header_ON, buildAoi(1, 1, col-1, row-1)); 
%  
%     bckgnd = mean(BY.Reflectance(:,pixels)); 
%   bckgnd = resample(double(bckgnd0'), size(bckgnd0,2), size(ASTERO,1)); 

  
ASTER = struct('ASTER_Biotite',ASTER_Biotite, 'ASTER_Diopside',ASTER_Diopside 

,'ASTER_Epidote',ASTER_Epidote,... 
    'ASTER_Goethite',ASTER_Goethite, 'ASTER_Kyanite',ASTER_Kyanite , 

'ASTER_Scheelite',ASTER_Scheelite ,... 
    'ASTER_Smithsonite',ASTER_Smithsonite , 'ASTER_Tourmaline',ASTER_Tourmaline , 

'ASTER_Pyrope',ASTER_Pyrope ,... 
    'ASTER_Olivine',ASTER_Olivine , 'ASTER_Quartz',ASTER_Quartz,... 
    'Biotite',Biotite , 'Diopside',Diopside, 'Epidote',Epidote , 'Goethite',Goethite , 

'Kyanite',Kyanite ,... 
    'Scheelite',Scheelite , 'Smithsonite',Smithsonite , 'Tourmaline',Tourmaline , 

'Pyrope',Pyrope,... 
    'Olivine',Olivine , 'Quartz',Quartz); 
clear ASTER_Biotite ASTER_Diopside ASTER_Epidote ASTER_Goethite ASTER_Kyanite ASTER_Scheelite ... 
    ASTER_Smithsonite ASTER_Tourmaline ASTER_Pyrope ASTER_Olivine ASTER_Quartz Biotite 

Diopside...  Epidote Goethite Kyanite Scheelite Smithsonite Tourmaline Pyrope Olivine Quartz 

ASTERO bckgnd ... BW row col infraGold pixels bckgnd0 
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%% Finding a sample from each cluster! 

  
%  here I am getting the number of each cluster. for exampale, I want to 
%  know all the points clustered as first cluster of second or.... 

  
idx = 1;  
while idx <= nclstr 
    c = 1; 
    for i = 1 : size(CLSTR.signals,2) 
        if CLSTR.idx(i)== idx 
            groups{c,idx} = i; 
            c = c + 1; 
        end 
    end 
    idx = idx + 1; 
end 
% Groups = cell2mat(groups); 
% I got the location of each cluster, now I am going to find thier spectra 
    c = 1; 
for i = 1 : size(groups,2) 

  
    for j = 1 : size(groups,1) 
        if isempty(groups{j,i})~= true 
            Groups(c,:) =([i,groups{j,i}, (CLSTR.signals(:,groups{j,i}))'])'; 
            c = c + 1; 
        end   
    end 
end 
% I sort the spectra label them(first column) and (2nd column) their 
% location also and their spectra also, Now we are going to play with the 
% spectra to find a method to precisely select them 

  
for i = 1 : nclstr 
    k{i} = find(Groups(:,1) == i); %K{i} = Groups(k{i},3:end); 
    coeffnmf(:,i) = nnmf(Groups(k{i},3:end)',1);, figure; h = 

plot(10000./BY.sigma,coeffnmf(:,i));, grid on, title(['Cluster Number ',num2str(i)]) 
%    cd(CFres);    imwrite(h,['K',num2str(i),'.jpg']);  %hgsave(['K',num2str(i),'.jpg'])A = 

getimage(h); 
end 

  
clear k1 k2 k3 k4 k5 i c idx j A 
 

cd(CF00) 
coeffnmF = Norm2(coeffnmf); 

  
%% Identification of the minerals (samples of the clusters) 

  
ss = {'Biotite','Diopside','Epidote','Goethite','Kyanite','Scheelite','Smithsonite',... 
    'Tourmaline','Pyrope','Olivine','Quartz', 'bckgnd'}; 

  
tv4 = toc;tic 
for i = 1 : nclstr 
     idx = 1; 
%   while idx <= size(ss,2) 
    for i0 = 1 : size(ss,2)-1, disp(sprintf([num2str(i),'-',num2str(i0)])) 
           a = eval(['ASTER.',num2str(ss{1,i0})]); 
            % MAMS techniques 
            % MAMs 
    [resultsNormXCorr(i0)] = SAM(coeffnmF(:,i), Norm2(a(:,2))); %NCC  SAM 

  
    end 
    MAM_1{i} = resultsNormXCorr;      
end 
tvNMXC = toc; tic 
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error from ASTER library  
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clear idx a ans bandes_IR c i I i0 j Li_ON sample resultsNormXCorr  
%% What is what! :) 
% close all 
ssn = {'NCC','SAM','OSP','AMSD','HUD','MF','PLMF','RMFs','RMFml','RMFgml'}; 
name2 = [Mineral,'.png']; 
    MAM = eval(['MAM_1']);%,num2str(ii)]); 

  
% mam = MAM{:,1}; for i = 2 : nclstr, mam = cat(1,mam,MAM{:,i});,end 
for i = 1 : size(MAM,2) 
    mam = MAM{:,i}; 
    [c,I] = max(mam); 
    if c > th 
        rs{i,1} = ss{I}; rs{i,2} = I; 
    elseif c < th 
        rs{i,1} = ['NONE'];, rs{i,2} = 0; 
%     elseif numel(I) > 1        
    end 
end 

  
% rs 
% dlmwrite('Results.txt',rs); 
iix = BW_J; %imcrop(CLSTR.J, CLSTR.rect-1); 

  
% now we are painting the pixels with false colors to visually determine 
% the minerals in the spatial domain 
mxc = CLSTR.idx; 
for i = 1 : nclstr, idx = find(CLSTR.idx==i); mxc(idx) = rs{i,2};end 

  
mx = reshape(mxc,[size(CLSTR.BW,1)-1, size(CLSTR.BW,2)-1]);  
mx2 = mx; 
dx = mx; 

  
% False color 
for i = 1 : size(mx,1) 
    for j = 1 : size(mx,2) 
        if mx(i,j) == 0     % background BLACK 
            mx2(i,j,1) = 0;, mx2(i,j,2) = 0;, mx2(i,j,3) = 0;  
        elseif mx(i,j) == 1 % 'Biotite'  
            mx2(i,j,1) = 0.5;, mx2(i,j,2) = 0.5;, mx2(i,j,3) = 0; 
        elseif mx(i,j) == 2 %'Diopside'  
            mx2(i,j,1) = 1;, mx2(i,j,2) = 1;, mx2(i,j,3) = 0; 
        elseif mx(i,j) == 3  %'Epidote' 
            mx2(i,j,1) = 0.5;, mx2(i,j,2) = 0;, mx2(i,j,3) = 0.5; 
        elseif mx(i,j) == 4  %'Goethite' 
            mx2(i,j,1) = 1;, mx2(i,j,2) = 0;, mx2(i,j,3) = 1; 
        elseif mx(i,j) == 5  %'Kyanite' 
            mx2(i,j,1) = 0;, mx2(i,j,2) = 0.5;, mx2(i,j,3) = 0.5; 
        elseif mx(i,j) == 6 %'Scheelite' 
            mx2(i,j,1) = 1;, mx2(i,j,2) = 1;, mx2(i,j,3) = 0.5; 
        elseif mx(i,j) == 7  %'Smithsonite' 
            mx2(i,j,1) = 1;, mx2(i,j,2) = 0.1;, mx2(i,j,3) = 0.1; 
        elseif mx(i,j) == 8  %'Tourmaline' 
            mx2(i,j,1) = 0;, mx2(i,j,2) = 0.5;, mx2(i,j,3) = 0; 
        elseif mx(i,j) == 9  %'Pyrope' 
            mx2(i,j,1) = 0;, mx2(i,j,2) = 1;, mx2(i,j,3) = 0; 
        elseif mx(i,j) == 10 %'Olivine' 
            mx2(i,j,1) = 0;, mx2(i,j,2) = 0;, mx2(i,j,3) = 0.5; 
        elseif mx(i,j) == 11  %'Quartz' 
            mx2(i,j,1) = 0;, mx2(i,j,2) = 0;, mx2(i,j,3) = 1; 
        elseif mx(i,j) == 12  %'bckgnd' 
            mx2(i,j,1) = 0;, mx2(i,j,2) = 0;, mx2(i,j,3) = 0; 
        end 
    end 
end 
tvF = toc; 
 

Create False Color Composite 

(FCC) images 
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figure; imshow(mx2), title([ssn{ii}]) 
clear A h 

  
%% finding the quantitative assessment  
% figure; imshow(mx2(:,:,1))   > 0.2 
mxxx = mx2(:,:,1)<0.1; 
figure; imshow(mxxx) 
 k = find(mxxx == 1); size(k); 

  

  
figure; imshow((mx2(:,:,3))) 
mxxx = mx2(:,:,3)> 0.1; 
figure; imshow(mxxx) 
k = find(mxxx == 1); size(k); 
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B.3.2 FCC-K-means algorithm

The algorithm uses spectral comparison techniques for all the pixel-spectra and creates the

RGB false color composites (FCC). Then a color based K-means clustering groups the regions.

This algorithm will be called FCC-K-means.
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% This code represents two strategies regarding the clustering of the 
% hyperspectral  
% Here, we have images ready to use as the preprocessing codes are under copy right of 
% TELOPS company and we can not provide them. 
% 
% Author:      Bardia YOUSEFI (bardia.yousefi.1@ulaval.ca) 
%  
% ©2017. MIVIM research group. All rights reserved 
%  
% Created:           May 12, 2016. 
% Last modification: May 15, 2017. 
% 
%************************************************************************** 
clear; clc; close all, warning off, imtool close all 
% your folder address 
cd('H:\B\Dr-IR-sp\Dr-IR-MATLAB\MIVIM_Hyperspectral_s2\web_J2'), CF00 = pwd; 
cd('H:\B\Dr-IR-sp\Dr-IR-MATLAB\MIVIM_Hyperspectral_s2\web_J2\files') 
% Choose your mineral name 
Mineral = 'Biotite'; % Biotite Diopside Epidote Geothite Kyanite Scheelite Smithsonite Tourmaline 

Pyrope Olivine 
load([Mineral,'_r.mat']); 
load(['BY_',Mineral,'_r.mat']); 
BW_J = imread([Mineral,'.png']); 
nclstr = 6; % initial number of clustering 
th = 0.8; 
ii = 2; %ssn = {'NCC','SAM','OSP','AMSD','HUD','MF','PLMF','RMFs','RMFml','RMFgml'}; 
%% The first strategy using direct clustering first and then MAMs 

 

%% ASTER 
cd([BY.CF0,'\ASTER\']) 

  
ASTER_Biotite = 

importdata('Biotite.jpl.nicolet.mineral.silicate.phyllosilicate.coarse.ps23a.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Biotite.data(:,1) > min(BY.sigma) & 10000./ASTER_Biotite.data(:,1) 

< max(BY.sigma)); 
% Biotite = resample(ASTER_Biotite,size(BY.Reflectance,1),size(bandes_IR,1)); 
ASTERO = [ASTER_Biotite.data(bandes_IR,1),ASTER_Biotite.data(bandes_IR,2)/100]; 
Biotite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Diopside = 

importdata('Diopside.jhu.nicolet.mineral.silicate.inosilicate.solid.diopsi1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Diopside.data(:,1) > min(BY.sigma) & 

10000./ASTER_Diopside.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Diopside.data(bandes_IR,1),ASTER_Diopside.data(bandes_IR,2)/100]; 
Diopside = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Epidote = 

importdata('Epidote.jhu.nicolet.mineral.silicate.sorosilicate.solid.epidot1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Epidote.data(:,1) > min(BY.sigma) & 10000./ASTER_Epidote.data(:,1) 

< max(BY.sigma)); 
ASTERO = [ASTER_Epidote.data(bandes_IR,1),ASTER_Epidote.data(bandes_IR,2)/100]; 
Epidote = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Goethite = 

importdata('Goethite.jhu.nicolet.mineral.hydroxide.none.solid.goethi2.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Goethite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Goethite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Goethite.data(bandes_IR,1),ASTER_Goethite.data(bandes_IR,2)/100]; 
Goethite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 
  

 

 

This part of code performs the set path 

Recalling the spectra corresponding the tested minerals 

from ASTER/JPL NASA spectral library 
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%%%%% 
ASTER_Kyanite = 

importdata('Kyanite.jhu.nicolet.mineral.silicate.phyllosilicate.coarse.kyanit1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Goethite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Goethite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Kyanite.data(bandes_IR,1),ASTER_Kyanite.data(bandes_IR,2)/100]; 
Kyanite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Scheelite = 

importdata('Scheelite.jpl.nicolet.mineral.tungstate.none.coarse.t01a.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Scheelite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Scheelite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Scheelite.data(bandes_IR,1),ASTER_Scheelite.data(bandes_IR,2)/100]; 
Scheelite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Smithsonite = 

importdata('Smithsonite.jpl.nicolet.mineral.carbonate.none.coarse.c11a.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Smithsonite.data(:,1) > min(BY.sigma) & 

10000./ASTER_Smithsonite.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Smithsonite.data(bandes_IR,1),ASTER_Smithsonite.data(bandes_IR,2)/100]; 
Smithsonite = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Tourmaline = 

importdata('Tourmaline.jhu.nicolet.mineral.silicate.cyclosilicate.solid.tourma1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Tourmaline.data(:,1) > min(BY.sigma) & 

10000./ASTER_Tourmaline.data(:,1) < max(BY.sigma)); 
ASTERO = [ASTER_Tourmaline.data(bandes_IR,1),ASTER_Tourmaline.data(bandes_IR,2)/100]; 
Tourmaline = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Pyrope = importdata('PYROPE-

jhu.nicolet.mineral.silicate.nesosilicate.solid.pyrope1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Pyrope.data(:,1) > min(BY.sigma) & 10000./ASTER_Pyrope.data(:,1) < 

max(BY.sigma)); 
ASTERO = [ASTER_Pyrope.data(bandes_IR,1),ASTER_Pyrope.data(bandes_IR,2)/100]; 
Pyrope = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Olivine = importdata('Olivine (Fo92) (Fe+2,Mg)2SiO4 (2) - 

jhu.nicolet.mineral.silicate.nesosilicate.solid.olivi12.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Olivine.data(:,1) > min(BY.sigma) & 10000./ASTER_Olivine.data(:,1) 

< max(BY.sigma)); 
ASTERO = [ASTER_Olivine.data(bandes_IR,1),ASTER_Olivine.data(bandes_IR,2)/100]; 
Olivine = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 

  
%%%%% 
ASTER_Quartz = importdata('QUARTZ-

jhu.nicolet.mineral.silicate.tectosilicate.solid.quartz1.spectrum.txt'); 
bandes_IR = find(10000./ASTER_Quartz.data(:,1) > min(BY.sigma) & 10000./ASTER_Quartz.data(:,1) < 

max(BY.sigma)); 
ASTERO = [ASTER_Quartz.data(bandes_IR,1),ASTER_Quartz.data(bandes_IR,2)/100]; 
Quartz = resample(ASTERO,size(BY.Reflectance,1),size(ASTERO,1)); 
%%%%% 
% Background spectrum selection 
title(['Select Background region']);  
tv3 = toc; 
BW2 = roipoly(BY.J); , tic 
    [row,col] = find(BW2 == 1); 
    infraGold = [row,col]; 

  
  pixels = getAoiIndices(BY.Header_ON, buildAoi(1, 1, row-1, col-1)); 

  

Recalling the spectra corresponding 

the tested minerals from ASTER/JPL 

NASA spectral library 

Finding the spectra of background 

substrate (Carbon) 
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bckgnd = mean(BY.Reflectance(:,pixels)); 
%   bckgnd = resample(double(bckgnd0'), size(bckgnd0,2), size(ASTERO,1)); 

  
ASTER = struct('ASTER_Biotite',ASTER_Biotite, 'ASTER_Diopside',ASTER_Diopside 

,'ASTER_Epidote',ASTER_Epidote,... 
    'ASTER_Goethite',ASTER_Goethite, 'ASTER_Kyanite',ASTER_Kyanite , 

'ASTER_Scheelite',ASTER_Scheelite ,... 
    'ASTER_Smithsonite',ASTER_Smithsonite , 'ASTER_Tourmaline',ASTER_Tourmaline , 

'ASTER_Pyrope',ASTER_Pyrope ,... 
    'ASTER_Olivine',ASTER_Olivine , 'ASTER_Quartz',ASTER_Quartz,... 
    'Biotite',Biotite , 'Diopside',Diopside, 'Epidote',Epidote , 'Goethite',Goethite , 

'Kyanite',Kyanite ,... 
    'Scheelite',Scheelite , 'Smithsonite',Smithsonite , 'Tourmaline',Tourmaline , 

'Pyrope',Pyrope,... 
    'Olivine',Olivine , 'Quartz',Quartz, 'bckgnd', bckgnd); 
clear ASTER_Biotite ASTER_Diopside ASTER_Epidote ASTER_Goethite ASTER_Kyanite ASTER_Scheelite ... 
    ASTER_Smithsonite ASTER_Tourmaline ASTER_Pyrope ASTER_Olivine ASTER_Quartz Biotite 

Diopside... 
    Epidote Goethite Kyanite Scheelite Smithsonite Tourmaline Pyrope Olivine Quartz ASTERO bckgnd 

... 
    BW2 row col infraGold pixels bckgnd0 
tv4 = toc; 

 

 
%% Identification of the minerals (samples of the clusters) 
ss = {'Biotite','Diopside','Epidote','Goethite','Kyanite','Scheelite','Smithsonite',... 
    'Tourmaline','Pyrope','Olivine','Quartz', 'bckgnd'}; 

  

  
tic 
for i = 1 : size(signals,2) 
%      idx = 1; 
%    while idx <= size(signals,2) 
    for i0 = 1 : size(ss,2)-1, disp(sprintf(['NCC',num2str(i),'-',num2str(i0)])) 
       a = eval(['ASTER.',num2str(ss{1,i0})]); 
        % MAMS techniques 
       cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
        [resultsNormXCorr(i0)] = hyperNormXCorr(signals(:,i), Norm2(a(:,2))); %hyperNormXCorr 

hyperSam  hyperHud  hyperCem hyperGlrt 
    end 
    MAM_1{i} = resultsNormXCorr;      
end 
mx1 = FalseColor(MAM_1,ss,BW,5);, title(['NCC']); 
tvNmXC = toc;  

  
tic 
for i = 1 : size(signals,2)  
%      idx = 1; 
%    while idx <= size(signals,2) 
    for i0 = 1 : size(ss,2)-1, disp(sprintf(['SAM',num2str(i),'-',num2str(i0)])) 
       a = eval(['ASTER.',num2str(ss{1,i0})]); 
        % MAMS techniques 
       cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    [resultsNormXCorr(i0)] = hyperSam(Norm2(signals(:,i)), Norm2(a(:,2))); %hyperNormXCorr 

hyperSam  hyperHud   
    end 
    MAM_2{i} = resultsNormXCorr;      
end 
mx2 = FalseColor(MAM_2,ss,BW,5);, title(['SAM']); 
tvSAM = toc;  

  

Applying Normalized Cross correlation (NCC) for the 

hyperspectral data cube 

Applying Spectral Angle Mapper (SAM) for the 

hyperspectral data cube 
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tic 
for i = 1 : size(signals,2) 
%    idx = 1; 
%    while idx <= size(signals,2) 
    for i0 = 1 : size(ss,2)-1, disp(sprintf(['HUD',num2str(i),'-',num2str(i0)])) 
       a = eval(['ASTER.',num2str(ss{1,i0})]); 
         % MAMS techniques 
       cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
     bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    [resultsNormXCorr(i0)] = hyperHud(signals(:,i), bckgnd, Norm2(a(:,2))); %hyperNormXCorr 

hyperSam  hyperHud  hyperMatchedFilter 
%  
    end 
    MAM_3{i} = resultsNormXCorr;      
end 
tvHUD = toc; 
time = tv0 + tv2 + tv3 + tv4 + tvHUD 
mx3 = FalseColor(MAM_3,ss,BW,5);, title(['HUD']); 

  

  

  
tic 
for i = 1 : size(signals,2) 
%    idx = 1; 
%    while idx <= size(signals,2) 
    for i0 = 1 : size(ss,2)-1, disp(sprintf(['OSP',num2str(i),'-',num2str(i0)])) 
       a = eval(['ASTER.',num2str(ss{1,i0})]); 
         % MAMS techniques 
       cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
     bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    [resultsNormXCorr(i0)] = hyperOsp(signals(:,i), bckgnd, Norm2(a(:,2))); %hyperNormXCorr 

hyperSam  hyperHud  hyperMatchedFilter 
% hyperHud 
    end 
    MAM_3{i} = resultsNormXCorr;      
end 
mx3 = FalseColor(MAM_3,ss,BW,5);, title(['OSP']); 

  
tvOSP = toc;  
% cdd = pwd; 
% cd(CFres) 
% save(mx3,'osp.png') 
% cd(cdd) 
tic 
for i = 1 : size(signals,2) 
%    idx = 1; 
%    while idx <= size(signals,2) 
    for i0 = 1 : size(ss,2)-1, disp(sprintf(['AMSD',num2str(i),'-',num2str(i0)])) 
       a = eval(['ASTER.',num2str(ss{1,i0})]); 
         % MAMS techniques 
       cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
     bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    [resultsNormXCorr(i0)] = hyperAmsd(signals(:,i), bckgnd, Norm2(a(:,2))); %hyperNormXCorr 

hyperSam  hyperHud  hyperMatchedFilter 
% hyperHud 
    end 
    MAM_9{i} = resultsNormXCorr;      

This part performs the hybrid unstructured detector 

(HUD) algorithm for the hyperspectral data cube 

This part performs the othogonal subspace projection 

(OSP) algorithm for the hyperspectral data cube 

This part performs Adaptive matched subspace detector 

(AMSD) algorithm for the hyperspectral data cube 
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end 
mx3 = FalseColor(MAM_9,ss,BW,5);, title(['AMSD']); 
tvAMSD = toc;  

  

  
tic 
for i = 1 : size(signals,2) 
%      idx = 1; 
%    while idx <= size(signals,2) 
    for i0 = 1 : size(ss,2)-1, disp(sprintf(['MF',num2str(i),'-',num2str(i0)])) 
       a = eval(['ASTER.',num2str(ss{1,i0})]); 
         % MAMS techniques 
       cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    [resultsNormXCorr(i0)] = hyperMatchedFilter(signals(:,i), Norm2(a(:,2))); %hyperNormXCorr 

hyperSam  hyperHud  hyperMatchedFilter 

  
    end 
    MAM_4{i} = resultsNormXCorr;      
end 
% mx4 = FalseColor(MAM_4,ss,BW,6);, title(['MF']); 
tvMF = toc;  

  
% Reconstructing the hyper-cube! 
    Qi = signals'; 
for i = 1 : size(Qi,2) 
    Q(:,:,i) = reshape(Qi(:,i),[size(BW,1)-1,size(BW,2)-1]); 
end 

  
tic 
% for i = 1 : nclstr 
%   idx = 1; 
%   while idx <= size(ss,2) 
 for i0 = 1 : size(ss,2)-1, disp(sprintf(['PLMF',num2str(i),'-',num2str(i0)])) 
           a = eval(['ASTER.',num2str(ss{1,i0})]); 
            % MAMS techniques 
            % MAMs 
    cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
    b = Norm2(a(:,2)); 
%   bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%   if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    MAM_5{i0} = hyperPlmf(Q, b,7); %hyperNormXCorr hyperSam  hyperHud  hyperMatchedFilter 
 end 
%     MAM_5 = resultsNormXCorr;      
% end 
mx5 = FalseColor2(MAM_5,ss,BW,5);, title(['PlMF']); 
tvPLMF = toc; tic 

  
 

 

for i0 = 1 : size(ss,2)-1, disp(sprintf(['RMF_S',num2str(i),'-',num2str(i0)])) 
           a = eval(['ASTER.',num2str(ss{1,i0})]); 
            % MAMS techniques 
            % MAMs 
    cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
    b = Norm2(a(:,2)); 
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    MAM_6{i0} = hyperRmf(Q, b,7,'sum'); %hyperNormXCorr hyperSam  hyperHud  hyperMatchedFilter 
end  
mx6 = FalseColor2(MAM_6,ss,BW,5);, title(['MFs']); 
tvRMFs = toc; tic 

  
for i0 = 1 : size(ss,2)-1, disp(sprintf(['RMF_ML',num2str(i),'-',num2str(i0)])) 

This part performs the Matching Filter (MF) 

algorithm for the hyperspectral data cube 

This part performs the PCA local matched filter 

(PLMF) target detection algorithm for the 

hyperspectral data cube 
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           a = eval(['ASTER.',num2str(ss{1,i0})]); 
            % MAMS techniques 
            % MAMs 
    cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
    b = Norm2(a(:,2)); 
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    MAM_7{i0} = hyperRmf(Q, b,7,'meanLocal'); %hyperNormXCorr hyperSam  hyperHud  

hyperMatchedFilter 
end   
mx7 = FalseColor2(MAM_7,ss,BW,5);, title(['MFml']); 
tvRMFml = toc; tic 

  
for i0 = 1 : size(ss,2)-1, disp(sprintf(['RMF_MGL',num2str(i),'-',num2str(i0)])) 
           a = eval(['ASTER.',num2str(ss{1,i0})]); 
            % MAMS techniques 
            % MAMs 
    cd([BY.CF0,'\HyperSpectralToolbox-master\functions\'])   
    b = Norm2(a(:,2)); 
%    bckgnd = resample(double(ASTER.bckgnd'), size(a(:,2),1), size(ASTER.bckgnd,2)); 
%    if size(coeffnmF(:,i)) == size(Norm2(a(:,2))) 
    MAM_8{i0} = hyperRmf(Q, b,7,'meanGlobalLocal'); %hyperNormXCorr hyperSam  hyperHud  

hyperMatchedFilter 
end 
 mx8 = FalseColor2(MAM_8,ss,BW,5);, title(['MFmgl']); 
 tvRMFmgl = toc; tic 

  
clear idx a ans bandes_IR c i I i0 j Li_ON sample resultsNormXCorr  
%% 

  
%   computational time! 
['NormXCorr'] 
Time = tv0 + tv2 + tv3 + tv4 + tvNmXC  

  
['SAM'] 
Time = tv0 + tv2 + tv3 + tv4 + tvSAM  

  
 ['OSP'] 
 Time = tv0 + tv2 + tv3 + tv4 + tvHUD  

  
['MF'] 
Time = tv0 + tv2 + tv3 + tv4 + tvMF  

  
['PLMF'] 
Time = tv0 + tv2 + tv3 + tv4 + tvPLMF  

  
['RMFs'] 
Time = tv0 + tv2 + tv3 + tv4 + tvRMFs 

  
['RMFml'] 
Time = tv0 + tv2 + tv3 + tv4 + tvRMFml 

  
['RMFmgl'] 
Time = tv0 + tv2 + tv3 + tv4 + tvRMFmgl 
%% 
['OSP'] 
Time = tv0 + tv2 + tv3 + tvOSP 

  
['AMSD'] 
Time = tv0 + tv2 + tv3 + tvAMSD 

  
%cd 'H:\B\Dr-IR-sp\Dr-IR-MATLAB\New Exp. Dec2014 TELOPS\Result 1ST algorithm_20July\'  

 

 

This part performs the regularized matched filter 

(RMF) target detection algorithm for the 

hyperspectral data cube 
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B.3.3 Color-based clustering

Considering FCC image is already made, by determining the initial number of clustering, the

color-based clustering can be performed using this function.
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function segmented_images = CLUSTER(Im, ncluster) 
 

 [Row Col Dim]=size(Im); % Taking information of the number of row, column and dimension of image 
N=Row*Col;              % calculate the number of nodes 
%% Change color space 
%changing to HSV color space for getting more difference in value of pixels 
%in image to get bigger covariance 

  
hsIm=rgb2hsv(Im);        
hsImx=reshape(hsIm,N,Dim); 
%RhsImx=hsImx(:,1); 
%GhsImx=hsImx(:,2); 
%BhsImx=hsImx(:,3); 

  
%% PCA process 
%"standardization data" subtracting the sample mean from each observation,  
%then dividing by the sample standard deviation. This centers and scales the data. 

  
%constractimg = bsxfun(@minus, hsImx, mean(hsImx))*coeff(:,1:3) ; 
hsImxMean=mean(hsImx);  
hsImxstd=std(hsImx); 
conststandimg = (hsImx - repmat(hsImxMean,[N 1])) ./ repmat(hsImxstd,[N 1]); 
[coeff2 s2 eignval2]=pca(conststandimg);  %gettin eigenvector(coeff2),eigenvalue(eignval2),actual 

principal component(s2) 
%% Choosing eigenvectors 
%We have chosen two first bigger eigenvectors corresponding to bigger 
%eigenvalues, just make note it doesn`t matter which coeff2 we choose in 
%this level we can make original image easily, because they are enough to 
%make image again 
%we can choose just one regarding to is biggest but for k-means won`t 
%getting good result 

  
constractimg = bsxfun(@minus, hsImx, mean(hsImx))*coeff2(:,1:2)*(coeff2(:,1:2))' ;  
Imnewh=constractimg(:,1);  %observing every part of constarcting eigen vectors,Hue 
Imnews=constractimg(:,2);  %observing every part of constarcting eigen vectors,Saturation 
Imnewv=constractimg(:,3);  %observing every part of constarcting eigen vectors,value 
imnewH=reshape(Imnewh,Row,Col); 
imnewS=reshape(Imnews,Row,Col); 
imnewV=reshape(Imnewv,Row,Col); 
% figure,imshow(imnewH); 
% figure,imshow(imnewS); 
% figure,imshow(imnewV); 
%% Improvement of water extraction 
%This section doing filter of dame area, because in result it still remains 
%with water then it seems better to extract it here and the constant the 
% reconstruct eigenvectors 

  
imgseg=zeros(Row,Col); 
for i=1:Row 
   for j=1:Col 
    valuepca=imnewH(i,j); 
    if valuepca<=0 || valuepca>0.4 
        imgseg(i,j)=0; 
    else  
        imgseg(i,j)=imnewH(i,j); 
    end 
   end 
end 
% figure,imshow(imgseg); 
Imnewh=reshape(imgseg,N,1); % replacement of new modify image to previous image 
constractimg2=zeros(N,3);   
for jcol=1:3 
    for insert=1:N 
      if jcol==1 

           

This function performs color-based 

clustering 
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constractimg2(insert,jcol)=Imnewh(insert,1);  %put every matrix in constraction matrix again 
      elseif jcol==2 
           constractimg2(insert,jcol)=Imnews(insert,1);  
      else 
           constractimg2(insert,jcol)=Imnewv(insert,1);  
      end 
    end  
end 
%% Find relative segments 
%K-means algorithm 

  
% ncluster=15; % choose 4 cluster to separate dam area with another color of green, but we will 

have problem on other images clustering 
[idx center]= kmeans(constractimg2,ncluster); 
labels = reshape(idx,Row,Col); 
segmented_images = cell(3); 
% Creating tiles for three different colors  
hsv_label = repmat(labels,[1 1 3]); 
% Assigning clustered objects to array(segmented_image)  
for k = 1:ncluster 
color = Im; 
color(hsv_label ~= k) = 0; 
segmented_images{k} = color; 
end 
% displaying different cluster objects 
% figure,imshow(segmented_images{1}), title('objects in cluster 1'); 
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