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ABSTRACT 
The use of recycled scrap steel in steelmaking processes ‐both in Electric Arc Furnaces (EAF) 

and in Basic Oxygen Furnaces (BOF)‐ has increased over the past few decades and the recycling 

of ever higher volumes are forecast in the future. 

Once considered as waste, scrap has regularly been used as a raw material in steelmaking 

processes, which has led to its valorization and significant periodic price rises. A situation that 

levered open new (and in many cases, lower quality) ferrous scrap markets, broadening the 

sources and the diversity of the ferrous scrap that is currently recycled. 

The various international Steel Scrap Specifications define a set of scrap categories (qualities) 

by the source of the scrap and its physical characteristics, as well as its content of undesirable 

elements and non‐ferrous (sterile) materials.  

Those specifications reflect a compromise between what steelmakers need (high density for 

productivity, low percentages of tramp elements for metallurgical purity, reduced costs of low 

sterile contents) and the grades of purity that the industrial treatments can deliver with the 

tools that are available at scrap recycling plants. However, the widely varying quality of the 

scrap that is delivered to steel mills and scrap cleaning plants means that suppliers will often 

provide materials below the minimum requirements defined in those specifications (mixtures 

of materials with different qualities, inadequate dimensions, hazardous elements, 

contamination with other constituents i.e. earth, slag, grease, and other impurities, …). 

Bulk deliveries of scrap materials to steel mills and scrap recycling plants can be made by road, 

rail, and sea, where trained operators conduct a visual inspection of the delivery on the basis 

of the aforementioned specifications. The materials are then allocated to scrap piles, according 

to certain criteria such as type, quality, density, production scenarios, and scheduled scrap 

deliveries, constrained only by the size of the plant and its lay out. 

Following an in‐depth analysis of the global situation in the steelmaking sector and a thorough 

state‐of‐the‐art study of modern scrap‐management technologies, various tools and a general 

methodology will then be defined for assessing the quality of ferrous scrap, the main raw‐

material smelted in an EAF. 

Having pointed out some of the main shortcomings of the scrap recycling process and its 

management in steel mill scrap yards and scrap recycling plants, the study will then focus on 



 
 

the development of three novel methodologies, presented as on‐site management support 

tools for automatic quality assessment of scrap deliveries, which are designed to assist 

decision‐making operations. 

Initially, a mathematical model is proposed that can, in economic terms, quantify the 

inevitable degradation of scrap quality throughout its storage in scrap piles, which is the 

interval between reception of the material at the steelmaking facility and its smelting in the 

electric arc furnace. 

The other areas studied within the scope of this thesis will be focused on the development of 

new tools to assess the effects of the non‐ferrous materials found in scrap metal. On the one 

hand, spectroscopic techniques for the chemical characterization of sterile material are 

proposed, knowledge of which can optimize EAF smelting processes. On the other hand, a new 

tool for automatic quantification of the non‐ferrous materials contained in scrap samples will 

be outlined, greatly assisting quality control of ferrous slag deliveries from suppliers. 

The tools under development are another step towards complete scrap yard automatization 

processes, well aligned with the new industry 4.0 paradigm and the digitalization of factory 

production processes.  
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 1 
Preface 

In this introductory chapter the basic objectives established at the beginning of the 
thesis are presented. The structure of the thesis is posed describing the contents of the different 
chapters composing the research work. 
 

1.1 Introduction 
 

Throughout the history of humankind, steel can be considered as one of the prime global 

industrial materials; it was initially produced from an abundant raw material (iron ore) with 

which it can be mass produced at low cost and it is easily transformed into specific products 

for further assemblage or final use.  

Nowadays, steel recycling is of great importance to society, because it mitigates the 

environmental impacts associated with steelmaking. Recycling involves the substitution of the 

natural resources used in integrated steelmaking and the smelting down of steel scrap for new 

steel products. The Electric Arc Furnace, the main scrap‐based steelmaking process, uses less 

energy and its CO2 emissions are lower than the integrated steelmaking process.  

However, the management of integrated steelmaking industries are keenly aware of current 

global environmental issues and are implementing practices that will reduce the hot metal 

ratio (CO2 footprint), aiming to increase the recycling of high‐quality scrap metal that in many 

cases is superior to pig iron. 

Industrial trends likewise show an increase of obsolete scrap availability (both in quantity and 

in complexity), coupled with greater scrap processing capacity in the short term. 

This new context places additional pressures on the electric steelmaking routes for two main 

reasons. On the one hand, the availability of high‐quality scrap will be lower in the future, so in 

regions such as Europe where the market for alternative ferrous materials, such as Hot 

Briquetted Iron (HBI) and Direct Reduced Iron (DRI), is limited, scrap availability will be low. 

Also, the available scrap will be of poorer quality and more heterogeneous, which will require 

additional efforts when sorting it. 

On the other hand, when a layperson with no technical knowledge of the siderurgical process 

considers scrap materials, the idea is usually one of reusing "old steel" to produce "new steel". 

However, its constituents are much more complex than may be thought. Both the physical and 

the chemical characteristics of steel scrap that can come from a wide array of sources (ship 

and car breaking, rail tracks, rebars, turnings, etc.) are immensely heterogeneous and it may 

have undergone several processing steps before delivery to the scrap recycling plant or steel 

mill. 
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In an ideal situation, the material introduced into the furnace should only be steel, due to the 

intrinsic nature of scrap as a recycled material. However, scrap materials are a mixture of steel 

with other types of materials that, in some cases penalize the steel smelting process (loss of 

metallic performance, increased slag volumes, ...) and in other cases benefit the smelting 

process (reduction of energy consumption, alloy materials, ...). However, optimal process 

management implies that the chemical composition of all the materials introduced into the 

furnace must be precisely controlled.  

The concept of Value in Use (VIU) has proven to be very useful when relating scrap quality with 

the operating cost of Electric Arc Furnace operations. This concept includes a criterion for a 

comparative interpretation of the results generated by each scrap quality grade in the 

steelmaking process. 

Apart from the purchasing costs, the VIU of a particular scrap grade will incur additional costs 

associated with extra energy consumption and other materials (electrode, refractories, fluxes 

…), due to the melting of non‐ferrous materials included in regular scrap. Those elements or 

compounds present in scrap can be divided into four groups: 

Fe (as high as possible). 

Sterile elements (SiO2, CaCO3, MgO, Al2O3, H2O, FeO …), usually associated with the source of 

the ferrous material and the pre‐ and post‐processing methods of scrap. 

Tramp elements (Cu, Sn, Ni, Cr, Mo, S, P …) which generally have a negative impact on the 

rolling or stamping processes.  

Carbonaceous compounds, (Cl), heavy metals, which can saturate furnace emission filters, 

reducing their efficiency, with a negative impact on the steel plant environment. 

Among all these compounds, the sterile fraction probably represents the most complex part in 

scrap and, the existing methodologies for on‐site characterization of this fraction are still 

barely sufficient for full optimization of furnace performance. Thus, the focus of this study is to 

develop novel methodologies for characterizing scrap sterile, in both qualitative and 

quantitative terms, as well as proposing a new model for material quality assessment due to 

corrosion degradation over lengthy periods of storage.  
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1.2 Objectives 
 

The overarching objective of this thesis is to develop new methodologies for easy assessment 

of scrap quality as soon as it is delivered to steelmaking facilities, for use as management 

support tools in the daily decision‐making operations of Steel mills. 

This research is guided by two key questions, corresponding to the two main phases of this 

thesis: 

I. What is the state of the art of scrap processing and management in the steelmaking 

sector? 

II. How can the present‐day methodologies be improved for understanding scrap 

materials?  

The specific objectives of the study were framed in an attempt to respond to those questions:  

- To examine the scrap‐management‐related practices of the main scrap dealers.  

- To define a proper method for assessing the quality of ferrous materials and its 

influence on the Electric Arc Furnace process. 

- To identify existing needs for the efficient characterization of scrap material.  

- To propose new methodologies for improving the state of the art of scrap material 

characterization 
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1.3 Thesis overview 
 

The complex problem of gaining an in‐depth understanding of ferrous scrap that is used as the 

main raw material for Electric Arc Furnace (EAF) steelmaking forms the central focus of this 

research. The basic aim of the research concerns the development of new tools and their 

associated methodologies, for an easy characterization of ferrous scrap materials that 

accumulate at scrap recycling plants and steel mills. Non‐quality scrap strongly penalizes the 

metallurgical processes of an EAF and therefore its economic performance. The new methods 

proposed in this thesis can be used as management decision‐making tools for optimizing the 

steelmaking process (not only from an operational point of view, but also for optimizing scrap 

purchasing strategies and steel purity). 

The applied studies will be focused on the non‐ferrous materials found in scrap ‐such as sterile 

(dirt, wood, slag), tramp elements, surface oxidation‐ and methods for their characterization 

(quality and quantity). The specific information for each batch will then be used for optimizing 

the EAF steelmaking production.    

The thesis will be divided into 10 chapters, as shown in Fig.  1.1. In Chapters 1‐3, an 

introduction and some background will be presented; a global review of the steelmaking 

sector will be outlined in Chapter 2; and, some insight into the treatment of scrap materials 

within the steelmaking sector, in Chapter 3. Value‐In‐Use (VIU) methodology, the scrap quality 

assessment method proposed for the evaluation of the research results, will then be explained 

in Chapter 4. In Chapters 5 and 6, current pre‐ and post‐processing technologies will be 

outlined, with the purpose of explaining the starting point of the research in this thesis. These 

activities will be then described in detail in Chapters 7‐9: a new model for the economic 

assessment of scrap quality degradation (Chapter 7), a novel approach towards the use of 

spectroscopy techniques for quality assessment of sterile present in scrap materials (Chapter 

8), and a breakthrough methodology for automatic sterile quantification in scrap materials 

(Chapter 9). Finally, a discussion and some conclusions from the research work will be found in 

Chapter 10, as well as some reflections on future work.      
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Fig.  1.1: Illustration of the Thesis structure 
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 2 
Scope and Global steelmaking situation 

understanding 
In this chapter, a thorough analysis of the current situation of the global steelmaking 

sector is carried out. Likewise, scrap metal is presented as the main raw material of the 
steelmaking process, highlighting the paradigm shift from waste to raw material of this 
complex material, as a starting point for the work that will be presented in subsequent 
chapters 
 

 

2.1 Steelmaking process overview 
 

Steel is the world's most important industrial material, with over 1.8 billion tonnes produced 

annually. The development of mankind would have been impossible but for steel. The 

backbone of developed economies was laid on the strength and inherent uses of steel. 

The main objective of steelmaking process is to produce the steel which is later manufactured 

to obtain the final product with very particular characteristics. In modern steelmaking, steel 

can be obtained by two different processes: ironmaking route (from iron ore) and electrical 

steel making route (from scrap metal) (1) 

In the case of production from iron ore, the first step is the transformation of iron ore into pig 

iron. To so, iron oxide is reduced to hot metal in a blast furnace by combining iron ore and 

carbon inside the furnace. 

Prior to its use in the blast furnace, iron ore is milled to give it an appropriate size. The iron ore 

that meets the required conditions in terms of iron law and granulometry goes to the furnace. 

The iron ore that does not meet the quality requirements is agglomerated together with 

fluxing materials, so that it can be used in the furnace later (sintering process). 

Once the adding ore and sintering products are introduced into the blast furnace, the mixture 

is heated by coke addition and oxygen blowing. Together with this mixture, additional flux 

materials are added to trap all non‐metallic impurities present in the mineral. 

The complete combustion of the introduced materials is achieved by high pressured hot air 

injection. This allows holding the suspended materials while the transformation from solid to 

liquid is carried out. 
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The final product of the blast furnace is hot metal. This is a material with an iron law of about 

95% and about 3.5‐4% of carbon. The remaining fraction consists of materials such as silicon, 

manganese, sulphur and phosphorus. 

Among the by‐products produced in the blast furnace process, besides the atmospheric 

emissions, slag products must be taken into consideration. Blast furnace slag agglutinates the 

leftover fluxes, the mineral gangue and the coke material ashes. This by‐product is recovered 

to be used as raw material in civil roads and cement producer companies. 

The key difference between pig iron and steel is the amount of carbon contained. If the carbon 

content is less than 1,7% it is considered steel. Thus, in order to transform the pig iron into 

steel, the product from the blast furnace continues its transformation process in the Basic 

Oxygen Furnace (BOF). This facility is responsible for removing the excess carbon through a 

refining process. 

Once the oxidized steel is obtained, it is transferred to the next stage of the production 

process, the secondary metallurgy process. The main characteristics of this phase are the total 

deoxidation of the steel, the elimination of sulphur and the final adjustment of the chemical 

composition of the steel. 

Subsequently, the steel is processed in the continuous casting machine. In this installation the 

liquid steel is poured from the ladle to the mould, where it starts to solidify in a very particular 

shape, such as slabs, beam blanks, blooms or billets. 

All these products are then conformed in the rolling mill to give them the final shape and 

mechanical characteristics necessary for their use in the manufacturing industry. This process 

takes advantage of the deformation capacity (ductility) of the steel and can be performed both 

in hot and cold conditions. 

Flat products (coils and plates) are destined, among others, to automobile and domestic 

appliance sectors. On the other hand, long products (wires, rods and profiles) are mainly 

destined to the construction sector. 

On the other hand, the electric steelmaking route differs from the ironmaking route in two 

fundamental aspects: the main raw material is scrap instead of iron ore and the steel melting 

phenomena takes place thanks to the thermal energy released by an electric arc. 

In its earliest beginnings, Electric Arc Furnaces (EAF) were used for manufacturing special 

steels. However, nowadays, this is considered a highly efficient process in which it is possible 

to produce almost any type of steel. 

Fig.  2.1 shows the materials flows that occur in steelmaking: 
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Fig.  2.1: Materials flows in steelmaking 

Steel plays a fundamental role in today's society. In fact, it has been one of the materials 

(maybe the most) that has contributed most to the welfare of mankind. Its properties, which 

include low cost, ease forming, high resistance, long service life, variety of qualities and 

applications, assembly capacity and easy and comfortable recycling, make it irreplaceable. 

In addition, steel can be considered a sustainable material due to its properties and also 

because of the abundance of iron in nature and the low nature resources required to process 

it. 

Regarding the by‐products generated during the steelmaking process, around 90‐100% of 

electric steelmaking wastes and produced by‐products are valued in different ways, as 

opposed to what happens in ironmaking. For example, slags are reused mainly as sand and 

gravel, in the construction of roads or the production of cement, and rolling scale is almost 

100% recycled as raw material in the integral steel industry for other uses. 

Regarding recycling matter, a deep knowledge of the intrinsic characteristics and the quality of 

the raw materials are crucial. 

Being aware of that, major steel companies are devoting huge amounts of resources on 

research and development activities focused on raw materials characterization and within this 

scope, this thesis becomes important. 
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2.2 Brief analysis of the steel industry evolution during 

the 20th century 
 

During the 20th century, the steelmaking process has faced many changes based on the 

political, social and technological trends evolution. 

In the 1950s and 1960s, demand for high quality steel encouraged the steelmaking industry to 

produce large quantities of steel. Integrated steel plants producing steel by refining iron ore 

become popular. Using Ironmaking route for steel production was possible to produce very 

high quality steel with very well controlled chemical compositions to meet all product quality 

requirements. 

The energy crisis of the 1970s made thermal efficiency in steel mills a priority. The furnaces 

used in integrated plants were very efficient; however, the common production practices 

needed to be improved. The large integrated plants of the 1950s and 1960s tended to produce 

steel in batches where iron ore was taken from start to finish. This causes some equipment to 

be idle while other equipment was in use. To help reduce energy use, continuous casting 

methods were developed. By keeping blast furnaces continually fed with iron ore, heat is used 

more efficiently. 

As environmental concerns gained importance in the 1980s and 1990s, regulations have 

become more stringent, prompting further changes in the steelmaking industry. Competition 

also increased during this period due to decreasing local markets and increasing foreign steel 

production plants. The competition forced steelmaking facilities to reduce expenses and 

increase quality. To meet these changing needs, just‐in‐time technology became more 

prominent and integrated steel plants started to be replaced by mini‐mills, that use steel scrap 

as raw material rather than ore. Mini‐mills will never completely replace integrated steel 

plants because they cannot maintain the tight control over the chemical composition, and thus 

cannot consistently produce high quality steel. Mini‐mills have a narrower production line and 

cannot produce the specialty products produced by integrated plants. 

In the second decade of 21th century, due to the global economic situation, overcapacity 

became one of the main concerns from the point of view of industrial benefits. And this needs 

a major focus on innovation to face the new challenging scenario. 
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2.3 Current steelmaking worldwide situation 
 

In order to properly define the research lines that will be further developed in this thesis, it is 

imperative to understand, not only the current situation of steelmaking sector, but also to 

estimate their prospects in the medium‐long term.  

2.3.1 Historic evolution 
 

The first analysis to be done if we want to understand the steel market in recent years is to   

take a quick look at the behaviour of the worldwide steelmaking figures during the last 50 

years. The figure below shows the global evolution in the period from 1960 to 2018: 

 

 

Fig.  2.2: Global Steel production for the last 50 years in millions of tones (2) 

After a quick look at Fig.  2.2 and in line with what was presented in the previous section, the 

following observations can be made: 

- From 1950 to 1973 there was a growth period with a mean annual rate of increase in 

production of 5.8%. 

- Later on, there was a non‐growth period that lasted 27 years (from 1974 to 2001) with 

a mean annual growth rate of 0.7%.  

- In the first decade of the 21st century (from 2002 to 2007) the steel boom occurred, 

with average an annual growth rate of 8.4%. 

- In 2008, with a global crude steel production of 1.343 billion tonnes, the global 

economic crisis prompted a readjustment of the productive capacities began at the 

global level.  
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- The impact of the adjustments started the year after, becoming to be noticed on 2009, 

when the global production dipped to 1.239 billion tonnes, but rebounded quickly in 

2010 to 1.433 billion tonnes.  

- The production rate continued to rise the following years and reached a record high of 

1.67 billion metric tons in 2014.  

- Weak global demand for steel in 2015 caused a slight contraction in crude steel 

production worldwide, with a 2.8 % decrease from 2014.  

- Since 2015, the steelmaking situation seems to start recovering slowly  

By the time this analysis was done, the World Steel Association had forecasted relatively 

steady steel demand levels for the comings years, which would indicate that production may 

hold steady at current levels in the near future. 

 

2.3.2 Current crude steel production by geographic distribution 
 

Fig.  2.3 shows the worldwide distribution of the crude steel production among the top 

producing countries in 2018. It can be observed that 20 countries account for 92.8% of the 

total production, with China leading the ranking with nearly 50% of the total tonnage. 

  

 

Fig.  2.3: Top steel producing countries 2018 (3) 

 

Looking at the eight main world regions, Asia and Oceania produced 1.275 billion tons of steel 

in 2018, accounting for 70,6% of the global production. The European Union was the second‐

largest steel producing region in 2018 with a 9,3 % of the production (167,7 million tons), 

followed by North America with a 6,6 % (119,7 million tons) and the Commonwealth of 
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Independent States (CIS) with a 5,6 % (101,3 million tons). These figures, as well as the 

evolution trends since 2011, are illustrated in Fig.  2.4  and Table 2.1. 

 

 

Fig.  2.4: Worldwide crude Steel production distribution in 2009-2018 (4)  

PRODUCTION DISTRIBUTION (%) 2011 2012 2013 2014 2015 2016 2017 2018 
EU (28) 11,6 10,8 10,1 10,1 10,2 10,3 9,9 9,3 
OTHER EU 2,5 2,6 2,3 2,3 2,2 2,2 2,3 2,3 
CIS 7,3 7,1 6,6 6,4 6,3 6,3 6,3 5,6 
NAFTA 7,7 7,8 7,2 7,3 6,8 6,8 6,7 6,6 
CENTRAL AND SOUTH AMERICA 3,1 3,0 2,8 2,7 2,7 2,7 2,5 2,5 
AFRICA 1,0 1,0 1,0 0,9 0,8 0,8 0,8 1,0 
MIDDLE EAST 1,5 1,6 1,6 1,8 1,8 1,8 1,9 2,1 
OCEANIA 0,5 0,4 0,3 0,3 0,4 0,4 0,4 0,4 
ASIA 64,7 65,8 68,1 68,2 68,7 68,7 69,1 70,2 

Table 2.1: Crude Steel production percentage distribution worldwide (2) 

The production distribution by region has changed markedly in the last decade. Between 2011 

and 2018, most regions have seen their share of production decrease. Only “Other Europe” 

maintained its at around 2.3 % share. The Middle East and Asia increased their percentage of 

global production by 0.6% and 5,5% respectively. 
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In Fig.  2.5, the crude steel production share evolution along the last decade for Europe, NAFTA 

and Asia is shown. 

 

Fig.  2.5: Worldwide crude Steel production distribution evolution in EURO, NAFTA and Asia in 

20011-2018 (4) 

One conclusion reached looking at Fig.  2.5 is that, the global economic crisis hit Europe 

severely, systematically loosing production market share. 

Nevertheless, Global production ratio distribution is useful for understanding global market 

trend evolution but, and since the total produced amount is changing every year, it does not 

reflect real activities inside each producer country. Table 2.1 highlights the evolution of the 

produced steel amount of each region for one year in comparation with the previous one.  

 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

EU (28) 6 1,4 -5,5 -29,8 24 2,8 -5,2 -1,3 1,7 -1,9 0,0 -2,5 3,5 
OTHER EU 13 8,6 3,6 -8,2 15,9 16,1 2,0 -3,3 -0,5 -5,7 0,0 4,1 12,5 
CIS 5,9 3,6 -7,9 -14,6 10,8 4,1 -1,8 -2,1 -2,1 -4,3 0,1 0,8 -1,1 
NAFTA 3 0,9 -5,6 -33,1 33,2 6,4 2,4 -2,2 1,8 -8,4 -1,3 0,4 8,9 
CENTRAL AND SOUTH 
AMERICA -0,5 6,5 -1,5 -20,5 16,2 9,7 -3,7 -1,3 -1,5 -2,7 1,1 -7,9 10,3 
AFRICA 4,1 -0,1 -9,1 -9,3 7,9 -5,6 -2,5 4,3 -6,6 -8,1 -0,7 -3,7 32,8 
MIDDLE EAST 0,8 7 1,2 6,7 12,6 16,2 7,7 8,0 11,2 -1,6 -0,7 7,5 20,6 
OCEANIA 12,5 12,2 3,3 3,2 13,3 8,2 3,0 9,4 1,4 -2,2 -0,4 1,3 12,8 
ASIA 6 1,4 -5,5 -29,8 24 2,8 -5,2 -1,3 1,7 -1,9 0,0 -2,5 3,5 

TOTAL 8,9 7,8 -0,3 -7,8 15,7 7,3 1,42 5,79 1,2 -2,87 -0,31 0,71 11 

Table 2.2: Annual Steel production evolution of the main producer regions (2) 

Until 2007, as shown in Fig.  2.2, virtually all world regions increased their annual production of 

tons of crude steel. In 2008 and 2015 occurred the two major crises of steel industry of the 

21st century (linked to the global economic situation). Nevertheless, in view of the data, a 

recovery of the sector can be predicted. Assertion that is demonstrated looking at 2018 

results, in which all regions have increased the steel production volume with respect to 2017. 

On the other hand, when specifically looking at the situation of steel production in Europe 

(EU28) in 2018, Fig.  2.6 shows the crude steel production distribution by countries in millions 

of tons. According these figures, 9 countries account for 82% of the total crude steel 

production, Germany as the leading steel producer with one quarter of the total European 
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production volume. But it is also worth mentioning Italy, France, Spain and Poland as the 

mayor producers in Europe. 

 

Fig.  2.6: European crude Steel production in 2018 (4) 

 

2.3.3 Main steel producer companies 
 

In 2018, 20 companies accounted for 37.2% of all world‐produced steel. ArcelorMittal has 

been the world’s largest Steel producing company for several years and produced 96.42 million 

tons of steel (5,3 % of global production) in 2018. China Baowu Group, ranked second with 

67,43 million tons, followed by Japan’s Nippon Steel and Sumitomo Metal Co., which merged 

in 2012, with 49.22 million tons. Five of the top 10 companies are headquartered in China, and 

nine of the top 10 are headquartered in Asia and Oceania. ArcelorMittal is the only company 

headquartered outside the Asia and Oceania region. These figures can be observed in Fig.  2.7. 

 

Fig.  2.7: Top steel producing companies 018 (4) 
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2.3.4 Steel production processes distribution 
 

Looking at the historic evolution of the process along the 20th century, it is observed that since 

the 1950s, BOF and EAF processes started to gain industrial share, almost completely replacing 

the Open Hearth Furnace process at the beginning of the 21st century [5].  

In 2018, 70.8% of the global steel production was made by BOF route and 28.8% was made by 

EAF route. Fig.  2.8 depicts the production process distribution by regions. 

 

Fig.  2.8: Crude Steel production by processes (3) 

Looking at these data, it can be said that Europe, NAFTA, Africa and overall Middle East are 

heavily dependent on scrap due to their dependency on EAF process. However, it is important 

to highlight that: 

 The integrated steelmaking route uses, on average, 1,370 kg of iron ore, 780 kg of 

metallurgical coal, 270 kg of limestone, and 125 kg of recycled steel to produce 1,000 

kg of crude steel.  Around 70% of total global steel production (1.2 Gt in 2017) were 

produced in BOFs. It represents about 150 Mt of scrap. 

 The electric arc furnace (EAF) route uses, on average, 710 kg of recycled steel, 586 kg 

of iron ore, 150 kg of coal and 88 kg of limestone to produce 1,000 kg of crude steel. In 

2017, global EAF output accounted for about 30% of global steel production (around 

480 Mt), which required 340 Mt of scrap. 

EAF process is a massive scrap consumer process. However, considering that BOF process 

represents 70% of the total steel production, the overall scrap consumption by this process is 

also important and should not be belittled. Fig.  2.9 and Fig.  2.10 put the attention on the steel 

production values in Europe by countries for EAF and BOF processes.  
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Fig.  2.9: EAF production in Europe 

 

Fig.  2.10: BOF production in Europe  
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2.4 Steelmaking raw material; the steel produced today is 

the raw material tomorrow 
 

Electric steelmaking requires about one‐third of the energy used in ironmaking route, which 

could make the EAF the technology of choice for the future, considering the environmental 

footprint is one of the key criteria in the choice of technologies nowadays. However, the 

expansion of EAF will to be limited by the global availability of steel scrap. 

According to (5), by 2050 Electric Arc Furnace production tonnage will be 2.1 times that of 

2010, with a share increase from 29% in 2010 to 40% in 2050. BOF production in 2050 is 

expected to be 1.3 times that of 2010. 

 

2.4.1 The importance of scrap as a sustainable material 
 

The current importance of sustainability and the challenges imposed by the aggressive global 

economic situation developed since 2008, have pushed the steelmaking industry towards the 

continuous development of new grades with higher performance and lower environmental 

footprint.  

Since 1900 the global steel industry has recycled over 22 billion tonnes of steel. This has 

reduced iron ore consumption by around 28 billion tonnes, as well as cutting coal consumption 

by 14 billion tonnes. The industry has also dramatically reduced the use of energy. Producing 

one tonne of steel today requires just 40% of the energy it did in 1960 (1). 

In 2018 more than 1.8 Billion tons of crude steel were produced worldwide, and more than 

520 million come from EAF technology. EAF technology uses less resources, auxiliaries and 

energy compared to BOF technology. As a consequence, impact to the environment is 

reduced, due to the endless cyclic use of scrap as raw materials in EAFs. This closed material 

loop is one of the most important characteristics from a sustainability point of view, and one of 

the strengths of steel. In fact, when recycling scrap, the new steel inherits the properties of the 

original materials and can be modified during the steelmaking process or through ulterior 

thermal processes. This recyclability makes steel play a very important role in the upcoming 

circular business model.  

Fig.  2.11 shows the recyclability distribution of steel products. 
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Fig.  2.11: Recyclability of Steel products (1) 

A sustainable circular economy is one in which the stress over natural resources is reduced, 

ensuring resource availability for the future generations. Once the maximum value has been 

extracted from a particular product, the resources are recovered and reused, remanufactured, 

or recycled to create new products and continuing valorising this wasted product. As a 

permanent material which can be recycled over and over again without losing its properties, 

steel is fundamental to the circular economy. 

However, steel will still have to be produced through BOF route, using iron ore, because the 

world’s steel demand is too high to be satisfied with recycled steel. 

The industrial material cycle basically consists on: 

- Reducing the amount of material, energy and other resources used to produce steel as 

well as decreasing the weight of steel used in products by developing higher strength 

steels. 

- Remanufacturing products by the process of restoring durable, used steel products to 

as‐new conditions. 

- Recycling is melting steel products at the end of their useful life to create new steels. 
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- Reusing materials again, either for its original purpose or for a similar one, without 

significantly altering its physical form. The goal of steelmakers is to use all raw 

materials to their full capacity, ensuring zero waste from steelmaking.  

Electric Steel mills are probably the technology that plays the main role in the industrial 

society’s material cycle: 

 

Fig.  2.12: Steelmaking recycling product distribution. 

In the sustainable future, new economic models will maximize the value of raw materials, and 

under this approach is where the present research makes sense. 

 

2.4.2 Forecast on scrap availability in future 
 

Even though scrap based processes will be important, primary steel production (BF‐BOF) will 

remain dominant. One of the main reasons for this trend is the fact that availability of scrap at 

a point in time is defined by the past production and the recycling rate at the moment under 

consideration. Currently, the steel recycling rate is around 85%, since there are some low 

quality scraps that are not going to be reused. Fig.  2.13 illustrate this concept. 

 

Fig.  2.13: Scrap Steel recycling rate analysis (6) 
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The current recycling rate of ferrous material is an important parameter to define the future 

recycling strategies to maximize the natural resource availabilities. ArcelorMittal (7), proposed 

a very simple method for estimating the quantity of scrap that will be available in one 

particular year as obsolete scrap from the four main sectors of steel use (lifespans and 

collection rates are estimations): 

- Construction: Construction is the main steel consumer sector and can be divided into 4 

subsectors: 

o Cladding: estimated lifespan of 30 years and 85% collection rate. 

o Reinforcing steel in buildings: estimated lifespan of 40 years and 50% 

collection rate. 

o Infrastructure: estimated lifespan of 60 years and 80% collection rate. 

o Structural steel on buildings: estimated lifespan of 50 years and 97% collection 

rate. 

- Industrial equipment: This sector presents an estimated lifespan of 35 years and 97% 

collection rate. 

- Vehicles: This sector presents an estimated lifespan of 20 years and 95% collection 

rate. 

- Packaging, appliances and others:  This sector presents an estimated lifespan of 20 

years and 90% collection rate. 

The lifespan estimated for each of the different sectors allows obtaining the total Crude Steel 

Production (CSP) at the year when the steel was produced (Reference year) from the existing 

databases.  

The model proposed by ArcelorMittal is represented by the following two equations:   

 
���� =⥂ ���(���� ⋅ ����) − (���� ⋅ ���� ⋅ ���)� ⋅ ���� (2.1) 

 
���� =⥂ �[��� ⋅ ���] (2.2) 

Where: 

- SUry: Total Steel use in the production reference year (Mt). 

- i: Each sector considered 

- SUi: Steel use per sector in the production reference year (Mt). 

- CSP: Crude steel production in the production reference year (Mt) – From general 

Databases. 

- Ylr: Global yield loss rate for crude & finished steel production in the production 

reference year (%) – From general databases. 

- PS: Prompt scrap per domain at the reference year (%)– From general databases. 
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- DS: Domains share in the production reference year (%) – From general databases. 

- lsi: Lifespan (years) – Assumption   

The minimum lifespan estimated is obtained in vehicles and packaging, appliances and other 

domains. Therefore, the proposed model allows calculating the obsolete scrap availability for 

the next 20 years.  

One of the main objectives of this thesis is to provide new tools and methods of scrap 

characterization to increase the current recycling ratio through better understanding of the 

quality of the scrap. 
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2.5 Current scrap market worldwide situation 
 

The world crude steel production reached 1.621 billion tonnes in 2015 (time at which this 

analysis was done), presenting a reduction of 2.9% when compared to the previous year. 

Following the same trend, global steel scrap use decreased in 2015 from 35% to 34.2% 

(between 0.6% and 10.4% depending on the analysed country). In most cases, the individual 

reduction in steel scrap usage was steeper than the drop in crude steel production for each 

particular country or region (4). 

General statistics confirm that: 

- The world’s biggest steel producer, China (where the BOF route dominated the 

country’s crude steel production accounting for 93.9% of the total) presented a steel 

scrap consumption of 83.3 million tonnes. 

- The EU (28) steel scrap consumption in 2015 was 91.1 million tonnes with a scrap 

usage of 54.8% in steelmaking process. Its biggest steel scrap users were Italy (19.65 

million tonnes), Germany (18.49 million tonnes), Spain (11.8 million tonnes) and 

France (7.38 million tonnes). 

- In the USA, the steel scrap usage was 56.5 million tonnes with a scrap usage of 71.7% 

in steelmaking process. 

- Japan’s steel scrap usage was 33.6 million tonnes with a scrap usage of 31.9% in 

steelmaking process. 

- The Republic of Korea recorded a scrap usage of 29.9 million tonnes (42.9% in 

steelmaking processes share). 

- According to 2015 figures, Turkey’s steel scrap consumption was about 26.06 million 

tonnes where the electric arc furnace route accounted for 65% of the total steel 

production. 

- Finally, Russia’s steel scrap usage was 17.3 million tonnes.  

Despite the fact that 2015 was an atypical year, the global distribution of scrap import and 

export patterns among the different regions has not changed significantly over the last few 

years. The data from 2015, gives a good picture of ferrous scrap transit around the world: 
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Fig.  2.14: Worldwide ferrous scrap trade balance in 2015 

According to Fig.  2.14, Europe is the main driver of the scrap trade worldwide, both in export 

and import figures. After Europe, Asia leads the volume of global imports and North America 

leads the volume of global exports. 

Table 2.3 compiles the main scrap trade among the different regions: 

 

Table 2.3: Ferrous scrap Worldwide trade figures in 2015 (3) 

Turkey is the world’s foremost steel scrap importer with 16.251 million tonnes. Other 

important countries to be mentioned are India (6.71 million tonnes), the Republic of Korea 

(5.758 million tonnes), the USA (3.513 million tonnes), Taiwan (3.373 million tonnes), China 

(2.328 million tonnes) and Canada (1.516 million tonnes). 

On the other hand, the US export of steel scrap was about 12.976 million tonnes in 2015, 

followed by Japan (7.847m tonnes).  

The most basic way to perform pre‐characterization of scrap is in terms of its origin. If new 

scrap is obtained directly from its producer, before any quality mixing take place, it is easier to 

determine its chemical composition. So that the first output of the current research work is to 

identify the scrap sources and destinations among the UE (28) as shown in Table 2.4. 

Exporting Region

Destination

26,4 1,4 1,3 0,2 0,1 0,1 0 0 0 0

8,9 0,1 3,2 4,2 0 0,5 0 0 0 0

0 0 1,8 0 0 0 0 0 0 0

0,3 0 0 5 0 0 0 0 0 0

0 0 0 0,5 0,2 0 0 0 0 0

1,2 0 0 0,3 0 0,1 0 0 0 0

0,1 0 0 0,3 0 0,1 0 0 0 0,1

0,1 0 0 0,1 0 0 1,9 0,1 0

0 0 0 0 0 0 0 0 0,1 0

2,9 0,1 0,9 5,4 1,4 2,7 0 5,9 2,3 2,1

0 0 0 0 0 0 0 0 0 0

39,9 1,6 7,2 16 1,7 3,5 0 7,8 2,5 2,2

29,5 16,9 1,8 5,3 0,7 2,2 2,2 0,1 23,7 0

10,4 -15,3 5,4 10,7 1 1,3 -2,2 7,7 -21,2 2,2

EU (28)

Other EU

Total Import

Trade Balance

EU (28) Other EU CIS

China

Japan

Other Asia

Oceania

Total Export

CIS

NAFTA

Central and South America

Africa

Middle East

Japan Other Asia OceaniaNAFTA

Central and 

South 

America

Africa & 

Middle East
China
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Table 2.4: EU (28) scrap trade market (4) 

  

Exporting 

Region

Destination

X 0,685 0,572 0,731 0,312

1,357 0,535 0,575

0,866 X 0,63

1,659 X 0,278

X 0,343

0,342 X

1,061 1,293 0,579 X

1,182 0,733

0,529

1,769 1,214

0,986 0,555 1,24 0,605 0,759 0,255 0,291 0,108 5,271

Spain

Austria

Portugal

Italy

Luxembourg

Poland

Belgium

Others

Germany

France

Netherlands

Cezch Republic

Germany France Netherlands
United 

Kingdom

Cezch 

Republic
Poland Belgium Others
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2.6 Chapter 2 recall and conclusions 
 

There is no doubt that Steel is the world's most important industrial material, not only due to 

the abundance of iron in nature and the huge material volume produced every year, but also 

because Its properties, which include low cost, ease forming, high resistance, long service life, 

variety of qualities and applications, assembly capacity. And most important, due to steel 

capability to be easily recyclable. 

On the other hand, steelmaking industry has proved its capability to adapt the manufacturing 

processes to the socioeconomic changes of society along the history 

Looking at global steel production figures, several statement can be done: 

- Since there are records, worldwide Steel production is always growing up, with specific 

exceptions during the global economic crises of the 90s and the first decade of the 

21st century. 

- Steel production is relatively localized: 20 countries account for more than 90% of the 

worldwide steel production. China is leading the ranking with about 50% of the total 

production. 

- Europe is the main driver of the scrap trade worldwide, both in export and import 

figures. In Europe the main steel production is allocated in 5 countries: Germany, Italy, 

France, Spain and Poland 

- Focusing on Europe, the global economic crisis hit the continent severely, 

systematically loosing production market share. Nevertheless, and looking at 2018 

figures (new Steel production historical maximum of 1.8 Billion tons), the worldwide 

situation seems to be recovering slowly. 

- Analyzing steel producing companies, the fragmentation of production is much more 

acute, being ArcelorMittal the largest producing company 

- From the steel production processes point of view, in 2018, around 70% of the global 

steel production was made by BOF route (12,5% of the BOF raw material is scrap) and 

30% was made by EAF route (71% of EAF raw material is scrap).  These data confirm 

the importance of ferrous scrap metal as the main raw material of the current 

steelmaking processes. 

In the medium and long‐term, boosted by the social and environmental pressure, we can 

expect the steel industry to increasingly replace natural resources by steel scrap, thereby 

conserving raw materials, energy, and reducing CO2 emissions. Some authors propose that by 

2050, Electric Arc Furnace production tonnage will increase significantly, reaching a production 

share of 40% in 2050.  

Currently, Europe, NAFTA, Africa and overall Middle East are heavily dependent on scrap due 

to their dependency on EAF process. If the previous forecasts are met, studying scrap 

availability in the future is crucial to ensure the steelmaking process feasibility. 
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Within this context, the current recycling rate of ferrous material is an important parameter to 

define the future recycling strategies.  Being aware of that, major steel companies are devoting 

huge amounts of resources on research and development activities focused on raw materials 

characterization and within this scope, this thesis becomes important. 
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 3 
Ferrous Scrap, such a complex material  

This chapter presents Ferrous scrap as the main steelmaking raw material, describing 
the specifics of the scrap based on its origin, as well as the importance of the physical and 
chemical characteristics of the material. Two additional important concepts, in the context of 
the current thesis, are also introduced; the official scrap specifications as reference accepted 
standards and the Total Cost of Ownership (TCO) as the main criteria for assessing the real cost 
of the different scrap grades. Some of these concepts will be better detailed in subsequent 
chapters. 
 

As it was described in the previous chapter, Ferrous scrap is the main raw material in the 

steelmaking process by Electric Arc Furnace (EAF) route and it is also an important raw 

material for Basic Oxygen Furnace (BOF) process in the case of integrated route.  

Since the objective of steelmaking processes is just to transform “old” steel in “new” steel 

products, the main component of interest in scrap materials is the iron content. However, any 

material made of steel is prone to be used as primary raw material in steelmaking and this 

makes scrap an unreliable material in terms of chemical composition, pollutants, mixtures with 

other materials and physical characteristics. 

 

3.1 The main steelmaking Raw material; Ferrous scrap 
 

The first statement that should be clear before starting the descriptive analysis of the different 

types of ferrous scrap is that steel scrap comes from a wide array of sources, and therefore 

presents a great heterogeneity in both physical and chemical characteristics, even within scrap 

grades belonging to the same family. 

In order to produce good quality steel with scrap, steelmakers require confidence in the 

quality and consistency of the scrap used. It must also be in the correct physical form for the 

steel making process.  

Due to its wide range of physical forms and great variability of additional materials, an 

effective management and classification of steel scrap enhances the efficiency of the 

steelmaking process So that, general understanding of scrap families, according standard 

international classifications agreements, is the first step when proposing new characterization 

methods. 
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3.1.1 Sources of steel scrap 
 

A simple, but most widespread classification of scrap is based on its source. According this 

classification criteria, three scrap types can be differentiated: 

Home scrap (plant scrap): Home scrap is generated in steel mills during the production of steel 

and therefore depends on a conversion factor (production yield). Nevertheless, and due to 

improved efficiency in production, the quantities of home scrap have decreased over time. The 

amount of home scrap generated differs from mill to mill, but it typically represents around 

10% of the total steel production. 

This type of scrap requires no recovery process and rarely leaves the steel‐making production 

area. Instead, it is returned to the furnace on site and melted again. The recovery of home 

scrap is managed within the steel mill and is not handled by the recycling industry. 

It is relatively pure, and its chemical composition is known, so it can be easily characterized 

and recycled. 

In terms of figures: 

- Home scrap accounts for approximately 29% of total available scrap (8).  

- The easiest way to estimate home scrap availability is: 

Crude steel production (tonnes) x production yield (%) 

Some examples of home scrap are as follows: 

- Internal Scrap: Metallic scrap can be generated all along the steelmaking production 

process. It may be generated in large solidified shapes ‐ such as large volumes of steel 

that have solidified in a ladle or pot, irregular sheets from spillages or pouring and 

waste from parts of slabs, blooms, billets rods, wire coil and off‐specification materials. 

Large pieces of material must be processed into more manageable sizes for the 

handling system and furnace used for re‐melting. This material is normally very high in 

metallic content. If the steel mill produces a limited number of grades it may not be 

worth segregating this material into different types. However, if there is a wide range 

of steel qualities produced ‐ particularly if there are any special grades produced (with 

chromium, copper...) it may be worthwhile segregating some materials in order to 

maximize their value and / or minimize contamination. 

- Metal Recovered from Slag: Magnetic fractions can be recovered from iron and steel 

slags. The iron recovered from de‐sulphurisation slags has high sulphur content and 

should be kept separate. Since sulphur is difficult to remove at the steelmaking stage, 

this material is preferable to be recycled via Blast Furnace or used for steel grades that 

accept higher sulphur contents. 

The metal recovered from steel making slag is being of a similar composition to the 

grades of steel produced. If special grades are produced it may be worth evaluating 

the segregation of the slag from those heats. 
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New scrap: New scrap (also called prompt or industrial scrap) is generated in steel‐product 

manufacturing plants when steel is fabricated into finished products and includes such items 

as turning, clipping and stamping leftovers.  

This scrap is generally of high quality with well‐known composition and is available for 

recycling relatively shortly time after its generation.  

This material requires little processing and is typically sold to the scrap metal industry that 

processes it for sale to steel mills and foundries. New scrap with paint or coating (with the 

exception of cable which does need treatment prior to input into a furnace) does not generally 

need any waste‐related pre‐treatment before being sent to the furnace. 

In terms of figures:  

- New scrap accounts for approximately 23% of total available scrap (8).  

- New scrap is a simple function of crude steel production and semi‐products 

manufacturing, respectively. The easiest way to estimate new scrap availability is: 

Finished steel consumption per sector (tonnes) x manufacturing process yield (%) 

Examples of new scrap are: 

- Fabrication Scrap: Scrap coming from fabrication will be the off‐cuts, cuttings, 

punching, chips, turnings, and from the production of components and sub‐

assemblies. It may be possible to segregate this scrap into different categories at the 

fabrication shop. 

- Manufacturing Scrap: Manufacturing scrap is usually be generated in lower volumes 

and consists of a higher proportion of finer material (swarf, grindings, polishing sludge, 

etc.). 

There is something an overlap between scrap produced during fabrication and manufacturing 

stages. 

Old scrap or obsolete scrap: This type scrap is generated from obsolete steel products that 

have come to the end of their useful lives, either separately or mixed, and it is often 

contaminated to a certain degree. For this reason, the chemical composition of obsolete scrap 

fluctuates widely depending on its origin and the collection systems used. The recycling 

industry is essential for the supply of old scrap. 

Since the lifetime of many metal products is often longer than 10 years and sometimes longer 

than 50 years, for instance products for building and construction, when considering the 

availability of this type of scrap, it must be considered that there is an accumulation of metal in 

use since the beginning of the industry. 

In terms of figures: 

- Obsolete scrap accounts for approximately 48% of total available scrap (8).  

- The easiest way to estimate Obsolete scrap availability is: 
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Finished steel consumption per sector (tonnes) x Recycling Rate (%) x life time (years) 

Some examples of old scrap are given as follow: 

- End of life vehicle scrap: One major source of steel scrap is end‐of‐life vehicles (ELVs). 

Approximately 9 million end‐of‐life vehicles are discarded every year (9). Assuming 

that each vehicle produces about one tonne of steel scrap, this gives an indication of 

the size of this market. 

Cars are primarily composed of metal (about 75%) and a range of other materials. The 

metallic parts are separated by physical processes and recovered as ferrous scrap (iron 

and steel, comprising 70% of the total vehicle waste) and non‐ferrous metals (5%), all 

of which are recycled. The remaining 25% is the automotive shredder residue (ASR), 

which is composed mainly of plastics, contaminated with non‐ferrous metallic and 

other parts that could not be separated. 

- Construction: Steel has been used as beams, reinforcement bars and other structural 

parts in building and construction since its production. The amount of steel scrap 

generated during the demolition of a building varies greatly by type of building and 

geographical location.  Almost all steel parts are recovered, with good quality beams 

for direct re‐use or for recycling at steelworks. 

- Large equipment and machinery: This category cover the industrial and agricultural 

machinery. 

- Packaging material: Steel packaging includes food cans, beverage cans, aerosols, etc.  
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3.2 Simplistic approach to scrap quality 
 

Use of recycled scrap steel in steelmaking processes has increased for the last decades, and 

this trend is expected to continue and grow in the future (10). As a result, levels of residual 

impurity elements entering the steel‐making process from scrap are increasing with the 

growing obsolete scrap use and repeated recycling.  

Apart from the general classification explained in the previous section, scrap can be further 

sub‐classified into different groups. However, despite this sub‐classification, the characteristics 

of the scrap within each sub‐group tend to vary greatly. In order to keep control of the final 

quality of the steel products to be manufactured, good characterization of scrap must be 

performed. 

Scrap trade associations worldwide have developed a number of systems for classifying the 

steel scrap recovered by commercial scrap processing companies. Most of them basically 

classify ferrous scrap according to several properties, most notably: 

- Chemical composition of metals: In the case of iron and steel scrap, metal content 

would best be defined in a narrow sense. This would include other metals besides 

ferrous ones only if they form part of an iron or steel alloy. Defined in this way metal 

content would be 100 % minus the sterile content. 

The metallic content measured in terms of weight percentage of the total mass should 

be as high as possible and can be measured practically as the amount of material that 

can be unloaded with a magnet. However, if the iron and steel objects have coatings 

that cannot be neglected or other materials attached to them, these would have to be 

loosened. 

On the other hand, dust should not be counted towards metal content because it is 

undesired; scrap should not contain excessive ferrous oxide in any form, except for 

typical amounts arising from the outside storage of prepared scrap under normal 

atmospheric conditions. This requirement is used in order to avoid the inclusion of 

metal scrap with very low economic value due to the excessive metal’s oxidation. 

- Level of impurity elements: Elements in steel are considered as impurities or alloy 

elements depending on where in the process they are added or removed. Impurities 

worth noting are:  

o Sterile: Sterile materials in scrap include: 

 Non‐ferrous metals and non‐metallic materials such as earth, dust, 

insulation and glass;  

 Combustible non‐metallic materials such as rubber, plastic, fabric, 

wood and other chemical or organic substances; 

 Large pieces (brick‐size) which are non‐conductors of electricity such 

as tyres, pipes filled with cement, wood or concrete; 
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 By‐products arising from steel melting, heating, surface conditioning 

(including scarfing), grinding, sawing, welding and torch cutting 

operations, such as slag, mill scale, baghouse dust, grinder dust, 

sludge. 

o Tramp elements: The elements that have lower oxygen affinity than iron, such 

as Cu, Sn, Co, Cr, or Ni remain in the final alloy. Utilisation of low quality scrap 

can result in the production of out of specification steel and impact the final 

quality of steelmaking products. There are basically three sources of tramp 

elements in scrap: 

 Tramp elements in pure state coexisting with pieces of steel scrap. The 

impurities are mixed with the ferrous portion of the scrap and are 

mechanically separable, e.g.: discarded electric motors (iron and 

copper coexist in pure state) 

 Tramp elements used as coating material for steel products. Iron and 

the non‐ferrous metal of the coating build a series of layers consisting 

of different phases, e.g.: galvanised steel (zinc‐rich layers on steel 

sheet) 

 Tramp elements used as alloying additions in certain steel grades. The 

impurity elements are dissolved in the bulk steel scrap and are 

separable only after scrap melt down, e.g.: Ni, Cr, Mo as alloying 

elements in steel. 

o Other elements with environmental considerations:  

 Pb and Zn contained in the scrap are emitted to a large extent, by the 

furnace as vapour or metal oxide particles and are collected by the 

Steelshop de‐dusting systems. 

 PVC and other halogenated substances might lead to higher emissions 

of dioxins and other toxic substances from the steel furnaces. 

 Radioactivity: It is very important to detect the presence of radioactive 

materials as early as possible since the consequences of such incidents 

for the metal processing industry are always very serious. 

- Physical size and shape: The size and shape of the scrap to be used at a plant may be 

limited by its technical limitations. In order to avoid process incident related the size 

and shape of scrap, these need to be controlled by the agreement between seller and 

buyer.    

- Homogeneity and consistency: large variations in quality will result in the production 

of off‐specification steel (or limit the quantity of scrap that can be utilised). 

These scrap‐quality criteria need to be checked, firstly to assess the potential environmental 

and health risks of scrap use and manipulation, and secondly to conclude whether the raw 

material is suitable as direct input to final use (steel work/foundry) or not. It should also allow 
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deciding if the metal in the scrap is sufficiently pure and has been separated effectively from 

other types of materials. 

Based on these general properties, the scrap is acquired, and the mixture is designed. Given 

that a large amount of scrap is used in the steelmaking process, it is necessary to have a good 

characterisation in order to be able to counteract its negative impact during the melting and 

steel refining processes, which have a high impact on the plant operating costs.  

The importance of scrap quality control concept lays on the necessity to optimize process 

variable costs. 

Fig.  3.1 offers a full view of the EAF variable cost control through the scrap management point 

of view, showing the interrelations between the different aspects that have influence on scrap 

quality, including those associated with scrap market and the operating costs of the melting 

process. 

 

Fig.  3.1: Schematic representation of scrap quality influence on variable process costs 
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3.3 Scrap specifications and standards 
 

At this point, it is clear that, not only for marketing and trading purposes but also for process 

optimization requirements, international standards and scrap specifications are needed to set 

the price and to be used as reference for classification and quality control in steelmaking 

facilities. 

Specifications and standard classifications for ferrous metal scrap exist at international, and 

National levels, as well as between individual parties. A brief outline of the most 

representative references is given below: 

European Steel Scrap Specification: There are several European entities which have 

contributed to the elaboration of the European Steel Scrap Specification, making it one of the 

world reference specifications. Among them, probably the most important are the European 

Ferrous Recovery & Recycling Federation (EFR) and the European Confederation of Iron and 

Steel Industries (EUROFER)  

The European Steel Scrap Specification includes a first section with some general conditions 

applicable to all grades of scrap and covers the requirements from an environmental, as well 

as health and safety perspective. This specification also includes the chemical elements for all 

scrap grades that must be considered, from a cleanliness point of view, in terms of sterile, 

residual and other metallic elements. It also provides a detailed description of these 

specifications by category, which corresponds to the type of scrap, including dimensions and 

density (11). 

ISRI specifications: The institute of scrap Recycling industry (ISRI) is the trade association from 

the USA that has developed a specification which classifies scrap as non‐ferrous and ferrous 

materials. This specification is used internationally. ISRI’s Scrap Specifications Circular is posted 

in at least once per year on the ISRI web site (12).  

The American specification includes a codification for each material included in the document, 

as well as a description of each item. 

National standard classification: Some countries have their own classifications for steel scrap 

developed by the national industry associations, for example The United Kingdom, Spain, 

Belgium, France or Germany.  

Bilateral contract or Unilateral specification: Due to the great importance of the matter, there 

are also specifications made as agreements or contracts in trade between two parties or even 

unilateral definitions that scrap traders must accomplish to introduce scrap products in some 

particular steelmaking companies. Such specifications are usually based on a standard 

classification with additional requirements suitable for the desired production process or 

product. These specifications tend to be continuously reviewed and if necessary modified. 

Some examples are: 

- ArcelorMittal: ArcelorMittal Scrap specifications in USA provide information to ensure 

that steel scrap materials that do not meet the design criteria enter the site. These 
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requirements are detailed for every scrap grade by site, including conformance 

criteria, chemistry, elements that must not be included, sampling criteria, among 

others. 

- GERDAU: Similar to other companies, Gerdau North America publishes its own iron 

and steel scrap specifications, where different materials are classified into prompt, 

obsolete or unprepared scrap. The specification of each material includes a brief 

description, the expected chemistry and dimension restrictions for all steel plants. 
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3.4 The Real value of scrap 
 

The real value of scrap does not only represent its iron content and price. Scrap represents 

between 55 and 65% of the total cost of the mini‐mill plant. Around 85% of the total costs 

incurred by the plant are associated with the activities of the Steelshop (13).  

 

Fig.  3.2: Detailed description of the total cost in a mini-mill plant 

Focusing on the Steelshop part, about 60% of the cost corresponds to the purchasing cost of 

metallic and 40 % of the cost is related to operational parameters, mainly metallic yield (14). 

Fig.  3.3 depicts the mentioned cost deployment. 

 

Fig.  3.3: Metallics Waterfall analysis in Electric Arc Furnaces 

Thus, when the potential feasibility of using a particular scrap grade is analyzed, other factors 

apart from the purchasing price need to be looked at. Probably, the most widespread method 

to define the real value of a material is the Total Cost of Ownership concept (TCO). 
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According to ArcelorMittal (14), TCO is “A holistic mindset and analytical approach to purchase 

goods and services that incorporates not just price, but all costs associated to acquisition, 

transport, storage, usage and disposal”. It allows the investigation and reduction of all 

associated costs of purchased goods by simultaneously pulling all levers: commercial (supplier 

consolidation, volume bundling, negotiations), demand (standardization, substitution, mix 

optimization) and process (inventory optimization and transport optimization). 

Using a global TCO approach to analyze the EAF process, it is possible to split the individual 

cost contributions to the total TCO from purchasing to melting. This is very useful for 

identifying the economic potential of controlling scrap quality. 

Fig.  3.4 shows an example of the TCO analysis: 

 

Fig.  3.4: EAF process TCO analysis. 
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3.5 Chapter 3 recall and conclusions 
 

The main issue of using ferrous scrap as raw material in steelmaking processes is that steel 

scrap comes from a wide array of sources, and therefore presents great heterogeneity in both 

physical and chemical characteristics. 

Aiming to put some order in the scrap classification, scrap materials can be allocated in three 

general families based on the origin; obsolete, new and home scraps. However, since Home 

scrap is generated in steel mills and New scrap is generated in steel‐product manufacturing 

plants, their properties are well known for steelmakers, that why the main concern is to get 

the characteristics of obsolete scrap.  

Around 85% of the total costs incurred by the plant are associated with the activities of the 

Steelshop, and the scrap non‐quality has a strong influence over the steelmaking variable 

process costs like; metal chemical composition, level of impurities, physical aspect, 

homogeneity and consistency. Being aware of that;  

- Specifications and standard classifications for ferrous metal scrap have been agreed at 

international and national levels, to ensure that all the entities involved in the scrap 

trade have a unique criterion for material quality assessment. 

- In the steel manufacturing sector, the criterion based on the Total Cost of Ownership 

(TCO) concept has been established as a standard for the analysis of scrap quality. TCO 

is a method to define the real value of one particular material in the steelmaking 

process considering, not only the purchasing price, but also the influence of this 

material on the variable process costs. 
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 4 
Value In Use (VIU) concept; The real scrap 

value assessment method in steelmaking 
This chapter start explaining the EAF process and offers some examples of non‐quality 

in different grades of scrap. Also, the VIU concept is presented as a methodology for analysing 
the influence of scrap non‐quality in the operational results of the EAF melting process. The 
chapter concludes by evaluating numerically the penalty that the main sterile (CaO, SiO2 and 
FeO) have regarding a reference material. 

 
 

4.1 Steel production in the Electric Arc Furnace (EAF) 
 

In daily electric steelmaking operation, a mixture of different scrap grades is periodically 

defined as regular scrap mix. This mix selection is mainly based on the TCO concept approach, 

but always constrained by some physical and chemical conditions that must be accomplished 

by the whole of the scrap mixture and which are defined by the product’s and the process's 

specifics (the Mix selection process was stabilised in Fig.  3.1). 

Although in an ideal situation, the material to be introduced in the furnace should be only 

steel, due to the intrinsic nature of scrap as recycled material, Scrap is a mixture of steel with 

other type of materials that, in some cases penalize the steel melting process (loss of metallic 

performance , Increased volume of slag generated, ...) and in other cases benefit the melting 

process (reduction of energy consumption, alloys materials, ...). However, from an optimum 

process management point of view, it is necessary to exactly know the chemical composition 

of the materials mixture introduced into the furnace. 

Focussing the attention on the EAF process, it can be said that three operations are carried 

out; Melting of scrap, oxidation of liquid steel (reduction of phosphorus and carbon) and 

temperature adjustment (15).  

The efficiency of the melting process of scrap is mainly linked to physical aspects. However, 

besides the evidence loss of metallic yield produced by the substitution of part of the Iron by 

other materials, the chemical composition of scrap has a special influence in the other two 

mentioned processes: 

o Oxidation of liquid steel (reduction of phosphorus): 

o The phosphorus removal operation in EAF process must be conducted under 

oxidizing conditions. The oxidation of phosphorus and its transfer to the slag (slag 

acts like a sponge) is done by producing phosphate ion. The P2O5 is in gaseous 

state and it does not present enough thermodynamic stability. In order to do the 

phosphorous removal, it is necessary to generate a stable oxide in the slag, this is 
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accomplished by generating a phosphate compound called tri or tetra‐calcium 

according to the following reaction: 

 
[�] +  

5

2
(���) +

3

2
(���)  ↔

1

2
(���(���)�) +

5

2
[��] (4.1) 

But to encourage this reversible chemical reaction, it should pay attention to the 

following rules: 

 There should be an oxidizing medium: there must be present a significant 

amount of oxygen available (e.g. high FeO). 

 There should be a large amount of available CaO, higher compared with the 

amount of C2S (high basicity index). 

 It should be considered the partition coefficient (P) / [P] in equilibrium 

conditions; [amount of stabilized phosphorus in slag (nCaO‐P2O5)] compared 

with (the phosphorus present in the steel). 

 There should be a good contact between the slag and steel which favours the 

kinetics of phosphorous reduction reactions. 

- Slag fluidity (nearly 100% of the liquid phase, avoiding excessive 

saturation of MgO and CaO, and an early formation of FeO). 

- Efficient steel‐slag stirring (gas flow produced during decarburization). 

- Time under favourable conditions. 

o Temperature adjustment 

o Chemical energy input: When oxygen is injected into the EAF, it partially reacts 

with metallic elements contained in scrap generating oxides. Those oxidizing 

chemical reaction are highly exothermic and release a lot of energy. 

 

Table 4.1: Ooxidizing reaction in EAF steelmaking 

This new compound generation also presents an important drawback that must be 

taken into consideration and which is related to refractory consumption since 

those compounds are mostly acid compounds that react with the basic bricks used 

for building the refractory shell in the EAF. 
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o Electrical energy input (foaming slag practice): After scrap melting, the heating up 

of liquid steel to the desired temperature in the electric arc furnace is 

accomplished by heat transfer through the electric arc, so that the efficiency of 

this heat transfer is essential in the economic balance of the furnace. Currently, 

the most common practice to optimize the heat transfer is the permanent foamy 

slag practice of the slag in order to intend covering with slag the entire electric arc. 

There are four main factors which allow improving the capability of controlling slag 

foaming behaviour: 

 Decreasing the surface tension in the steel‐slag interface: by controlling the 

basicity index of the slag and the presence of FeO in the slag. 

 Increasing the viscosity of the slag by controlling the temperature, the basicity 

index and the presence of MnO and FeO. 

 Generated slag volume. 

 Presence of the second phase particles in slag due to CaO (Ca2SiO4) and / or in 

MgO (Magnetowustite in solid solution) saturation. 

It is important to point out that the chemical composition of slag along the process varies a 

lot, tending to reduce the amount of MgO and CaO and to increase the amount of FeO. 

However, to ensure the Phosphorus oxidation processes and to guarantee the energy 

efficiency of the liquid steel heating process, it is necessary to maintain the proper 

relationship between basic oxides and acids oxides (basicity index of the slag) at the 

different process stages. To ensure the proper evolution of steel and slag chemical 

composition along the melting process, it is necessary to know the amount of no ferrous 

elements introduced with the scrap and then to adjust Oxygen, Carbon, lime and dolomite 

addition during the melting process.  
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4.2 Understanding different scrap specifics 
 

In Section 3.1.1, the different sources of steel scrap were generally allocated in three general 

families accepted worldwide (Home scrap, New scrap and Obsolete scrap) and described in a 

very general way. 

In that section, some of the reference Steel Scrap Specifications were also presented. As it was 

previously described, these Steel Scrap Specifications define the scrap categories (qualities) 

not only by their origin or their shape but also by their content in residual elements, content in 

sterile and by also their density. 

In this section, some of the most used scrap grades in the EAF steelmaking process are 

analysed in greater detail. This analysis will allow to better understand how the different scrap 

grades are generally defined according to their physical and chemical characteristics, as well as 

the way in which some of these scraps are sometimes received in the factory’s scrap yards.   

The “high residual” family includes E1, E3, E40, E46, EHRB and EHRM categories (European 

specification). The following lines describe the most common grades of this scrap family: 

- Shredded steel scrap (E40) corresponds with Old steel scrap fragmentized into pieces 

not exceeding 200 mm in any direction for 95% of the total. No piece, in the remaining 

5%, shall exceed 1000mm. It should be prepared in a manner to ensure direct 

charging. The scrap shall be free of excessive moisture, loose cast iron and incinerator 

material (especially tin cans). Must be free of metallic copper, tin, lead (and alloys), 

and sterile to meet the aimed analytical contents (11). 

  
 

  

Fig.  4.1: E40 examples: Top-left) USA, top-right) Luxembourg, bottom-left) Spain and 

bottom-right) Belgium 

Typical shredded scrap composition, in certain elements, allowed by some of the 

international scrap specifications, and also internally defined by several steelmaking 

companies are showed in Table 4.2: and Table 4.3:  
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 Cu Ni Sn Sterile 
EUROFER <0,25  <0,02 <0,4 

EFR <0,25  <0,02 <0,4 

Table 4.2: E40 Scrap chemical requirements according two international scrap specifications 

 C Mn Si P S Cu Ni Sn Sterile 
ArcelorMittal    0,03 0,04 0,2 0,1 0,1 <0,4 
Gerdau   0,2 0,02 0,04 0,3 0,11   
SSM   0,3 0,05 0,05 <0,25 <0,15 <0,02  
Cascade Steel 0,25 1,5 0,5 0,05 0,05 0,22 0,1 0,015 <0,4 

Table 4.3: E40 Scrap chemical requirements according three steelmaker internal scrap 

specifications 

However, although the acceptance criteria of the different scrap are clearly defined, it 

is common to find high dispersions over the allowed chemical composition required. 

Fig.  4.2 shows some examples of non‐fulfilments. 

  

Fig.  4.2: Example of higher amount of dirt than allowed (left) and highly oxidized scrap 

(right) 

- Light structural steel scrap (E1) corresponds with Old thin steel scrap (Old Light Scrap) 

with thickness < 6mm and dimensions ≤1.5 x 0.5 x 0.5 m. It should be prepared in a 

manner to ensure direct charging. Must be free of rebar and merchant bars, free of 

metallic copper, tin, lead (and alloys), mechanical pieces and sterile to meet the aimed 

analytical contents. May include light vehicles wheels (11). 
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Fig.  4.3: E1  examples: Top-left) Luxembourg, top-right) Spain, bottom-left) Spain import 

and bottom-right) Belgium 

Typical E1 scrap composition, in certain elements, allowed by some of the 

international scrap specifications, and also internally defined by several steelmaking 

companies are showed in Table 4.4 and Table 4.5:  

 Cu Ni Sn Sterile 
EUROFER <0,4  0,02 <1,5 

EFR <0,4  0,02 <1,5 

Table 4.4:E1 Scrap chemical requirements according two international scrap specifications 

 C Mn Si P S Cu Ni Sn Sterile 
ArcelorMittal 0,3 0,5 0,2 0,03 0,03 <0,4  <0,02 <1,5 
Gerdau   0,25 0,04 0,04 <0,3 <0,15 <0,015  
SSM   0,5 0,06 0,05 <0,4  <0,02  
Cascade Steel 0,5 1,5 0,5 0,05 0,05 <0,2 <0,15 <0,015 <1,5 

Table 4.5: E1 Scrap chemical requirements according three steelmaker internal scrap specifications 

Fig.  4.4 shows some examples of non‐fulfilments. 

  

Fig.  4.4: Example of higher amount of dirt than allowed (left) and scrap grades mixing 

(right) 

- Structural steel scrap (E3) corresponds with Old thick steel scrap (Old heavy scrap) 

with thickness ≥ 6mm and dimensions ≤1.5 x 0.5 x 0.5 m. It should be prepared in a 

manner to ensure direct charging. It may include tubes and hollow sections and 

exclude vehicle body and wheels from light vehicles. Must be free of rebar and 

merchant bars, free of metallic copper, tin, lead (and alloys), mechanical pieces and 

sterile to meet the aimed analytical contents (11). 
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Fig.  4.5: E3 scrap examples: Top-left) USA, top-right) Spain, bottom-left) rail and bottom-

right) Belgium 

Typical E3 scrap composition, in certain elements, allowed by some of the 

international scrap specifications, and also internally defined by several steelmaking 

companies are showed in Table 4.6 and Table 4.7:  

 Cu Ni Sn Sterile 
EUROFER <0,25  <0,01 <1,0  

EFR <0,25  <0,01 <1,0  

Table 4.6: E3 Scrap chemical requirements according two international scrap 

specifications 

 C Mn Si P S Cu Ni Sn Sterile 
ArcelorMittal 0,4 0,5 0,2 0,015 0,014 <0,25  <0,01 <1,0 
Gerdau   0,15 0,03 0,04 <0,15 <0,1 <0,01  
SSM   0,3 0,05 0,05 <0,25  <0,01  
Cascade Steel 0,7 0,75 0,025 0,025 0,035 <0,15 <0,15 <0,01 <1,0 

Table 4.7: E3 Scrap chemical requirements according three steelmaker internal scrap specifications 

Fig.  4.6 shows some examples of non‐fulfilments. 

  

Fig.  4.6: Example of presence metallic Cu (left) and non-allowed elements in E3 scrap 

(right) 
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In “low residual” family, there are included scrap categories such as E2, E6, E8, E5H and E5M 

(European specification). The following lines describe the most common scrap in this category: 

- Bundled steel scrap (E6) corresponds with New production thin steel scrap (less than 

3mm thick), compressed or firmly baled in a manner to ensure direct charging. The 

steel scrap must be uncoated unless permitted by a joint agreement. Must be free of 

metallic copper, tin, lead (and alloys), mechanical pieces and sterile to meet the aimed 

analytical contents (11). 

  

Fig.  4.7: E6  scrap examples: left) USA and right) Spain 

Typical E6 scrap composition, in certain elements, allowed by some of the 

international scrap specifications, and also internally defined by several steelmaking 

companies are showed in Table 4.8 and Table 4.9:  

 Cu Ni Sn Sterile 
EUROFER   <0,3 <0,3 

EFR   <0,3 <0,3 

Table 4.8: E6 Scrap chemical requirements according two international scrap 

specifications 

 C Mn Si P S Cu Ni Sn Sterile 
ArcelorMittal 0,07 0,32 0,07 0,01 0,012 <0,03  <0,007 <0,3 
Gerdau   0,150 0,01 0,01 <0,1 <0,05 <0,005  
SSM   0,8 0,08 0,03     
Cascade Steel 0,1 0,75 0,5 0,03 0,03 <0,1 <0,1 <0,01 <0,3 

Table 4.9: E6 Scrap chemical requirements according three steelmaker internal scrap specifications 

Fig.  4.8 shows some examples of non‐fulfilments. 

  

Fig.  4.8: Example of non-allowed elements in E6 scrap (left) and Highly oxidized scrap (right) 
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- Busheling steel scrap (E8) corresponds with new production thin steel scrap (less than 

3mm thick) and dimensions ≤1.5 x 0.5 x 0.5 m. The steel scrap must be uncoated 

unless permitted by a joint agreement and be free of unbound ribbons. Must be free 

of rebar and merchant bars, free of metallic copper, tin, lead (and alloys), mechanical 

pieces and sterile to meet the aimed analytical contents (11). 

  

Fig.  4.9: E8  scrap examples: left) USA and right) Luxembourg 

Typical E8 scrap composition, in certain elements, allowed by some of the 

international scrap specifications, and also internally defined by several steelmaking 

companies are showed in Table 4.10 and Table 4.11:  

 Cu Ni Sn Sterile 
EUROFER   <0,3 <0,3 

EFR   <0,3 <0,3 

Table 4.10: E8 Scrap chemical requirements according two international scrap 

specifications 

 C Mn Si P S Cu Ni Sn Sterile 
ArcelorMittal 0,07 0,32 0,07 0,01 0,012 <0,03  <0,007 <0,3 
Gerdau    0,01 0,01 <0,1 <0,08 <0,005  
SSM   0,03 0,02 0,02     
Cascade Steel 0,15 1,5 0,5 0,05 0,05 <0,1 <0,1 <0,01 <0,3 

Table 4.11: E8 Scrap chemical requirements according three steelmaker internal scrap 

specifications 

Fig.  4.10 shows some examples of non‐fulfilments. 

  

Fig.  4.10: Example of tin coated busheling (left) and (right) 

In addition to the two scrap families described previously (low and high residual scrap grades), 

there are also other "clean" raw materials that are normally used to complement the scrap 

mix. These materials are mainly HBI, DRI, Pig Iron, Beach Iron and own recovered scrap. 
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- Beach Iron steel scrap corresponds with Solid hot metal which has been cooled on the 

sand and broken into pieces. 

  

Fig.  4.11: Beach Iron scrap examples: left) Spain and right) Belgium 

Typical composition internally defined by several steelmaking companies are showed 

in Table 4.12:  

 C Mn Si P S Cu Ni Sn Sterile 
ArcelorMittal 4,5 0,23 0.7 0.065 0,02    <2,0 
Gerdau 4   0,07 0,03 <0,02 <0,01 <0,002  
Cascade Steel 4,5 0,5 2,25 0,05 0,06 0,05 0,05 0,01  

Table 4.12: Scrap chemical requirements according three steelmaker internal scrap specifications 

Fig.  4.12 shows some examples of non‐fulfilments. 

  

Fig.  4.12: Example of high slag content (left) and (right) big pieces of BI 

- Hot Briquetted iron (HBI) corresponds with reduced iron ore briquetted at high 

temperature just after reduction in the rotary hearth furnace. 

 

Fig.  4.13: HBI scrap example 

Typical HBI composition are showed in Table 4.13:  
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 C Mn Si P S Cu Ni Sn Sterile 
ArcelorMittal 0,9   0,09 0,011    <3 
Cascade Steel 1,5 0,25 0,25 0,05 0,05 <0,1 <0,05 <0,01  

Table 4.13: HBI Scrap chemical requirements according three steelmaker internal scrap 

specifications 

It should be clear that the final composition of the scrap is mainly defined by the origin of the 

raw material. However, it is important to note that scrap pre‐treatment (see chapter 5) and 

post‐treatment processes (see chapter 6) have an important influence on the final quality of 

scrap materials. So, the acceptance criteria of each factory are strongly conditioned by other 

aspects such as suppliers, local scrap market availability or market prices trends.  

Thereby, it is easy to make a rough estimation of which are the predominant chemical 

elements in each of the scrap grades based on their origin and processing methods before 

arriving the Steelshop: 

- Shredded scrap (E40) mainly comes from the recycling activities of vehicles after end 

of life. The Metallic recovered fraction is usually defined as the 75–85% of the vehicle 

mass remaining after de‐pollution and dismantling (16). And due to its origin and 

processing methods it usually contains small portions of the elements removed in the 

pre‐processing operations before fragmentation, such as plastics and painted 

elements (presenting high contents of Carbon and volatile materials) and electric 

wiring (leading to high copper levels). On the other hand, the high apparent surface of 

to this scrap results in high surface oxidation (The FeO content is also high). 

- Structural light scrap (E1) usually comes from used and unserviceable goods (and 

partially from industry). This scrap category is characterized by a higher percentage of 

impurities than in other scrap grades (volatile, sterile materials and high oxidized 

superficial layer), as well as higher free metallic elements content (aluminium, Copper, 

chromium). It may also content coated (tinned or galvanized) or painted steel. Because 

of the way in which this type of scrap is collected and transferred to recycling plants, 

they usually contain high amounts of dirt (mainly SiO2) and therefore, the metallic 

yield of this scrap is one of the lowest. 

- In Structural scrap (E3) case, the recycling material comes from demolition work and 

industry. Steel manufactured for this type of applications are usually low‐medium 

carbon steels, killed by silicon and alloyed with manganese (and / or niobium or 

vanadium) which will lead to high contents of C, Mn and Si in the steel. It might include 

concrete steel, mechanical parts, galvanized scrap. 

- The steel from which Bundled and Busheling scrap comes corresponds normally with 

flat product manufactured by integral route (very low level of residual elements such 

as copper, tin or nickel). Some examples of pieces made with this steel are automotive 

parts, steel clipping, die‐cutting or stamping products, presses, deep drawing products 

or pipes. Theoretically, it is free of metal which is coated, limed, vitreous enamelled, 

and electrical sheet (low carbon, silicon and sulphur). On the other hand, and since the 

material is collected from processing shops, this material is free sterile materials. 
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- The main raw material used to produce Beach Iron / Pig Iron in a blast furnace are iron 

ore, coke, sinter, and limestone. Iron ores are mainly iron oxides and include 

magnetite (72,4% of Fe), haematite (70,0% of Fe), Goethite (62,8% of Fe) or Siderite 

(48,3% of Fe) (17), However, it also contains other impurities that will be present in the 

produced Beach Iron such as sulphur, phosphorus and silicon. Lime is used to remove 

this large amount of the impurities in the ore and some of it may remain in the Blast 

Furnace’s products. Finally, Coke is used as energy input due to Carbon oxidation 

reaction leading to high Carbon product. 

- Finally, Iron Briquettes (HBI) are produced by reducing iron ore fines by any of several 

commercially proven direct reduction processes. Once the reduction process is 

completed, the hot iron is transferred to the briquetting machines, where it is 

compacted, and then passivated and cooled. The product obtained at the end of the 

process it is characterized by high density and metallization (including high FeO 

content), low residual content, high Carbon content and It may present significant 

values of acid gangue  

In line with the concepts mentioned above, Table 4.14 shows the chemical composition of 

some grades of scrap according to the internal characterization of one ArcelorMittal site: 

(%) Feº C Mn Si P S Cu FeO SiO2 Al2O3 CaO MgO volatiles 
Shredded 

E40 
85,23 0,3 0,6 0,20 0,03 0,04 0,40 6,0 1,5 0,80 0,50 0,4 4,0 

Structural 
E1 

84,81 0,3 0,70 0,30 0,04 0,05 0,60 4,0 3,5 1,2 1,0 0,5 3,0 

Structural 
E3 

90,20 0,16 0,7 0,20 0,02 0,02 0,30 3,0 1,3 0,6 1,0 0,5 2,0 

Bundle 
E6 

93,85 0,05 0,35 0,05 0,01 0,01 0,08 2,0 0,5 0,6 0,5 0,0 2,0 

Bushelling 
E8 

92,54 0,05 0,35 0,10 0,02 0,02 0,12 2,2 1,0 0,6 1,0 0,5 1,5 

Beach 
Iron 

86,20 4,0 0,5 1,2 0,1 0,1 0,0 2,5 1,50 0,8 2,0 1,0 0,1 

HBI 87,48 0,8 0,08 0,01 0,12 0,02 0,0 7,0 3,0 0,5 0,5 0,3 0,2 

Table 4.14: Example of characterization of scrap grades in one ArcelorMittal site 
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4.3 Scrap Value In Use Concept 
 

The Value In Use (VIU) concept has proved to be very useful to relate scrap quality with the 

operating cost of the Electric Arc Furnace. This concept provides a criterion that allows the 

comparative interpretation of the results generated by each scrap quality uses in the 

steelmaking process. 

There are several ways to obtain the VIU of scrap (18). All of them are based on a similar 

approach described as follows: “The VIU of scrap in the Electric Arc Furnace is an estimation of 

the operating cost of melting this scrap compared to a reference cost, which is that of melting 

pure iron”. 

It has been demonstrated that there is a clear relationship between the VIU of each scrap 

material with its process performance (mainly metallic yield). However, the nature of the non‐

metallic materials, as well as the Fe oxidation degree, also has a great influence on the 

material performance in the process. 

The VIU of a particular scrap grade includes, besides the purchasing costs and metallic yield, 

the additional costs associated with extra energy consumption and other additional material 

consumption (electrode, refractories, fluxes …) incurred due to the melting of non‐metallic 

materials included in regular scrap. Those elements or compounds present in scrap can be 

splinted in four groups: 

 Fe; which must be as high as possible. 

 Sterile elements (SiO2, CaCO3, MgO, Al2O3, H2O, FeO …) which are usually associated to 

the ferrous material source and the pre and post processing methods of scrap. 

 Tramp elements (Cu, Sn, Ni, Cr, Mo, S, P …) which have generally a negative impact on 

the rolling or stamping processes. 

 Carbonaceous compounds, Cl, heavy metals, which can have a negative impact on the 

steel plant environment, if the furnace fumes treatment device is saturated or 

inefficient. 

According to the method proposed by Sidenor (Spain) (19), the scrap VIU can be calculated as: 
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 (4.2) 

In this method, the VIU of the scrap, besides the metallic yield, is closely linked to the specific 

electric energy consumption and the theoretical desulphurization requirements. 

The method used by ArcelorMittal (19) is a little bit more sophisticated, as it considers heat 

and mass balances, after setting several Electric Arc Furnace operation parameters according 

to some theoretical values of EAF process: 

 Steel temperature:  1650°C 
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 Basicity of slag: (CaO + MgO)/(SiO2+Al2O3) = 2 

 Fe content in the slag (oxides + metal) = 25 % 

 Additional losses of metal (in fumes for example): 15 kg/t 

 Secondary combustion ratio:  

o CO2/(CO+ CO2) = 0.1 

o H2O/(H2 + H2O) = 0.5 

 Electrical energy ratio: 70% 

 Adjustment of oxygen and carbon mass balance is made by modulation of coal 

quantity (for example, the carbon carried by the scraps is removed and the iron oxides 

are reduced with coal) 

ArcelorMittal´s method allows to obtain a so called Anti‐value (A). In order to obtain this Anti‐

value, a complete characterization of a given scrap quality, in terms of chemical analysis, 

together with the output of the previous balances is conducted. The (A) value can be used to 

obtain the actual VIU of the analysed material according to the following equation: 

 ��� = � ⋅ ��������� − � (4.3) 

Where: 

 VIU is the VIU of scrap 

 r is the metallic yield 

 VIUPureFe is the reference cost of melting pure iron 

 A is the total Antivalue, and can be calculated as: 

 
� = �� ⋅ � + �� (4.4) 

Where: 

o DQ is the difference of electrical energy used to melt one tonne of scrap and 

the amount of energy used to melt one tonne of pure iron; 

o E is the cost of electrical energy (including the consumption of graphite 

electrodes);  

o DC is the difference of additional costs (lime, coal, refractory consumption and 

treatment of slag) used to melt one tonne of pure iron and one tonne of scrap. 
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4.3.1 VIU as effective tool for evaluating scrap quality 
 

There are important discrepancies between the results obtained using the different methods 

for VIU analysis because the concepts considered in the analyses and the theoretical 

assumptions are different (18). 

However, whatever the analytical method used, to establish a criterion for comparing different 

scrap grades, not only allows to evaluate the influence of scrap chemical composition over EAF 

steelmaking process, but also the pre‐processing (dismantling, shredding...) and post‐

processing (storage, mixing...) techniques used for each scrap grade.   

In this research work, the method proposed by ArcelorMittal will be adopted to evaluate the 

influence of the different scrap characterization method presented in this thesis. To carry out 

these analyses, it is available a dedicated Software called SVIU which has been developed 

internally by ArcelorMittal Global R&D department. A snapshop of the input data tab of SVIU 

software is shown in Fig.  4.14:  

 

Fig.  4.14: Scrap VIU tool developed in ArcelorMittal Global R&D  

SVIU tool requires two types of input data:  

1. Cost data: it corresponds with unit cost data in €/unit of the main concepts to be 

evaluated, including the reference material purchasing cost. 

2. Scrap chemical composition.  

On the other hand, it provides as main outputs:  

1. The Antivalue, in € / t scrap, of the process component consumptions (energy, coal, 

lime, refractory and slag) 

2. Expected performance of each particular scrap grade in specific energy consumption 

and metallic yield 

3. The real VIU of the analysed material.  
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4.4 Value In Use analysis for scrap characterization 
 

The mass and thermal balances elaborated by ArcelorMittal and supported by different 

melting tests conducted in a 6 tm pilot EAF in France, allowed ArcelorMittal to quantify the 

influence of the different elements or compounds present in scrap over the final performance 

of the EAF steelmaking process. Table 4.15 represents, using colours intensities, how the 

presence of a certain material in the scrap benefits or harms the EAF steelmaking process for 

each of the different concepts evaluated by the SVIU tool proposed by ArcelorMittal; green 

colour represents positive influence and red colour represents negative influence on the 

process (metallic yield is an exception since the partial substitution of Fe by any other element 

will always penalize the metallic performance, so that intense green colour represents low 

negative influence and the intense red colour represents big negative influence). 

 

Table 4.15: Influence of different elements over EAF process performance 

The colour distribution and its relationship with the additional specific consumptions included 

in the table are easily interpretable: 

 %Fe + Tramp elements: This concept corresponds with the elements that will remain 

dissolved in liquid steel.   

 %C: 1 additional percent of Carbon in scrap will directly reduce the metallic yield in 1%. 

It will slightly reduce Carbon requirement during the melting process too. 

 %Al: Aluminium will highly penalize the metal yield since it forms acid gangue that 

should be counteracted later to ensure proper process conditions. To do so, additional 

burnt lime is required leading to the generation of higher slag volume (containing 25% 

of FeO. On the other hand, the aluminium oxidation reaction is highly exothermic 

(+8,61 kWh/kg Al), so it will reduce the amount of electrical energy and carbon 

addition required 

 %Si: Silicon influence over the process is similar to aluminium’s described above. For 

this particular case, the energy released during the oxidation reaction of Silicon is 

+8,70 kWh/kg Si. 

 %H: Hydrogen is usually coming with plastics or hydrocarbons. The presence of this 

type of materials in scrap, will slightly increase the specific energy consumption 

associated mainly to the dissociation of the Hydrogen‐Carbon bonds, which are 

Metallic Energy Carbon Burnt Lime Slag, Refr.

yield (kWh/t scrap) (kg/t scrap) (kg/t scrap) (kg/t scrap)

% Fe + tramp elements      Scrap with 100% Fe

% C  +1% C  -1%Fe

% Al  +1% Al  -1%Fe

% Si  +1% Si   -1%Fe

% H  +1% H   -1%Fe

% acid gangue  +1% acid qangue  -1%Fe

% basic gangue  +1% basic gangue -1%Fe

% O on Fe  +1% O  -1%Fe

% H2O  +1% H2O  -1%Fe
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counteracted by the subsequent carbon oxidation reaction (+9,10 kWh/kg C for CO2 

reaction and +2,81 kWh/kg C for CO reaction). On the other hand, the carbon 

contribution will reduce its addition requirement. 

 % Acid Gangue: Regarding the acid gangue, it is known that Al2O3+SiO2 are the most 

pernicious element to include with the scrap metal. As described in previous sections, 

in order to achieve the slag conditions allowing the process to be optimized, the acid 

gangue must be compensated for by basic materials, significantly increasing the 

consumption of lime and the slag generation. This high mass increase in the system 

causes an additional energy requirement in the process. 

 % Basic Gangue: Being able to know the amount of basic elements present in the scrap 

allows to elaborate the whole system mass balance to adjust the additional lime 

required by the EAF process. 

 % O on FeO: From a theoretical point of view, the presence of FeO in the scrap will not 

penalize the metallic yield of EAF process given that, according ArcelorMittal's criteria, 

it was established as a calculation criterion that the iron oxide will be reduced in the 

slag to a steady value of 25%. However, to reach this point, an additional amount of 

deoxidizer (carbon) is required. Thus, additional energy is necessary to promote the 

endothermic FeO reduction reaction (1,08 kWh/kg Fe). 

 %H2O: Basically, the presence of water in the scrap mix leads to an extra input of 

energy to heat it up to its evaporation point. 

According the previous criteria, there are three main elements to be considered when 

analysing the EAF process penalties due to scrap chemical composition: 

- Iron Oxides: Although iron oxide is mainly composed of Fe and it will not cause 

significant losses in metallic yield, its presence in scrap need to be closely controlled 

due to the extra energy and carbon that requires its processing. 

Fig.  4.15 depicts how the expected metallic yield evolves as a function of the iron 

oxide percentage present in the scrap: 

 

Fig.  4.15: Yield losses due to partial substitution of Fe by FeO 
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Fig. 4.16 depicts the influence of FeO content over the other specific consumptions 

considered in ArcelorMittal method for Value In Use calculation. 

  
 

  

Fig. 4.16: Influence of FeO on furnace performance; Top-left) Energy, top-right) Coal, 

bottom- left) Lime and bottom-right) slag 

Based on process performance shown in Fig.  4.15 and Fig. 4.16:, the total economic 

penalties with respect to FeO percentage contained in scrap has been calculated 

applying the VIU equation, and the results obtained are shown in the Fig.  4.17: 

 

Fig.  4.17: Penalties in €/ton of scrap due to %FeO contained in scrap  

- Acid gangue: It is probably the most harmful element in steelmaking process (as it can 

be seen in Fig.  4.20), and although certain quantities are necessary to provide the slag 

with the proper properties, its presence in the scrap must be minimized. 
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In Fig.  4.18, metallic yield evolution with respect to SiO2 content is shown: 

 

Fig.  4.18: Yield losses due to partial substitution of Fe by SiO2 

Fig.  4.19 depicts the influence of SiO2 content over the other specific consumptions 

considered in ArcelorMittal method for Value In Use calculation. 

  
 

  

                  Fig.  4.19:Influence of SiO2 on furnace performance; Top-left) Energy, top-right) Coal, 

bottom- left) Lime and bottom-right) slag 

Based on process performance shown in Fig.  4.18 and Fig.  4.19, the total economic 

penalties with respect to SiO2 percentage contained in scrap has been calculated 

applying the VIU equation, and the results obtained are shown in the Fig.  4.20: 
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Fig.  4.20: Penalties in €/ton of scrap due to % SiO2 contained in scrap  

- Basic Gangue: Adding basic gangue to the scrap, besides the fact of paying CaO at the 

price of iron, does not have a significant influence on the value in use of the scrap. 

In this line, Fig.  4.21 depicts how the expected metallic yield evolves as a function of 

the CaO percentage present in the scrap: 

 

Fig.  4.21: Yield losses due to partial substitution of Fe by CaO 

Fig.  4.22 depicts the influence of CaO content over the other specific consumptions 

considered in ArcelorMittal method for Value In Use calculation. 
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Fig.  4.22: Influence of CaO on furnace performance; Top-left) Energy, top-right) Coal, 

bottom- left) Lime and bottom-right) slag 

Based on process performance shown in Fig.  4.21and Fig.  4.22, the total economic 

penalties with respect to CaO percentage contained in scrap has been calculated 

applying the VIU equation, and the results obtained are shown in the Fig.  4.23: 

 

Fig.  4.23: Penalties in €/ton of scrap due to % CaO contained in scrap  
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4.5 Chapter 4 recall and conclusions 
 

In previous sections, the different scrap grades were generally classified based on their origin. 

However, additional constrains when using ferrous scrap for producing new steel products are 

the presence of tramp elements, such Cu, Sn or Ni, that cannot be removed from liquid steel 

and the amount of sterile material contained. When preparing the scrap mix to be used in the 

furnace, it is necessary to consider that the individual copper contribution should not exceed 

the final product requirement in any of those tramp elements.  

In this section, besides describing in detail the different scrap grades according the most 

known international classification standards, a new classification criterion is presented. This 

criterion is based on tramp elements levels present in the material. According this 

classification, the different scrap grades can be allocated in:  

- “High residual” family includes E1, E3, E40, E46, EHRB and EHRM categories (European 

specification). 

- “Low residual” family, there are included scrap categories such as E2, E6, E8, E5H and 

E5M (European specification). 

- "Clean" raw materials that are normally used to complement the scrap mix. These 

materials are HBI, DRI, Pig Iron, Beach Iron and own recovered scrap. 

On the other hand, TCO concept has been proved to be a useful methodology for defining the 

scrap purchasing strategies, but it presents some limitations in terms of optimizing the EAF 

process. To this end, several steelmakers have proposed a new analytical approach called 

Value In Use (VIU). This new approach claims that “The VIU of scrap in the Electric Arc Furnace 

is an estimation of the operating cost of melting this scrap compared to a reference cost, which 

is that of melting pure iron”. 

In this chapter, the method proposed by ArcelorMittal for measuring the VIU is described 

(including a homemade software for conducting the analyses). ArcelorMittal’s tool was used 

for doing a basic analysis of the influence of the main sterile compounds in the VIU of scrap 

materials.  

The following equations have been obtained from these analyses:  

 

 ��������� (€|�) = −0,0091 + 1,446 % ��� (4.5) 

 ��������� (€|�) = 0,0041 + 8,723 % ���2 (4.6) 

 ��������� (€|�) = −0,0022 + 2,11 % ��� (4.7) 
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 5 
Scrap preparation techniques; State of the art. 

This chapter presents a thorough analysis of the most widespread waste treatment 
techniques in the ferrous scrap recycling sector, as well as a market search of the different 
available schemes for scrap processing. Based on these analyses, the chapter concludes 
proposing an integrated processing scheme 
 
 

Scrap pre‐treatment is not a very widespread activity by steelmakers, and it is usually done 

directly by scrap dealer. However, in other sectors such as aluminium and copper recycling 

industries or highly valuable metals recovering industries, in which the economic potential lies 

in separating and identifying the materials of interest, complex routes of size reduction and 

sorting have been developed and implemented. Otua Group in Vitoria – Spain is a good 

example (20).  

There are a great number of ferrous scrap types with huge different origins. The numerous 

sources and forms of ferrous scrap require the use of numerous scrap sorting and preparation 

techniques to remove the contaminants and/or recover other valuable materials (i.e. non‐

ferrous metals) prior to entering the steelmaking process.  

In the past, scrap was considered a waste and not a raw material and, due to the high offer of 

this waste, the steelmakers took a very conservative approach. According to this approach, a 

series of families of scrap, of established origin and with a high content of iron, were defined in 

the different regulations, assuming that part of the non‐ferrous material contained in it should 

be digested in the steelmaking process. This approach should have been questioned at the 

moment in which the demand for scrap as raw material increased in the decade of the 90s and 

it became a raw material (and therefore its price began to increase drastically) 
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Fig.  5.1: Scrap prices evolution since 2001 (21) 

New scrap pre‐processing routes to upgrade scrap quality might be the firsts step toward 

identifying and testing new ferrous scrap market that are not currently in use due to poor 

quality specifics. 

This chapter aims to analyse the different technical options for improving the quality of scrap 

streams according state of the art in physic mechanical commercial techniques. 

 

5.1 Treatment scheme for ferrous scrap 
 

When designing a scrap treatment strategy, it is necessary to optimize all the intermediate 

processing stages. These stages include the processes of crushing and separation, to later seek 

for the most efficient extraction technique of the ferrous fraction generated. To this end, it is 

essential to understand the macro characteristics of the material to be treated. 

The generality of the scrap materials makes complicated the implementation of a single 

treatment line, basically because the scrap can contain complex structures with very different 

materials and / or very different and limiting dimensions when defining treatment processes. 

One of the main problems that must be faced when defining mechanical treatment processes 

for size reduction and material separation is that it is difficult to think of a single line of 

treatment, basically because scrap can contain complex structures with very diverse materials 

and / or very different and limiting dimensions when defining treatment processes. 

Mechanical recycling should include all processes; initial separation, fragmentation, crushing 

and grinding applied to release the different materials from each other and the separation 

processes that allow isolating and concentrating the different fractions in order to obtain 

secondary raw materials suitable for metallurgical treatment. 
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Fig.  5.2 shows some schemes with the possible crushing and separation treatments, to which 

scrap and waste with high metallic content could be subjected in the recycling lines. 

 

Fig.  5.2: Complete and generic physical-chemical treatment diagram of complex metallic wastes 

(22) 

Thus, the most appropriate initial approach for the purpose of this research is to define various 

applications to separate and sort the different materials from each other and concentrate 

them according to their physical‐chemical characteristics (magnetic behavior, conductivity, 

density, colour ...). 

According to this, scrap pre‐treatment processes could should be classified: 

1. Manual Sorting and Preparation 

2. Scrap Size Reduction Processes 

3. Material Sorting Processes 
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5.2 Manual Sorting and Preparation 
 

The main scrap supply for steelmaking comes from obsolete ferrous scrap. However, due to 

the huge amount of possible origins, only a small proportion of this material can be directly 

used by consumers, the vast majority of purchased iron and steel scrap is sorted and 

processed by the scrap recycling industry. In this sense, there are two main manual sorting and 

preparation operations: 

5.2.1.1 Manual disassembling and sorting:  

 

In the next session different materials treatment schemes are described in more detail, 

however, at this point it is important to highlight that the pre‐treatment scheme for the 

reduction of size of the ferrous materials is closely linked to the ductile or fragile nature of the 

different materials that make up the mixture. 

In the case of highly complex products of different nature an excessive reduction in size, 

without materials pre‐separation, can lead to mixtures hard to separate or low‐quality 

products for the steelmaking process. In such cases, a preliminary manual disassembly step is 

preferable, which allows for maximum recovery, release and separation before the automatic 

processing stages. 

However, since manual disassembly requires high labor and therefore high operating costs, 

recycling stages with disassembly and manual selection are combined with size reduction 

processes, where disassembly is frequently limited to decontamination or separation of 

especially valuable components. In this way, lower costs are achieved in the release of 

materials contained in complex products 

 
 

   

Fig.  5.3: Up) Hand picking after shredding. Down) No-Ferrous material sorted from the scrap 

stream 
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An appropriate disassembly step and the successive release by a size reduction stage 

significantly increases the efficiency of the separation processes to be applied subsequently 

and, therefore, the quality of the metal scrap products. 

5.2.1.2 Manual size reduction: 

 

There are dimensional restrictions of the materials to be charged into the electric arc furnace, 

mainly to preserve the process from incidents such as mechanical damage to the water‐cooled 

panels for large pieces impact, electrode breaks during the scrap penetration phase or electric 

arcing to shell and roof. 

Large metal pieces must be cut to allow them to ensure that the scrap fulfil the dimensional 

requirements. This can be done using shears, hand‐held cutting torches, crushers and 

shredders. 
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5.3 Scrap Size Reduction Processes 
 

In any proposed configuration, the different combinations of the size reduction and separation 

stages turn out to be the key to an efficient metal recovery scheme. and therefore, a thorough 

analysis of both the input waste and the requirements of the output residue is required 

As mentioned above, the processes to be applied to each waste depend on the different 

materials contained, their format and layout, the way in which the different materials are 

joined together, so the exact process to be applied is particular to each residual flow stream. 

Fig.  5.4 shows a general configuration of a typical shredder and separation plant: 

 

Fig.  5.4: Configuration of the generic shredding and separation plant proposed by Huddinge (23) 

To be able to separate the materials from each other it is essential to release them using 

fragmentation, crushing and grinding processes, these being generally the first processes 

applied in all recycling schemes. 

At this point, three concepts should be introduced for better understanding scrap size 

reduction processes; size reduction, failure mechanisms and particle release capability. 

- Size reduction: 

Size reduction when processing secondary raw materials, is applied with one of the following 

purposes: 

 To release valuable or dangerous components. The objective is to release the different 

materials that are connected to each other. 

 To promote a faster chemical reaction by increasing the reactant surface (spraying for 

dissolution or thermal treatment of plastics). 

 Production of a material with certain properties depending on its use or storage 

(densification, appropriate particle size for feeding other processes ...). 
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First consideration when talking about material size reduction is to differentiate between 

ductile and fragile materials. 

The group of materials considered as ductile include mainly steel, non‐ferrous metals, rubbers 

and many plastics. Certain fibrous materials and foams are also included in this category. Also, 

some combinations of fragile and ductile materials can be included (reinforced cement, cars 

with glass or washing machines with cement counterweights). 

In the case of ductile materials, cutting and shearing are the main mechanisms of size 

reduction. Examples of size reduction equipment are automobile shredders, rotary shears and 

blade mills. 

In the fragmentation of ductile materials, the energy consumption increases approximately 

with the second power of the particle size reduction: 

 ��

��
≈

��
�

��
� (5.1) 

Thus, for example, the reduction of the final particle size from 50 mm to 10 mm means 

increasing the energy consumption by a factor of approximately 25. This does not only mean 

resizing the size reduction engine, but reconsidering the complete operation, since small 

changes in the size reduction strategy can have a strong influence on both the operational 

costs and the quality of the final products obtained. 

On the other hand, for fragile materials, crushing is the main mechanisms of size reduction, 

and once subjected to size reduction operations, the fragile materials exhibit particle sizes 

several times smaller than those of the ductile materials, which makes it possible to separate 

them by screening. 

- Failure mechanisms:  

During the shredding, particles breakage occurs as a result of a complex combination of 

impact, tension, compression, shear, bending and torsion forces (24). The compression 

mechanisms can be basically divided two. These effects are shown in Fig.  5.5: 

 

Fig.  5.5: a) The particle rests on the Junque and is hit by the hammer. b) the particle is accelerated 

by the movement of the rotor and hits the wall, the rotor or another particle 

On the other hand, the bending stresses contribute to weakening the material by fatigue, 

provoking the appearance of cracks and their propagation. However, this effect is not 

especially important when fragmenting ductile materials. 
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The main forces related to shredding ductile materials are the shear forces, which can be seen 

in the following figure: 

 

Fig.  5.6: Representative scheme of shear efforts; a) in crushers or blades mills, b) in hammers 

shredders 

The shear mechanism is the majority in crushers and blade mills, so these mills tend to be used 

for those materials that include mixes of ductile materials. 

However, hammer shredders also induce shear stresses in the material, although said efforts 

are combined with compaction and bending efforts too. 

On the other hand, in the impact mills (contrary to blade mills), compression and bending 

mechanisms prevailing, with a minimal contribution of the shear mechanism in reducing the 

particle size of the treated material. 

Depending on the combination of materials present in the waste to be treated, the different 

designs vary between these two main technologies (Blade mills and impact mills); In blade 

mills it is only advisable to introduce relatively soft and ductile materials since the premature 

wear of the blades associated with the presence of hard and fragile materials greatly reduces 

the efficiency of the mills. On the contrary, the introduction of ductile materials in impact mills 

results in a very inefficient reduction of the particle size, since these materials absorb the 

energy of the impact by deformation, with a low reduction of the particle size. 

The shredders mills are in the middle of the two previous fragmentation systems, since this 

technology combines the different mechanisms for particle size reduction. 

- Particle release capability and particle size reduction: 

The size and morphology of the particles and the composition of the material to be treated are 

the fundamental properties to consider when designing the most convenient process for its 

treatment. 

Thus, the composition of the particles resulting from the shredder process, depend on both, 

the particle size and its relationship with the releasing capability. During the fragmentation 

process of consumer goods, the design of the product itself and the combinations and junction 

mechanisms between their different materials determine the degree of the particle size 

reduction and the materials releasing degree. This will define the efficiency of the physical 

sorting process. 

The "foreign" materials contained in the recovered material stream due to the incomplete 

release, in many cases become irreversible contaminants of this current, and must be 

considered. In steelmaking process, the contamination of steel with copper is a classic 

example. If the recovered materials are not pure enough to meet the needs of obtaining new 
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raw materials, it is necessary to use high purity materials (i.e.; HBI or DRI) to dilute the 

contamination, resulting in a lower efficiency in the use of resources and higher production 

costs. 

Although a higher reduction in particle size can lead to a greater release degree, allowing a 

better separation, it should be considered with caution since it also presents some drawbacks; 

Fragmentation has a high cost, certain types of joints between materials are not releasable if 

the joint is stronger than the materials themselves, the plastic deformation of some pieces can 

reduce the degree of release of some metals by promoting complex physical connections 

between them. In addition, the smaller the particle size, the greater the material apparent 

surface, which favours the losses by oxidation. 

The following diagram shows the typical joints types between materials: 

 

Fig.  5.7: Type of unions among materials  (23) 

 

The release of different materials joined by mechanical junctions (screwed, edged ...) is simple 

in principle, while the release of welded, encapsulated and glued materials is more 

complicated. In the case of end of life vehicles, the most difficult materials to be completely 

released from ferrous fractions are mainly related to copper. In the case of aluminium 

recycling, the most difficult materials to be completely released are related to iron (i.e. screws) 

and plastic materials (aluminium / polymer composites) (23). Some images of mixtures 

materials fragments coming from end of life vehicles are shown: 

 

Fig.  5.8:  Images of shredded scrap from cars whose components have not been totally released 
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It is always important to note that different materials and different geometries lead to 

different failure mechanisms and hence different particle shapes. 

Also, according (23), the analysis of the degree of particles release of both, ferrous and non‐

ferrous metals, based on the particle size resulting from shredding indicates that the smaller 

the particle size, the greater the degree of release, while larger fractions exhibit lower degrees 

of release. 

 

Fig.  5.9: Particles releasing of ferrous and non-ferrous metals according to the size of the particles 

resulting from the fragmentation process 

Therefore, it can be concluded that the release of both ferrous and non‐ferrous metals during 

size reduction process is affected not only by the degree of reduction in size but also by other 

parameters such as the type of joints used, the physical properties of the materials and the 

initial geometry of the product. 

If the focus is put on the type of unions to joints materials, the "chemical" bonds are more 

significant in the smaller particle size fractions, while "physical" unions tend to be more 

significant in the larger particle size fractions (23). 

 

Fig.  5.10: Differences between chemical and physical joints based on the particles size fractions 

resulting from fragmentation processes 
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When the metal to be processed is attached to plastic or other foreign elements, it is 

necessary to considerably reduce the particle size. In these cases, the particle size is generally 

reduced below 15 mm (in some cases below 4 mm) to ensure a correct release of the metal 

from the non‐metallic elements. These particle sizes guarantee a correct release of other 

physical bonds, although they do not usually allow the complete release of welded elements 

and / or coatings 

 

5.3.1 Shredders 
 

Shredders are an important size reduction equipment for those products composed mainly of 

low thickness steel, such as cars, white goods or small electrical appliances. However, they are 

not suitable for the fragmentation of massive pieces of steel. 

 
 

 

Fig.  5.11: Up) Description and Down) Example of a typical impact shredder mills (23) 

The shredders are similar to impact mills but with some modifications (larger fragmentation 

chamber, greater distance between hammers and Junque, auxiliary output for massive parts 

and dosing control system) aiming to the reduction of particle size of light metal scrap. They 

consist of one or more cylinders, which rotate at high speed, equipped with hammers (the 

weigh is up to 100 kg per hammer). The material to be fragmented is, in some cases, flattened 

by rollers in the feeding area, which also allow the dosing of the material. The primary 

fragmentation of the fed material occurs in the entry area by the joint action of the rotating 

hammers and the Junque, which is stationary. The cutting action is more efficient when the 

material is struck between the Junque, located just at the entrance of the material to the 

fragmentation chamber, and the hammers. A second fragmentation effect occurs due to the 

repeated bending and shearing of the fragments inside the fragmentation chamber, until their 

particle size allows them to pass through the grate. 
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The product leaves the fragmentation chamber through the grate, which usually has openings 

that go from about 150 mm in the car shredders to 15 mm in the secondary grinding systems 

for waste derived from electrical appliances and electronics. However, the shredders can be 

equipped with grates with different dimensions depending on the type of material to be 

fragmented, the production capacity and the desired final particle size. 

The shredders are equipped with dust collection systems in order to eliminate fines and other 

light materials that can be released during fragmentation, avoiding the formation of 

potentially explosive atmospheres and diffuse dust emissions. The fragmentation process 

generates a considerable amount of heat and the air flow forces by the dedusting system also 

allows the cooling down of the shredding equipment. 

The shredders are usually classified according to the installed power. In general, it can be said 

that the installed power, in terms of horsepower (CV) or kilowatt (kW), determines the 

production capacity (for a defined chamber and rotor). Likewise, said power affects the 

maximum thickness of the processable material (which can reach 10 cm). Depending on the 

installed power, the shredders could be classified as follows (25): 

- Mini‐shredders (≤ 250 kW / ≤ 340 HP): Capacity <10,000 t/year. They are used for E5, 

packaging, electronic scrap ... 

- Medium‐sized Shredders (250‐750 kW / 340‐1,020 CV): Capacity: 10,000‐40,000 

t/year. They are used for pre‐cut scrap, appliances or pre‐cut cars without motor or 

transmission. 

- Large Shredders (750‐2,200 kW / 1,020‐3,000 HP): Capacity 40,000‐125,000 t/year. 

They are often used in the fragmentation of car and other scrap in Europe. 

- Heavy and super‐heavy shredders (2,200‐7,500 kW / 3,000‐10,000 hp): Capacity up to 

600,000 t/year. They are often used in the fragmentation of old vehicles and other 

scrap in the USA. 

In addition to the number of included rotors (which is usually 1 or 2), the shredders can be 

classified according to how the rotor is arranged in Horizontal shredders and Verticals 

shredders. 

 

Fig.  5.12: Shredders classification based on the rotor arrangement. up) horizontal type, down): 

vertical type (23) 
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Horizontal shredders are very flexible with respect to the types of scrap to be treated. The 

main element of these equipment is the rotor, equipped with several hammers that hang from 

their respective rotor axes, which "centrifuges" them while rotating. In this way, part of the 

impact energy is absorbed and the non‐fragmentable material can pass. 

The design of the horizontal axis shredders and their operational parameters are usually 

adjusted depending on the material to be fragmented: Some designs (24) can be seen in Fig.  

5.13: 

   

Fig.  5.13: Horizontal Shredders design. Left) provided with a bottom grate, Middle) provided with 

lateral grate and Right) provided with upper grate 

The shredders with bottom and/or side grate are mainly used for light scrap, that is, pre‐cut 

materials with low particle size. Shredders with superior discharge are often used in more 

demanding applications, such as in the case of out‐of‐use vehicles. 

Alternative designs for fragmentation chambers include additional discharging grates. This 

"additional" grid at the bottom of the fragmentation chamber allows fragile materials to be 

evacuated from the fragmentation chamber. 

In the case of the end of cycle vehicles, the width of the rotor is usually about 2.5 m, with a 

diameter up to 2.5 m including the trajectories of the hammers. Smaller rotors can be used in 

the fragmentation of bundles or pre‐cut vehicles. The rotors rotate at speeds between 400 

rpm and 1000 rpm, with tangent speeds of the hammers normally in the range 55‐65 m/s. 

The characteristics of the shredded product, in terms of particle size distribution, releasing 

degree and bulk density, are mainly affected by: 

- The shape of the Junque and hammers 

- Fragmentation chamber design.  

o Distance between Junque and Hammers 

o Distance between hammers and grate 

o Distance between Hammers and lateral walls 

- Opening surface of the grate 

- Tangential speed of the rotor 

- Wear situation of the key elements 

Although the horizontal rotor shredders are mainly used in the fragmentation of out of use 

cars and other scrap, it is worth mentioning the existence of vertical rotor shredders: 



 
Scrap preparation techniques; State of the art.  

76 
 

 

Fig.  5.14: Vertical shredder design (23) 

Vertical shredders are used mainly with very light scrap (mainly turnings). Generally, the 

distance between the hammers and the walls of the shredder progressively narrow towards 

the bottom, so that the upper hammers release the components while the lower hammers 

compact and fragment the particles gradually. The product of these shredder machines 

consists of more or less spheroidal particles. The discharge occurs towards the bottom side, 

without the use of grates. The main characteristics of this design provide more densified 

materials (1.2‐1.8 g/cm3) than in the equivalent horizontal rotor machines (0.7‐1.1 g/cm3), 

although its productive capacity is usually significantly lower (normally between 5 and 10 t/h), 

which is the main reason why its implementation has been marginal in the recycling sector. 

 

5.3.2 Blades mills 
 

The blades mills have a similar design than shredders, with the difference that, in the rotor, 

there are not mobile hammers, but fixed blades. Those blades are adjusted closely to 

stationary blades placed in the structure of the machine. 

  

Fig.  5.15: left) rotor of a blades mill. right) fixed blades situated in the rotor of a blade mill 

In addition to the blade mills, there are also blade crushers. The main differences between 

both technologies lie in the angular speed of the rotor, the shape and clamping of the blades, 

the cutting angle of the non‐fixed blades with respect to the fixed blades and the separation 

between them. In this sense blade crushers, which operate at lower angular speeds, are more 

robust and resistant to wear than the blade mills blades. 

Due to this, blade crushers are usually used for initial stages of cutting (up to 10 ‐ 25 mm) and 

blade mills to the fine grinding of materials (up to 2 ‐ 4 mm). 
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Fig.  5.16: Left) Detail of a blades crusher. Right) Blade crusher with perforated grill 

Blade crushers can work with lower perforated grill or not, being the grid the element that 

determines the maximum particle size. The Blades mills include in all cases a perforated grid, 

since the friction induced in the material when passing between the blades and the grid 

contributes to the reduction of the particle size. 

In the case of blade crushers there are designs with one, two, three and four rotors. In the 

design of a single rotor (known as shredder), it rotates at higher revolutions and the cutting 

mechanism is induced between the blade in the rotor and the stationary blade. 

The blade crushers with more than one axis work normally at lower angular speeds of the 

rotor, rotating in opposite directions, so that the reduction of the particle size is produced by 

tearing. This type of crusher usually works without a lower grate, so the final particle size is 

given by the geometry of the rotors and the distance between them. Due to the lower angular 

speed, in many cases hydraulic drive systems are used instead of electric motors. 

Blade mills with multiple axis are normally used as pre‐grinding stage for high voluminous 

materials, to obtain smaller particle sizes (100 ‐ 250 mm) suitable for feeding to single rotor 

crushers. 

In all cases, and especially in the coarsest crushing stages, the design of the rotors and blades 

is made according to the characteristics of the material to be crushed and the durability and 

maintenance requirements applicable in each case. Table 5.1 shows different blade designs for 

a single rotor shredder. 

Flat Blade Concave blade High Performance blade 

   
General usage Higher durability Better cutting action without self‐feeding 

effect 
   

Carbide blade Hexagonal blade Cross cut blade 

   
Improves wear resistance Greater 

fragility 
For very demanding applications Improve cutting, reduce energy consumption 

and increase the durability of the blades 

Table 5.1: Different blades designs for single rotor shredders (26) 
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5.3.3 Impact mills 
 

Fragile materials (glass, stones, minerals ...) are usually processed in impact mills. In these 

mills, impact‐induced compressive forces predominate as the main mechanism for reducing 

particle size. 

Since these mills are used extensively in the extractive industry of minerals and aggregates, 

strong efforts have been done to reach high performance designs. These designs depend on 

the features of the material to be processed and the particle size of both, the input and output 

materials (27). This is shown in the following picture: 

 

Fig.  5.17: Different designs based on the characteristics of the material to be processed, the size of 

input particle and the size of output particle 

Among all the technologies mentioned in the previous picture, it is worth mentioning the jaw 

mills (Jaw Crusher) for a primary the particle size reduction (up to 20 ‐ 200 mm), the impact 

mills (Crushers / Impactors) for an intermediate milling (up to 0.5 ‐ 5 mm), roller mills (HRC) 

and ball and rods mills (Ball, Rod and Pebble) to obtain pulverulent materials (<0.1 mm). 

These kinds of systems are also used for processing some fragile secondary non‐metallic raw 

materials. Some examples are glass or steelmaking slag. These materials are usually processed 

using one of the following types of mills: 

 Jaw mills (28): It is usually used as a pre‐grinding stage admitting very large input 

materials (up to 1.2 m). 

 Impact mills (29) (30): These mills are the most typical ones when processing materials 

such as metallurgical slags aiming to separate the metal retained in the slag 

 Ball mills (29): In general, these crushing systems are not frequent in the operations of 

recovery of ductile metals, since the compression mechanisms are not appropriate to 

reduce the particle size of the same. So that, ball mills are used for processing fragile 

materials. They are used to reach particle sizes below 100 microns for some slag that 

must be subjected to subsequent chemical treatment where increased reactivity is 

required. 
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Fig.  5.18: Different impact mils designs. Up) General description of Jaw mill, Down Left) Impact 

mills for steelmaking slag processing and Down Right) Example of ball mills operation 
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5.4 Separation technologies 
 

The resulting particle shape coming from the different size Reduction Processes, instead of 

having a uniform particle size, are inevitably composed of particles whose size is distributed 

within a certain range. This aspect is important because the efficiency of the subsequently 

separation processes depends remarkably on this particle size. 

Thus, separation processes operate optimally with particles of uniform size, since in many 

processes this factor influences the separation itself. However, and given that we rarely 

encounter materials with a uniform particle size, it is important to limit, at least, the range of 

particle sizes of the material to be processed. This particle size separation is normally 

undertaken with screening systems or air classifiers. In addition, it must be kept in mind that 

separation is usually difficult when the particle size is reduced. Therefore, the number of fines 

must be reduced to a minimum, considering as fines the percentage of material with a particle 

size 10% smaller than the particle size required by the separation system. 

Fig.  5.19 shows a classification of the different separators techniques according to the physical 

property that allows the separation and the particle range in which they are applicable: 

 

Fig.  5.19: Guide for the particle size range applicable to different industrial separation techniques 

(31) 

When separating two materials from each other, It should be selected the technology capable 

of differentiating them from the property that distinguishes them. The most significant 

techniques are detailed below. 
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5.4.1 Separation by size difference: 
 

The particle sizes distribution of a material stream is a key parameter when properly selecting 

the design and capacity of the equipment necessary for processing it. 

Likewise, the size distribution conditions the quality of the resulting material streams, so its 

optimization also influences the economic viability of the treatment facility. 

Screens, sieves and trommels, are the most common technologies capable of classifying 

materials in various particle sizes by dry route.  

5.4.1.1 Screens and sieves  

In screens and sieves, thanks to their screening grids with variable filtering dimensions, the 

material is guided through the inlet distributor to the screening grid that vibrates horizontally. 

The grids are integrated into the screening box and can be removed both from above and from 

the front of the machine, which greatly facilitates cleaning and maintenance. The configuration 

of the screening box is horizontal, and its operation depends on the input material, the 

inclination of the screening screen, the number of collisions between particles and their speed. 

All these variables can be controlled and modified looking for the most optimal classification 

for each input material. Also, the output material will be classified into different outputs, 

depending on its size. In the following pictures, two different designs are shown. 

  

Fig.  5.20: Example of industrial screen for separating by sizes during metal waste processing (32) 

5.4.1.2 Rotary screen or trommel 

The rotary screen allows to treat a stream of material to achieve a granulometric classification 

of the particles that compose it. The rotating drum is perforated as a sieve, in which the holes 

are dimensioned according to the material to be separated. An example is shown in Fig.  5.21: 

  

Fig.  5.21: Example of trommel for separating by sizes (33) 
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5.4.2 Separation by density difference 
 

There is a family of equipment that classifies materials only by the density of their particles. 

5.4.2.1 Cyclone: 

The Cyclone is the most commonly equipment used for dust collection in recycling processes. 

It removes the particulate material from the gas stream, based on the inertial impaction 

principle generated by the centrifugal force. Fig.  5.22 shows the movement of the larger 

particles towards the walls of the cyclone due to the centrifugal force. 

  

Fig.  5.22: Schematic representation of the particle collection mechanisms in cyclones (34) 

This technology basically consists of a sedimentation chamber in which gravitational 

acceleration is replaced by centrifugal acceleration. 

In cyclones, the gas path consists on a double vortex, where the gas follows a downward spiral 

on the outer side, and ascending, on the inner side. The gas enters tangentially by the upper 

chamber and descends in spirals to the conical section; then, it ascends in a second spiral, with 

a smaller diameter, and exits through a vertical centred duct at the top. The solids move 

radially towards the walls, they slide along the walls, and are collected at the bottom. As an 

alternative, Hydro cyclones follow the same operation using water instead of air. 

Cyclone is one of the least expensive means of eliminating dust from waste material under 

recycling treatment, both from an operational and investment point of view. They are simple 

instruments, may be mobile and with easy maintenance. 

5.4.2.2 Cone Separator 

In the Cone Separator the feeding material is introduced in the upper part of the cone on the 

surface of the medium. 

The pottant medium is introduced inside the cone at different levels by means of return pipes 

that allow the density gradient control. And the cone has mechanical stirrers to maintain the 

suspension of the medium. 
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Fig.  5.23: Cone separator with pumping system 

5.4.2.3 Drum separator 

In the drum separator, the rotation effect lifts the sunk material until it is removed from the 

bath and deposited in an exit hopper located at a different level, the floating products decant 

into another exit hopper located at the opposite side of the drum feed channel. 

 

Fig.  5.24: Wemco model drum separators (35) 

The drum separators can separate the products by means of a drum provided with two 

different compartments: the low density and the high density compartments. 

The process is based on the use of the controlled density of an aqueous medium, so that 

materials with lower density float on the medium while materials with higher density sink. 

Theoretically, it can be considered as an absolute system, that is, the separation only depends 

on the density of the materials to be separated and the density of the medium. However, 

there are other factors that determine the degree of separation achievable due to the rate of 

sinking of the materials to be separated: particle size, morphology, wettability of the materials 

and viscosity of the medium. 

To adjust the density of the medium (usually based on water) for the metals recovery 

operations, it is necessary to incorporate finely dispersed additives in the water. The particle 

size of these additives conditions the maximum solids content of the suspension, so that the 

smaller the particle size, the higher the solids content (and hence the density) of the resulting 

suspension. However, there is a physical limit in the solids content (and therefore there is a 

limit in the density of the medium). 

In principle, densities higher than 4 g/cm3 can be achieved. These densities ranges allow to 

separate the metallic elements from the non‐metallic ones and even metallic elements from 
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each other. In fact, dense media separators are the fundamental means of separation 

traditionally applied in waste treatment plants by shredding. 

However, dense media separation systems have relatively high operating costs, so their use is 

economically viable only on materials with minimal metal contents. 

The drums can reach diameters up to 4.6 m and lengths up to 8 m. Their productive capacities 

can reach up to 800 t/h, and they are capable of separating particles with sizes between 6 mm 

and 30 cm. 

5.4.2.4 Flotation separators: 

Flotation technology is widely used for plastics separation within a base solution with 

reference density (usually water). Those materials with a higher density than the base solution 

sink while those with a lower density float. The elements resulting from the separation can be 

easily processed later. 

Flotation technology is based on density differences between the different materials. In the 

graph shown in Fig.  5.25, the different densities for the polymers considered as 

"commodities" (PE, PP, ABS, PS) that have densities lower than 1.10 are depicted. Therefore, 

by using an appropriate configuration it is possible to separate them according to their density. 

 

Fig.  5.25: Densities of the different polymers in reference to the aqueous environment (36) 

It is a relatively cheap technology, but low selectivity. Therefore, it does not provide a solution 

to the heavy fractions (which are shown in yellow in Fig.  5.25). On the other hand, an 

additional drawback of the wet separation methods is that it generates an aqueous effluent 

that would require an extra treatment of the generated sludge. 

This procedure was widely implemented in the early nineties, when large‐scale plastic 

recycling began in Germany and since then, many companies have developed different 

treatment schemes based on the flotation principle:  

 Hermion (37), Heith Group (38), Eurohansa (39) or Carlos Domench (40) Workshops, 

among others, offer flotation separation schemes to recycle plastics of different 

nature: PET (bottles, containers), PP (caps, batteries, boxes, bumpers, pots, fraction of 

light vehicle shredder ‐ASR‐), HDPE (caps, drums, bottles), WEEE and PS/ABS (hangers, 

refrigeration plastics, household appliances and plastic waste appliances), PVC (wires) 

and others (plastic and metal or plastic and paper combinations). 



 
Scrap preparation techniques; State of the art.  

85 
 

 Flottweg (41) specializes in plastic separation technologies for the chemical, 

pharmaceutical and food industries, proposing technologies capable of separating 

small fractions of less than one millimetre. 

 Navarini (42) presents a highly effective flotation method. The method is used for 

plastic mixing plants in which PVC is recovered 

 

5.4.3 Separation by density and size differences 
 

Separation technologies by size and density allow to differentiate fractions of material 

according to the following classification: 

- Heavy metals: Cu, Zn, Inox, Pb, Ti ..., 

- Light metals: Al and Zn 

- Heavy No‐metals: glass, stones ...,  

- Light No‐metals: polymeric materials. 

In the case of non‐ferrous metals, densiometric separation methods are especially relevant 

since they allow separating heavy metals and their alloys (Cu, Zn, Inox, Pb, Ti ...) from light 

metals and their alloys (Al and Mg), and light metals from light non‐metallic materials 

(polymeric materials) based on their different density. 

In the case of high particle sizes (> 10 mm), wet flotation methods in controlled density media 

are usually used, while for smaller particle sizes (<10 mm), dry densiometric tables are usually 

used. 

Densiometric Tables and dense separation media stand out among the industrial methods for 

the separation of materials with different density (dry and wet density separation, 

respectively). Densiometric tables are generally applied for separating materials with fine 

granulometries, while the dense media are usually applied on materials with medium grain 

sizes. 

5.4.3.1 Densiometric Tables 

In Densiometric Tables, the material is dosed on a vibrating porous surface through which air is 

blown. Denser materials remain longer in contact with the surface and are pushed forward, 

while less dense materials remain less in contact with the vibrating surface and tend to move 

back or remain static. The "threshold" density can be selected by adjusting the operational 

parameters of the table (vibration speed, air flow rate and table inclination). 
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Fig.  5.26: Operating scheme of a dry densiometric table (43) 

Densiometric tables are suitable for treating small particle sizes materials (usually lower than 

20 mm), so they are used extensively in the recovery of copper contained in electrical and 

electronic equipment wastes and vehicles out of use. By the appropriate selection of certain 

process parameters (mesh size, air flow, table inclination, oscillation speed and amplitude and 

thickness of the layer of material to be separated over the table), densiometric tables can 

separate materials with particle sizes lower than 1 mm. 

The greater is the difference in density and the more uniform the size and morphology of 

particles between the materials to be separated, the more is the efficiency of the separation 

process. However, the wider the granulometric distribution of the material treated on the 

table, the greater the proportion of fine particles of heavy metals will be carried by the light 

materials and vice versa. 

Densiometric tables are very efficient separating heavy metals from light metals and non‐

metals, since the difference in density between both groups of materials is relatively high (6‐8 

g/cm3 vs. <4g/cm3). 

Current trend in densiometric separation is to adjust the densiometric tables for metals 

separation (density > 2 g/t) and polymeric materials, although in these cases, inert materials 

(stones and glass) contaminates metal flow if they have not been previously removed. In a 

second stage, heavy metals must be separated from light metals and inert materials (if not 

previously removed). 

5.4.3.2 Spiral classifiers 

Spiral Classifiers are usually used in mining. The operating principle is very simple, they consist 

of a screw that acts as a lifting device. They have been widely used in wet milling facilities for 

closed‐loop minerals. Currently they are being replaced by cyclones. Among the technologies 

used in mining are worth mentioning (32): 

- The Jig, as gravity separation method, uses vertical currents for the concentration of 

minerals. It separates the heavy and light minerals according to the difference of the 

sedimentation speed in the vertical current. 

- The Zig‐Zag operates in the same line than the Jig. It separates materials based on their 

specific weight and It is commonly used to avoid dust and less dense materials that 

could increase complexity in the technical work within more complex separation 

schemes. 



 
Scrap preparation techniques; State of the art.  

87 
 

In a Zig‐Zag, the material to be processed is introduced into the input channel and 

distributed throughout the cross section of the so‐called classification channel. An air 

stream flows through the classifier from the bottom to the top, this allows the material 

to flow and separate easily from the attached dust particles. In each curve, due to the 

centrifugal forces generated by the air currents themselves, the material collides with 

the opposite wall of the channel. The particles with high densities fall and the light 

ones are collected by the dedusting system. 

 

5.4.4 Separation by superficial wettability 
 

Froth flotation and flocculation are the most used technologies when differentiating fractions 

according to their surface wettability. 

5.4.4.1 Froth flotation 

Froth flotation is a highly versatile method to physically separate particles based on 

differences in their wettability. Different parameters are interrelated during flotation 

operations: reagents used in the aqueous medium, pH value of the aqueous medium, cell 

design, stirring of the aqueous medium, air flow, feeding rate of the material to be processed, 

mineralogy, size of particle of the material in process or temperature of aqueous medium. 

 

Fig.  5.27: Operating scheme of a froth floating system (44) 

In these systems, in some cases the foam may be the medium in which unwanted impurities 

are removed, in other cases the desired product is extracted in the foams. It is important to 

maintain a good relationship between the volume physically stable and the foamed volume. 

 

5.4.5 Separation by magnetic susceptibility 
 

Due to its magnetic properties (ferromagnetic, paramagnetic and diamagnetic), in all crushing 

and separation processes, regardless of particle size, it is common to find magnetic separators 

in various configurations and with different magnetic strength. In this way, it is possible to 

easily separate ferromagnetic materials (and even some paramagnetic materials) from non‐
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ferromagnetic materials, reducing wear in the later stages of the process and separating 

materials that are normally metallurgically incompatible (Fe and Cu, for example). 

    

  

Fig.  5.28: Different operating schemes during separation of Ferromagnetic material (45) 

Within this group of separation techniques are: 

- Magnetic wet separators are used to separate magnetizable particles from process 

fluids, sludge and emulsions for sizes between 1µm and 3.000µm by using high 

intensity magnetic fields. The range of potential applications go from separation by 

float‐sinking techniques in iron ore processing to the cleaning of industrial processing 

waters. 

- High gradient magnetic separators: This separation equipment is designed to extract 

the weakly magnetic material that can be found in dry material with fine granulometry 

as impurities. This separator creates a high intensity magnetic field of high gradient 

capable of attracting very weak magnetic materials such as iron oxides and 

paramagnetic materials. This separator consists of a vibrating feeder that receives the 

product and distributes it evenly in a thin layer, over a special antistatic band. The 

drive roller is provided by permanent magnets of very high magnetic power (rare 

earths) and steel magnetic poles of high permeability. 

The material transported by the conveyor reaches the magnetic roller and is exposed 

to its magnetic field. The attracted magnetic particles accompany the roller in its 

rotation movement and detach behind the roller, in a different falling trajectory than 

the non‐magnetic material which falls freely without being influenced by the magnetic 

field. Two small hoppers collect and evacuate the magnetic material and the clean 

product. 

- Dry magnetic separators: It is designed to extract and retain ferromagnetic parts that 

occasionally are among the material that circulates on the conveyor belt. 
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5.4.6 Separation by electric conductivity 
 

The separation technologies by electrical conductivity are mainly based on electric currents 

electromagnetic induced in a conductive material when it moves in a spatial region in which 

there is a variable magnetic field. Induced electrical currents (or Eddy currents) are caused by 

changes in the time of the magnetic induction that acts on a particle. They can be determined 

by the Faraday induction law: 

 
� × �⃗= −��

���⃗

��
 (5.2) 

where: 

�⃗ is the current density,  

��  is the specific electrical conductivity of the material,  

��⃗ is the magnetic induction. 

These induced currents generate a magnetic field opposite to the external magnetic field 

(Foucault effect), being variable. Non‐conductive materials do not develop Foucault effect and, 

therefore, the opposite magnetic field is not generated. 

In the case of Eddy current separators, the opposite magnetic field produces the Lorentz force 

and this effect allows separation. Lorentz force magnitude in a linear conductor (ds) is 

expressed as follow: 

 �⃗� = ���⃗ × ��⃗ (5.3) 

Where I is the intensity of induced current 

Since non‐conductive materials do not undergo changes in their trajectory (as the magnetic 

field is not induced), it is possible to separate conductive particles from non‐conductive 

particles. 

In the case of electro‐pneumatic electromagnetic induction separators, the magnetic field 

induced in the conductive particle generates an induced current in any conductor located in its 

radius of influence, which constitutes the detection system of the separator. The electrical 

signal generated by the detection solenoids allows locating the conductive particle in the 

separator and, by synchronized it with a pneumatic ejection system, is separated from the 

non‐conductive particles. 

A variable magnetic field can be generated in different ways; It can be generated by circulating 

alternating currents through solenoids, It can also be generated by means of electromagnets 

powered by alternating current or it can also be generated by the movement of particles 

through static or rotating non‐homogeneous magnetic fields. 
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5.4.6.1 Eddy current separation (Foucault) 

This separation method was developed as an efficient technique to separate non‐ferrous 

metals contained in waste material streams. 

The static eddy current can be considered as the first one to be developed using this magnetic 

principle and are composed of a long ramp (45°) consisting of permanent magnet bands of 

alternating polarity mounted on a steel plate. When dropping a stream of materials down the 

ramp, non‐conductors descend through the branch without movement diversion, while the 

displacement of the conductive materials, under the influence of Lorentz's repulsive force 

(perpendicular to the magnetic bands) induced by Eddy currents is altered and the magnetic 

particles are separated from the non‐conductive particles (see Fig.  5.29). 

 

Fig.  5.29: Up) Conveyor belt with the magnetic rotor and summary of forces applied to each 

particle and Down) Material sorting by An Eddy current scheme (46) 

Basically, the conductive materials, as a consequence of the Lorentz force generated by the 

induced currents, are displaced at a greater distance than the non‐conductive materials that 

are only exposed to the forces of gravity, the force of inertia and the frictional force. 

As shown in Fig.  5.30, both Lorentz's forces and rotational moment are directly proportional 

to the square of the magnetic field intensity (linked to the nature of the used magnets and the 

design of the magnetic rotor). 

 

Fig.  5.30: Forces applied to the particles during the separation process by Foucault principle (47) 
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Other factors that must be taken into account, due to their influence on the forces mentioned 

above, are the size and shape of the particles, their orientation with respect to the inductive 

magnetic field, the electrical conductivity of the material, the size of the magnetic poles and 

the changing frequency of the magnetic field. 

In addition to the induced forces described in Fig.  5.30, there are other forces that affect the 

trajectory of the particles. These include gravity, the inertial force and the friction force, as 

well as centrifugal forces and aerodynamic forces (magnus effect). 

On the other hand, the inertia of the particles that are transported by the conveyor belt is 

mainly determined by the mass of the particles and by the linear speed of the belt. For this 

reason, adjusting the speed of the belt allows altering the trajectory of the conductive 

particles. 

Finally, it is necessary to emphasize that the frictional force has a very significant influence 

depending on the particle size. At high particle sizes (> 20 mm) the incidence of frictional force 

in the displacement of the particles is lower. However, by reducing the particle size (<5 mm), 

the magnitude of this force determines the separability of the different materials. This occurs 

because the mechanisms that act in the separation of smaller particles are different from 

those that take place in larger particles. 

Given the high number of forces involved in the separation by eddy currents principle and the 

many factors that affect them, determining the appropriate operating conditions to maximize 

separation efficiency is a problem of considerable complexity. Among the parameters that 

determine the effectiveness of the separator, the particle size and morphology are the most 

significant (planar particles exhibit greater displacements than the spheroidal ones) (48). This 

effect is shown in Fig.  5.31. 

 

Fig.  5.31: Particle behavior within an eddy current separator and function of their nature (left) 

and shape (right) 

The frequency of the inductive magnetic field, determined by the rotating angular speed, the 

width of the magnetic pole and the number of pairs of magnetic poles of the rotor (see Fig.  

5.32), also plays a determining role in the efficiency of the separator. This operational 

parameter is much more significant by reducing the particle size (p1 and p2 in Fig.  5.32), since 

the differences between Lorentz forces, to which materials of different nature are subjected, 

are reduced. 
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Fig.  5.32: Variation in the separability of the conductive metal particles: relationship between 

particles size (p1 and p2) regarding the alternation of the magnetic poles (48). 

Therefore, to maximize the extraction of conductive metal particles in low granulometry 

materials, it is necessary to guarantee a high frequency of variation of the magnetic field (by 

reducing the size of the magnetic poles, increasing the number of them and/or increasing the 

rotational speed of the rotor). 

 

Fig.  5.33: Different Eddy current separators setups (49) 

5.4.6.2 Electro-pneumatic separation by electromagnetic induction 

Electro‐pneumatic separation by electromagnetic induction is based on the same principles as 

Eddy current separation, although the operating procedure to get material separation is totally 

different (50). 

 

Fig.  5.34: Basic scheme of an electromagnetic induction separator 
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The magnetic field in the conductive particle generates an induced current in any other 

conductor located closed to it. By installing different conductive elements (solenoid) in the 

transversal direction to the particle’s displacement, the electrical current induced in those 

elements allows to position the particles on the transversal axis of the conveyor belt. Once the 

position of the particle and the displacement speed of the conveyor belt are known, a data 

processing system drives a pneumatic ejection system, separating the conductive particle from 

its inertial trajectory, thus enabling its separation. 

In these separators, the magnetic field induced in the particle does not act as a separation 

driving force, but it is only used to position the particles on the separator conveyor. Therefore, 

the separability of the materials in this type of separators does not depend on the 

conductivity/density ratio, as in the eddy currents separators, but only depends on the 

conductivity. 

By reducing the metallic content of a particle (particle size, composite materials...) the 

intensity of the electric currents in the detection system is reduced, and this can condition the 

detection capability of the separation system. Similar than in Eddy current separators, the 

intensity and frequency of the inductor become a key parameter as the metallic content of a 

particle of the materials to be separated is reduced. 

Another relevant aspect of these separation systems when working with complex materials is 

the number of channels that constitute the ejection and detection system. If the channels are 

wider than the particles sizes, in the same channel there can be both conductive and non‐

conductive particles at the same time and, therefore, they will be separated by the pneumatic 

system together, negatively affecting the separation efficiency. Therefore, to achieve 

acceptable separation degrees it is necessary to properly adjust the width of the detection 

channels to the particle size of the material to be treated. This is one of the main limitations 

when using this type of separators for treating low granulometry materials. 

It can be said that these separators are more efficient when separating all kinds of conductive 

materials, while Eddy current separators are more efficient when separating those materials 

with a high conductivity / density ratio (aluminum, magnesium). These differences accentuate 

the complementarity of both types of separators despite being based on the same elementary 

principle, since the combination of both types of separators allows improving the separation 

efficiency. 

 

5.4.7 Separation by physical superficial appearance (colour, 

reflectance, fluorescence and transmittance): 
 

The sensor systems allow to separate, by automatic methods, materials that would otherwise 

only be detectable by expensive analysis or specific treatment schemes. Sensor separation 

systems are used in those cases where a high degree of separation is needed, and 

conventional separation techniques are not enough. 
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The sensor‐based separators take advantage of all the useful properties of the materials to 

achieve the best separation results. In these separation schemes, every material that enters 

the separation machine is identified, classified and, if necessary, separated. 

The most extended classification principle is based on sensor systems and, it works on the 

same basic principle as the one used in the classification techniques by electric conductivity. 

The input materials are driven by a conveyor belt through the sensors zone. The information 

obtained from the sensors is processed electronically so that, depending on the classification 

criteria setting, the detected materials can be selectively ejected from the material stream. 

Among the main applications of this separation technology are: 

 Steelmaking slag classification: Separation of various metals from a mixture composed 

of slag and metal. 

 Aluminum Classification: 

o Separation of various impurities from metals (Cu, Zn, VA, brass, Pb, etc.). 

o Separation of various impurities from another source (wood, plastic) through 

image processing technologies. 

o Separation of aluminum alloys with high Zn and / or Cu content. 

 Stainless steels classification: 

o Impurity separation (Cu, Zn. Brass, Pb, Sn), in pure form and of alloys. 

o Separation of carbon steel and stainless‐steel mixtures. 

o Separation of stainless steels with Mo content. 

o Separation of stainless steels with Ni content. 

 Classification of non‐ferrous metals regardless of material's colour: 

o Separation of Cu, Zn, brass, etc., in pure fractions. 

o Pure classification of dirty / oxidized material is also possible. 

 Classification of precious metals: 

o Separation of material with Au content. 

o Separation of material with Ag content. 

Regarding the existing technologies for separating materials based on their superficial 

appearance, it is worth mentioning colour detection, Near infrared, X‐ray, LIBs and 

electrostatic separation. 

5.4.7.1 Colour detection separation 

Modern colour separation technologies usually have linear scanning cameras and 3D 

recognition systems capable of differentiating different colour values. The information on the 

colour of the material to be separated is recorded and combined with the 3D information 
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obtained by laser triangulation. In this way, a colour topographic image of each of the objects 

located on the moving conveyor belt is achieved. 

After detection, the different objects are separated by material classes according to the 

criteria specified previously.  

Some common fields of application for colour separation are the separation of non‐ferrous 

heavy metal (like copper, brass or grey metals), as well as the colour separation of industrial 

minerals. 

 
 

Fig.  5.35: Up) Color separation technology (51). Down) Different materials to treatment, from left 

to right: sheared scrap, electronic scrap, wire processing, shredder residue. 

5.4.7.2 Sorting by Near infrared technologies (NIR) 

NIR refers to the spectrum range, not visible to the human eye, between 760 and 2,500 nm. In 

this spectral range it is possible to detect specific patterns in some materials based on the 

vibration of the molecules after exciting them with light. 

It has been more than 20 years since the first near‐infrared (NIR) detection systems, originally 

developed for the food industry, were used in the field of polymer fraction recycling and it was 

a matter of time before camera‐based systems were became a standard component of NIR 

separators. 

Near infrared spectrometry is based on a device that radiates the sample with IR light. A 

diffuse reflectance occurs, in which the radiation penetrates through the surface of the particle 

layer, excites the vibration modes of the molecules and disperses it in all directions. The 

produced reflectance effect depends on the molecular composition of the material and it can 

be used as detector system for locating the exact location of the particles of interest and to 

trigger the particle extraction. 

This technique allows the removal of both heavy and light elements, but it presents problems 

when separating metals and “black” materials, capable of absorbing almost all the IR light. 

Another drawback of this technology is that it is a relatively expensive technology 
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Fig.  5.36: Operating scheme of an infrared spectroscopy separator (52) 

5.4.7.3 Separation by X-ray Technology 

X‐ray separation systems provides useful information to separate materials according to their 

characteristics, offering a decisive contribution to improve the recovery of recyclable materials 

and the use of resources. 

Basically, there are two separation systems based on this technology: 

 X‐Ray Fluorescence technology (XRF). This system can separate materials analyzing 

their elementary composition. 

X‐ray fluorescence technology allows detection and separation based on the elemental 

composition of the material to be separated. For example, it can differentiate between 

copper and brass or zinc by the elements that are present. Such detection is possible 

even when the surfaces are very dirty. It is also possible to detect metal scrap with 

metallic coatings. 

X‐ray fluorescence (XRF) consists on the emission of secondary (or fluorescent) x‐rays 

characteristic of a material that has been excited by being exposed with high‐energy X‐

rays or gamma rays. The basis operation principle is to identify the wavelength or 

energy of each of the characteristic radiations, in this way it is possible to know the 

elements that compose the sample, if the intensities are measured, their respective 

concentrations would be known. 

 

Fig.  5.37: Scheme of a classic x-ray fluorescence spectrometer (53) 

In Fig.  5.37, the scheme of a classic X‐ray fluorescence spectrometer or wavelength 

dispersion X‐ray spectrometer, is shown. This technology receives this name because 

the polychromatic fluorescence spectrum emitted by the sample when excited by a 

radiation beam produced by an X‐ray tube, is decomposed into its monochromatic 

components depending on its wavelengths, when diffracted into a known spacing 
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monocrystal. The diffracted beam for each angular position of the monocrystal reach 

the detector, which converts photons into electrical impulses. 

According to Bragg's law (n·λ = 2·d·senθ), measuring the value of the angle θ at which 

each of the radiations constituting the spectrum emitted by the sample is diffracted, 

and since the spacing d of the analyzer crystal It is known, the wavelength λ of each 

can be calculated. By analyzing these wavelengths, the qualitative and the quantitative 

characteristics of the sample can be known. 

 X‐ray transmission technology (XRT): It is used to dry separation by material densities. 

In a transmission process, differences in X‐rays absorption are detected. These 

differences are categorized and used to separate by densities. 

The X‐rays absorption degree depends both on the density and on the thickness of the 

material. The higher the atomic mass and the thicker the piece of material, the more 

radiation is absorbed. To compensate for the influence of the thickness of the object, 

the absorption of the material to be separated is usually measured in several different 

energy phases, thus the specific absorption of the material is determined, and the 

density of the material is inferred with the help of a specific software. 

The most important advantage of X‐ray transmission technique is that it is not 

sensitive to surface dirt and it can detect inclusions inside the material. For example, in 

mining, pyrite clusters can be found in pieces of ore, or, in the field of recycling, heavy 

metal inclusions in aluminum parts. 

Next figure shows an example of a separation scheme based on X‐ray transmission 

technique as characterization method. The material to be separated reaches the 

system through a vibrating conveyor to an acceleration belt that spaces the material in 

the transportation direction, thus facilitating its separation. Then, the belt transports 

the material through the scanning area, where a radiation source located below the 

belt applies radiation to a small part of the conveyor belt. At the top of the material, 

detectors measure the proportion of the rays not absorbed by the material. The 

difference between the initial radiation and the measured radiation makes it possible 

to infer differences in density between objects or inside. This information is used for 

triggering the separation according to the specific criteria of the application. 

 

Fig.  5.38: Operating scheme of transmission x-ray technology (xrt) as a sensor technology 

to separate the material by atomic densities (54) 
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The main disadvantage of these technologies is the high cost. It also presents 

limitations when separating elements with atoms that shield X‐rays and fractions of 

dense materials. 

5.4.7.4 Laser Induced Breakdown Spectroscopy technology (LIBs) 

In Laser Induced Breakdown Spectroscopy (LIBs) a high‐energy radiation pulse of laser light is 

emitted on the sample to be analyzed. This evaporates tiny particles of material on the surface 

and a plasma is generated, in which the atoms, ions and molecules are in an excited state and 

emit light. These emissions are collected through the optical components and introduced into 

a spectrometer. 

LIBs employ robust lasers that operate with a pulse frequency between 20 and 100 kHz with a 

constant laser power. By achieving very short measurement times, very small objects can be 

measured, analyzed and then separated at high belt speeds (up to 3 m/s without contact). 

The Figure 46 shows a commercial automated separation system for scrap metal, specially 

developed for shredded stamping waste from the aluminum industry (55). 

 

  

Fig.  5.39: LIBs Down) Different materials for treatment; Aluminum and non-ferrous metals 

recycling. 

5.4.7.5 Electrostatic separation 

Technologies based on electrostatic separators allow sorting on materials that cannot be 

achieved using manual sorting or other automatic methods. 

There are two main separation systems based on this technology: 

 Electrostatic crown separators are used for dry separation of metals (reaching metal 

particles <0.1 mm) and plastics or other non‐conductive materials. It is an efficient 

system to recover metal fractions from metal/plastic mixtures or to clean plastics from 

metal parts before processing. 
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Fig.  5.40: Basic operating principle of an electrostatic corona separator (56) 

In this separation scheme, the material enters to rotating drum connected to ground, 

also an electrode connected to a high voltage source is capable of generating an 

electrostatic field around the material that rotates on the drum, the material is 

electrically charged according to its conductivity; good conductors quickly separate 

from the drum, while bad conductors remain attached to the surface of the drum until 

a non‐conductive obstacle forces them to detach. 

 Electrostatic triboelectric separator: The system is based on a vibrating conveyor 

through which the plastic mixture passes to the so‐called triboelectric charging unit. 

The different plastics are ionized depending on their composition, taking a positive or 

negative electric charge due to the effect produced by the passage of electrons from 

one particle to another. The ionized material is passed through a two flat‐parallel 

plates design fed with high tension making cathode and anode. In its displacement, the 

components are electrostatically separated according to their different charges. 

Positive particles are attracted to the negative electrode, while negative particles are 

rejected and vice versa. 

The magnitude of the electric charge, as well as its sign, only depends on the 

composition of the material, allowing the materials to be separated according to their 

triboelectric behavior, regardless of their density and atomic charge. However, there is 

a limitation in terms of the size of the particles to be separated (<12mm), which makes 

necessary to incorporate additional crushing systems, increasing the cost of the 

process. 
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5.5 Market review on scrap pre-processing techniques 
 

This section presents a review on the commercial scrap preparation solution available in the 

market  

5.5.1 Size reduction systems  
 

Together with the bibliographic work for assessing the state of the art on the size reduction 

available technologies, an exploration of the different commercial options that can be found in 

the market was carried out and presented in Table 5.2: 

Type Weight and dimensions 
Reduction 
technique 

Main 
application 

Production 
Supplier Model 

General 
dimensions 

(mm) 

Total 
Weigh

t (t) 

Inlet 
size 

(mm) 

Outlet 
size 

(mm) 

EDGE 
(Distribuidor
: EMSA) 

SLAYER 11200X2500X3200 22 0‐800 0‐40 Cutting 

Electronic 
scrap, 

appliances, 
metal profiles 

Linked to 
material 

SLAYER XL 13000X2500X3200 24 0‐1000 0‐40 Cutting 

Electronic 
scrap, 

appliances, 
metal profiles 

Linked to 
material 

ELDAN 
(Distribuidor
: Recycling 
Equipos) 

SC1412 M 1700X3000X3500 15 2000 < 200 Cutting 

Wires, 
aluminium, 

bulk materials, 
MSW 

Up to 12 

HUSMANN 
(Distribuidor
: Reverter 
Industries) 

HL I 1230 11035X2558X2695 20 
1200X302

0 
200‐250 Cut and tear 

Electronic 
scrap, 

appliances, 
metal profiles 

Linked to 
material 

HL II 1622 10200X2340X2650 22,5 
1600X220

0 
200‐250 Cut and tear 

Electronic 
scrap, 

appliances, 
metal profiles 

Linked to 
material 

HL UNI 75  7500X2460X2700 18 
1750X156

0 
200‐250 Cut and tear 

Electronic 
scrap, 

appliances, 
metal profiles 

Linked to 
material 

HAMMEL 

NZS 1000 10257X5208X4960 19   Cut and tear Universal 
Linked to 
material 

HEM 1250 14413X4689X3856 46   Cut and tear Universal 
Linked to 
material 

VB950DK 2200X1400X5000 44  150 Cut and tear Universal 
Linked to 
material 

KOMPTECH 
(Distribuidor
: Masias 
Recycling) 

TM3400, 
TM3400 

SD, 
TM5000, 
TM6000 

SD 

9120X2550X3360 
23,9‐
24,9 

3020X180
0 

10‐100 Tearing Electronic scrap 45/30 – 100/90 

CRAMBO 
3400, 
5000, 
6000, 

42000, 
5200, 
6200 

9120X2550X3360 24‐25,4 
3000X180

0 
10‐100 Tearing Electronic scrap 

45/35 – 
120/100 

LINDNER 

Urraco 
75D/DK 

7000X2500X2900 22 
1500X250

0 
< 150 

Cut and tear 
Universal 55 t/h 

Urraco 
95DK 

9200X3000X3200 42 
2500X300

0 
< 200 

Cut and tear 
Universal 120 t/h 

Miura 
1500 

9300X2500X3300 24 
1500X250

0 
< 150 

Cut and tear 
Universal 60 t/h 

EUREC 
(Distribuidor
: Maquinter) 

S40 12000X2860X2990 34 
2400X198

0 
< 250 Tearing General scrap Up to  230 t/h 

S24 10800X2440X2670 19,2 
2100X220

0 
< 200 Tearing 

General scrap 
Up to 150 t/h 
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S16 10415X2270X2680 16,5 
1535X144

0 
< 200 Tearing 

General scrap 
Up to 80 t/h 

METSO 
(Distribuidor
: 
Recyprojects
) 

M&J 
Preshred 
4000M 

9350X2530X4005 35 
5081X253

5 
< 125 Cut and tear 

Bulk materials, 
Waste from 

electrical and 
electronic 

equipment, 
Urban solid 

waste 

40 t/h < 300 
mm 

M&J 
Preshred 
6000M 

10880X3830X3994 60 
3461X240

0 
< 125 Cut and tear 

Bulk materials, 
Waste from 

electrical and 
electronic 

equipment, 
Urban solid 

waste 

24,5‐27,7 t/h 

SPR 

RS100/13
0 

4200X5100X4900 18 
1100X130

0 
300 Cutting 

Bulk materials, 
Urban solid 

waste 
Up to 30 

RR2000 3900X1705X708 10 
1890X124

5 
300 Tearing 

Bulk materials, 
end of life cars 

20 

PC2200/5
5 

3060X2700X1810 11,5 
2200X150

0 
300 Cut and tear 

Bulk materials, 
end of life cars 

10‐15 

LEFORT MTP1100 ‐‐ 147 2600X900  ‐‐ Universal 18‐25 t/h 

TANA 
(Distribuidor
: EMSA) 

220Deco 10530X2520X4030 24 500 50 Cut and tear 

Aluminium, 
bulk materials, 
wood, urban 
solid waste 

15 t/h 

220DTeco 
10530X28300X403

0 
26 500 50 Cut and tear 

Aluminium, 
bulk materials, 
wood, urban 
solid waste 

15 t/h 

440Deco 10530X2520X4030 27 500 50 Cut and tear 

Aluminium, 
bulk materials, 
wood, urban 
solid waste 

15 t/h 

440DTeco 
10530X28300X403

0 
29 500 50 Cut and tear 

Aluminium, 
bulk materials, 
wood, urban 
solid waste 

15 t/h 

TEREX 
(Distribuidor
: Carmaq) 

TDS820 ‐‐ 27  100 Tearing 

Bulk materials, 
Waste from 

electrical and 
electronic 

equipment, 
Urban solid 

waste 

Linked to 
material 

TDSV20 ‐‐ 37  30 Cutting 

Bulk materials, 
Waste from 

electrical and 
electronic 

equipment, 
Urban solid 

waste 

Linked to 
material 

TSS390 ‐‐ 30  100 Tearing 

Bulk materials, 
Waste from 

electrical and 
electronic 

equipment, 
Urban solid 

waste 

Linked to 
material 

VECOPLAN 

VMZ1800 6810X2440X2800 ‐‐ 
1700X150

0 
< 200 

Tearing 
 

Bulk materials, 
urban solid 

waste 
5‐15 

VMZ3600 9100X3700X2500 ‐‐ 
1700X150

0 
< 200 Tearing 

Bulk materials, 
urban solid 

waste 
15‐60 

VMZ7700 10000X3700X2500 ‐‐ 
2100X150

0 
< 200 Tearing 

Bulk materials, 
urban solid 

waste 
30‐100 

UNTHA 
XR 

MOBILE E 
3805X2950X12710 37 

2950X156
0 

30 Cutting 

Bulk materials, 
Waste from 

electrical and 
electronic 

equipment, 
Urban solid 

waste 

47 t/h 

ZB GROUP 
THOR‐
1521K 

16000X3500X5400 87 
1460X480

0 
 Cutting 

Light metal 
scrap and 

vehicles out of 
10‐15 t/h 
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use 

THOR-
1720K 

18600X3500X6100 104 
1700X700

0 
 Cutting 

Light metal 
scrap and 

vehicles out of 
use 

15-25 t/h 

ZATO 
BLUE 

SHARK 
    Cutting 

Light metal 
scrap and 

vehicles out of 
use 

5-60 t/h 

Table 5.2: Comparative table; primary crushers 

Next pictures show some of the commercial solution that can be purchased: 

 

 

 
HAMMEL® Mobile crushers 

 
LINDNER® Mobile crushers 

  
EuRec® Mobile crushers 
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Lefort® Mobile crushers 

 
Thor® serie Mobile crushers by ZB Group 

 
Bano® Recycling Mobile crusher 

Fig.  5.41: Examples of commercial crushers  
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5.5.2 Size difference separators  
 

Together with the bibliographic work for assessing the state of the art on the available 

technologies for separating materials by size property, an exploration of the different 

commercial options that can be found in the market was carried out and presented in the next 

table: 

 

Table 5.3: Comparative table; Size difference separators 

Next pictures show some of the commercial solution that can be purchased: 

 
LIWELL® Sieve 

 
BIVITEC® by Binder+Co Sieve 
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SPALECK® Sieve 

Fig.  5.42: Examples of comercial sieves  
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5.5.3 Magnetic susceptibility separators  
 

Together with the bibliographic work for assessing the state of the art on the available 

technologies for separating materials by its magnetic properties, an exploration of the 

different commercial options that can be found in the market was carried out and presented in 

the next table: 

Supplier Type Model 

Dimensions and weights Electrical 
power / 
electro-
magnet 
(kW) 

Conveyor 
speed  

Working 
distance 

General 
(mm) 

Magnetic 
Width 
(mm) 

Magnetic 
Length 
(mm) 

Total 
weight 

(t) 
(m/s) (mm) 

DRAGO 

ELECTRONICA 

 ODEP-7 1105X232
0X665 

900 900 1200 4 2 350 

 ODEP-8 1304X273
8X665 

1000 1000 1600 5,5 2 400 

 ODEP-9 1304X272
0X665 

1300 1300 2000 7 2 450 

ERIEZ 

MAGNETICS 

EUROPE 

LIMITED 

Permanent CP20/80
SC2 

2150X120
8X391 

832 526 0,83  2,2 250 

Permanent CP25/80
SC2 

2500X130
0X455 

836 520 1,35  2,2 300 

Electro-magnet SE740SC
2 

2768X166
0X1132 

1048 1048 2,5 4,5 2,2 350 

Electro-magnet SE750SC
2 

2920X182
1X1145 

1199 1199 3,6 5,6 2,2 425 

IFE 

Electro-magnet MEQL 
1201 Q 

2664X139
0X900 

1200 1200 3,1 4,7  400 

Electro-magnet MEQL 
1401 S 

3156X163
4X981 

1400 1400 4,5 6,1  450 

Electro-magnet MEQL 
1601 T 

3300X240
0X990 

1600 1600 5,7 7,6  450 

Electro-magnet MEQL 
2201 V 

3900X305
0X1030 

2200 2200 10,8 12,8  450 

FELEMAMG 

Electro-magnet SF1-100-
RC/100 

2580X149
5X575 

970 1000 2450 6,2 2,3 320-400 

Electro-magnet SF1-120-
RC/120 

2946X170
5X590 

1160 1200 3550 8,5 2,3 385-400 

Electro-magnet SF2-100-
RC/100 

2420X149
5X665 

970 1000 2350 4,3 2,3 320-400 

Electro-magnet SF2-120-
RC/120 

2785X170
5X680 

1160 1200 3450 5,9 2,3 385-400 

GRUPO FEM 

Overband OPFEM 
8.6 

2300X139
0X440 

630 1030 1,4 -- 1,5 220 

Overband OOPFE
M 12.1 

2350X206
0X550 

1300 1085 1,5 -- 1,5 320 

Overband OFEM 
13.2 

2865X185
0X790 

1000 1310 3,9 7,6 1,5 250 

Overband OFEM 
14.2 

2880X210
0X790 

1400 1400 4,7 12 1,5 300 

Overband OFEM 
20.1 

3200X230
0X790 

1600 2000 5,5 18 1,5 300 

REGULADOR-
CETRISA 

Overband R-SKM 9 
11 

2510X147
5X670 

900 1100 2,4 4,4 Up to 3,7 370 

Overband R-SKM 
10 12 

2790X160
0X670 

1000 1200 2,8 6,1 Up to 3,7 420 

Overband R-SKM 
12 13 

3050X181
5X760 

1200 1300 4,2 7,6 Up to 3,7 530 

Overband R-OMP 
75 100 

2260X130
0X400 

750 1000 1,4 Permanent 
magnet 

Up to 3,7 280 

Overband R-OMP 
95 120 

2450X150
0X400 

950 1200 2,1 Permanent 
magnet 

Up to 3,7 340 

STEINERT 

Overband UMP 90 
100 WG 

2489X150
4X586 

950 1126 1,8 -- 1,7 360 

Overband UMP 130 
200 WG 

3728X190
4X716 

1350 2126 5,9 -- 1,7 460 

Overband UME 75 
90 C 

1986X136
4X760 

750 900 1,6 3,1 2,1 350 

Overband UME 95 2186X156
4X770 

950 1100 2,1 4,1 2,1 420 
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110 C 
Overband UME 135 

170 C 

3246X200
6X850 

1350 1700 5,9 8,3 2,1 560 

Table 5.4: Comparative table; Magnetic separators 

Next pictures show some of the commercial solution that can be purchased: 

  
 

  
Overband solution by FELEMAMG 

  
Overband solution by Cetrisa 

       
Permanent magnet solution by Steinert 

Table 5.5: Examples of commercial magnet solutions  



 
Scrap preparation techniques; State of the art.  

108 
 

5.5.4 Electric conductivity separators  
 

Together with the bibliographic work for assessing the state of the art on the available 

technologies for separating materials by electrical conductivity property, an exploration of the 

different commercial options that can be found in the market was carried out and presented in 

the next table: 

Type Dimensions and weights 

Eccentricity 
(mm) 

Inductor 
(kW) 

Inductor 
speed 
(rpm) 

Conveyor 

speed 
(m/s) 

Main 
Application 

Supplier Model General 
(mm) 

Magnetic 
Width 
(mm) 

Total 
weight 

(t) 

DRAGO 

ELECTRONIC 

FC‐FCF 3160X1390
X1340 

800   2,2 3000 1‐3  

FC‐FCF 3160X1390
X1340 

1000   2,2 3000 1‐3  

FC‐FCF 3160X1390
X1340 

1200   2,2 3000 1‐3  

ERIEZ 

MAGNETICS 

EUROPE LIMITED 

UHF (Ultra High 
Frequency) 

4880X2630
X2791 

300‐2000 6,6 608 15 6000 2,5 Ultra fine 
(1mm) 

RevX‐E 1320X455X
1259 – 

3170X2630
X903 

300‐2000 0,9‐3,1 418 7,5  3000 2,5 + 1mm 

LC 1320X455X
1259 – 

3170X2630
X903 

300‐1500 0,9‐3,1 296 5,5 2500 2,5 +50mm 

IFE 

INP 400X2000 4315X2340
X1250 

2300 3100 ‐ 11 600‐2500 0,8‐3,4  

INP 400X2500 4315X2840
X1250 

2800 3600 ‐ 15 600‐2500 0,8‐3,4  

INP 400X3000 4315X3340
X1250 

3300 4100 ‐ 18,5 600‐2500 0,8‐3,4  

INPX 650X1500 
Excéntrico 

4200X1840
X1300 

1800 3600 125 7,5 600‐2500 0,8‐3,4 0‐50mm 

INPX 650X2000 
Excéntrico 

4200X2340
X1300 

2300 4200 125 11 600‐2500 0,8‐3,4 0‐50mm 

FELEMAMG 

SFME‐29/1000 3370X1805
X1180 

950 1360 110 4 3000 0‐2,7 Residues 
plant 

SFME‐29/1100 3370X1905
X1180 

1050 1450 110 4 3000 0‐2,7  

SFME‐29/1200 3370X2070
X1180 

1150 1540 110 5,5 3000 0‐2,7  

SFME‐29/1300 3370X2170
X1180 

1250 1630 110 5,5 3000 0‐2,7  

SFME‐29/1400 3370X2270
X1180 

1350 1720 110 5,5 3000 0‐2,7  

GRUPO FEM 

SMFEM 800/14 3000X1950
X874 

800 1,2 ‐ 3 3000 0‐2,5 25‐200mm 

SMFEM 
1000/14 

3000X2150
X874 

1000 1,3 ‐ 4 3000 0‐2,5 25‐200mm 

SMFEM 800/20 3000X1950
X874 

800 1,5 ‐ 3 3000 0‐2,5 3‐60mm 

SMFEM 
1200/20 

3000X2350
X874 

1200 1,4 ‐ 5,5 3000 0‐2,5 3‐60mm 

SMFEM 
1200/24 

3000X2450
X874 

1200 1,8 ‐ 5,5 3000 0‐2,5 3‐150mm 

REGULADOR-
CETRISA 

R‐SPM 1800‐E 
ADS 

3600X2546
X653 

1800 2,2 120 4 3000/400
0 

3 RSU 

R‐SPM 1800‐E 
AF 

3600X2546
X653 

1800 2,2 120 4 3000/400
0 

3 <60mm 

R‐SPM 1800‐E 
AM 

3600X2546
X653 

1800 2,2 120 4 3000/400
0 

3 <20mm 

R‐SPM 1800‐E 
AD 

3600X2546
X653 

1800 2,2 120 4 3000/400
0 

3 <300mm 

R‐SPM XXX‐YY 3600XZZZZ
X653 

500‐1800 ‐‐ 30 4 3000/400
0 

3 >300mm 

R‐SPM XXX‐E YY 3600XZZZZ
X653 

500‐1800 ‐‐ 120 4 3000/400
0 

3 >300mm 
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STEINERT 

CanMaster 100 3700X1300
X1000 

1000 1,2 105 2,2 2610 2,5 >50mm 
RSU 

CanMaster 150 3700X1800
X1000 

1500 1,4 105 3 2610 2,5  

NES 200 220 E 
5012 

4200X2630
X1345 

2000 3,5 105 5,5 2610‐
3000 

‐ >4mm  

NES 200 220 E 
6109 

5200X3150
X1345 

2500 5,3 94 7,5 2610 ‐ >5mm  

NES 200 210 E 
6119 4T 

4100X2630
X1345 

2000 3,6 94 9,2 2610‐
4000 

‐ >0,5mm  

Table 5.6: Comparative table; Electric conductivity separators 

Next pictures show some of the commercial solution that can be purchased: 

 
Several examples of Eddy current separators by Drago Electrónica 

  
Eddy current separator by Eriez 

  
LCFEM compact line by FEM Group 

 
EddyC MOVE system proposes by STEINERT 

Fig.  5.43: Examples of commercial Electric conductivity systems  
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5.5.5 Sensor based separators  
 

Together with the bibliographic work for assessing the state of the art on the available 

technologies for separating materials based on sensors, an exploration of the different 

commercial options that can be found in the market was carried out and presented in the next 

table: 

Type Technology 
type of 
sensor 

Materials 
to be 

detected 

Minimum 
detectable size 

(mm) 

Minimum 
object size for 
ejection (mm) 

Resolution 
(Pixel/s) 

lighting 
Distance 
sensor-

belt 
Supplier Model 

BINDER+C
O 

CLARITY NIR/SWIR/VIS
/X‐ray‐

X/others 

scrap 1mm 1mm 0,5mm/pix
el 

LED 700mm 

MSS 

OPTICAL 

SORTERS 

L‐VIS Colour (VIS) scrap Depends on 
application 

Depends on 
application 

0,4mm LED Depends 
on 

applicati
on 

CIRRUS NIR/SWIR Plastics, 
paper, CDR, 

RSU 

Depends on 
application 

Depends on 
application 

¼’’ Halogen Depends 
on 

applicati
on 

PELLENC ST 

MISTRAL+ NIR/SWIR/VIS
/X‐ray/others 

scrap 4x4mm 30mm 10x10mm Halogens 900mm 

XPERT NIR/SWIR/VIS
/X‐

Ray/others 

scrap      

PICVISA 

MACHINE 

VISION 

SYSTEMS 

ECOGLASS VIS/UV wires 2mm 2mm 0,6mm/pix
el 

LED 700mm 

ECOSCRAP VIS/NIR/EM scrap 4mm 4mm 5mm Halogen 89000m
m 

ECOPACK NIR/HSC wires 8‐16mm 8mm  Halogen 89000m
m 

TOMRA 

SORTING 

RECYCLING 

AUTOSORT NIR, VIS Plastics and 
paper 

17mm  11mm 640000 2 
redundan

t lights 
integrate

d 

500. 575, 
915, 

1375mm  

XTRAT XRT Scrap and 
RCD 

6mm 3mm  X ray 
source 

 

REDWAVE M Identification 
by induction 

scrap ‐‐ ‐‐ Depends 
on material 

and size 

‐‐ ‐‐ 

XRF‐M 
X‐ray scrap ‐‐ ‐‐ Depends 

on material 
and size 

‐‐ ‐‐ 

Table 5.7: Comparative table; Sensor based separators 

Next pictures show some of the commercial solution that can be purchased: 
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Complete Classification system MISTRAL + 

 
Xpert system for scrap classification 

 

Sorting system by TOMRA 

Fig.  5.44: Examples of commercial material classification systems  
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5.6 Chapter 5 recall and conclusions 
 

In this section, the most widespread waste treatment techniques in the recycling sector have 

been presented. Each of the different technologies presented in this section, were developed 

and optimized to solve very specific problem associated with a particular type of waste. 

However, the processing of iron scrap is much more complex than the simple implementation 

of any of the technologies described individually due to its high heterogeneity. 

An example of a complete steel scrap treatment scheme may consist on an initial 

fragmentation process, followed by several cleaning and separating processes that allow 

upgrading the ferrous raw material to be used in steelmaking processes. These processes also 

give added value to the non‐ferrous metal fractions contained in those materials that, 

otherwise, would not be used. 

Basically, a scrap upgrading facility could be comprised by the following stages: 

 

Fig.  5.45: Complete Ferrous scrap processing flow 

 The size reduction schemes for current ferrous scraps require large and robust 

industrial facilities, and normally their design is very conditioned by the specificities of 

the type of scrap to be processed. Likewise, the exploitation of this type of equipment 

requires the availability of auxiliary machinery for logistics and material handling, both 

at the entrance and at the exit of the processing stage. For this reason, providing this 

technology with some mobility is a requirement that will be imposed in future 

developments. 

 Subsequent separation steps by size and magnetic nature. In the case of ferrous scrap, 

and given the magnetic particularity of these materials, practically all separation 

technologies contain, in some of the intermediate steps, some separation technique 

based on that physical property 

 Optical separation allows the classification of almost all types of waste. This option 

replaces the conventional means and allows to obtain fractions of high purity and 

constant quality, helping to reduce costs and increasing the profitability of the 

treatment plants. 

•Loader Crane

•Feeding Hopper

•Crusher

Homogenisation

•Vibrating Table

•Magnetic Rollers

•Sterile Line

•Scrap Line

Separation
•Scrap Composition

•Sterile Characterisation

•Technology Tester

Characterisation
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Based on the previous analysis, an integrated processing scheme proposal is presented in Fig.  

5.46: 

 

Fig.  5.46: Proposed integrated scrap processing unit 

However, it is important to highlight that the first stages of size reduction and separation using 

magnetic techniques have been widely studied and there are, more or less, efficient industrial 

solutions for most of the ferrous materials morphologies. However, the characterization of the 

different materials contained in the ferrous mix remains being an important challenge, 

opening a world of possibilities to researchers in almost all scientific disciplines. 
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 6 
Scrap Characterization techniques; State of 

the art. 
This chapter presents a thorough analysis of the current state of the art in ferrous scrap 

characterization methods applied in the steelmaking industry. This information about available 
technologies was discussed with several industrial steel producers for identifying, not only the 
fields of interest in scrap characterization, but also current technological lacks. The conclusions 
reached after the analysis allowed defining the new characterization methods to be developed 
in the subsequent chapters. 
 

 

Usually the acquisition of ferrous scrap for a particular steelmaking site is done by the 

purchasing department. Regardless of the method used to select the scrap in the market, 

steelmakers need to closely control the quality of the scrap to achieve the maximum profit of 

the steelmaking process. The control of scrap quality is a key operation that has not been 

totally solved yet. 

Carrying out a close control of scrap quality, both in origin and in destination is a very 

complicated task due to the high heterogeneity of this material; Large volumes, many origins, 

different pre‐treatment processes before arriving at the factory, quality mixtures, cheating of 

some suppliers, make it difficult to control the characteristics of the scrap. 

In the last decades, several methods have been developed to assess the scrap quality, in order 

to help all stakeholders standardized their scrap managing practices. 

 

6.1 Scrap characterization 
 

Steelmakers have always been aware of the great economic potential derived from an 

adequate characterization and management of the scrap in steelmaking process. In fact, 

several projects have been carried out in this respect in the last decades (57). However, 

despite the fact that different factories have developed or adapted existing methods to their 

own particularities, none of them has prevailed over the rest, which reveals the real difficulty 

of performing a correct characterization of scrap. 

The easiest way to classify the existing methods or those under‐developments for scrap 

characterization can be as illustrated in Fig.  6.1: 
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Fig.  6.1: General methods for scrap characterization 

The scrap characterization techniques that are currently available in each of the selected 

methods are described in detail in the following sections  



 
Scrap Characterization techniques; State of the art.  

117 
 

6.2 Industrial testing methods 
 

Various industrial testing methods for material characterization are widely used in steelmaking 

for obtaining useful information of raw materials when analytical procedures cannot be used 

or when their use would result in a high consumption of time or resources. These tests provide 

the data required to make critical process decisions or meet regulatory compliance 

requirements. 

It is possible to group the industrial testing methods in three main categories: 

- Melting tests 

- Concrete pad analysis 

- Cleaning machine sterile content assessment 

 

6.2.1 Melting tests 
 

A melting test is a semi‐industrial method for scrap quality assessment in which a close 

controlled raw material input is melted. It could comprise either 100% of the scrap grade to be 

tested, or mixed with other scrap of well‐known composition, such as home scrap from a BOF 

shop, or prompt scrap. 

There are several methodologies reported in bibliography, depending on the industrial 

capabilities of the research entity (R&D centres, Universities, steelmakers…). The most 

complete method consists of a melting test in real industrial conditions, in which complete 

mass and energy balances are performed. Steel, slag and fumes are monitored in terms of 

mass or flow rate and composition, with particular attention to iron, carbon, oxygen and tramp 

element metals.  

A major question is to decide what the minimum size of the sample is to be melted and how 

big a furnace should be selected to carry out the test. Three test levels can be defined: 

- Laboratory scale: In these kinds of tests, it is possible to characterize little amount of 

material (in the order of kilograms) under protected or non‐protected atmosphere. 

The main advantage of these tests is its accuracy, due to the strict control of the 

quantities and conditions under which it takes place.  

Laboratory scale melting tests are a good solution for initial testing of new and 

uncommon materials considered for charging in the EAF, as well as for determining the 

variability within a delivery of scrap 

Some examples of equipment for conducting laboratory scale melting tests are shown 

in Fig.  6.2: 
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Fig.  6.2: a) and b) 8 kg laboratory induction furnace; c) 77 cm3 levitation furnace. Both 

equipment in Tecnalia Research Fundation in Zamudio (Spain) 

The main drawback of this characterization method is that it is not representative of 

the real steelmaking process, so that it is only useful for very particular analyse, the 

high number of tests required to draw conclusions and high time consumption. 

- Pilot scale: These kinds of tests are suitable for initial testing of new and uncommon 

materials considered for charging in the EAF or BOF, as well as for determining the 

variability within a delivery of scrap. This allows to design mechanisms for quality 

control of supplier compliance with grade specifications and to verify suspected 

deviations in quality. 

The methods available to perform this type of tests are mainly two: high‐capacity 

induction furnaces and scaled industrial furnaces. 

 

Fig.  6.3: a) and b) 700 kg industrial induction furnace with an electrode heating system in 

Tecnalia Research Fundation in Irun (Spain); c) and d) 300 kg induction furnace in 

ArcelorMittal Global R&D centre in Maizieres (France). 
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Fig.  6.4: Pilot Electric Arc Furnace (6 tones) in ArcelorMittal Global R&D center in 

Maizière (France). 

The main advantages of these tests include very well controlled conditions during the 

experiment and high accuracy in the results. 

However, there are several disadvantages: it is time consuming, and therefore has long 

response times, it is a highly costly method and the pre‐treatment and cutting of heavy 

pieces may be necessary. 

- Industrial scale: Industrial scale melting tests consists on controlling some parameters 

during the standard operation in industrial Electric Arc Furnaces. This method is 

usually used for determining the actual chemical composition of high alloyed scrap 

(stainless steel, special steels) or to carry out the confirmation or updating of scrap 

properties used by scrap mix optimizer tools or process models. 

Among its main advantages are the high accuracy and quick response of the method 

and the possibility to study a specific problem and apply the obtained conclusion 

directly at the steel plant. 

The main drawbacks are the risk of process disturbance and possibility of material 

downgrading due to the test heats. 

In general, the behavior of different scrap grade categories exhibits a large scatter, even for 

those with "good" mean values. However, regarding individual results, where identical markers 

indicate a single supplier yard, the dispersion is much smaller between scrap deliveries from a 

single preparation yard.  

Some usual operations associated to the melting test for scrap characterization operations are: 

 Bulk density measurement weighing a known volume.  

 Humidity estimation drying the sample in a furnace at high temperature until its mass 

remains stable. 

 Hand sorting operations before the melting.   

The data obtained by the melting tests constitute a very powerful tool to assess the quality of 

both, internal and external scrap. Nevertheless, the use of this kind of tests is gaining 
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popularity for the economic analysis of the potential use of other industrial residues and/or 

by‐products in the steelmaking process. 

 

6.2.2 Characterization of deliveries by concrete pad analysis 
 

This method basically consists of unloading a scrap truck on a concrete surface at the scrap 

yard. Then the scrap is collected by magnetic means. The remaining material (nonmagnetic 

material) is finally sorted by hand and then weighed. It allows estimating the most general 

quality parameters in a very simple manner.  

This method is probably the most extended one, due to its simplicity and the non‐expenditure 

of additional resources. It has a clearly didactic utility, both for the scrap suppliers and for the 

scrap classification technicians. 

Fig.  6.5 shows the quality control process and some examples of the output obtained using 

this method. 

 
 

 

Fig.  6.5: Up) Quality control on concrete area. Down) Elements containing Cu (a), sealed elements 

that can explode in the furnace (b) and sterile remaining on the floor (c) 

 

6.2.3 Cleaning machine sterile content assessment 
 

The worldwide scrap metal recycling industry has developed sets of specifications and grading 

systems to ensure consistent quality of source scrap material for a given grade of metal scrap. 

These specifications generally set minimum and maximum content of certain metal impurities 

and restrict levels of certain hazardous metals and other substances. 
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Scrap yard personnel must know these criteria. This knowledge, together with the acquired 

experience, allows scrap yard specialists to estimate the amount of impurities in every scrap 

delivery.   

In the most widespread way of proceeding, a very experienced scrap yard operator conducts a 

visual inspection of the discharge of each scrap delivery and estimates a quantity of sterile, 

which is subsequently used to penalize the supplier. 

On the other hand, ferrous metals are magnetic and often collected in scrap yards by a large 

electromagnet attached to a crane, sweeping across piles of scrap to grab magnetic objects. 

This magnetic property of scrap has been used by different engineering companies that focus 

their business on the development of siderurgical equipment to develop scrap cleaning 

machines.  

Scrap cleaning machines allow not only eliminating the undesired materials that come with the 

scrap (and penalize the performance of electric arc furnaces) but can also be used to track the 

quality of the material supplied by each scrap suppliers. 

Fig.  8 shows a basic description of a scrap cleaning machine for E1 scrap type: 

 

Fig.  6.6: Scrap cleaning machine description 

Some steelmakers use scrap cleaning machines for the assessment of sterile content. The 

benchmark practice usually used to this end is described below: 

1 Every scrap truck is registered at the factory arrival (plate number and weight). 

2 Scrap is delivered at the scrap yard where it is discharged in the material receiving 

hopper of the cleaning machine (each scrap truck is processed separately). 

3 The cleaning machine sorts non‐ferrous materials from ferrous materials. 

4 Non‐ferrous material separated after the processing of each truck is collected with a 

backhoe provided with a scale. 

5 The non‐ferrous material is accumulated in a pile to be later sold. 

6 Every scrap truck is registered at the factory departure (plate number and weight). 

7 A report is generated. 
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Fig.  6.7 describes the practice followed for the assessment of sterile content: 

 

Fig.  6.7: Sterile weight characterization at the scrap cleaning machine 

Although the benefits of scrap cleaning machines have been clearly demonstrated, they also 

present several drawbacks, such as, the high cost of equipment, high maintenance 

requirements, dedicated personnel required to process the scrap and the fact that not all scrap 

can be cleaned. 
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6.3 Mathematical analysis methods 
 

From an industrial point of view, and given that at plant level, there are extensive databases 

that allow a deep analysis of the process performance, along time different mathematical 

methodologies have been developed for the purpose of scrap quality estimation. The most 

extensive ones are statistical analyses for chemical composition and energy models. 

 

6.3.1 Statistical analysis 
 

Carrying out a statistical analysis of operating data from the Steelshop databases is probably 

the easiest and most extended method for scrap characterization, since it can be applied 

consistently almost everywhere with a small effort. 

The most common method is based on a multilinear regression analysis of the elements of 

interest (whereby parameters relative to each heat are assumed to be linear functions of each 

scrap category constitutive of the charge) and the overall mass balance on the heat 

population. Some criteria must be taken into consideration when selecting the sample of heats 

to be analyzed: 

‐ Large sample populations (>1000 heats) 

‐ Charging schedules should be numerous, different and statistically independent 

‐ Data must be carefully selected 

The method itself gives trustworthy information on mean values of the main components of 

scrap quality: purity in tramp elements and iron content. It can also be used to follow up the 

evolution of scrap quality over time. 

Careful testing of the method in three French Steelshop in a 2‐year period during the nineties, 

showed that this method can be used to estimate the content in tramp elements, including 

Sulphur, and, under stricter conditions, the metallic yield (58). 

 

6.3.1.1 Metallic yield estimation 

 

In its simplest conception, the metallic yield of scrap can be calculated by a multi‐linear 

regression analysis as follows: 

 
�� = � ��

� ��

��
�

 
(6.1) 

Where: 
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Yi : The scrap yield of heat i 

Yj : The scrap yield of scrap type j 

Wij : The weight of scrap j in heat i 

Wi : The total weight of scrap in heat i 

However, the hot heel has a great influence on the results obtained by this method. The hot 

heel can be assumed to be constant. It can be measured (some systems for automatic 

measurement of liquid steel level inside EAF have been found in the bibliography (59)) or can 

be estimated by using a tracer (Cu or Sn). The method used for estimating the hot heel could 

be critical on the correlation between calculated vs. actual values of yield.     

Fig.  6.8 and Fig.  6.9 show some results obtained in ArcelorMittal, by using this technique for 

the analysis of the metallic yield associated with each scrap grade in monthly and a daily basis 

analysis. 

 

Fig.  6.8: Example of Monthly scrap analysis 

 

Fig.  6.9: Daily scrap analysis (used Scrap / produced Steel x 1000) 

September Paq. 4A Paq. 4C Est. OA Est. 1/2 Rec. Propia Fragm. Lingote Arrabio D.R.I. ERROR
Day

1 1058 1132 1086 1251 1069 1215 1167 1092 1105 1251 2,23%

2 1104 1085 1228 1145 1219 1159 1093 1152 1161 1,56%

3 1126 1077 1216 1148 1220 1153 1095 1169 1169 1,34%

4 1110 1100 1230 1152 1219 1165 1094 1156 1177 2,18%

5 1081 1084 1116 1249 1146 1219 1177 1096 1141 1186 0,77%

6 1091 1083 1122 1260 1154 1224 1182 1096 1160 1231 1,96%

7 1082 1085 1095 1235 1137 1216 1165 1093 1143 1146 1,76%

8 1150 1083 1228 1181 1218 1148 1097 1148 1205 1,76%

9 1042 1078 1285 1116 1215 1183 1091 1142 1134 1,80%

10 1084 1099 1229 1147 1223 1160 1097 1140 1135 1,79%

11 1028 1081 1180 1116 1200 1160 1090 1101 1256 2,07%

12 1081 1102 1226 1134 1216 1167 1093 1143 1153 3,40%

13 1082 1107 1253 1134 1220 1179 1094 1151 1179 2,27%

14 1079 1102 1245 1132 1218 1173 1093 1143 1155 1,42%

15 1081 1105 1247 1133 1219 1175 1094 1147 1164 1,36%

16 1085 1103 1247 1136 1219 1173 1093 1148 1168 2,18%

17 1013 1074 1134 1363 1075 1216 1240 1094 1174 1168 1,42%

18 1197 1008 1177 1173 1196 1115 1096 1122 1162 1,53%

19 1106 1062 1334 1145 1218 1200 1095 1194 1161 1,28%

20 1080 1102 1246 1132 1218 1173 1093 1143 1153 2,31%

21 1084 1105 1248 1136 1220 1175 1094 1149 1172 3,42%

22 1182 1089 1158 1335 14 1168 1178 1110 1287 2,00%

23 1070 1090 1116 1245 1134 1224 1181 1099 1148 1194 2,24%

24 1085 1109 1099 1214 1153 1218 1160 1096 1144 1152 2,60%

25 1126 1098 1098 1211 1108 1216 1160 1093 1154 1153 4,68%

26 1093 1103 1241 1131 1220 1171 1094 1148 1163 1,00%

27 1165 1095 1200 1129 1219 1147 1099 1157 1166 0,70%

28 1086 1105 1253 1133 1221 1175 1094 1151 1183 1,88%

29 1087 1079 1106 1252 1132 1221 1174 1094 1154 1184 1,08%

30 1071 1093 1282 1114 1227 1201 1089 1162 1195 1,57%

Yield
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Other modelling approaches have been published in the bibliography that tries to predict the 

metal performance of the process for a particular scrap mixture (57), among them: 

 “Mefos approach”, which corresponds with a Partial least squares (PLS) prediction 

model based on specific scrap grade consumptions (% of total scrap mix) for individual 

grades. This model allows updating the different scrap grades yield coefficients 

considering process a data from 20 heats in a row. 

 “BFI approach”, which correspond with a multiple linear regression prediction model 

based on weights of charged scrap (kg). This model allows predicting the yield for 

individual heats as well as estimating the remaining liquid steel inside the furnace after 

tapping operation (hot hell). 

 

6.3.1.2 Tramp element estimation 

 

The tramp element content can also be calculated by a multi‐linear regression analysis. The 

model assumes that the composition of steel produced by melting a mixture of scrap of very 

different natures, follows a law of mixture without interaction, so that, the model relates the 

composition of the melt (output) to the linear composition of each scrap category used, with a 

ponderation directly related to the proportion of each scrap category and the yield of the heat 

and taking into account the hot heel (18): 

 ��_������

��
−

��� ⋅ ����

������� + ����
= � ��̂

�

×
���

������� + ����
 

(6.2) 

Where: 

e : a residual element (Ni, Sn, Cu, Mo) 

i : index of heat 

j : index of scrap category 

jê  : content in element e in scrap j 

iê  : content in element e in heat i 

ei_output: content in element e after melting 

Pij: weight of scrap j in heat i 

Phh: weight of hot heel 

Pinput: total weight of scrap charged for heat i 

Ui: yield of the heat i 
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On the other hand, one of the main missions of the scrap yard is to manage the logistics of raw 

materials to ensure continuous feeding to the steel mill. To do this, and in order to increase 

the operation of the scrap yard, it is usual to prepare several scrap piles with scrap grades from 

the same family (usually when the scrap yard has several basket loading sites). Fig.  6.10 shows 

an example of a scrap yard lay‐out: 

 

Fig.  6.10: Example of scrap distribution in one ArcelorMittal site scrap yard 

When the multi‐linear regression method is used to estimate the metallic yield of different 

scrap grades, scrap from the same family turns out in similar results (within reasonable upper 

and lower limits). However, this is not so clear when tramp element content is analyzed. Given 

that for each scrap family the residual content varies greatly depending on the origin, the scrap 

pre‐treatment methods and intermediate scrap mixtures, the best way to carry out the tramp 

element characterization is to classify the inputs by scrap piles in the scrap yard rather than by 

scrap grade families. Fig.  6.11 shows an excel tool for multi‐linear regression analysis based on 

scrap allocation in piles in the scrap yard instead of scrap grades for residual elements 

estimation. 

 

Fig.  6.11: Cu content estimation method by classifying inputs by scrap piles in the scrap yard 
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6.3.1.3 Acid gangue content estimation 

 

Probably the most extended mathematical analysis method applied to acid gangue estimation 

of the different scrap grades is comprised by a combination of the total EAF mass balance with 

multi‐linear regression analysis. Thereby, the acid gangue content in every scrap grade can be 

back‐calculated from slag analysis, where CaO, MgO, SiO2, Al2O3 balances must be done. 

According to this approach, the acid gangue (AG) weight is defined as: 

 AG =  ���2(�) +  ��2�3(�) (6.3) 

The total SiO2 heat input is derived from the total CaO and MgO inputs and the slag basicity 

(IB): 

 ���2(�)  =  (���(�)  +  ���(�)) / IB 
(6.4) 

The slag volume (Vs) is calculated from the total added CaO and CaO content in the slag: 

 ��  =  ���(�) / %   CaO 
(6.5) 

The total Al2O3 heat input is derived from the slag volume and the Al2O3 content in the slag: 

 ��2�3(�)  =  �� · %   Al2O3 
(6.6) 

The total added CaO is the sum of CaO coming from lime (1), dolomitic lime (2), dust (3) and 

scrap (4): 

 ���(�)    =  ���(�)  + ���(�)  +  ���(�)  + ���(�) (6.7) 

The total added MgO is the sum of MgO coming from the refractory (5), dolomite (2), dust (3), 

and scrap (4): 

 ���(�)    =  ���(�)  +  ���(�)  +  ���(�)  +  ���(�) (6.8) 

The MgO coming from the scrap is calculated as follows: 

 ���(�) =  (�(�) · %   MgO  / 100) – ���(�) – ���(�) – ���(�) (6.9) 

where subscripts (s) and (t) refer to the content of the compound in scrap and total 

respectively. 

With the total SiO2 input and the total Al2O3 input, the acid gangue included in each scrap 

grade is calculated by minimizing a so‐called cost function which depends on the scrap grade 

use per heat and per mix, total scrap use per mix and number of produced heats per mix, using 

a similar multi‐linear regression approach to previous methods. 

Fig.  6.12 shows some results obtained in one ArcelorMittal site using the explained methods 

for scrap acid gangue characterization: 
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Fig.  6.12: Calculation results on scrap acid gangue content in ArcelorMittal 

 

6.3.2 Energy estimation 
 

Energy consumption represents an important part in the production costs in an EAF. It may 

represent around 15% of the total production cost. Each type of scrap, due to its main physical 

properties (size, thickness, density ...) and its chemical properties (coatings, apparent surface 

...), has an intrinsic energy requirement for being melted. Actually, the energy requirement of 

a particular scrap turns out to be higher due to the effect of scrap non‐quality (see the concept 

of VIU developed in previous sections). 

A very general way of performing the partial characterization of scrap is to model the energy 

behaviour of the EAF process. This is why energy modelling has become a topic of concern for 

many years. In order to control this, different methods for modelling the energy performance 

of the furnace have been developed: 

 Empirical models of energy demand: Most empirical models are based on linear 

regression of variables of very different nature along the process. In these models, 

these variables are used to feed a regression model to estimate the change of electric 

energy demand when process parameters are modified.  

The main drawback of this type of models is that they do not allow characterizing 

energy requirements for each scrap grade individually. Instead, they tend to gather 

scrap families with similar behaviours from an energetic point of view. 

The most known empirical model was proposed by S. Köhle for quantifying the 

influence of various process parameters on the electrical energy demand based on 

linear relations (60). 
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Fig.  6.13: Köhle model 

These models remain widely used nowadays as they allow for the direct comparison of 

the performance of furnaces with very different technical characteristics or operating 

regimes. 

 Static models based on mass and heat balances: Several static models are described 

in the literature for estimating the mass and energy balances applied to BOF 

steelmaking processes. Most of these models seek to calculate the energy profile 

based on output steam unknowns. To do so, all heat oxidation reactions and heat 

capacities are used in order to calculate the temperature of the liquid steel at the end 

of the blow and the amount of scrap that should be added to cool the path (61) (62) 

(63) (64). 

Despite the fact that most energetic models have been developed for BOF steelmaking 

route, it is also possible to find several works dedicated to EAF. However, for these 

models, the chemical composition of the scrap grades included in the used MIX is an 

input, and the output corresponds to the total energy consumption of the process as it 

was set.   

In a simpler way, it is possible to obtain the general energetic model of an EAF using 

the average values of the most representative process parameters. Three easily 

implementable methods exist: complete method (energy input and output 

calculations), direct method (based on the energy input calculations) and indirect 

method (based on energy output estimations obtained by experience) (65). 

 Dynamic models based on mass and heat balances: Dynamic models and simulators 

became popular in the first decade of the 21th century for EAF, since Steelshop 

engineers could work with them to optimize these processes. The main efforts are 
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focused on obtaining a model that is appropriate for closed‐loop control system 

simulation and initial controller verification. This kind of models needs to approximate 

the physical process in terms of its dynamic response to control and disturbance input 

changes, aiming to obtain the same type of response, with the same order of 

magnitude as is found in an industrial EAF. 

There are only limited references to dynamic EAF models in the literature, since most 

of them were developed for a particular plant. 

 More sophisticated models of energy demand: Starting from previously developed 

linear and statistical EAF process models, for appraising the electric energy demand 

and end‐point of the heat elaborations, in recent time, multivariable data analysis and 

artificial neural networks have become important tools for process monitoring and 

control of industrial processes.  
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6.4 Physical analysis methods 
 

In previous sections, it was presented the interrelations between scrap specifics and its 

influence over the EAF process variable costs. So far, several methods for estimating chemical 

characteristics of the different scrap grades have been discussed.  

In terms of physical considerations, the most relevant characteristic are physical shape, 

homogeneity and consistence.  

Several research works have been reported, implemented with greater or lower success in the 

industrial field, to offer solutions that allow obtaining information of these physical 

characteristics. 

 

6.4.1 Machine vision techniques for scrap online characterization 
 

Currently several physical analyses can be carried out by very specialised technicians on site, 

mainly based on subjective criteria and their own experience. This has led thinking that there 

may be certain image features which allow to describe the scrap for classification. These 

extracted features can be used to build a machine vision system for steel scrap 

characterization. 

However, and since we are referring to severe industrial processes, some problems need to be 

solved related to changing light conditions, high variability on operation temperatures for the 

site and changing distances between inspected objects and cameras. These problems require a 

thorough image processing in order to extract objects for analysis from the images. Some 

common algorithms are: edge detection binary large object analysis image segmentation and 

gauging 

Several systems based on machine vision for physical characterization of scrap materials have 

been reported in literature. Among them:  

A system for classification of steel scrap during charge bucket operation based on image 

processing during basket was published in 2008 (66). This system consists of detecting the 

location of the basket and electromagnet by pattern matching algorithms. This information is 

used as a calibration pattern of the system and thus it is possible to transform a pixel 

coordinate to physical measurements.  After separating the scrap from the surrounding 

background and image noise filtering, a scrap volume assessment algorithm was implemented. 

This algorithm was based on the removal of the magnet and the segmentation of the image, 

assuming a cylindrical shape.  

When the weight carried by the magnet is known, the scrap density calculation is immediate. 

The 2D colour image processing allows extracting additional information such as oxidation 

degree, degree of heterogeneity, compactness and other relevant properties.  
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In 2008, J.C. Baumert and other (67) also presented a system for conducting the automated 

assessment of scrap quality before loading it into an Electric Arc Furnace. This system was 

installed in the scrap yard gantry cranes at one ArcelorMittal EAF plant in Luxembourg.  

The importance of monitoring the scrap charging process into the baskets relies on the fact 

that a good scrap density layering within the basket is crucial for allowing rapid formation of 

liquid at the first stages of the melting process in the EAF, while providing protection to the 

cooled panels from arc radiation, which lead to an improvement in the global energetic 

efficiency of the melting process.   

The proposed scrap monitoring system allows extracting information related with the visual 

aspect and granulometry of the scrap used (imaging system), as well as the height distribution 

of the scrap layers deposited in each basket (laser scanners). Combining all this information, it 

is possible to make the scrap density classification of the scrap and calculate the basket filling 

ratios.  

 

Fig.  6.14: Up) Detail on data acquisition system and Down) Scanner operation during basket 

charging  

The system, as shown in Fig.  6.14, is basically composed of: 

 A data acquisition system: Composed by four medium resolution digital colour digital 

cameras combined with four high precision laser distance scanners and a powerful 

light projector. 

 Scrap layering image processing: digital image processing is applied to extract 

information about scrap size distribution and granulometry.  

 Automated charged scrap classification: after image processing, artificial neuronal 

network classifiers allow the automatic identification of the charged scrap types  

 Height scan processing for scrap density assessment: the scrap level distribution in the 

basket is assessed by means of laser‐based scanner measurement. 
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In the two cases presented, the attention was focused on the basket charging operation. 

Nevertheless, the proposed methodologies can be applied to other operations in the scrap 

yard to control the quality of the scrap directly in the trucks or trains at the factory entrance or 

to make the automatic scrap inventory of the different scrap piles in the scrap yard. 

 

6.4.2 Characterization of skulls using water displacement method 
 

The most accurate method to determine the steel content in reverts is the melting test of a 

representative sample, which can be considered as the “reference method”. Nevertheless, the 

melting test requires the use of a dedicated furnace and high manpower resources for the 

operation of the furnace, an accurate weight of the steel and slag generated, and the 

preparation and analyses of the steel and slag samples.  

The water displacement method is less accurate than the melting test but is easier to carry 

out. It requires less investment and it is faster to obtain a rather good estimation of the steel 

content of the skulls. So, it is typically a test that can be developed in any industrial site. Once 

the volume of skulls is determined, it is possible to evaluate the steel content, using the 

densities of the steel and slag fractions: the main difficulty is to use a correct density value for 

the slag fraction, which may vary depending on the skull grain size or the chemistry and 

porosity of the slag. 

Steelmakers use the water displacement method to evaluate quickly, without melting, the iron 

content of the reverts coming back from the EAF process (slag pits, slag pots, ladles and 

tundish bottom). 

This method is supported on the theoretical concept that a submerged object displaces a 

volume of liquid equal to the volume of the object.  

The general procedure used to conduct the water displacement test, is to use of a weighed 

container with standard dimensions. Once the container is filled in with the material to be 

characterized and with water up to a previously defined level, it is possible to use bulk density 

and true density concepts to obtain the iron content. 

  

Fig.  6.15: Water displacement method 

The water displacement method for skulls or reverts is based on the definition of density as 

the mass per volume unit. For a given value of the density of skulls (7874 kg/m3) and non‐iron 

elements (2200‐3000 kg/m3), the iron content can be estimated as follow: 
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 ������ = ����� + ���������  (6.10) 

Where: 

- Vskull  is the volume of the material to be characterized 

- Viron  is the volume of iron 

- Vnon‐iron is the volume of elements that are not iron 

Since ρ = m/V and mskull = miron ecu+ mnon‐iron, it can be said that: 

 % �� =
�����

�������
= �

��������� − �������

��������� − �����
� ⋅

�����

�������
 

(6.11) 

Fig.  15 shows the correlation between the Fe content measured by melting test and the 

density measured in reverts using water displacement method obtained by the ArcelorMittal 

Global Research and Development center at Maizieres in France. 

 

Fig.  6.16: Correlation analysis between melting test and water displacement method (19) 

However, if several references of the use of this method are consulted, some dispersion is 

observed in the reported results (68) (69). 

This disparity might be due to several fundamental flaws in the industrial method. First, the 

iron contents and densities of the pure metallic phase and the pure non‐metallic phase are 

often determined by slag processors using their preferences. The calculated total iron contents 

in steelmaking slags are quite different if different values of the iron contents and densities for 

the ‘‘pure’’ metallic phase and the ‘‘pure’’ non‐metallic phase are assumed.  

The second issue with the industrial method is the water displacement density. Water can only 

penetrate large open pores. Steelmaking slag particles can have closed pores and microspores 

(impermeable voids) through which water cannot penetrate. Number of the closed pores and 

microspores in the steelmaking slag particles can change with slag composition, cooling rates 

and particle size. 

Therefore, water displacement density cannot be directly related to the iron content in the 

slags. In other words, water displacement density and total iron content depend on the 

particular sample porosity, slag chemistry (FeO content, slag basicity, etc.), and actual steel 

chemistry. 
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Naiyang Ma et others (70) have published a second order polynomial equation able to fit the 

correlation of the measured total iron contents in the steelmaking slag samples to the 

measured water displacement densities of the slag samples that guarantees reliable results of 

this method: 

 �� =
����.�

��
� −

����.�

��
+ 343.24    (R2 = 0.9319) 

(6.12) 

Where: 

- Fs  is the total iron content slag sample 

- ρs  is the slag density 

 

6.4.3 Radioactive analysis 
 

Despite the fact that radioactive scrap control may not be considered as a scrap quality 

characterization method for the process optimization purpose, radioactive properties are also 

a requirement of scrap quality, and must be taken into consideration during the scrap 

purchasing operations and factory material management processes. 

Radioactive elements, when introduced in the steelmaking production, pollute steel products, 

by‐products and process wastes. This contamination also affects the production equipment as 

well as the surrounding environment. 

On the other hand, increasing globalization of scrap markets and production site locations 

introduces an additional risk from less regulated regions. 

Fig.  6.17 shows the material flow inside the factory, indicating, through colour coding, the 

potential risk of finding radioactive materials. Also, the most common radiation control points 

are represented. 

 

Fig.  6.17: Radiation detection flow chart 
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The radioactive contamination is a really important topic for the steel industry, and it is 

carefully monitored due to the relevant impact from both ecological and economical aspects. 

The systems currently used in the steel industry are based on the radiation detection: sensors 

are placed at the reception of scrap metal cargos or during first operations on the scrap metal 

inside the steel plant. 

Such equipment are based on radiation presence and, unfortunately, in case of shielded 

sources can rise an alarm only once the shielding has been opened (e.g. melted) and/or the 

production plant contaminated. Fig.  22 to Fig.  24 show some pictures of these controls 

mechanisms: 

 
 

 

  
 

  

Fig.  6.18:Diferent radioactive controls: Up) Portal control for Scrap delivery by truck and by 

train, mid) Scrap and dust on line control and Down) punctual analyses  

This detection mechanisms are sometimes not enough and this generalized concern is 

reflected in a RFCS European project called “Muons scanner to detect radioactive sources 

hidden in scrap metal containers” which aimed  to develop a muon based portal for the 

identification of shielded orphan sources in order to avoid accidental melting in the steel 

industries, as well as to determine the minimum inspection time needed to discover the 

presence of a source hidden in the scrap metal, as a function of the source size (71). 
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6.5 Chemical analysis methods 
 

From the chemical analysis point of view, there are several methods to be applied depending 

on the purpose of the characterization activity.  

 

6.5.1 Conventional laboratory analytical methods 
 

A summary of conventional laboratory analytical techniques is shown in Fig.  6.19. Given that 

they are widely known, no further explanation is considered necessary in this review 

 

Fig.  6.19: Laboratory analytical Flow (72) 

 

6.5.2 Hyperspectral techniques 
 

Hyperspectral techniques allow obtaining the emission spectrum or reflection of an element 

remotely. This allows estimating the reflectivity or emissivity of one element in relation to its 

wavelength. The reflectivity or emissivity depends on several factors, including the chemical 

composition. 

The early developments of this technology focused on wood, plastic and the paper industry, 

and it was used for material classification purpose and to remove unwanted and easily 

identifiable materials of the manufacturing process (67) (73). However, when materials to be 

sorted cannot be identified by classical procedures due to their colour, weight and shape 

similarities more complicated data processing algorithms are required (74). 

In the recycling industry it is also possible to find some developments for industrial inline 

material sorting which use the spectral imaging technique as classification technique (75). One 

experimental set up is shown in Fig.  6.20. 
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Fig.  6.20: a) Materials used in the experiments; b) Experiment configuration 

Besides material sorting, some hyperspectral techniques have also been developed for 

material characterization. These developments have a direct application in scrap 

characterization for non‐quality definition in terms of slag/sterile contents or rusted surface 

characterization. Some examples are given below:   

 ArcelorMittal Global R&D Basque Country applied for a patent consisting on a new 

method of determining a chemical composition of a slag portion using hyperspectral 

techniques (76), which could be useful for sterile content analysis present in ferrous 

scraps. 

 

Fig.  6.21: Results of the estimate of the chemical analysis of the samples 

 O‐chess RFCS project dedicated to the online chemistry of the steel surfaces (77) which 

could be applied for analysing the scrap corrosion evolution associated with material 

storage, and therefore, its influence on the scrap quality in the phase prior to its use in 

the steelmaking process. 

However, the use of hyperspectral techniques for scrap classification is still a technology at a 

very early stage of development and therefore it presents several disadvantages, such as: 

- Hyperspectral systems are highly dependent on calibration and very specific signal 

processing algorithms. Therefore, changes on the used sensor and variations on the 

light make it impossible to transfer algorithms trained at one plant to another without 

a new dataset generation for calibration. 

- The analytical capacity in the hyperspectral processing is limited to the surface of the 

analysed material, so it is only useful if scrap is scattered to be analysed on a sampling 

surface. 
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- In the current state of the art, scrap pieces with surface coatings (tinned, galvanized, 

paints ...) are discriminated by the analysis equipment as non‐ferrous materials 

 

6.5.3 Gamma ray 
 

Prompt‐gamma neutron activation analysis (PGAA) is a very widely applicable technique for 

determining the presence and amount of many elements simultaneously in samples ranging in 

size from micrograms to many grams. It is a non‐destructive method, and the chemical form 

and shape of the sample are relatively unimportant.  

The technique can be described as follows: the sample is continuously irradiated with a beam 

of neutrons. The constituent elements of the sample absorb some of these neutrons and emit 

prompt gamma rays which are measured with a gamma ray spectrometer. The energies of 

these gamma rays identify the neutron‐capturing elements, while the intensities of the peaks 

at these energies reveal their concentrations. The amount of analyse element is given by the 

ratio of count rate of the characteristic peak in the sample to the rate in a known mass of the 

appropriate elemental standard irradiated under the same conditions. 

Neutrons are effective probes for matter since they are highly penetrative, are not affected by 

electromagnetic forces and possess large interaction probabilities with many different 

elements. 

Currently, there is a commercial system for scrap characterization based on PGAA technology. 

It was developed by Gamma Tech and is capable to measure Cu, Cr, Ni and Mn. This system is 

equipped in 20 shredders in the USA and in 2 shredders in Europe (78). 

However, Neutron analysers developed by Gamma Tech can only be used with scrape grades 

of small size fragments and cannot be used on sheared scrap which is the major scrap grade 

purchased.  

On the other hand, in steelmaking, there is also a great interest on knowing the scrap 

composition in other elements such as Mo, Sn, C, Ca, Mg, Al, O,… and these are the reasons 

why a collaborative project called Scrap Probe and involving Cetto Industries, University of 

Liverpool, CRM and ArcelorMittal R&D was initiated in 2008 (78). 

Scrap Probe project included three main activities:   

1 The design of the analyser through modelling and simulation  

2 Laboratory developments of the scrap analyser 

3 Construction of industrial scale scrap analyser 
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Fig.  6.22: Industrial configuration developed within Scrap Probe project 

The main conclusions can be summarized as follows: 

- The energy resolution became the crucial parameter in the sensitivity of the analyser, 

so that depending on the detector used, different detection limits were achieved.  

- The kinds of detectors required are very expensive. 

- Neutron analysers can only be used with scrap grades of small size fragments and 

cannot be used on large fragments and heavy scrap deliveries. It should be more 

effective to get clean scrap deliveries to detect fragments containing copper, using XRF 

or LIBS, and to remove them mechanically. 

- As main advantage, during this project is was proven that the proposed method is one 

of the few methods currently able to measure in bulk as well as ideally suited for 

conveyor belts 

 

6.5.4 Laser Induced Breakdown Spectroscopy (LIBS) 
 

Laser‐induced breakdown spectroscopy (LIBS) is a type of atomic emission spectroscopy which 

uses a highly energetic laser pulse as the excitation source. The laser is focused to form a 

plasma, which atomizes and excites samples. The formation of the plasma only begins when 

the focused laser achieves a certain threshold for optical breakdown, which generally depends 

on the environment and the target material.  

In principle, LIBS can analyse any matter regardless of its physical state, be it solid, liquid or 

gas. Due to the fact that all elements emit light of characteristic frequencies when excited to 

sufficiently high temperatures, LIBS can (in principle) detect all elements, limited only by the 

power of the laser as well as the sensitivity and wavelength range of the spectrograph and 

detector. This capability allows LIBS technique to be used as a powerful tool for scrap 

composition analysis in real time. Probably the most representative developments of the 

industrial application of LIBS technology to scrap characterization field in steelmaking are two 

European projects within the European program Research Fund for Coal and Steel: 

IPRO (2010 – 2013) project (79) and LCS (2006 – 2009) project (80) aimed to do Inline 

elemental characterisation of scrap, in EAFs with continuous charging of scrap through a 

conveying system that connects the scrap yard to the EAF and in crap recycling industry 
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respectively, for improved EAF charging control and internal scrap recycling. The main output 

of the proposed system is a guidance of scrap charging operation for EAF in order to stabilize 

process conditions and optimise internal scrap recycling. Fig.  6.23 shows the experiment 

configuration used in LCS project. 

 

Fig.  6.23: Theoretical configuration of in line system for scrap characterization during continuous 

scrap charging processes (80) 

Fig.  6.24 shows some pictures related to the industrial installation of LIBS system as outcomes 

of  IPRO project. 

 

Fig.  6.24: Measurement campaign at Stena Recycling’s scrap yards in Sweden (79) 

In 2008‐2011, in an RFCS (78), CRM (Belgium) tested Prompt Gamma Neutron Activation 

Analysis (PGNAA) as a potential technique for conducting on‐line bulk composition analysis of 

steel scrap. Within this analysis, and aiming for having a comparative criterion of the results, 

CRM published some experiment they did using LIBS technique. Fig.  6.25 shows the 

experimental set up and some results obtained from the data analysis. 
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Fig.  6.25: Examples of analyzed bundles 

In all cases, the research reached similar conclusions:  

- LIBS system is a superficial analysis technique, and it does not seem to be reliable to 

analyse big pieces of material 

- Elements spread unevenly in the scrap charge in the case of conveyor feeding, because 

of the physical impossibility for the device to scan the whole scrap flow on the current 

conveyor setup (when the scrap is piled on top of each other).  

- It is not possible to analyse bundled scrap, since the inlet part can present large 

heterogeneities. 

- In terms of accuracy, the measuring operation requires time for conducting a good 

measurement, in the case of highly heterogeneous materials there could be a 

worsening of the measurement accuracy. On the other hand, there are some materials 

that are out of measuring range such as plastics, paper or organics 

In general, the concept of using laser analysers for inline elemental characterisation of scrap 

pieces transported on conveyor lines is assessed to be suitable for improved EAF charging. 

Nevertheless, the industrial implementation of this technique needs to be further investigated. 

 

6.5.5 Portable Analysers 
 

The primary objective of portable instruments is to, either qualitatively or quantitatively, 

analyse a material on site. In the particular case of scrap characterization, portable versions of 

these instruments simplify the operation of complex spectrometers into point‐and‐ shoot tools 

that can be used with minimal training or understanding of the instrument’s inner workings.  
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Portable analysers are becoming important tools for the on‐site sorting and identification of 

scrap in scrap yards. Their analytical accuracy, while not as good as laboratory systems, seems 

to be more than adequate for sorting mixes and most grade verification requirements.   

The most extended portable technologies for scrap metal analysis are Optical emission 

spectroscopy, X‐Ray fluorescence and Laser Induced Breakdown Spectroscopy   

6.5.5.1 Optical Emission Spectrometer (OES) 

 

Optical Emission Spectroscopy (OES) is a well trusted and widely used analytical technique 

used to determine the elemental composition of a broad range of metals. The part of the 

electromagnetic spectrum which is used by OES includes the visible spectrum and part of the 

ultraviolet spectrum 

Every element emits a series of spectral lines corresponding to the different electron 

transitions between the different energy levels. Each transition produces a specific optical 

emission line with a fixed wavelength or energy of radiation. 

For a typical metallic sample containing iron, manganese, chromium, nickel, vanadium, etc., 

each element emits many wavelengths, leading to a line‐rich spectrum. For example, iron 

emits just over 8000 different wavelengths so choosing the optimum emission line for a given 

element in a sample is important. 

The characteristic light emitted by the atoms in the sample is transferred to the optical system 

where it is split into its spectral wavelengths. Next the individual spectral line peak signals are 

collected by detectors and processed to generate a spectrum showing the light intensity peaks 

versus their wavelengths.  

The peak wavelength identifies the element, and its peak area or intensity gives an indication 

of its quantity in the sample. The analyser then uses this information to calculate the sample’s 

elemental composition based on a calibration with certified reference material. The whole 

process, from pressing a start button or a trigger to getting the analysis results, can be as quick 

as 3 seconds or it can take up to 30 seconds for a full accurate quantitative analysis, it all 

depends on the analyser used, the range of elements measured and the concentrations of 

those elements. 

The elements and concentrations that OES analysers can determine depend on the material 

being tested and the type of analyser used. 

Compared to other analytical techniques, OES is fast and relatively easy to use, it measures a 

wide range of elements and concentrations in many different types of materials and it’s fairly 

low‐cost compared to other techniques. 

Another important point to highlight is that OES is also currently the only method which can 

analyse carbon and nitrogen on site, out of the laboratory. 

Different element detection thresholds for portable OES are shown inTable 6.1 (similar 

detection threshold are achieved with LIBS and HHXRF): 
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Low allow steel Stainless steel Ni steel Cr steel Tool steel Fe-Orientation Fe Overview 

Min Max Min Max Min Max Min Max Min Max Min Max Min Max 

SI 0,01 1,6 0,01 2 0,01 0,6 0,01 3,3 0,01 1,5 0,01 3 0,01 3 

MN 0,015 2,5 0,01 11 0,01 1 0,01 12 0,01 2 0,015 13 0,015 13 

CR 0,015 5,5 4 30 0,01 0,6 6 33 0,01 20 0,01 33 0,015 33 

MO 0,005 2 0,005 4,5 0,01 6 0,01 2,4 0,01 11 0,01 11 0,005 11 

NI 0,01 5,5 2 40 10 50 0,01 7 10 7 0,01 50 0,01 50 

AL 0,005 1,2 0,01 0,35 0,01 0,3 0,01 0,2 0,01 0,35 0,01 1,2 0,005 12 

CO 0,01 1 0,01 1,2 0,01 13 0,01 0,2 0,01 12 0,01 13 0,01 13 

CU 0,005 0,8 0,005 0,5 0,01 0,35 0,01 1 0,05 0,6 0,01 1 0,005 1 

NB 0,01 0,9 0,01 1,1 0,01 0,15 0,01 3 ‐ ‐ 0,005 3,3 0,005 3,3 

TI 0,01 0,35 0,01 2,3 0,01 1,5 ‐ ‐ ‐ ‐ 0,01 2,3 0,01 2,3 

V 0,005 1,5 0,01 0,6 0,01 0,6 0,01 1 0,01 10 0,01 10 0,01 10 

W 0,05 1,5 0,01 4 ‐ ‐ ‐ ‐ 0,05 22 0,05 22 0,005 22 

ZR 0,01 0,5 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0,05 0,5 

PB 0,01 0,25 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0,01 0,25 

SN 0,01 0,2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0,01 0,2 

Table 6.1: Portable OES detection threshold for different elements (81). 

 

6.5.5.2 X-RAY fluorescence analysers 

 

XRF Fluorescence is a method in which the radiation produced by a miniature X‐ray tube 

strikes the sample surface and causes ionizations of the inner shell of the atoms constituting 

the sample. The resulting vacancies in the inner shell of the atom are filled by electrons from 

higher shells and thereby photons specific to the element are emitted and detected with a 

detector.  

XRF analysers allow analysing almost all elements present in metallic materials. The main 

detecting limitations are light elements (lighter than Mg). These elements have energy levels 

that are low enough that they struggle to escape from the sample without being absorbed. For 

the fluorescent x‐rays that do escape the sample, some of them will not be able to penetrate 

the air between the sample and the instrument to reach the detector. 

So essentially, light elements are difficult to measure by portable XRF because their 

fluorescence struggles to reach the instrument and then to calculate how much of that 

element is present. This also explains why the lightest elements that the instruments measure 

has higher detection limits, often 0.5‐1%, because they need that higher concentration to 

produce enough energy that can be recognised. 

The effective element range and limit of detection (LOD) varies between analysers, depending 

mainly on tube and detector specification, analyser geometry and with sample matrix 

composition. Higher abundance of heavier major elements, especially iron, negatively affects 

trace element detection. The best instruments are now capable of LOD in the 5 to 100 mg/kg 

range for elements with Z between 19 (K) and 68 (Pb). LOD vary between elements with 

emission lines and possible interferences. Each instrument has therefore its own specific 

element range, to be considered before selecting an analyser for a specific application (82). 

Other important limitations of this technique are: 
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 XRF is a surface measurement method in which the penetration depth is less than 50 

μm. 

 XRF uses radiation. Due to this, some industries may require health and safety control 

certification or a license to handle such radiation emitting equipment.  

 XRF cannot detect carbon 

 

6.5.5.3 Laser Induced Breakdown Spectroscopy 

 

LIBS is an atomic emission technique whereby the instrument’s laser fires a series of 

nanosecond‐long pulses through a small focusing lens onto the sample. The focused beam 

ablates a tiny amount of the sample’s surface and subsequently ionizes the removed material 

to create a plasma. The plasma expands as it is bombarded by the laser and excites electrons 

in the plasma’s constituent atoms. As electrons relax and atoms return to a stable state, they 

emit photons that are characteristic of the element and electron transitions.  

Portables LIBS devices have advantages over portable XRF devices, such as sensitivity to the 

light elements. Generally, elements from laser induced plasma emit a lot of lines in the UV, VIS 

or NIR region and provide a possibility to avoid or minimize interference from different 

spectral lines. 

On the other hand, OES and LIBs share similarities on the detection side as both are atomic 

emission techniques. Where LIBs uses a laser to create the plasma in which the elements are 

excited, OES uses an arc or spark between an electrode and the sample. Because of this, OES 

requires a conductive sample and is constrained to metal analysis only, while LIBs 

spectrometers can be used for other kinds of materials. 

Other advantages of portable LIBs devices are the high spatial resolution and the possibility to 

distinguish between different layers of the sample. 

Probably the main important disadvantages are: 

 Portable solution is not a mature technology and it presents some limitation for most 

of the tramp elements (trace levels) 

 It can’t quantify C at 200‐300 ppm 

 High LODs for S, P. 
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For elemental analysis in scrap yards, XRF, OES and latest addition LIBS each have their 

strengths and limitations.  

*** - Excellent                       ** Good                                *Poor 

Table 6.2 shows a comparative analysis among different portable techniques: 

Portable technique LIBS XRF OES 
Have a small, lightweight and portable analyser *** *** * 
Accurately determine the full chemical composition * ** *** 
Analyse penalty and trace element down to <0,1% level  *** ** *** 
Analyse samples with minimal sample preparation ** *** * 
Bring the analyser to the sample *** *** * 
Have minimum hassle with certifications and approvals *** * *** 

*** - Excellent                       ** Good                                *Poor 

Table 6.2: Comparative analysis among different portable techniques 

These portable techniques have numerous advantages: 

- There is no need of sampling or surface preparation.  

- Quick analytical technique that offers instantaneous results 

- It may be considered as non‐destructive technique; the measurement will only affect 

locally the sample. 

However, the main limitation of this type of analysis is due to the spot analysis approach, so 

that only information about metallic elements content in the analysed piece is obtained. In 

summary, there is no complete characterization of the material (sterile, coatings, quantity of 

oils ...). 
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6.6 Industrial interest on scrap characterization methods 
 

In previous chapters, a complete overview of the available techniques for residues recycling 

were presented. Although understanding size reduction and separation technologies are of 

high interest for steelmakers, these activities are usually covered by scrap dealers. On 

contrary, in site material characterization, both ferrous and nonferrous portions, is still a non‐

solved issue for daily scrap yard operation. 

Up to this section, this chapter analyzed the current state of the art in ferrous scrap 

characterization reported in literature. However, and since this thesis aims to identify technical 

needs in scrap management operations and to proposed novel solutions for covering 

potentials steelmaking demands, the literature search done was discussed with 8 different EAF 

plants (in ArcelorMittal). The results of this survey of interest will be used for defining the next 

research lines of the current work.  

Based on the questioner answers, Fig.  6.26 depicts the degree of plants interest classifying 

them in Low interest, medium interest and high interest:  

 

Fig.  6.26:Interets of EAF plants in the different scrap characterization methods 

Once the industrial interest on the different technologies is reported by the final user, another 

criterion that must be considered is the usage degree. The direct comparison between these 

two concepts allows understanding where there is a gap for proposing new characterizing 

solutions. The exercise is shown in Fig.  6.27: 
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Fig.  6.27: Interest of EAF plants on characterization solution vs. degree of utilization 

Looking at the results presented in Fig.  6.27, special attention should be put in low used/high 

interesting quadrant (in red), which are: 

 Scrap Cleaning technologies 

 The application of image processing for automatic scrap control 

 Methodologies for scrap management optimizing (TCO, purchasing and mix definition) 

 Scrap yard automatization – Industry 4.0  

 Portable analysers for sterile characterization 
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6.7 Chapter 6 recall and conclusions 
 

Ferrous scrap products are extremely complex materials since, beside a ferrous matrix 

composed by Iron and other metallic elements, they are composed by coatings, dirt, sterile, 

foreign attached materials (plastics, wood, glass) and oxidized layers. 

In order to optimize the overall EAF process, it is necessary to have detailed information about 

the input raw materials. In this sense, the different available technologies currently on 

application in steelmaking for characterizing ferrous materials, can be grouped in four main 

categories; Industrial methods, mathematical methods, chemical analyses and physical 

analyses  

This chapter presents the state of the art of the aforementioned characterization methods. 

The literature survey was also used to discuss with 8 different EAF steelmaker about the 

current situation of the methods usage and its real industrial interest.   

Looking at the questioner’s analysis results, the topics of most interests for steelmakers are; 

Scrap Cleaning technologies, automatic scrap control, methodologies for scrap management 

optimization and sterile characterization. 

The work carried out in this section permitted to assess the novel scrap characterization 

methods developed in the doctoral thesis: 

1. New empirical method for estimating VIU lost due to storage degradation 

2. New method for chemical characterization of sterile material in scrap 

3. New method for sterile quantification in scrap deliveries. 

These methods development work is described in the next chapters  
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 7 
New method proposal for estimating VIU lost 

due to storage degradation. 
Due to regular steelmaking scrap yard operative methodologies, EAF ferrous raw 

materials are purchased in high volumes and can be stored for long period before being used. 
This chapter proposes a new analytical methodology for estimating how the material 
degradation due atmospheric corrosion affect to the quality of ferrous materials and the 
material VIU. 
 

At this point in the document, it seems recurrent to insist that ferrous scrap is the main raw 

material in steelmaking process by electric arc furnace route, and as such, it represents a high 

percentage of the total factory manufacturing costs. It makes necessary to dedicate a specific 

installation in the Steelshop for material management and storing. 

The basic purpose of a steel plant scrap yard is to have enough scrap (of each grade used in the 

furnace) to make the furnace running without any stoppage due to lack of scrap. To this end, 

several important aspects must be kept in mind: 

 The Steel‐shop daily scrap consumption in regular operation 

 Scrap grades/alternatives to reach final product requirements 

 Scrap availabilities in local and global markets 

 Scrap delivery time from initial purchase 

o Local: 

 Truck (2 ‐ 7days) 

 Rail (7 ‐14 days) 

 Barge (7 – 14 days) 

o Remote 

 Rail (14 – 20 days) 

 Barge (14 – 28 days) 

 Vessel (30 – 42 days) 

The scrap yard replenishment rate will determine the minimum scrap yard capacity: 

 If all scrap deliveries arrive by vessels, the minimum scrap yard capacity would be 6 to 

8 weeks of inventory. 
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 If all scrap arrives by truck, the minimum scrap yard capacity would be 7 to 10 days of 

inventory. 

All abovementioned concepts are used to define the general rules for Scrap Yard Layout design 

at any steel site. This steelmaking general Lay‐Out is basically composed by these elements:  

 A scrap receiving and inspection station, usually located at entrance. 

 Scrap storage area in well‐defined piles 

 Scrap basket loading location stations  

In Fig.  7.1 several examples of steelmaking scrap yard are shown: 

  
 

  

Fig.  7.1: Examples of EAF scrap yards 

However, once the scrap yard Lay‐Out is defined, most of the steel plant managers must focus 

on maximizing the economic profitability of the overall facility. Probably, the most extended 

practice is to use the scrap yard as a scrap storing facility; purchasing high volumes of scrap 

when the market price is low and consume the stored materials when the market prices are 

high. 

This strategic procedure for scrap management presents one drawback that is not usually 

considered by steelmakers; the material quality degradation due to long storing period by 

atmospheric corrosion   

This chapter proposes an analytical procedure for obtaining empirical equations which allow 

estimating the cost worsening of ferrous material due to the degradation produced by the 

atmospheric corrosion. 
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7.1 Atmospheric corrosion 
 

Metallic atmospheric corrosion may be considered as a type of corrosion resulting from the 

interaction between a metallic material and the natural atmosphere. Generally, it can be 

understood as the general tendency of metallic materials to look for their most stable form 

(lower internal energy state).  

Atmospheric corrosion can be classified into three categories (83);  

 Dry: In the absence of moisture, many metals corrode very slowly at room 

temperature. Accelerated corrosion under dry conditions is achieved at high 

temperatures and generally occurs on metals which have a negative free energy of 

oxide formation and then rapidly form a thermodynamically stable film in the presence 

of oxygen. 

 Damp: This type of corrosion requires the presence of moisture in the atmosphere and 

its aggressiveness increases with the moisture content. When moisture exceeds a 

critical value (which is about 70% in terms of relative humidity), an invisible thin film of 

moisture is formed on the surface of the metal, providing an electrolyte to transfer 

current. The critical value depends strongly on surface conditions such as cleanliness 

conditions, corrosion products produced or the presence of hydroscopic contaminants 

(which can absorb water in very low relative humidity). 

 Wet: It occurs when water droplets or visible water films are formed on the surface of 

the metal due to sea breeze, rain or dewdrops. 

These corrosion processes have been reviewed and analysed in detail in the past and several 

mathematical models have been developed to predict the corrosion damage of metals in the 

atmosphere (84) (85) (86) (87). (88) These activities are related to the durability analysis 

metallic structures, mainly for determining the economic costs associated with this 

degradation phenomenon. However, in the scope of this research, the analysis of the 

atmospheric corrosion on metallic materials has the only purpose of assessing the cost of the 

loss of quality in the scrap induced by the degradation of the material subject to atmospheric 

corrosion. 

 

7.1.1 General mechanism of atmospheric corrosion  
 

A fundamental requirement for electrochemical corrosion processes is the presence of an 

electrolyte. Thin‐film "invisible" electrolytes tend to form on metallic surfaces under 

atmospheric exposure conditions, after a certain critical humidity level is reached. In the case 

of a completely uncontaminated atmosphere, at a constant temperature, a perfectly clean 

metal surface would not be expected to undergo corrosion damage at a relative humidity 

below 100%. However, in practice, due to the presence of hygroscopic surface species, 

impurities in the atmosphere and small temperature gradients between the atmosphere and 
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metallic surfaces, a microscopic surface electrolyte tends to form at significantly lower 

humidity levels. The critical humidity level is not constant (70% can be used as reference). It 

depends on the corroding material, the tendency of corrosion products and surface deposits to 

absorb moisture and the presence of atmospheric pollutants. 

In the presence of thin‐film electrolytes, atmospheric corrosion occurs by balancing anodic and 

cathodic reactions. The anodic oxidation reaction involves the dissolution of the metal, while 

the cathodic reaction is often assumed to be the oxygen reduction reaction. These reactions 

are illustrated schematically in Fig.  7.2. It should be noted that corrosive contaminant 

concentrations can reach relatively high values in thin electrolyte films, especially under 

conditions of alternate wetting and drying. Oxygen from the atmosphere is also readily 

supplied to the electrolyte, under thin‐film corrosion conditions. 

 

Fig.  7.2: Simplified mechanism of atmospheric corrosion (89) 

However, it is important to note that the corrosion process is a discontinuous process and the 

intensity of the corrosive phenomenon is strongly dependent on the duration of electrolyte 

film presence on the surface of the metallic material. 

 

7.1.2 Factors of influence in the severity of atmospheric corrosion 
 

Through the numerous studies carried out both in laboratory and in field conditions, the most 

relevant factors that cause corrosion have been identified and classified (83). The two most 

important ones are meteorological conditions and pollution. These two factors determine the 

intensity and nature of corrosive processes. 

Other factors such as metal composition and properties of the oxide formed are also 

important. However, exposure conditions represent the most important factor regarding 

meteorological corrosion. The main factors of influence are listed below: 

Wetting time: 

The most important atmospheric characteristic directly related to the corrosion process is 

humidity, since it is the origin of the electrolyte needed in the electrochemical process.  
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The time in which the electrolyte is present is called wetting time. The wetting time 

determines the duration of the electrochemical process. The thickness and chemical 

composition of the water film are important. Fig.  7.3 shows the relationship between 

atmospheric corrosion and the thickness of the electrolyte layer on the metal surface. 

 

Fig.  7.3: Relationship between electrolyte film and corrosion rate (90) 

The diffusion of oxygen through the thin‐film of electrolyte is usually the controlling factor of 

the corrosion rate. The corrosion rate increases with the aqueous layer and reaches its 

maximum value at intermediate thicknesses. 

The clustering of individual water droplets to produce relatively thick layers of electrolyte 

reduces the corrosion rate by reducing the oxygen diffusion process. 

Likewise, an excessive reduction in the thickness of the moisture layer slows down the 

corrosion effect due to the high ohmic resistance of the extremely thin films and the inhibition 

of the ionization and dissolution reactions of the metal. Therefore, the climatic variations in 

non‐rainy periods have a great influence on the corrosion rate. These aspects are depicted in 

Fig.  7.4: 

 

Fig.  7.4: Variation of the corrosion rate during the drying cycle after rainfall (84) 

The wetting time as defined in ISO 9223 “Corrosion in metals and alloys” does not cover all 

aspects of climate. The wetting time can be estimated by determining the number of hours in 

a given time interval, when the relative humidity (RH) exceeds 80% and the temperature 

exceeds 0ºC. Its estimation is based on the characteristics of the atmosphere humidity and has 

nothing to do with the level of pollutant and the nature of the metallic materials. 
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Relative humidity of air: 

The relative humidity of the air determines the percentage of moisture from which the 

condensation phenomenon (necessary for the formation of an electrolyte film on the metal 

surface) will occur.  

This condensation theoretically occurs at relative humidity of 100%. However, under certain 

conditions, it can occur at lower humidity levels. 

This may particularly occur when the temperature of the metal is lower than the air 

temperature, when the surface is porous (caused by the surface tension phenomenon, which 

decreases the saturation pressure within the pore), or when the surface contains deposits of 

some hydroscopic contaminants. 

Temperature: 

The effects of temperature in the corrosion rate are twofold. On one hand, as the temperature 

rises, the rate of electrochemical reactions increases. On the other hand, as the temperature 

increases, the evaporation of water on the metal is accelerated and the concentration of 

oxygen and other corrosive gases dissolved in the metal decreases. 

Usually, the corrosion of a metal in contact with a large volume of liquid increases with 

temperature. This effect is produced due to the fact that the diffusion coefficient of many 

substances in aqueous solution increases with temperature since the diffusion layer lowered 

by the effect of the evaporation. Therefore, even though the solubility of oxygen decreases 

with temperature, the rate of corrosion of processes controlled by the cathodic reduction of 

this gas is multiplied several times before reaching a maximum. 

Winds: 

The direction and speed of the wind have a great influence on the atmospheric corrosion rate. 

Wind carries pollutants, which settle on metals and directly influence the measured corrosion 

figures. 

Pollution effect 

The main pollutants contained in the atmosphere are sulphur dioxide (SO2), different nitrogen 

oxides (NOx), chlorates and solid particles that are deposited on the metal surface. From the 

corrosion point of view, chlorates (mainly present in marine regions) and SO2 (from burning 

fossil fuels, such as coal from volcanic activity) are the most important species 

 

7.1.3 Atmospheric corrosion in steelmaking 
 

The analysis of atmospheric corrosion on metallic materials within steelmaking scrap yards has 

the only purpose of assessing the cost of scrap non‐quality induced by the degradation of the 

material subject to atmospheric corrosion. The evolution of corrosion in ferrous materials 



 
New method proposal for estimating VIU lost due to storage degradation.  

157 
 

results in loss of metallic yield, increase of slag generation and worsening of the main specific 

consumption of the process. 

In this section several real examples of corrosion effects on steelmaking raw materials are 

shown.   

Hot Briquetted Iron (HBI): 

Hot Briquetted Iron is the product of reducing iron ore with natural gas. The direct reduction 

process is a complex process, which, explained in simple terms, consists of the following steps: 

 Raw material: Iron ore pellets are fed into the reactor 

 Natural gas is converted into reducing gas and then injected in a closed system 

 The direct reduction process occurs: Hot reducing gas flows through the iron ore, from 

the bottom to the top (according to the counterflow principle). The Oxygen content is 

reduced, producing the “sponge iron”, which is pressed into briquettes 

Direct reduction processes associated with hot briquetting can be grouped as follow: 

 Gas based reduction of pellet and lump ore. These processes include mainly Midrex, 

Hyl and Purofer 

 Gas based fine ore reduction, which includes Fior, Finmet and Circored 

 Coal based reduction, which includes Fastmet or Iron dynamics 

These direct reduction processes generated HBI material with well bounded chemical 

characteristics. Table 7.1 shows an example of it. 

 Min. Max. 

Metallization  92%  

Fe (Total) 88% 94% 

Fe (Metallic) 83% 90% 

C 0.5% 1.6% 

S 0.001% 0.03% 

P2O5 0.005% 0.09% 

Gangue 4% 9% 

Size (typical) (90x48x32) mm (140x58x34) mm 

Fines ‐ 5% 

Apparent Density 5 t/m3  

Buck Density 2.5 t/m3 3.3 t/m3 

Table 7.1: Example of typical HBI general characteristics (91) 

Since the HBI production technology is known, when purchasing, the final consumer has a 

clear idea of the expected material chemical composition. In spite of that, there is usually a 

double check of this information by spot sampling analysis in both, supplier site and consumer 

site.  
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However, due to high lead times of this product material (more than 2 months in most cases), 

the steelmakers that systematically use this material, tend to acquire HBI in large quantities. 

And so that, HBI might be stored for months in the scrap yard (in most cases outdoors) 

Fig.  7.5 shows the state of two different pieces of HBI from the same delivery subject to 

different storage times: 

  

Fig.  7.5: HBI specimen with different atmospheric exposure times 

The visual inspection of these images leads to the following conclusions; The two samples are 

not visually the same any more. However, from a TCO approach point of view, the steel mill is 

still considering them as the same materials when defining the scrap MIX, since there is no 

method available to quantify the worsening of quality with time. 

Direct Reduced Iron (DRI): 

Direct reduction of iron is the removal of oxygen from iron ore or other iron bearing materials 

in the solid state, i.e. without melting, as in the blast furnace. The reducing agents are carbon 

monoxide and hydrogen, coming from reformed natural gas, syngas or coal. Iron ore is used 

mostly in pellet and/or lumpy form. 

There are several processes for direct reduction of iron ore: 

 Gas‐based shaft furnace processes (Midrex® and Energiron being the main ones). This 

process accounts for about 80% of total production 

 Coal based rotary kiln furnaces (mainly in India) ‐ accounting for around 20% of total 

production. 

 Min. Max. 

Metallization  92% 96% 

Fe (Total) 86% 94% 

Fe (Metallic) 81% 88% 

C 1% 4.5% 

S 0.001% 0.03% 

P2O5 0.005% 0.09% 

Gangue 4% 9% 

Size (typical) 4 mm 20 mm 

Apparent Density 3.4 t/m3 3.6 t/m 

Buck Density 1.6 t/m3 1.9 t/m3 

Table 7.2: Example of typical DRI general characteristics (91)  



 
New method proposal for estimating VIU lost due to storage degradation.  

159 
 

From the storage point of view, DRI suffers a similar process as HBI. In this case, the storage 

period is usually much lower and the DRI is carefully protected from exposure to the weather 

due to its high self‐combustion risk in the presence of moisture. 

DRI is highly susceptible to oxidation and rusting when stored unprotected 

As explained in section 6.3.1.1, a regular operation performed by some steelmakers for 

characterizing scrap is the systematic linear regression analysis of the furnace performance 

with respect to the Ferrous input materials in daily basis, in order to estimate, for each scrap 

grade, the metallic yield and specific energy requirements associated to this material.   

Fig.  7.6 and Fig.  7.7 show the data obtained for DRI using the mentioned methodology from 

May 2011 to October 2011 in one specific ArcelorMittal site. 

 

Fig.  7.6: Metallic yield vs. specific Energy data calculated for DRI based on EAF performance 

 

- Number of samples: 95 

- Mean: 1154,4 

- Standard deviation: 39,2 

- Variance: 1536,6 

- Bias: 0,08363 

- Kurtosis: 1,16661 

Fig.  7.7: DRI Metallic yield statistical data from EAF performance 

Attention is drawn to the fact that, although DRI came from the same supplier through the 

whole period, the behaviour of the material was very unpredictable. This variability seems to 

be associated with the effect of environmental oxidation. 

Other Ferrous materials: 

Same that happens with the HBI or DRI, also occurs with the other ferrous scrap. References of 

a research activity has been found in ArcelorMittal, which analysed the evolution of 
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incinerated shredded scrap quality as well as the impact of temporally outside storage period 

in its value in use. 

According these reports, as it is shown in Fig.  7.8, 1 tonne of incinerated shredded scrap (E46) 

was sampled directly at the output of the shredded producing incinerated shredded scrap in 

2009. This sample was then divided into 2 homogenous subsamples: the first one was directly 

melted in a 300 kg induction furnace in ArcelorMittal and the second one was stored outside in 

an opened basket, weighted every week and then melted in the induction furnace three 

months later.  

  

Fig.  7.8: E46 scrap analysis: Left) E46 stored in an opened basket and Right) Mass evolution in the 

sample stored outside for 3 months (in %) 

After the characterization of the two scrap samples (“fresh” and “aged”) through melting tests 

analyses, their thermodynamic value in used were calculated (using as reference pure iron cost 

in July 2009). It showed that the “aged” scrap VIU was 10.1 €/t less than “fresh” scrap.  

This experiment confirms that it is really important to avoid long storing period to the 

outdoors. 

The atmospheric degradation effect observed for observed for HBI and DRI also occurs with 

other scrap materials like E46. Demonstrating that atmospheric corrosion has an important 

impact on the VIU of the steelmaking materials. This is where the need to work on designing 

new methods to assess the worsening of quality for different types of ferrous scrap arises. 

  



 
New method proposal for estimating VIU lost due to storage degradation.  

161 
 

7.2 Experimental Set up for assessing the influence of 

atmospheric corrosion in steelmaking raw materials 
 

The simplest form of direct atmospheric corrosion measurement is by specimen exposures. 

Subsequent to the exposure, the specimens can be subject to weight loss measurements, pit 

density and depth measurements, and also visual and microscopic examination for evaluation 

purposes. 

The analytical method proposed in this section consists of the empirical analysis of the 

degradation by corrosion that certain materials present when exposed to weather conditions, 

in order to associate it with the additional costs that this degradation generates (Value In Use 

approach). 

 

7.2.1 Specimens selection 
 

The most widespread way of classifying the different grades of scrap within the scrap yard is 

based on its content in tramp elements (Cu, Sn, Ni). The final content in these elements in 

steel is one of the main constraints when deciding the scrap mixture, even more important 

than price. 

Based on this criterion, scrap can be classified into 3 large groups: 

 Low residual scrap 

 High residual scrap 

 Pre‐reduced iron 

Keeping in mind this classification criteria, and for the analysis proposed in this section, It have 

been selected as materials to be tested, one type of scrap for each of the three defined 

groups; Busheling (E8) as low residual scrap, Shredder (E40) as high residual scrap and Hot 

Briquetted Iron (HBI) as pre‐reduced iron. Fig.  7.9 shows the selected specimens. 

Fig.  7.9: Selected specimens. Left) Busheling scrap (E8), middle) Shredder scrap (E40) and right) 

HBI samples 
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7.2.2 Exposure of the specimens 
 

The selection of the exposure location of the specimens is an important aspect to consider and 

it should be defined mainly by considering three factors;  

Location: In order to simulate the natural degradation process of storing the material 

outdoors, the exposure location selected corresponds with the scrap yard of a real Steelshop 

in Spain close to the sea. However, and since exposure to marine and windy environments is 

one of the factors that accelerates the oxidation process, the selected location aimed to 

protect the samples from a direct exposure to these factors. Fig.  7.10 indicates the experiment 

location detail. 

 

Fig.  7.10: Tests site location in ArcelorMittal Sestao factory (Spain) 

Exposure configuration: Particular attention should be paid to the way in which the specimens 

are exposed to atmospheric conditions, ensuring that there is no accumulation of water or 

other elements after long periods of exposure. To do so, a specific exhibition panel was built 

for this experiment whose design is shown in the following figure. 

 

Fig.  7.11: Dedicated holder for the experiment 
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Sample exposure time: In order to analyse the evolution of corrosion phenomena along time 

for a specific location, some samples from the same scrap delivery for the selected scrap types 

were exposed to the weather, part of these specimens were progressively recovered and 

analysed at the laboratory after 1 month, 2 months, 3 months, 6 months, 9 months and one 

year of exposition. Fig.  14 show the experimental setup. 

 

Fig.  7.12: Exposure set up 

 

7.2.3 Laboratory resources for Specimens analysis 
 

Before any analysis, it was defined the characterization protocol considering the following:   

- Weight loss was determined by measuring the difference of weight before and after 

the exposure time. 

- Oxidation layer thickness evolution was determine analysing the samples in an optical 

microscope. 

The available laboratory equipment for this end is listed below: 

 PG5001 balance by METTLER TOLEDO, whose main characteristics are listed in the 

following figure: 

 

Readability: 0,1 g 

Maximum Capacity: 5100 g 

Taring range: 0‐5100g 

Repeatability (s): 0,08g 

Linearity: +/‐ 0,1g 

Stabilization time: 1‐2 s 

Sensibility: 

- Tª drift 

- Long‐term drift 

 
 

+/‐ 10 ppm/ºC 
+/‐0,007% 

Weighing pan: 240x240mm 
 

Table 7.3: PG5001 balance description 

 LEICA MEF4M Widefield Inverted Metallograph, whose main characteristics are listed 

below: 
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Equipment Details: 

List of Equipment:Brightfield, Darkfield, Polarized 
Light, Polarization Contrast, Differential Interference 
Contrast, Interferometry, Video port, PC 

Objectives: 

Plan Fluor: 2.5x/0.075 (∞/‐) 

Plan Fluor LWD: 5x/0.10 Epi (∞/0) 

Plan Fluor LWD: 10x/0.20 Epi lK (∞/0) 

Plan Fluor XLWD: 20x/0.40 Epi lK (∞/0) 

Plan Fluor: 50x/0.80 Epi lK (∞/0)  

Plan Apo: 150x/1.25 W lK (∞/0) 
 

Table 7.4: LEICA MEF4M microscope 

 Buehler Simplimet 2000 metallurgical mounting press for the encapsulation of 

metallographic samples. 

 

Mould size: 25 mm 

Operating mode: Automatic 

Type of resins: Thermosetting  
Thermoplastic 

Dry air requirement: 5,5 – 6 bar 

Cooling water 
requirements:  

2 l/min 
1 ‐ 2 bar 

 

Table 7.5: System for Encapsulation of metallographic samples details 

 Wet chemistry lab for conducting the chemical analysis 

 

Fig.  7.13: Wet chemistry Laboratory 
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7.3 New method for assessing atmospheric corrosion 

penalties in steelmaking raw materials 
 

Section 7.2.1 described the selected specimens for the proposed research activity, using as 

main selection criteria their content in residual elements: 

- Low residual scrap: Busheling scrap (E6 – according European scrap specification) 

- High residual scrap: Shredded scrap (E40 – according European scrap specification) 

- Pre‐reduced iron: HBI 

Once selected, the specimens were characterized in laboratory and exposed to atmospheric 

conditions according the set up described in section 7.2.2. Then, different fractions of each 

selected material were recovered periodically along one year of exposition and the 

degradation was measured. To ensure the coherency on results this analysis was done twice; 

in 2017 and 2018.  

On the other hand, and since the most important factors influencing material degradation due 

to atmospheric corrosion process are related to humidity and temperature, it is important to 

monitorize these two factors along the experimental period to establish the experimental 

references.  In Fig.  7.14 and Fig.  7.15 the daily average temperature and rain data during the 

experimental periods are depicted. These meteorological data were obtained from 

meteorological station that the State Meteorological Agency in Spain (AEMET) (92) has at 

Bilbao airport (the closest official meteorological station to the site)   

 

 

Fig.  7.14: Annual temperature evolution during experiment 1 (2017) and experiment 2 (2018)  
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Fig.  7.15: Annual raining rate evolution during experiment 1 (2017) and experiment 2 (2018) 

According the information presented in Fig.  7.14 and Fig.  7.15, the average annual 

temperature values were 15,3ºC (2017) and 17,6ºC (2018), and the average annual raining 

ratio values were 4,1 mm (2017) and 2,5 mm (2018).  
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7.3.1 Hot Briquetted Iron (HBI) 
 

This section focuses on Hot Briquetted Iron (HBI). The motivation for this lies on that, HBI 

production technologies are well‐known and the variability on HBI composition is low. For each 

purchasing order, the steelmaker has a precise quantification of the raw material chemical 

composition although, there is usually a double check of this information by spot sampling 

analysis in both, supplier and consumer sites.  

However, due to the high lead times of this material deliveries (more than 2 months in most 

cases), the steelmakers, tend to acquire HBI in large quantities (thousands of tons per order). 

And so that, HBI can be stored for months in the scrap yard (in most cases outdoors). This large 

storing period produces progressive degradation of the material, worsening its VIU. 

As shown in Fig.  7.5, a very basic visual analysis of these HBI samples clearly shows that the 

two samples (before and after long storing periods) present different chemical and physical 

properties. However, current TCO methods does not take into account their degradation and 

still consider their VIU and properties equal to the VIU that was calculated when defining the 

scrap mixture. Currently, there is no other method to estimate the VIU degradation as a 

function of time. The motivation of this work is to develop a novel methodology for easily 

recalculating the VIU of HBI material in relation with the storing periods in the steelmakers 

scrap yards. 

The analytical method proposed is based on the empirical analysis of the degradation by 

corrosion that HBI presents when exposed to weather conditions. In order to measure how 

atmospheric corrosion affects to the additional costs associated to this degradation (VIU 

approach), several pieces of material coming from the same deliver were selected and exposed 

to atmospheric conditions. Then by measuring the chemical evolution for different exposure 

period, the selected VIU methodology is used for obtaining generalized equation for measuring 

the material cost penalties induced by atmospheric exposure. 

 

7.3.1.1 Laboratory methodology for material Chemical control 

 

Wet chemistry analysis for HBI scrap was used for obtaining the chemical composition of the 

main iron compounds in samples as established quality criteria for HBI and DRI materials (Total 

iron, Metallic iron, % FeO in sample and % Fe2O3). The laboratory protocol was followed 

according the normalized methodology proposed by the Basque Country Association of iron 

and steel chemical analyses (72) and described below: 

 Total Fe: 

o 0.5 g of sample is weighed 

o Addition of 50 ml of concentrated HCl 

o Slow heating until the total attack occurs 
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o Addition of 6‐8 drops of concentrated FH 

o Heat up to dryness 

o Cooling down 

o Addition of 20 ml of concentrated HCl 

o Boiling until having 10 ml 

o Cooling down 

o Reduction with Stannous Chloride  

o Addition of 200 ml of H2O (cold) 

o Addition of 10 ml of Mercury Chloride 

o Addition of 30 ml of Sulphophosphoric solution and a few drops of Diphenyl 

Amino Sodium Sulfonate 

o Assessment with Cr2O7K2 until violet coloration 

o Calculous and results expression: 

 
% Fe = Solution expenditure (cc) x f of solution (7.1) 

 Metallic Fe: 

o 0.5 g of sample is weighed 

o Addition of 5 g of Cl2Hg and 0.5 g of Ammonium Citrate 

o Addition of 50 ml of hot water 

o Boiling for 2 minutes to attack only metallic Fe 

o Filtering of Fe oxide 

o Solution Washing 

o Calcination at low temperature (650 ° C) 

o Same procedure followed for Total Fe calculation 

o Calculous and result expression: 

 % Fe (FeO + Fe2O3)  = Solution expenditure (cc) x f of solution 
(7.2) 

 FeO and Fe2O3: 

o 0.5 g of sample is weighed 

o Addition of 40 ml of concentrated HCl and 0.5 g of Co3Na2 

o Heat up to dryness 

o Cooling down 
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o Addition of 50 ml of carbonated water, 30 ml of sulfophosphoric and 1 ml of 

indicator 

o Assessment with Cr2O7K2 until violet coloration 

o Calculous and results expression: 

 % FeO = (Solution expenditure (cc) x f of solution x 0,9) / 0.7 
(7.3) 

Wet chemistry results over HBI samples on Fe contents were: 

Sample ID Collecting Date. FeTotal Fe Metallic FeO Fe2O3 

Experiment 1 22/03/2019 90,25 85,72 5,17 0,72 

Experiment 2 04/04/2018 90,97 80,18 13,54 0,36 

Table 7.6: Initial HBI chemical composition for experiment 1 and experiment 2 

  

7.3.1.2 Experimental results over HBI samples 

 

The exposed specimens to the outdoor environmental conditions as shown in Fig.  7.10 and 

Fig.  7.12 were progressively recovered from the expositing holder after 1 month, 2 months, 3 

months, 6 months, 9 months and one year of exposition. After recovery, they were analysed at 

the laboratory. This procedure was repeated twice (in 2017 and 2018) to confirm the 

coherence of the results. Progressive degradation due to corrosion, due to environmental 

exposure, is clearly seen in Fig.  7.16:  

 
Sample after 1 month 

 
Sample after 3 months 

 
Sample after 6 months 

 
Sample after 9 months 

 
Sample after 12 months 

Fig.  7.16: Visual appearance after different exposure periods of samples in experiment 1 

It was assumed that corrosion effect over the chemical composition HBI is only linked to the 

iron oxides based compounds, but not alteration on the rest of component are expected (CaO, 
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SiO2, MgO, Al2O3, or C. The experimental results (Total iron, Metallic iron, % FeO and % Fe2O3) 

after analysing the exposed samples are showed in Fig.  7.17: 

  

  

Fig.  7.17: Iron based compounds evolution in HBI samples along 1 year of exposure. Two 

experiments (2017,2018) are shown. 

Since the initial chemical composition is highly variable and strongly depends on the HBI 

supplier, the material production process and the manipulation procedures from material 

manufacturing processes to its consumption, we normalize the initial chemical composition 

data for allowing direct comparison among different deliveries. Next picture shows the 

chemical evolution after normalization: 

  

  
Fig.  7.18: Normalized data for iron-based compound evolution in HBI samples along 1 year of 

exposure 
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The evolution of the Fe, FeO and Fe2O3 is then fitted based on the normalized data. The 

metallic Iron shows a linear decrease, while the FeO percentage in samples increases linearly. 

For Fe2O3 case, the composition evolution shows an exponential increase with exposure time.  

Three different models are adjusted for the three components and general degradation 

equations of the mentioned components are extracted: 

 �������
�

= (−0,0048 � ∙ �������
� ) + �������

�    (R2=0,7016) (7.4) 

 ������������
�

= (−0,0121 � ∙ ����������
� ) + ����������

�    (R2=0,8480) (7.5) 

 ���� = (0,0453 � ∙ ����) + ����    (R2=0,5551) (7.6) 

 ��2�3� =  
������

�,����∙��,����� + ��2�3�      (R2=0,8237) (7.7) 

Where: 

- FeTotal, FeMetallic, FeO and Fe2O3 are the total % in those compounds in HBI sample 

- i represents the initial value of the analysed compound   

- f represents the final value of the analysed compound   

- t represents the exposure time in months 

Equations (7.4), (7.5), (7.6) and (7.7) allow estimating the HBI chemical composition evolution 

taking into consideration the degradation process caused by the storage period from a known 

chemical composition (conventional wet chemistry analysis in lab) when the material is 

delivered to the scrap yard.  

These calculated current HBI composition due to degradation allow determining the penalties 

over the Value‐In‐Use motivated for the storage of the material along time. The general 

equation aforementioned can be used for estimating the evolution of chemical composition of 

HBI ‐ 

 Fe+t.e. 
(%) 

C 
(%) 

Acid gangue 
(%SiO2+%Al2O3) 

Basic Gangue 
(Cao+MgO) 

Oxygen 
on Fe 

HBI – i 90,25 0,8 5 1,16 2,76 

+1 Month 89,77 0,8 5 1,16 4,88 
+2 Month 89,29 0,8 5 1,16 7,02 

+3 Month 88,81 0,8 5 1,16 9,17 

+4 Month 88,33 0,8 5 1,16 11,35 
+5 Month 87,85 0,8 5 1,16 13,54 

+6 Month 87,37 0,8 5 1,16 15,76 

+7 Month 86,89 0,8 5 1,16 18,02 
+8 Month 86,41 0,8 5 1,16 20,31 

+9 Month 85,93 0,8 5 1,16 22,65 
--- ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ 

Table 7.7: Estimated temporal evolution of HBI Chemical composition 

On the other hand, the costs of the different consumables are needed for estimating the VIU 

associated to each of the chemical compositions. The costs values used for this study are listed 

below: 
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Cost Pure 
Iron (€/t) 

Cost Electricity 
(€/kWh) 

Cost of Carbon 
(€/kg) 

Cost of slag 
(€/kg) 

Cost of lime 
(€/kg) 

285 0,05 0,176 0,01 0,074 

Table 7.8: Main EAF process costs 

According to the proposed VIU methodology, the main contributors to the scrap Value in Use 

are Electrical energy and Metallic Yield. Fig.  7.19 and Fig.  7.20 depict the temporal evolution 

of those two concepts according the estimated evolution of HBI chemical composition showed 

in Table 7.7: 

 

Fig.  7.19: Energy temporal evolution for calculated HBI chemical composition along time 

 

Fig.  7.20: Metallic yield temporal evolution for calculated HBI chemical composition along time 

Besides metallic yield and electrical energy consumption, other extra consumptions must be 

considered for calculating the Antivalue (A), necessary for estimating the total Value in Use 

(VIU) when the scrap degrades (such as extra coal consumption, extra refractory wear and 

extra slag generation). 

Table 7.9 shows the results in terms of Antivalue (A) and Value In Use (VIU) got for the 

analytical period: 

VIU EAF Antivalue 
(€/t) 

Value in use 
(€/t) 

HBI - i 22,91 218,28 
+1 Month 30,65 209,18 

+2 Month 38,45 200,01 

+3 Month 46,29 190,80 
+4 Month 54,24 181,48 

+5 Month 62,23 172,13 

+6 Month 70,32 162,66 
+7 Month 78,56 153,05 

+8 Month 86,92 143,34 

+9 Month 95,45 133,43 

Table 7.9: (VIU) and (A) temporal evolution 
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These values of (A) and (VIU) showed in Table 7.9 are linked to the initial chemical composition 

used. In order to offer a standard methodology for analysing these values for any initial 

composition, it is necessary to normalize the data. In Fig.  7.21 and Fig.  7.22, the normalized 

response of (A) and (VIU) got according the previously postulated Value In Use methodology is 

shown. 

 

Fig.  7.21: Variation of HBI (A) due to storage period 

 

Fig.  7.22: Variation of HBI VIU due to storage period 

From the previous data, it is possible to deduce the general equations that allow to estimate 

the evolution in the value in use of the HBI as EAF raw material, and thus be able to calculate 

how the storage periods affect the quality of the material. 

 ���� = (−0,0431 � ∙ ����) + ����  (7.8) 

 �� = �� ·(0,8487 ∙ �−0,152�) (7.9) 

From a purchasing point of view, steelmakers currently determine the amount of material to 

be purchased based on three main concepts; purchasing price, market availability and material 

quality at the moment to be purchased. However, as demonstrated in this research work, HBI 

material suffers a degradation process due to oxidation during the storing period that should 

be measured and incorporate to regular purchasing process and stocking strategies. The 

general equations posed in (7.8) and (7.9) will allow rethinking the purchasing strategies of the 

Steelshop based on, not only the three concepts previously mentioned, but also the storing 

period. 
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7.3.1.3 Conclusion on HBI samples 

 

Knowing how the chemical composition of the HBI evolves over time allows estimating the 

economic penalty that the loss of quality of the material will cause in the EAF melting process 

for producing steel.  

However, current methodologies include spot sampling and subsequent analysis in the 

laboratory using conventional analytical techniques. Also, there are currently no 

methodologies that allow conducting this analysis in quickly and easily manner and there is no 

procedure to quantify how the lost in quality affects the process from economical point of 

view either. 

In this work we have estimated the chemical composition changes of HBI along time caused by 

atmospheric corrosion, and it was proposed a methodology for Fe, FeO and Fe2O3 variation in 

composition along storing period. This analysis has permitted defining general equations for 

estimating the evolution of iron‐based compound in HBI material linked to material stock 

operations in the scrap yard. 

We have extended the VIU model with the proposed methodology, two general equations 

have been proposed for calculating the real Value In Use and the economic Antivalue of HBI 

with regard the storing time in the scrap yard in relation to a reference initial chemical 

composition. These two equations allow defining the purchasing strategies of the Steelshop in 

terms of material purchasing volume, considering that, the larger the storing period, the 

higher are the process costs associated to the ferrous material quality degradation. 

This work represents the first step towards the definition of new strategies for the 

management of ferrous materials in scrap yards for the production of steel by electric steel 

mill route 
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7.3.2 Ferrous scrap materials  
 

In the previous section, an analytical methodology for estimating the HBI material quality loss 

as raw material for the electric arc furnace (evolution of the Value In Use during storage 

periods) has been proposed. For HBI, the material physical shape is standard, and the main 

differentiation among material suppliers lays on the initial chemical composition. 

When analyzing Low Carbon non alloyed scrap, material´s chemical composition can be 

considered similar for all of them (only considering the ferrous fraction). However, the physical 

shape of the material is determined by the material preprocessing phase (shredded, bundled, 

stamping or sheared). So that, the material apparent surface turns to be one of the most 

important factors affecting to atmospheric degradation. 

For ferrous material, the analytical method proposed is based on the analysis on the superficial 

iron oxide layer thickness evolution when the ferrous specimens are exposed to weather 

conditions, and its relationship with the estimated apparent surface of the material. 

 

7.3.2.1 Laboratory methodology for material Chemical control 

 

In order to do the initial characterization of the selected specimens and to ensure that the 

weights and surface appearance analysis is the same at the started point for all pieces tested, 

it was necessary, before any exposition, to expose all specimens to some initial cleaning and 

characterization treatments according the following treatment: 

1. Cleaning of initial sample using standard water 

2. Degreasing using detergent 

3. Pickling of the sample by acid prior to sampling in order to remove surface dirt and 

corrosion products. To do so, the samples were soaked in acid (described in Table 

7.10) for a short time interval (30 seconds), obtaining the results show in Fig.  7.23: 

Metal Solution Temperature 

Steel 1 l. HCL + 20gr Sb2O3 + 50gr SnCl2 25ºC 

Table 7.10: Chemical cleaning solution for corrosion removal. 

  

Fig.  7.23: Appearance of samples after pickling 
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4. The samples are rinsed using distilled water 

5. A final rinse is performed using industrial alcohol 

6. Then sticky surface layers were removed using a soft brush. 

7. Finally, the samples are dried with a hair dryer. 

8. Once the preparation process of samples is completed, specimens are identified 

After sample preparation process, optical metallography analysis of the pieces was conducted 

just to confirm that there is not oxide scale in the surface of the specimens. In Fig.  7.24 and 

Fig.  7.25, the total absence of oxide crust at the beginning of the experiment is demonstrated.  

  
 

  

Fig.  7.24: Example of E40 specimens after pickling at x25 (upper left), x50 (upper right), x100 

(bottom left) and x200 (bottom right) in the microscope 

  
 

  

Fig.  7.25: Example of E6 specimens after pickling at x25 (upper left), x50 (upper right), x100 

(bottom left) and x200 (bottom right) in the microscope 
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As shown in Fig.  7.24: and Fig.  7.25, before the samples were exposed to the environment, 

and since they have been pickled and conveniently prepared, Oxide layer were not observed at 

the microscope. This confirm that all weighted material is steel. 

The final step in the preparation process corresponds with specimen’s characterization. This 

includes material weighing and chemical composition assessment: 

 Material Weighting: Weight information is used, after specimen recovery, to 

determine how much steel has been transformed into Iron oxide (based on the 

apparent surface of the material tested) by the effect of atmospheric corrosion. 

 Chemical composition of the selected materials after pickling was got by Optical 

Emission Spectroscopy (OES) technique. The chemical composition of the samples for 

the two experiments are shown in Table 7.11: 

Sample ID Feº C Mn Si P S Cu FeO SiO2 Al2O3 CaO Mg0 

Experiment 1 98,43 0,30 0,60 0,2 0,04 0,04 0,40 0 0 0 0 0 

Experiment 2 98,10 0,34 0,50 0,2 0,03 0,02 0,25 0 0 0 0 0 

Table 7.11: Chemical composition of E40 specimens 

Sample ID Feº C Mn Si P S Cu FeO SiO2 Al2O3 CaO Mg0 

Experiment 1 99,25 0,06 0,50 0,05 0,01 0,01 0,12 0 0 0 0 0 

Experiment 2 99,30 0,04 0,50 0,02 0,01 0,01 0,08 0 0 0 0 0 

Table 7.12: Chemical composition of E6 specimens 

Once the material is recovered from the exposure holder, the weighting operation is repeated, 

before and after sample pickling to calculate the amount of iron oxide removed. And the 

average iron oxide layer thickness is measured by using optical microscopy. These data are 

used for measuring the degradation of each exposed sample.  

 

7.3.2.2 Numerical approach for exposure results understanding 

 

The physical shapes of ferrous materials are highly variable (as shown in Fig.  7.23) and the 

chemical composition is quite similar (as shown in Table 7.11 and Table 7.12). Those facts 

make no possible to apply same methodology than the one proposed for HBI Materials which 

were based on the chemical evolution the whole material. For ferrous scrap, the procedure 

proposed for assessing the quality loss is based on determining the amount of Fe that is 

transformed into iron oxide compounds. This procedure is graphically described in Fig.  7.26: 
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Fig.  7.26: Sample analysis workflow proposed 

The main data of interest for material degradation analysis is the metallic iron weight loss due 

to the superficial degradation. According the methodology proposed in Fig.  7.26, the weight 

loss can be easily obtained by applying the following equation: 

 ��� = �� − �� 
(7.10) 

Where: 

��� represents the actual Fe weight loss due to corrosion process 

�� represents the weight of the specimen at the initial moment prior to exposure 

�� represents the weight of the specimen after pickling 

Once the exposed specimens are recovered, the amount of iron oxide present in the material 

surface is obtained by comparing the weight of the scrap piece before and after the pickling 

process.  

 ������ = �� − �� 
(7.11) 

 ������ =
�� − ��

��
�100 

(7.12) 

Where: 

����� �  is the total Iron Oxide generated due to the corrosion process 

� ���� �  is the % of total Iron Oxide generated due to the corrosion process 

��  represents the weight of the specimen when recovered after exposure 

�� represents the weight of the specimen after pickling 
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By knowing the average thickness of iron oxide layer in the exposed specimen (e), measuring it 

with the optical microscope, and considering an iron (III) oxide density (ρFe2O3) equal to 5250 

kg/m3, the total Iron Oxide generated due to the corrosion process got by using equation 

(7.16) is used for calculating the apparent surface (A)  

 � =
������

������ ·�
 

(7.13) 

Then, the specimen apparent surface data can be used for obtaining the material weight lost 

due to corrosion (L) per unit area  

 � =
���

�
 (7.14) 

Finally, the daily material weight lost due to corrosion or corrosion severity (����) can be 

estimated by applying equation (7.20) 

 
���� =

�

(����ℎ � 30)
 (7.15) 

 

7.3.2.3 Analysis on Shredded scrap (E40 – European specification) 

 

Scrap metal shredders are often used to recycle items containing a variety of other materials in 

combination with steel. The types of scrap metals that are sent to metal shredding facilities 

include end‐of‐life products that are primarily composed of metal, such as vehicles, appliances, 

construction and demolition materials. These items are labor‐intensive to manually sort things 

like plastic, copper, aluminum, and brass. By shredding into relatively small pieces, the steel 

can easily be separated out by any of the processing techniques described in Chapter 5.  

Shredded scrap represents a large part of the recycling industry worldwide and an important 

source of raw material for steelmaking. The shredded scrap grade consists of homogeneous 

pieces of steel scrap not exceeding 200 mm in any direction, which is magnetically separated 

to ensure low presence of dirt mixed with the material  

 

7.3.2.4 Experimental results over Shredded samples 

 

Several randomly selected pieces of E40 scrap were collected and exposed according the 

methodology described in 7.2.2. 

The exposed specimens to the outdoor environmental conditions, as shown in Fig.  7.23, were 

progressively recovered from the expositing holder after 1 month, 2 months, 3 months, 6 

months, 9 months and one year of exposition. After recovery, they were analyzed at the 

laboratory. This procedure was repeated twice (in 2017 and 2018) to confirm the coherence of 
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the results. Progressive degradation due to corrosion, motivated by the environmental 

exposure, is shown in Fig.  7.27: 

 
Sample after 1 month 

 
Sample after 3 months 

 
Sample after 6 months 

 
Sample after 9 months 

Fig.  7.27: Visual appearance of E40 after different exposure periods of samples in experiment 1 

Similar than in HBI material analysis, it was assumed that corrosion effect over the chemical 

composition ferrous materials is only linked to the iron oxides‐based compounds, but not 

alteration on the rest of component are expected (CaO, SiO2, MgO, Al2O3, or C).  

In the case of ferrous scrap, wet chemistry methodology cannot be used. For analyzing the 

degradation of scrap samples due to corrosion effect, the proposed methodology consisted on 

understanding the evolution of the oxide rust thickness evolution along time according the 

methodology described in Fig.  7.26 

  
No exposition After 3 months 

  
After 6 months After 9 months 
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After 12 months 

Fig.  7.28:Microscope images of iron oxide layer temporal evolution for E40 in experiment 2 

The average value of the rusted layer was obtained by measuring it thickness in 30 points 

along the sample surface using an optical microscope. Fig.  7.29 shows the oxide layer 

measurement results got for experiment 1 and 2: 

  
 

  

Fig.  7.29: Iron Oxide layer temporal evolution of E40 for experiment 1 and 2 

Then, applying equations (7.11) and (7.13) it is possible to estimate the apparent surface of 

scrap samples. In the case of shredded scrap samples, the average apparent surface value for 

all exposed samples was 0,019 m2. 

 

Fig.  7.30: Apparent Surface of E40 scrap samples 
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Known the apparent surface of the sample, equation (7.14) can be used for calculating the 

evolution of the exposed samples weight lost due to corrosion in mg/m2. Fig.  7.31 graphically 

present these data: 

 

Fig.  7.31: E40 Weight lost evolution due to corrosion 

As previously described in 7.1.2, the corrosion degradation phenomenon is mainly linked to 

atmospheric conditions (temperature, humidity, rain ration...) during the exposure period. 

However, there are intrinsic aspects to the sample that also condition the degradation 

phenomenon (such as the chemical composition of the exposed steel and the exposed 

surface), however, for this experiment, only Low Carbon non allowed scrap materials are 

considered, so the influence of the chemical composition in the degradation process was not 

considered in this research work. 

Fig.  7.31 shows that the degradation presents a linear trend over time with a similar slope for 

the two experiments, but it can also be observed that there is an important gap between the 

two experiments in terms of weight lost value magnitude, probably this is linked to differences 

in the two experiments in both the intrinsic (material shape) and atmospheric aspects. 

After analyzing the data, as shown in Fig.  7.32, it is also possible to assess that the corrosion 

severity decreases with the exposing time  

 

Fig.  7.32: E40 Relative temporal degradation 

The normalization of the data allows confirming that there is a clear correlation in the 

degradation process for both experiments. 
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Fig.  7.33: Normalized data on the temporal degradation of E40  

 

7.3.2.5 Analysis on busheling scrap (E6 – European specification) 

 

Similar than for E40 analysis, several randomly selected pieces of E6 scrap were collected and 

exposed according the methodology described in section 7.2.2. 

The exposed specimens to the outdoor environmental conditions, as shown in Fig.  7.23, were 

progressively recovered from the expositing holder after 1 month, 3 months, 6 months, 9 

months and one year of exposition. After recovery, they were analyzed at the laboratory. This 

procedure was repeated twice (in 2017 and 2018) to confirm the coherence of the results. 

Progressive degradation due to corrosion can be observed in Fig.  7.34: 

 
Sample after 1 month 

 
Sample after 3 months 

 
Sample after 6 months 

 
Sample after 9 months 

Fig.  7.34: Visual appearance of E6 after different exposure periods of samples in experiment 1 

Again, it was assumed that corrosion effect over the chemical composition ferrous materials is 

only linked to the iron oxides‐based compounds, but not alteration on the rest of component 

are expected (CaO, SiO2, MgO, Al2O3, or C).  

For analyzing the degradation of scrap samples due to corrosion effect same methodology 

than the one used for shredded scrap was used. Fig.  7.35 shows some examples of the E6 

scrap oxide layer thickness measurement results got by optical microscopy techniques along 

the exposure time of specimens.  
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No exposition After 3 months 

  
After 6 months After 9 months 

 
After 12 months 

Fig.  7.35:Microscope images of iron oxide layer temporal evolution for E6 in experiment 2  

The average value of the rusted layer was obtained by measuring it thickness in 30 points 

along the E6 scrap samples surface. 

  
 

  

Fig.  7.36: Iron Oxide layer temporal evolution for experiment 1 and 2 
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Then, applying equations (7.11) and (7.13) it is possible to estimate the apparent surface of 

scrap samples. In the case of E6 scrap, the average apparent surface value for all exposed 

samples was 0,047 m2. 

 

Fig.  7.37: Apparent Surface of E6 scrap samples 

Known the apparent surface of the sample, equation (7.14) can be used for calculating the 

evolution of the exposed samples weight lost due to corrosion in mg/m2. Fig.  7.38 graphically 

presents these data: 

 

Fig.  7.38: E6 Weight lost evolution due to corrosion 

As previously described in 7.1.2, the corrosion degradation phenomenon is mainly linked to 

atmospheric conditions (temperature, humidity, rain ration...) during the exposure period. 

However, there are intrinsic aspects to the sample that also condition the degradation 

phenomenon (such as the chemical composition of the exposed steel and the exposed 

surface), however, same than in previous experiment, only Low Carbon non allowed scrap 

materials are considered. 

Fig.  7.38 shows that the degradation presents an exponential trend over time similar for both 

experiments. 

By analyzing the data, as shown in Fig.  7.39, it is also possible to assess that the corrosion 

severity decreases with the exposing time  
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Fig.  7.39: E6 Relative temporal degradation 

Similar than in the case of shredded scrap, the normalization of the data allows confirming that 

there is a clear correlation in the degradation process for both experiments. 

Fig.  7.40: Normalized data on the temporal degradation of E6  

 

7.3.2.6 General VIU degradation model for Ferrous scrap materials 

 

In the previous sections, two different materials with different shapes but similar chemical 

composition were studies, identifying similar degradation behaviors strongly associated with 

the apparent surface.  

 

Fig.  7.41: Weight lost evolution for all analyzed samples 
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Fig.  7.42: Degradation severity for all analyzed samples 

Up to this point, the degradation process of several ferrous materials has been analyzed 

separately. However, the purpose of this work is to offer general equations for assessing the 

economic penalties induced in ferrous scrap material due to the degradation process after long 

storing periods in the steelmakers scrap yard.  

By normalizing all these data together with respect to the degradation produced at the 

beginning of the experiment (after one month of exposition), it is possible to independentize 

the specific results obtained on each of the samples from the apparent surface of each 

specimen (given the heterogeneity in the physical shape of ferrous materials) and from the 

chemical nature of the sample (corrosion intensity), and thus to extract a general degradation 

equations applicable to any proposed case of use. 

 

Fig.  7.43: Normalized data on scrap degradation 

 

Fig.  7.44: Normalized data on scrap degradation severity 
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From the normalized data presented in Fig.  7.43 and Fig.  7.44, two general equations, 

describing the weight loss and the degradation severity due to Fe  Fe2O3 transformation, are 

extracted: 

 �� = �� ·(0,8636��,����·�)     (R2=0,7606) 
(7.16) 

 ��
���

= ���
���

·(−0,271��(�) + 1,8124)      (R2=0,7647) (7.17) 

Where: 

�� is the material weight lost at time t due to corrosion in gr/m2 

�� is the material weight lost due to corrosion in gr/m2 at the reference time (1 month). 

��
���

 represents the corrosion severity rate at time t in gr/(m2 day) 

�����
�  is the corrosion severity rate in gr/(m2 day) at the reference time (1 month) 

t is the time of analysis in days 

On the other hand, equations (7.16) and (7.17) are not enough to conduct a complete analysis 

on ferrous samples degradation. To this end, one of the most critical data affecting the 

corrosion phenomena is the apparent characteristic surface of each material associated with 

its morphology. Two different methods can be proposed for estimating the apparent surface of 

the material under study: 

- The laboratory methodology described in previous sections (7.3.2.2) and based on iron 

oxide thickness measurement and weight differences before and after sample picking. 

- Apparent surface estimation based on material density (according Table 7.13), piece 

weight and piece thickness  

Material E3 E1 E8 E6 E40 

density (kg/m3) 600 500 400 1000 900 

Table 7.13: Standard density for different ferrous scrap (8) 

For example; one metal piece of 1kg with a thickness of 5 mm (except for the E8 that a 

side of the cube equal to 500mm is used for the calculation) that losses 10 gr of iron 

after 30 days of exposition, the apparent surface can be calculated as reported in 

Table 7.14: 

Material E3 E1 E8 
E6  

(0,5m in 1D) 
E40 

Apparent surface (m2) 0,0333 0,040 0,050 0,20 0,0222 

Table 7.14: Apparent Surface estimated by material density   

Checking the estimated values presented in Table 7.14, with the experimental apparent 

surface measured in laboratory during E40 and E8 tests (0,019 m2 and 0,047 m2 respectively). 

it is shown that both methodologies offer similar results 
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Continuing with same example proposed above (one metal piece of 1kg with a thickness of 5 

mm), by dividing the normalized weight lost evolution (7.16) by the apparent surface of the 

scrap material under analysis, it is possible to calculate not only the Fe weight lost for any 

exposure period, but also the Fe2O3 generated in the sample surface due to the Fe oxidation 

(using atomic number of Oxygen and Iron).   

 

Fig.  7.45: Weight lost evolution for different scrap materials according initial material 

characterization data for the selected example 

The main assumption that has been taken for this experiment is that the chemical composition 

is the same for all ferrous materials, so the effect of degradation is determined primarily by 

the exposed surface. Transforming the data in Fig.  7.45 by dividing each curve by the apparent 

surface of each material, it is possible to obtain not, only the generic Fe losses and Fe2O3 

generation due to corrosion effect, but also the amount of oxygen incorporated to the sample 

due to this oxidation effect  

Fig.  7.46: Iron compounds evolution due to degradation of ferrous material 

The data shown in Fig.  7.46 are used, first to generate the temporal evolution of the chemical 

composition of ferrous scrap materials presented in Table 7.15 and then, to obtain the general 

Antivalue equation (Fig.  7.47) that represents the economic penalties of the EAF process 

linked to the scrap degradation. This equation will be used later on for calculating the Value In 

Use evolution when ferrous scrap are stored in uncovered scrap yards.  
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 Fe+t.e. 
(%) 

Acid gangue 
(%Fe2O3) 

Basic Gangue 
(Cao+MgO) 

Oxygen 
on Fe 

Ferrous scrap 100 0 0 0 
+30 days 99,00 2,86 0 0,86 

+60 days 98,92 3,10 0 0,93 
+90 days 98,78 3,48 0 1,04 

+120 days 98,64 3,90 0 1,17 

+150 days 98,47 4,37 0 1,31 
+180 days 98,29 4,89 0 1,47 

+210 days 98,08 5,48 0 1,65 

+240 days 97,85 6,15 0 1,85 
+270 days 97,59 6,89 0 2,07 

+300 days 97,30 7,72 0 2,32 

+330 days 96,97 8,65 0 2,60 
+360 days 96,61 9,70 0 2,92 

Table 7.15: Estimated temporal evolution of Low Carbon non allowed scrap materials Chemical 

composition 

The costs values used for this study are the same than the ones presented in Table 7.8. 

As described in section 4.4, incorporating oxygen to the sample (by Fe2O3 generation in 

sample) affect to the Antivalue as follow: 

- By increasing 1% the amount of oxygen, the electrical energy consumption is increased 

by 49 kWh/t of steel. 

- By increasing 1% the amount of oxygen, the coal consumption is increased by 6,8 kg/t 

of steel. 

The data shown in Table 7.15 can be normalized for obtaining a general ANTIVALUE equation 

for Low Carbon Low alloyed steel scrap  

 

Fig.  7.47: Normalized antivalue for Low Carbon Low alloyed steel scrap 

From previous figure, the general ANTIVALUE equation for Low Carbon Low alloyed steel scrap 

is extracted: 

 �� = �� ·(0,8698 ∙ ��,����) (7.18) 

 

Where: 
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��represents the ANTIVALUE at time t, 

��represents initial Antivalue after one month of exposition 

t represents the exposition time in days  

Also, according to the proposed VIU methodology, the main contributors to the scrap Value in 

Use are Electrical energy demand and Metallic Yield. Fig.  7.48 and Fig.  7.49 depict the 

temporal evolution of those two concepts according the estimated evolution of sample 

chemical composition for three different scenarios (the one showed in Table 7.15, one sample 

of 1 kg with a weight lost after one month of 50 gr and 0,5kg sample with a weight loss of 10 

gr). 

 

Fig.  7.48: Electrical Energy demand for the three studied cases  

 

Fig.  7.49: Metallic yield for the three studied cases  

Finally, by combining the general Antivalue Equation (7.18) with the general material weight 

lost equation �� (7.16), and the weight sample data after 30 days of exposure, it is possible to 

calculate the Real Value In Use evolution of any Low Carbon Low Alloyed ferrous scrap 

material when exposed to atmospherically for a certain period of time. 

Based on the equations posed, the quality assessment methodology (VIU) proposed consists 

on the steps described in Fig.  7.50: 
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Fig.  7.50:Proposed methodology for initial degradation assessment and VIU evolution linked to 

material nature  

In chapter 4, the General Value In Use equation (4.3) was described. By applying the 

methodology described in Fig.  7.50 to the VIU general concept, the VIU equation for ferrous 

scrap materials that describes the quality losses for material degradation can be define as 

follow:  

 
��� = ��100 −

�� ·100

��
� ·�€� + �� (7.19) 

Same as proposed for HBI materials, this research work demonstrates the ferrous scrap 

material suffers a degradation process due to oxidation when storing in scrap yards. This effect 

should be measured and incorporate to regular purchasing process and stocking strategies. 

The general equation posed in (7.19) will allow rethinking the purchasing strategies of the 

Steelshop based on, not only the three concepts previously mentioned, but also the storing 

period. 

 

7.3.2.7 Conclusion on ferrous scrap samples 

 

Knowing how the chemical composition of the Low Carbon Low Alloyed steel scrap evolves 

over time allows estimating the economic penalty that the loss of quality of the material will 

cause in the EAF melting process for producing steel.  

The current state of the art does not allow measuring the degradation of ferrous scrap 

materials. Even doing spot materials sampling and subsequent laboratory analyses, the 

obtained information would not be representative of the whole scrap pile. Similarly, than in 

the case of HBI material, there is no procedure to quantify how the lost in quality affects the 

process from economical point of view either. 
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This work presents a model for estimating the temporal evolution in Fe and Fe2O3 in Low 

Carbon Low alloyed steel scrap based on simple equations.  

The new proposed model allows to extend the well‐established VIU methodology to be applied 

for a novel approach which incorporates material quality penalties due to storing period at 

scrap yard in steel plants in general Antivalue and VIU equations. 

The new available information permits defining the purchasing strategies of the Steelshop in 

terms of material purchasing volume, considering that, the larger the storing period, the 

higher are the process costs associated to the ferrous material quality degradation. 

This work represents the first step towards the definition of new strategies for the 

management of ferrous materials in scrap yards for the production of steel by electric steel 

mill route 
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7.4 Chapter 7 recall and conclusions 
 

Since around 60% of the EAF steel production costs correspond to ferrous raw materials, the 

scrap yards turn to be one of the most critical elements in the steel production factories. 

However, the scrap yard is probably one of the less automatized facility in the steelmaking 

shop acting mainly as a material storing area (high volumes of scrap are purchased and stored 

when the market price is low, and the stored materials are consumed when the market prices 

are high) to ensure a continuous flow of raw material to the Electric Arc Furnace that avoids 

discontinuities in factory productivity. 

The quality control of ferrous materials is usually done only when the material is purchased at 

the scrap dealer facility and when the material arrives at steel site. This poor quality approach 

presents one drawback that is not usually considered by steelmakers; the worsening of 

material quality due to long storing period in the scrap yard induced by the atmospheric 

corrosion.  

The atmospheric degradation process of ferrous material has been widely reported in the 

literature, but it mainly focuses on metallic structures integrity analysis. In the case of ferrous 

scrap as main steelmaking raw material, the degradation process affects to the material quality 

being of great influence on the EAF operative performance through the Scrap's Value In Use 

concept. 

This material degradation process has been extensively studied in this work by grouping 

ferrous materials in two categories; HBI and ferrous scrap.  

The research done in this section has concluded by proposing an analytical procedure for 

obtaining empirical equations which allow estimating the cost worsening of ferrous material 

due to the degradation produced by the atmospheric corrosion. 

The following equations have been obtained from these analyses:  

- For HBI materials:  

 ���� = (−0,0431 � ∙ ����) + ����  (7.08) 

 �� = �� ·(0,8487 ∙ �−0,152�) (7.09) 

- For Ferrous scrap materials:  

 
��� = ��100 −

�� ·100

��
� ·�€� + �� (7.19) 

 �� = �� ·(0,8698 ∙ ��,����) (7.18) 
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 8 

New method proposal for chemical 

characterization of sterile material in scrap. 
The chemical distribution of sterile fraction in Ferrous scraps have a significant impact 

on the economical results of the steelmaking process. This chapter presents the experimental 
analyses of several spectroscopy techniques in laboratory conditions, including laboratory set 
ups, acquisition configurations and samples preparation. The conclusion on this research will 
allow assessing the potentiality of each studied technologies for being used for in‐site sterile 
characterization technique. 
 

As described in previous chapters, the different referent technical steel scrap specifications 

group the scrap categories (qualities), not only by their origin or their shape, but also by other 

aspects like their content in residual elements or presence of certain sterile materials. 

Putting the attention, only on the sterile present in the scrap, it is important to take into 

account that the quantity and the chemical composition of sterile materials in ferrous scraps 

are closely linked to the origin of the scrap, as well as to the previous collecting processes and 

scrap pre‐processing. Some examples are listed below; 

 Recycling of vehicles (shredders): In average 78.5% of vehicles weight are recycled 

(about 75% are both ferrous and non‐ferrous metals and the rest are plastics, glass, 

part of Tires, etc.) (93). 

 Recycling of construction and demolition waste: In addition to the ferrous material to 

be recovered, this type of scrap can present high percentages of arid and iron oxide 

(94). 

 Metal Recovered from steelmaking process could present high percentages of slag 

from EAF (If it is recovered from the EAF deslagging pits or pots) or from LF or 

refractory materials (If it is recovered from the Ladles or tundish). 

According the Institute of scrap recycling industry (ISRI), for example, “All grades shall be free 

of dirt, nonferrous metals, or foreign material of any kind, and excessive rust and corrosion”. 

However, the terms “free of dirt, nonferrous metals, or foreign material of any kind” are not 

intended to preclude the accidental inclusion of negligible amounts where it can be shown that 

this amount is unavoidable in the customary preparation and handling of the particular grade 

involved (8) 

In the case of EU‐27 Steel Scrap Specification given by the European Ferrous Recovery and 

Recycling Federation (EFR), the ferrous material cleanliness is defined by a combination of 

constrains: “All grades shall be free of all but negligible amounts of other non‐ferrous metals 

and non‐metallic materials, earth, insulation, excessive iron oxide in any form, except for 

nominal amounts of surface rust arising from outside storage of prepared scrap under normal 
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atmospheric conditions”, “All grades shall be free of all but negligible amounts of combustible 

non‐metallic materials, including, but not limited to rubber, plastic, fabric, wood, oil, lubricants 

and other chemical or organic substances”, “All scrap shall be free of larger pieces (brick‐size) 

which are non‐conductors of electricity such as tyres, pipes filed with cement, wood or 

concrete” and “All grades shall be free of waste or of by‐products arising from steel melting, 

heating, surface conditioning (including scarfing) grinding, sawing, welding and torch cutting 

operations, such as slag, mill scale, baghouse dust, grinder dust, and sludge” (95). 

Category Specification Sterile 

Old scrap 
E3 ≤ 1% 

E1 < 1,5% 

New scrap 

E2 < 0,3% 

E8 < 0,3% 

E6 < 0,3% 

Shredder E40 < 0,4% 

Steel turnings 
E5H Non clear method 

E5M Non clear method 

High residual scrap 
EHRB < 1,5% 

EHRM < 0,7% 

Fragmentized from 
incineration 

E46 Fe content ≥ 92% 

Table 8.1: Maximum contents in sterile allowed according to EFR Specification (95) 

There are different techniques and methods that allow to separate the sterile from the scrap. 

According data obtained through the application of some of these methods, when the material 

delivers to the scrap yard, much higher contents in sterile have been reported by some 

steelmaking sites than the maximum allowanced in the scrap technical specifications. Table 8.2 

shows the chemical composition of sterile estimated for the scrap grades in one ArcelorMittal 

site in Spain: 

 

Table 8.2: Sterile content estimation in the scrap grades used in one AM site 

On the other hand, Fig.  8.1 shows the result of sterile characterization of a sheared scrap (E1) 

delivery in another ArcelorMittal site in Luxembourg after concrete pad test of one random 

FeO SiO2 Al2O3 CaO MgO

1 Imported Bundle E6 2,00 0,50 0,60 0,50 0,00 3,60

2 National Bundle E6 (4C) 2,40 0,50 0,60 0,50 0,00 4,00

3 Buy Back Bundle E6 0,90 0,50 0,20 0,50 0,10 2,20

4 Imported Bushelling E8 2,20 1,00 0,60 1,00 0,50 5,30

5 National Bushelling E8 3,50 1,00 0,60 0,50 0,20 5,80

6 Buy Back Bushelling E8 2,00 1,50 0,50 0,83 0,11 4,94

7 Structural E3 (OA + 3A) 3,00 1,30 0,60 1,00 0,50 6,40

8 Structural E1 (1/2 + 1) 4,00 3,50 1,20 1,00 0,50 10,20

9 Shredded E40 6,00 1,50 0,80 0,50 0,40 9,20

10 Pig Iron (Brasil, Zenica) 1,00 0,40 0,20 0,20 0,10 1,90

11 Group Beach Iron 2,00 0,60 0,10 1,50 0,50 4,70

12 Beach iron import 2,50 1,50 0,80 2,00 1,00 7,80

13 Beach iron import poor 4,00 2,00 1,40 2,20 1,20 10,80

14 Venezuelan HBI 7,00 3,00 0,50 0,50 0,30 11,30

15 Lybian HBI 10,00 2,00 1,00 0,50 0,20 13,70

16 Russian HBI 8,00 4,00 1,00 1,50 0,50 15,00

17 Point Lisas DRI 6,00 2,20 0,50 1,20 0,40 10,30

18 Pit scrap/skulls 85% 3,90 2,00 1,50 2,50 2,00 11,90

19 National E3 3,00 1,30 0,60 1,00 0,50 6,40

20 Own 4,00 2,00 0,60 6,00 3,00 15,60

Input

A - Metallic Charge

Contents Total
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scrap delivery. This analysis gives a clear idea of how different elements are distributed in 

scrap sterile 

 

Fig.  8.1: Example of chemical content of the sterile sample after concrete pad analysis 

For obtaining this scrap sterile chemical distribution, the most extended analytical procedure 

used (analysis of an unknown mixture of materials) is based on the X‐Ray fluorescent 

technology, which allows a basic analysis of multiple elements to be carried out in a wide 

range of materials, being highly precise, quick and non‐destructive. 

One of the main drawbacks of this procedure lays on the necessity of transporting the samples 

to laboratory facilities and preparing the sample before analysing it (high time consuming). 

Also, this type of characterization methods are spot methods and so that they are used mainly 

for scrap supplier tracking. However, It is important to keep in mind that the basic purpose of 

the scrap yard in the steel plant is to have enough scrap (of the different types) to make the 

furnace running without any stop due to lack of scrap. So the only way to ensure this function 

is doing scrap mixtures in the scrap yard grouping scrap by similarities in terms of ferrous 

specifications, where aspects like scrap origin, pre‐treatment process, oxidation degree or 

sterile quantity or quality are not taken into consideration. And that is why these 

characterization methods are not suitable for the systematic control of the scrap quality 

allocated in the scrap yard in the daily management operations. 

Nowadays, there is no industrial method to keep characterized the sterile in scrap on site. 

However, there is no doubts among steelmakers that it is necessary to develop new 

techniques that allow fast qualitative characterization of sterile contained in scrap piles.  

In this line, characterization methods based on spectroscopy techniques (the study of 

interaction of electromagnetic radiation with matter) have got a great potential.  

Different spectroscopic methods are frequently used for the characterization of a wide range 

of samples from different nature. These methods are used for qualitative and quantitative 

analysis of samples. The qualitative analysis is performed to establish the identity of sample 

while quantitative analysis is performed to estimate the constituent compounds of in sample. 

Some of the spectroscopic methods (e.g. UV–Vis Spectrophotometry) are used as a screening 

method since it gives the tentative identification of sample and are not specific in nature while 

other spectroscopic methods (e.g. Infrared Spectroscopy and Mass Spectrometry) are used as 

a confirmatory method since they give the reliable identity of sample and are specific in 

nature. 
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In this research activity, the capability of three analytical methods, based on spectroscopy 

technology, for scrap sterile characterization have been analysed: 

1. Raman spectroscopy 

2. FTIR spectroscopy 

3. Hyperspectral imaging 
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8.1 RAMAN Spectroscopy    
 

The Raman scattering effect arises from the interaction of the incident light with the electrons 

of an illuminated molecule. In Raman spectroscopy, the energy of the incident light is not 

enough to excite the molecule to a greater electronic level of energy. Thus, the result of the 

Raman scattering is the change in the vibrational state of the molecule.  

Raman spectroscopy technique involves shining a monochromatic light source (i.e. laser) on a 

sample and detecting the scattered light. The scattered light having a frequency different from 

that of incident light (inelastic scattering) is used to construct a Raman spectrum. Raman 

spectra arise due to inelastic collision between incident monochromatic radiation and 

molecules of sample. When a monochromatic radiation strikes at sample, it scatters in all 

directions after its interaction with sample molecules. Much of this scattered radiation has a 

frequency which is equal to frequency of incident radiation and constitutes Rayleigh scattering. 

Only a small fraction of scattered radiation has a frequency different from frequency of 

incident radiation and constitutes Raman scattering. When the frequency of incident radiation 

is higher than frequency of scattered radiation, Stokes lines appear in Raman spectrum. But 

when the frequency of incident radiation is lower than frequency of scattered radiation, anti‐

Stokes lines appear in Raman spectrum. 

 

Fig.  8.2: Energy-level diagram showing the states involved in Raman spectra (96) 

The energy difference between the incident and scattered photons is represented by the 

arrows of different lengths in Fig.  8.2. Numerically, the energy difference between the initial 

and final vibrational levels, Ѵ, or Raman shift in wave numbers (cm‐1), is calculated through 

(8.1) in which λ incident and λ scattered are the wavelengths (in cm) of the incident and 

Raman scattered photons, respectively. 

 
� =
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−
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 (8.1) 

When the energies of these transitions are plotted as a spectrum, they can be used to identify 

the molecule as they provide a “molecular fingerprint” of the molecule being observed. 
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8.1.1 Literature survey about Raman spectroscopy 
 

This research activity proposes to analyse the potential of developing a new in‐line analytical 

technique for the characterization of sterile materials contained in scrap by Raman 

spectroscopy. To this end, it is proposed the adaptation of conventional Raman spectroscopy 

laboratory techniques to industrial steelmaking processes. 

Before defining any experiment, it is necessary to review the existing knowledge to define the 

starting point of this research, as well as, to define the trials conditions, in terms of equipment 

to be used, sensors calibration and mathematical processing of the spectral data acquired.  

This initial definition phase will guarantee that the conclusions obtained after laboratory tests 

are extrapolated to real industrial conditions. 

Even though a Raman system is conceptually simple, the Raman effect is weak. The selection 

of each instrumental components that will compose an integrated system for substances 

chemical characterization is critically important. Only an optimized system can be capable of 

producing the greatest measurement potential, over the widest range of same types, and able 

to measure the lowest concentration of species in the shortest amount of time possible. 

Fig.  8.3 shows a diagram of the different components that compose a Raman spectrometer 

 

Fig.  8.3: Description of component in Raman spectroscopy (97) 

The main components of an analytical system based on Raman technology are the 

Spectrograph and the Excitation Laser. Next, the main aspects to be considered when selecting 

the most appropriate elements for a particular application are detailed: 

 Spectrograph: 

o Spectral Range: Raman shift range is specified in wavenumbers (cm‐1). Most 

spectrographs cover at least the "fingerprint region" from 400 ‐ 1800 cm‐1; this 

is where the majority of vibrational bands occur. Below 400 cm‐1, there are 

vibrations associated with heavier atoms, such as C‐halogen and metal oxide 

stretches. Other bending modes can occur at these lower frequencies as well. 
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On the other end, C‐H stretches occur between 2900 ‐ 3100 cm‐1, and the O‐

H/N‐H stretches are visible up to 3600 cm‐1. There is little between 1800 and 

2900 cm‐1, except for nitrile (CN) bands occurring near 2200 cm‐1. For many 

applications, the fingerprint region is sufficient for both quantitative and 

qualitative analysis. 

o Spectral Resolution: The resolution of the spectrograph determines how well 

individual bands can be separated in the spectrum. Resolution should be 

specified as full width at half height (FWHH) of a measured band. Raman 

bands of solids are typically 2‐6 cm‐1 wide, and those of liquids can be 4‐10cm‐1 

wide. Having a spectrometer that can measure close to the natural linewidths 

of the vibrational bands provides the most information. For simple 

applications, lower resolution spectrographs may be applicable. 

o Spectral Throughput: Corresponds with the numbers of photons that will pass 

through to the detector. However, a complete Raman system is a sum of its 

parts, from the laser, to the sampling optics, to the spectrograph, to the 

detector. Throughput values are relevant, but overall performance is more 

important when comparing systems. 

o Detector Sensitivity: Most dispersive Raman spectrographs employ CCD 

(charge coupled device) detectors. These are one‐ or two‐dimensional arrays 

of silicon elements. In general, the dark noise of the CCD is reduced by 50% 

with every 5 degree drop in operating temperature. Most research‐grade 

spectrographs employ vacuum‐sealed arrays operating between ‐50 and ‐90C 

for highest sensitivity. Less expensive detectors can be used for applications 

that can afford less sensitivity. 

 Excitation Laser 

o Excitation Wavelength: Raman scattering intensity is proportional to v4, where 

v is the excitation frequency. Therefore, higher excitation frequencies (i.e. 

shorter wavelengths in the visible and UV regions) provide higher Raman 

intensity than longer wavelengths. Unfortunately, shorter wavelengths can 

also excite fluorescence backgrounds in many samples, obscuring the Raman 

bands. For many general applications, near‐IR excitation at 785 nm is 

preferred. 

o Laser Characteristics: There are many types of lasers available to the Raman 

spectroscopy. Traditional gas lasers provide stable, narrow lines, but are 

becoming less commonly used. 

 Diode lasers differ widely in the marketplace.  

 Single‐mode diode lasers provide narrow linewidths but are usually 

low in power and require temperature stabilization to prevent mode 

hopping.  
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 Multi‐mode diode lasers can provide very high power, but the output 

can be as wide as 30 cm‐1. Multi‐mode lasers can also be stabilized to 

produce a single‐mode output; these lasers are usually associated with 

higher cost.  

Raman spectroscopy is a versatile method for analysis of a wide range of samples, resolving 

most of limitations of other spectroscopic techniques (98). It can be used for both qualitative 

as well as quantitative purpose;  

 Qualitative analysis can be performed by measuring the frequency of scattered 

radiations.  

 Quantitative analysis can be performed by measuring the intensity of scattered 

radiations: The spectra are very specific, and chemical identifications can be 

performed by using search algorithms against digital databases since band areas are 

proportional to concentration. 

 

8.1.1.1 Industrial Application of Raman spectroscopy 

 

Numbers of papers describing the utility of Raman spectroscopy are available in the literature. 

Raman spectroscopy has been proved to be valid in different fields; applications in materials 

detection/identification in agriculture like soil characterization (99) (100) (101), agricultural 

products identification, (102) pesticide residues detection on fruit (103) or soil organic matter 

quality assessment (104) (105) (106). In pharmaceuticals industry for detecting counterfeit and 

adulterated pharmaceuticals (107). In geology for mineral identification (108) (109).  

Maybe the sector in which the highest application boom has undergone developments based 

on Raman portable spectroscopy for the chemical identification of substances is law 

enforcement/first responders, associated with the rapid identification of drugs (110). 

From an industrial point of view, Raman spectroscopy has been mostly used in recycling 

industry (i.e. to identify plastics for recycling (111)). 

As regards the steel industry, the main references of Raman techniques application for 

materials characterization have been found in the field of coals characterization. In 2011 was 

published a RFCS project that aimed to optimise reductant utilisation in the blast furnace in 

order to minimise environmental emissions and allow more stable and efficient operation at 

high injection levels. To do so, Raman technique was used for determining the nature and 

origin of the carbon directly in the exhaust gases raceway (112). Later, in 2015 another RFCS 

project was published in which the work was concentrated on optimizing the coal blends 

composition and prediction of coke quality and in which Raman spectroscopy was used for 

evaluating the coke structure in relation to its optical texture (113). 

In spite of the high potential of the application of Raman spectroscopy to the rapid 

characterization of materials (i.e. chemical composition of the sterile materials contained in 

the scrap), no previous bibliographic references of this approach have been found. This may be 
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because process control and real‐time on‐site monitoring of chemical analyses in the field 

under severe industrial conditions require the use of portable and robust equipment. 

 

8.1.1.2 Prior spectra knowledge 

 

It is not necessary to start from scratch for defining the main requirements when developing a 

new sensor based on RAMAN technology; from acquiring spectra to train the data analysis 

models. There are several resources contained Raman spectra data bases that can be helpful 

to define the starting point of this investigation: 

1. Handbook of Minerals Raman Spectra (114)  

2. RRUFF Project: website containing an integrated database of Raman spectra, X‐ray 

diffraction and chemistry data for minerals (115)  

3. Spectral Database for Organic Compounds SDBS (116)  

4. Raman Spectra of Carbohydrates (117) 

From these data bases, it is possible to extract the spectral Raman responses of interest. As 

shown in Fig.  8.1, the main oxides present in scrap sterile are FeO, Fe2O3, SiO2, CaO, MgO and 

Al2O3.  

 

8.1.1.2.1 CaO Raman spectra data 

 

Raman spectroscopy is a fully consolidated laboratory technique for the characterization of 

carbonated minerals. As regards lime, its use has been reported mainly for: 

- Characterizing and differentiating calcite minerals from dolomite minerals. 

- Determining the mineral structure; The conversion of lime to calcium hydroxide and its 

subsequent carbonation to various calcium carbonate polymorphs 

- Allowing the detection of all three CaCO3 polymorphs (calcite, aragonite and vaterite) 

phases 

- Analysing the degree of calcination in the external and the internal volume of the 

samples 

The (CO3)2 group is characterized by four prominent Raman vibrational modes:  

a. The symmetric stretching of CO3 group (ν1) 

b. The asymmetric deformation (ν2) – This vibration mode does not appear 

c. Asymmetric stretching mode (ν3) 

d. Symmetric deformation mode (ν4) 
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Also, it is important to clarify that some differences have been found in the position of the 

characteristic bands reported by the different authors. These differences can be justified by 

the fact that both the configurations of the experiments and the characteristics of the 

equipment used vary from one to another. 

For convenience, the study of Raman spectra for lime materials are divided into three spectral 

range sections (108) (118);  

 1700–1200 cm‐1 attributed to (ν1): The Raman spectra of calcite in the 1700–1200 cm‐1 

region is shown in Fig. 4. 

 

Fig.  8.4: Raman spectra of the calcite in 1700–1200 cm-1 region 

In this wavenumber region the following can be observed;  

o The bands observed at 1678 cm‐1 are assigned to the water bending mode. 

o The bands observed at 1613, 1580, 1556 and 1518 cm‐1 may be regarded as 

the combination band of the asymmetric stretching in this region  

o The observed splitting at 1440, 1378, 1342, 1316, 1295 and 1267 cm‐1 suggests 

that the carbonate groups are slightly distorted and are in the amorphous 

state. It is proposed that this splitting also indicates the prevalence of low 

pressure during the formation of the mineral. For calcite, the (CO3)2 

asymmetric stretching modes are observed at 1440, 1405, 1378, 1361 and 

1342 cm‐1. 

In the case of Aragonite, the Raman lines attributed to the ν3 asymmetric stretching 

mode can be observed at 1461 and 1573 cm‐1. 

In general, the bands discussed above seem to be characteristic of the carbonate 

minerals. 

 1200–600 cm‐1 attributed to (ν3): The Raman spectra of calcite in the 1200– 600 cm‐1 

regions are shown in Fig.  8.5. 
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Fig.  8.5: Raman spectra of the calcite in 1200–600 cm-1 region 

In this region, an intense sharp Raman band at 1088 cm‐1 is observed for calcite. This 

band is assigned to the v1(CO3)2 symmetric stretching mode. It is reported that the 

position of this band is a function of the crystal structure of the carbonate mineral 

For Aragonite, the strong Raman line attributed to the ν1 symmetric stretching mode 

of the carbonate group can be found at 1083 cm‐1, and there are some Raman bands 

at 693, 700 and 701 cm‐1 assigned to the ν4 normal mode. 

 500–100 cm‐1assigned to (ν4): The Raman spectra of calcite in the 500– 100 cm‐1 

region are shown in Fig.  8.6. 

 

Fig.  8.6: Raman spectra of the calcite in 600–100 cm-1 region 

In the low wavenumber region of the Raman spectra of calcite, two bands at 278 and 

157 cm‐1 are observed. These two lower wavenumbers bands arise from the external 

vibrations of the (CO3)2 group that involve the rotatory and translatory oscillations of 

those groups. 

The Raman bands due to the external vibration mode for Aragonite can be found at 

250 cm‐1 

It is also possible to found in bibliography some references related to the spectral behaviour of 

fresh lime mineral when expose to moisture, that can be also interesting within the scope of 

this investigation (119).   

According these sources, Raman spectroscopy has been proved to be a suitable technique for 

those material characterizations. 
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Raman spectra of the CaO samples exposed to different relative humidity are presented in the 

next Figure: 

 

Fig.  8.7: Raman spectra of fresh and exposed CaO to moist air showing the formation of different 

hydration and carbonation products (119) 

 

8.1.1.2.2 MgO Raman spectra data 

All mentioned in the previous section for analysing the Raman spectra of Lime also applies 

when magnesium oxides are analysed.  

The difference between calcite and dolomite is explained on the basis of the structure 

variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, 

and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting 

of the carbonate groups. Another cause for the difference is the cation substituting for Mg in 

the dolomite mineral. 

So that, as occurs with lime, the Raman spectra of MgO samples are divided into three spectral 

range sections (108) (120) (121); 

 1700–1200 cm‐1 attributed to (ν1): The Raman spectra due to MgO in the 1700–1200 

cm‐1 region are shown in Fig.  8.8. 

 

Fig.  8.8: Raman spectra of Dolomite in 1700–1200 cm-1 region 
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 1200–600 cm‐1 attributed to (ν3): The Raman spectra of Dolomite in the 1200–600 cm‐1 

region is shown in Fig.  8.9. In this region, dolomite minerals show an intense sharp 

Raman band at 1092 cm‐1 is accompanied by two satellites having values of 1098 and 

1088 cm‐1. 

 

Fig.  8.9: Raman spectra of the Dolomite in 1200–600 cm-1 region 

 500–100 cm‐1assigned to (ν4): The Raman spectra of Dolomite in the 500– 100 cm‐1 

region are shown in Fig. 10.   

 

Fig.  8.10: Raman spectra of the Dolomite in 500–100 cm-1 region 

The three lower wavenumber bands at 299, 258 and 176 cm‐1 are observed in the 

Raman spectrum of dolomite: 

- The relatively intense band at 299 cm‐1 is attributed to the MgO symmetric 

stretching vibration.  

- The low intensity band observed at 258 cm‐1 is probably due to a function of 

the cation substituting for Mg in the dolomite mineral.  

- The band at 176 cm‐1 may be attributed to O‐Mg‐O bending modes.  

Two additional bands at 278 and 157 cm‐1 are also observed in the Raman spectrum of 

dolomite. 

It is also possible to found in bibliography some references related to the transitions in Raman 

spectral signature from pure calcite mineral to pure magnesite (going through different 

dolomite compositions). This information can also be useful to understand the experimental 

results of the present research (108)   
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Fig.  8.11: Raman spectra of calcite, synthetic magnesian calcites, dolomite and magnesite 

 

8.1.1.2.3 SiO2 Raman spectra data 

 

Silicates have as structural unit the tetrahedral molecule. These tetrahedral can share each of 

their vertices (oxygen atoms) and in this way it is possible to build a vast array of structures 

such as chains, planes and infinite three‐dimensional networks. These structures essentially 

form giant molecules.  

When silicon atoms are replaced by other types of atoms, the diversity of such structures 

increases (crystalline silicates) 

In structures where each of the four vertices of the tetrahedron is connected to another 

tetrahedron, an infinite three‐dimensional network is built. The chemical formula is known as 

SiO2 (Silicon dioxide) and since each oxygen atom is shared by two silicon atoms, the 

stoichiometry is SiO (4.2) = SiO2. 

It is possible to find several crystalline structures other than SiO2 (quartz, Cristobalite, Coesite, 

Tridimine and Stishovite). The non‐crystalline (amorphous) form of this structure is known as 

silicate glass. 

So that the first study when analysing the Raman behaviour of SiO2 is whether it presents a 

crystalline or amorphous state. 

Fig.  8.12 shows typical silicon spectra from samples that range from pure crystalline top 

(strong band at 521 cm–1) to those containing significant amounts of amorphous material 

bottom (broad band centred at 480 cm–1) (122). 
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Fig.  8.12: Raman spectra of calcite, synthetic magnesian calcites, dolomite and magnesite 

Some considerations must be taking into account when Using Raman Spectroscopy for Silicon 

Analysis (123): 

 Laser power: some experiments show that as the power of the excitation laser is 

increased above a threshold, amorphous silicon is converted to the crystalline form.  

 Laser wavelength: There are three potentially important effects of excitation laser 

wavelength on this application: Raman efficiency, sample penetration depth and 

fluorescence.  

o Since Raman scattering efficiency is proportional to 1/λ4, the signal is much 

stronger using short wavelength lasers. 

o Penetration of the laser into the silicon also diminishes with shorter excitation 

laser wavelengths.  

o Fluorescence is also excitation wavelength‐dependent. Fluorescence is 

potentially capable of overwhelming the Raman scattering signal and should 

be avoided. Silicon fluoresces much more strongly at 780 nm than it does at 

532 nm.  

When the Raman spectrum of the crystalline structures of SiO2 need to be understood, it is 

easy to find the characteristic spectrum associated to those structures from the general data 

bases of Raman spectra commented in previous sections 
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Fig.  8.13: Raman spectrum at 514.5 nm: Up-Left) quartz, Up-Right) Cristobalite, Down-Left) 

Coesite and Down-Right) Tridymite 

In the particular case of amorphous structures of SiO2, it is characterized by three prominent 

Raman vibrational modes (124):  

 The symmetric stretching mode; this vibrational mode is mainly manifested in the 

range 400‐600 cm‐1. In this region, three peaks can be found, a broad band at 450 cm‐1, 

and two narrow peaks closed to 495 cm‐1 and 600 cm‐1. 

 The symmetric bending mode; This mode appears in this same spectral region than 

TO1 and also in 800 cm‐1. 

 Asymmetric stretching mode: This vibrational mode causes the most prominent peak, 

which is located around 1075 cm‐1, where a main peak appears at 1075 cm‐1 and a 

shoulder about 1200 cm‐1 

 

Fig.  8.14: Raman Spectra of amorphous SiO2 

 

8.1.1.2.4 Iron oxides Raman spectra data 

 

Although during the corrosion of the steel several products such as hydroxides (white rust), 

carbonates and sulphates (black rust) are produced, in this section only the different iron 

oxides generated are analysed. 

The main products of iron corrosion are iron oxides, which strongly absorb infrared radiation 

but are usually poor light scatters. So that, standard methods for the identification and 
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characterization of iron oxides have traditionally been X‐ray diffraction (XRD) and/or 

Mössbauer spectroscopy (MS). Due to the complexity of steel corrosion products, normally a 

combination of analytical techniques including Raman and infrared spectroscopies are 

commonly used.  

In the particular case of Iron oxides compounds with one or many strong covalent‐bonded 

vibrational units, Raman signature characterized can be separated in four groups (125):  

 Symmetric stretching modes, for instance Fe2‐O and/or Fe3‐O modes peaking in the 

400‐700 cm‐1 region for oxides, 300‐600 cm‐1 for chlorides, 200‐400 cm‐1 for sulphides. 

In symmetric modes, the strongest ones, only oxygen atoms move and thus the peak 

wavenumber mainly depends on the Fe‐O distance. These modes are very sensitive to 

oxygen vacancies that broaden the peaks. 

 Bending modes peak at lower energy, namely 400‐500 cm‐1 range for oxides or less for 

chlorides, sulphides. They are very sensitive to the short range disorder in the first 

neighbouring shell (1‐5 nm around the chemical bond) and their broadness can be very 

informative on the short‐range (dis)order. Because the mean symmetry often broke 

the symmetry of the vibrational units, many components are frequently observed. 

 Vibrational (orientational oscillations, 150‐400 cm‐1 range) and lattice modes (<200 cm‐

1 range): 

o Vibrational modes are very sensitive to the short range disorder of the 

vibrational entities (i.e. FeO4 tetrahedron);  

o Lattice modes reflect the long range crystalline order, like X‐ray diffraction, 

and strongly depend on atom mass. 

 Additional features (combination, harmonics…) consisting bands between 1000 and 

1500 cm‐1: their origin lies in the interaction between electronic (and magnetic) levels 

and the light because the laser beam wavelength interacts with the electronic levels. 

The analysed iron oxides in this section are:  

 Red iron oxide (Haematite, α‐Fe2O3): 

The most representative bands of hematite are around 225 cm‐1 and 290 cm‐1. These 

bands of hematite are two of the seven Raman most representative bands. These two 

bands were taken for quantitative analysis by some authors (126). The remaining five 

characteristics bands at about 245, 300, 410, 495 and 610 cm‐1. From the literature 

(125) (126) (127), characteristic band at 225 and 495 cm‐1 are attributed to the Fe‐O 

symmetric stretching vibrational mode and bands at 245, 290, 410 and 610 cm‐1 may 

be attributed to Fe‐O symmetric bending modes. There is another characteristic band 

at about 1317.8 cm‐1 which is close to the magnetite at approximately 1304.9 cm‐1. 

This causes an overlapping in vibrations when these two phases are mixed, making 

difficult their identification by using those bands. 
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Fig.  8.15: Raman spectra of hematite from various sources: (a) commercial hematite; (b) hematite 

from pure starting material and (c) hematite from mill scale (128). 

 Yellow iron oxide (Goethite, α‐FeOOH):  

Goethite is one of the most widespread forms of iron oxides in terrestrial soils, 

sediments and ore deposits, as well as a common weathering product in rocks of all 

types. 

The band of goethite that stands out over other active modes in Raman spectra can be 

found at around 390 cm‐1, and it corresponds with symmetric stretching vibrational 

mode provokes with Fe‐O‐Fe / ‐OH structure. On the other hand, characteristic band 

at 297 cm‐1 is attributed to the Fe‐O symmetric bending modes. Some authors (127) 

attribute bands at 565 and 1000 cm‐1 to Fe‐OH asymmetric stretching vibrational 

mode. The band at about 560 cm‐1 does not appear in other iron oxides, therefore, it 

could be used for the quantification of goethite in unknown materials. 

 

Fig.  8.16: Raman spectra of goethite from (a) pure starting material and (b) mill scale (128). 

 Brown iron oxide (Maghemite, γ‐Fe2O3):  

The most representative bands of hematite due to symmetric stretching vibrational 

mode of Fe‐O are around 360, 665 and 721 cm‐1 and 290 cm‐1. The characteristic band 

at 499 cm‐1 is attributed to the Fe‐O asymmetric bending modes. 

 

Fig.  8.17: Raman spectra of maghemite from (a) pure starting material and (b) mill scale (128). 
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 Black iron oxide (Magnetite, Fe3O4): 

In the case of Magnetite, there are two bands related to the Fe‐O asymmetric bending 

mode at 298 and around 530 cm‐1. The most representative bands are located at 

667cm‐1 and are attributed to the symmetric stretching vibrational mode of Fe‐O. The 

characteristic band at about 310 cm‐1 is attributed to the Fe‐O symmetric bending. 

 

Fig.  8.18: Raman spectra of magnetite from various sources: (a) commercial magnetite; (b) 

magnetite from pure starting material and (c) magnetite obtained from mill scale (128). 
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8.1.2 Laboratory equipment for spectral analysis 
 

As it was explained before, the key elements in a Raman system are the Spectrograph, the 

Excitation Laser and the optical elements. The equipment used for conducting the analysis 

proposed in this section were: 

- Wavelength Stabilized Laser by Innovative Photonic Solution: This laser corresponds 

with a 785 nm stabilized Raman Laser and it allows high output power with narrow 

spectral bandwidth. 

  

Fig.  8.19: Laser device and typical 785 nm Stabilized Laser Spectrum 

- QE Pro Ocean Optics spectrometer: The Ocean Optics QE Pro Spectrometer is a 

scientific‐grade spectrometer ideal for researchers. Its broadband sensitivity, from UV 

to NIR, makes it suitable for a wide range of applications, while its high sensitivity and 

thermo electric cooler enable effective measurements at very low light levels. 

 

Detector: 

Type: Hamamstsu scientific grade, back‐thinned, 

Range: 185‐1100 nm 

Spectroscopy: 

Wavelength range: 780‐1000 nm 

Raman shift: 0‐2800 cm‐1 

Resolution: 7 – 11 cm‐1 

Integration time: 8 ms to 60 min 

Dynamic range: 85000:1 

Signal-to-noise-ratio: 1000:1 
 

Fig.  8.20: Spectrometer technical characteristics 

- Ocean Optics Raman RPB probe: 

 
 

Probe Specifications: 

Excitation wavelengths: 532, 638, 785 and 1064 nm 

Spectral range: 300 – 3900 cm‐1 

Sampling head: Anodized aluminium 

Probe length / diameter: 107 mm ‐ 12.7 mm 

Working distance: 7.5 mm 

Fiber configuration: Excitation and collection fibers; 0.22 NA 

Fiber connectors: FC and SMA 905 
 

Fig.  8.21: Capturing equipment (probe) 
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- Renishaw's InVia Raman equipped with a green laser of 514 nm wavelength as 

excitation sources and a CCD detector 

 

Probe Specifications: 

Spectral range: 200‐2200 nm 

Laser compatibility: 229‐1064 nm 

Spectral resolution: 0.3 cm‐1 (FWHM) 

Lower wavelength threshold: 5 cm‐1 

Higher wavelength 30000 cm‐1 

Detector size: 1024 x 256 
 

Fig.  8.22: InVia Raman Spectrometer technical characteristics 

- For the capture, the visualization and the processing of the spectra, a PC equipped with 

OceanView software by OceanOptics was used. This software allows performing 

absorbance, reflectance and emission analysis, as well as absolute irradiance and 

Raman. Other signal-processing functions such as electrical dark-signal correction, 

boxcar pixel smoothing, and signal averaging were also available 

 

Fig.  8.23: OceanView software snapshot  
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8.1.3 Data processing algorithms 
 

For analysing the acquired Raman signals and to extract the maximum spectral information, as 

well as to stablish the comparative criteria between different samples, two types of algorithms 

were used: 

 Signal processing algorithm: The purpose of this processing algorithm is to improve 

and normalize the acquired signal to extract the maximum available information from 

it and to allow comparing spectra form several sampling campaigns. This algorithm 

consists of several processing levels: 

o Removal of the continuous component of the signal; This processing allows 

filtering the fluorescence of the acquired signal and it basically consists on: 

 Low‐pass spectrum calculation using high‐sigma Gaussian convolution 

filter. 

 Elimination of the calculated low‐pass signal. 

o Signal smoothing: filtering noise by the convolution of a Gaussian filter 

(Savitzky‐Golay filter (129)). 

o Desaturation (subtracting the minimum to start at 0) 

o Standardization (dividing by standard) (130) 

Fig.  8.24 shows spectral signal transformations after each mentioned processing step: 

  

  

Fig.  8.24: Spectra processing steps: Top-Left: raw signal, Top-Right: continuous component 

removal, Bottom-Left: Signal smoothing and Bottom-Right:  Signal Standardization 

 Chemical composition estimation assuming a linear mixture model to calculate the 

percentage (abundance) of each base spectrum (endmember) in the observed Raman 

spectrum of the mixture. 
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Due to signal complexity and high overlap between classes, classical unmixing 

methodologies based on linear methods do not yield appropriate results. To overcome 

this problem the Dobigeon Bayesian algorithm (131) (132) is adapted as a Bayesian 

generalization of a linear unmixing model on the normalized hyperspectral images of 

the different samples. 

 
� = � ���� + �

�

���

 (8.2) 

Where; y is the observed spectrum, m is each endmember (base) spectrum and 

each α value is related to the spectral abundance of each endmember and n 

represents the noise. 

The α set follows the following constraints: 

 
∀� ∈  {1,… ,�},�� ≥ 0 ��� � ∝�= 1.

�

���

 (8.3) 

Based on this model, a set of statistical variables were defined: 

Variable Distribution Notes 

Alpha Dirichlet distribution This assure positivity and sum=1 

Sigma Half Normal Sd=1 

M Observed data Observed pure reflectance desaturated vectors 

Table 8.3: Statistical variables in the linear mixture model 

The probability is defined as a normal distribution between the observed and the 

reconstructed spectra by the statistical variables 
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2��
� (8.4) 

In order to calculate the statistical distribution of the observed variables, the Bayesian 

Markov chain Monte Carlo algorithm (MCMC) is applied. The MCMC estimation 

method allows to obtain the most probable probability of abundance and its statistical 

distribution. Also, the distribution of the different abundances is calculated. 
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8.1.4 Capturing procedure – Experimental set up 
 

The laboratory phase aims to determine the most suitable capturing conditions under 

controlled laboratory conditions (lighting, temperature, environmental pollution, sample 

preparation). For this purpose, artificially prepared samples with well‐defined chemical 

compositions are used, so that, and supported by previous bibliographical references, it will be 

possible to establish the processing and analysis patterns of the spectral signatures obtained, 

which will then be applied under real industrial conditions. 

In this section, the different method used for spectral acquisition during laboratory tests are 

described, but, before going further, there are some considerations that must also be 

considered to define the experimental set up of the analytical instruments during laboratory 

tests:  

Laser power: This parameter affects the shapes and intensities of the bands resulting from the 

sample under investigation. The increase in laser power may result in band broadening and 

shifts. The increase in laser power may destroy the sample or transform it into a different 

chemical phase. The laser power may range from a few milliwatts (0.1 mW) to several 

hundreds. As the laser power is increased the Raman band intensities may increase but the 

baseline starts to increase at high Raman shift because of the effect of sample heating. 

Therefore, it must be careful to select the appropriate laser power to maximise the signal‐to‐

noise ratio and minimise black‐body radiation caused by the sample heating. 

Sample recording time: Some compounds, i.e. silicates, are weak Raman scatters and short 

time recordings may not yield any peaks. However, with longer recording times the results 

improve. Therefore, the extension of recording time increases the efficiency and sensitivity of 

Raman spectroscopy. However, for heat sensitive samples degradation may occur as the 

recording time is lengthened. 

Number of scan accumulations: The number of scan accumulations is closely linked to the 

recording time. When the sample recording is accompanied by more accumulations, there is 

an increase in efficiency and sensitivity. One distinct advantage that stems from the increased 

accumulations is the increase in the signal‐to‐noise ratio. The recordings using more 

accumulations result in more pronounced Raman peaks. However, increasing the number of 

accumulations can result in a different spectrum.  

The used experimental set up are described below and shown in Fig.  8.25 and Fig.  8.26: 

- Capturing through pipette: The first experimental set up consisted on acquiring 

spectra information from the different materials contained in a pipette. With this 

capturing procedure the spectral information of the sample is acquired through 

pipettes, so that for a fixed configuration between the Raman probe and the pipette, 

the operation consists only in exchanging the different pipettes filled with the samples 

looking for guarantying the repeatability of the analyses. This experimental 

configuration allows setting the capturing distance. 

For this proposal set up, the capturing parameters were: 



 
New method proposal for chemical characterization of sterile material in scrap.  

219 
 

- Acquisition time: 800 ms 

- Spectral averaging: 3 samples 

- Direct capture over sample contained in pipette: The second experimental set up 

tested in laboratory trials was based on filling the pipette tubes to a predefined height 

and introducing the Raman probe into the tube, so that it is close enough to the 

sample and without interferences of the glass over the Raman signal. 

For this proposal, the captures were made in the darkness to avoid that the signal 

captured by the probe is affected by environmental lighting. On the other hand, the 

capturing parameters were: 

- Acquisition time: 800 ms 

- Spectral averaging: 3 samples 

- Direct capture over compressed powder: This experimental set up was based on 

direct analysis over pressed pellets prepared with the material to be tested. This 

sample preparation method is one of the most common methods used for XRF analysis 

as it produces high quality results, relatively quick and at low cost. 

The process of making pressed pellets includes grinding the sample to a fine particle 

size, mixing it with a binder aid in mixing vessel, pouring the mixture into a pressing die 

and pressing the sample at high pressure.   

On the other hand, and in order to standardize capturing conditions, the Raman probe 

was fitted with a "cap" that rests on the pressed sample and allows: 

- Ensure fixed distance between the probe and the sample for all experiments. 

- Avoid that the signal captured by the probe is affected by environmental 

lighting. 

  

Fig.  8.25: Samples of sterile to be analyzed: Left) pipette and Right) pressed pellet 
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Fig.  8.26: Proposed capturing set ups: Left) through pipette, Middle) directly over sample and 

Right) pressed pellet 
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8.1.5 Samples selection and preparation 
 

As it has already mentioned in previous sections, the main compound present in sterile 

materials are CaO, MgO, SiO2, Al2O3, Fe2O3, FeO. Most of them are available as raw materials n 

several industrial activities and can be used for this research purpose. 

 SiO2; A material based on calcined rice husk has been selected as SiO2 samples. This 

material is used in steelmaking as coverage material to prevent thermal losses of the 

steel during the casting process. The chemical composition (according the supplier) is 

about 92% of amorphous SiO2, 1% of CaO, 1,5% of Al2O3 and 1% of Fe2O3 

 MgO; The sample of this material is obtained from calcined dolomite stone. This 

material is used in steelmaking as adding material in electrical Arc Furnaces for 

refractory protection purposes. The chemical composition (according the supplier) is 

about 38% of MgO and 61% of CaO. 

 CaO; This material is obtained from calcined calcite stone. Lime is required in 

steelmaking for phosphorous removal in the electrical Arc Furnaces process. The 

chemical composition (according the supplier) is about 1,5% of MgO and 97% of CaO. 

 Fe2O3: For obtaining Fe2O3 compound, scale material from the rolling mill process was 

dried and prepared.  

These materials allow analysing the capacity of the proposed laboratory configuration to 

obtain the spectral information identified in the bibliography.  

On the other hand, in order to analyse real sterile materials in the proposed laboratory set up 

and to associate the spectral information obtained from pure components to real process 

conditions, 2 samples of sterile from two E1 scrap grade deliveries were collected. 

 

Fig.  8.27: Raw material used for experimental tests; Left) Pure compounds (Lime, Dolomite and 

SiO2 and Right) real sterile 

To be sure that the chemical compositions of the pure compounds correspond to the 

compositions supplied by the supplier, as well as to have the complete chemical distribution of 

the two sterile samples, SEM‐EDS analysis (Energy‐dispersive X‐ray spectroscopy for the 

elemental analysis of a sample) of all collected sample were performed. The results of these 

analyses are shown in Table 8.4: 
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Spectrum C O Mg Al Si P S Ca Ti Mn Fe Zn 

Sterile A 16.38 39.95 0.38 2.44 9.43 0.12 0.26 4.45 0.66 0.28 22.94 0.98 

Sterile A 2 16.25 40.91 0.36 2.52 9.16 0.14 0.19 4.40 0.39 0.22 23.13 0.92 

Sterile B 17.17 40.56 0.63 2.10 7.56   0.80 7.13 0.91 0.36 20.53 1.57 

Sterile B 2 19.79 39.74 0.53 1.89 7.30 0.18 0.60 6.63 0.90 0.39 19.33 1.68 

SiO2   54.05 0.27   39.62 0.48 0.42 0.78         

SiO2 2   53.87 0.23   39.82 0.51 0.34 0.93         

CaO+MgO   50.66 12.02         37.32         

CaO+MgO 2   50.10 11.30         38.61         

CaO 11.90 53.23 0.67 0.21 0.35     31.97     1.67   

CaO 2 10.63 58.48 0.69 0.24 0.14   0.13 28.80     0.89   

Table 8.4: Elemental analysis of collected samples (wt%) 

The manner in which the samples were prepared for the proposed experiments consisting on 

mixing the pure compounds inside the pipette and by pressed pellet. Table 8.5 summarizes the 

material distribution used which are shown in Fig.  8.28: 

Sample ID % CaO % Dolomite  %SiO2 

Sample 1 75 25 0 

Sample 2 50 50 0 

Sample 3 25 75 0 

Sample 4 0 70 30 

Sample 5 0 50 50 

Sample 6 0 30 70 

Sample 7 75 0 25 

Sample 8 50 0 50 

Sample 9 25 0 75 

Sample 10 33,3 33,3 33,3 

Table 8.5: Pure compounds distribution for mixing analysis 

  

Fig.  8.28: Samples prepared on pipettes and on Pressed pellets 
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8.1.6 Experimental results 
 

The objective of these laboratory experiments was to gain knowledge and expertise in defining 

the best optical configuration of the Raman spectrograph, as well as the definition of the key 

capture parameters to get a clear spectral signature in relation to the analysed components. 

The development of these tests, under controlled laboratory conditions, will guarantee 

subsequently better results in industrial conditions where there will be a greater number of 

uncontrolled variables (light and temperature, greater degree of heterogeneity, presence of 

unknown components or different degrees of humidity). In this section, the results obtained 

during laboratory tests are described 

8.1.6.1 Capturing through pipette glass 

 

Before conducting any experiments on samples of interest and aiming to evaluate whether the 

equipment available in the laboratory are valid to extract spectral signatures for this research 

purpose, a first experiment was performed over a pure material with a well‐known Raman 

signature obtained from Ocean Optic database. In this sense, sugar was selected as testing 

material whose spectrum is available in public databases. 

However, with this capture configuration, it is necessary to consider that the pipette itself has 

influence over Raman captured signal, since the laser must pass through the glass altering its 

characteristics. To eliminate the influence that the glass has on the captured signal, prior to 

the capture campaign, a capture with an empty glass tube is carried out. The collected 

spectrum will be used as background noise signal and subtracted from the captured spectrum 

of each sample. 

Fig. 40 shows the methodology followed for background signal acquisition and two images 

comparing the acquired Raman spectra of sugar samples in raw and the result after subtracting 

the background signal: 
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Fig.  8.29:Sugar spectra analysis: Up) Background signal and Down) Raw sugar Raman signal (left) 

and sugar signal after subtracting background (right) 

Fig.  8.30 shows the unprocessed scanned signal after subtracting the background spectra 

produced by the glass (in red). This spectrum is compared with the Raman signature found the 

Ocean Optics general database for sugar. Looking at the results, it is proved that, despite some 

"noise" in the signal, the characteristic peaks detected correspond very well with the 

theoretical one. 

 

Fig.  8.30: Theoretical and obtained spectra of sugar 

In view of the results, new pipettes of the same material (Borosilicate) were acquired, and 

according to the defined procedure, the capture of the spectrum generated by the glass of the 

empty pipettes were recorded. 

After analysing the generated background spectra of several pipettes, it was demonstrated 

that the intensity of the signature obtained with the new tubes is much higher than the 

intensity obtained with the previous pipettes, possibly due to structural differences of the 

material induced in the manufacturing process. The mentioned effect can be seen in Fig.  8.31. 

 

Fig.  8.31: Raman spectra of two different pipettes 

It is concluded that this lab setting is not feasible to achieve consolidated results over time in 

real industrial conditions. For this reason, this acquisition set up is discarded. 
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8.1.6.2 Direct capture over sample contained in pipette 

 

With this spectra acquisition set up, three experimental analysis have been done:  

 Direct capture over pure sample contained in pipette  

 Direct capture over controlled material mixtures contained in pipette  

 Direct capture over sterile contained in pipette  

 

8.1.6.2.1 Direct capture over pure sample contained in pipette  

 

In this laboratory set up, two samples (named as A and B) of each selected pure material (lime, 

Dolomitic lime and Silica) were selected. These 6 pipette tubes are filled to a predefined height 

and the Raman probe is introduced into the tube. For each sample, several spectra acquisitions 

are done for each pipette. 

Fig.  8.32 shows the Raman spectral raw data without processing 

 
 

 

Fig.  8.32: Acquired spectral data from Dolomitic, lime and Silica before processing 

After analyzing the results, there are two conclusions worth mentioning:  

 There is a high repeatability in the characteristic peaks found in the captures of 

different samples of the same material. 

 Under the same capture conditions and on different fractions of the same raw 

material, spectra with different intensity levels were obtained. At this investigation 

stage the causes of these differences are unknown yet. 
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After this preliminary analysis, the next step consisted on processing spectra signatures 

according to the stabilised methodology for eliminating the continuous component of the 

acquired signal (see Fig.  8.33) 

  

 

Fig.  8.33: Acquired spectral data from Dolomitic, lime and Silica after processing 

An averaging of the spectral information obtained for each one of the samples in the different 

components is performed. Looking at the similarity of the results obtained for different 

samples captured, this averaging process serves to validate the capture procedure Those 

results also allow obtaining the position of the characteristic peaks for the defined catch 

conditions. 

  
 

 

Fig.  8.34: Averaged spectral data and characteristic peaks from Dolomitic, lime and Silica after 

processing 
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When the spectra information of each analysed component after processing raw data is 

compared with the information reported in the different bibliographic references, It is possible 

to state the following:  

- Calcite: Similarities were observed in some of the peaks found in 1200‐1600 cm‐1 

region; at 1581 (1580), 1365 (between 1378 and 1361), 1350 (1342) and 1272 (1267) 

cm‐1, where numbers in brackets represent characteristic peaks from literature. Also, 

in the lower region, it was expected to obtain a characteristic peak at 278 cm‐1 and 

nevertheless it has been found at 238 cm‐1. Finally, in the region 200‐1200, it was 

expected to find a clear peak at 1080‐1090 cm‐1 but nothing was observed. 

- Dolomite: As it was the case with calcite, some similarities were observed in some of 

the peaks found in 1200‐1600 cm‐1 region; at 1606 (1613), 1581 (1580), 1369 (1376) 

and 1339 (1342) cm‐1, where numbers in brackets represent characteristic peaks from 

literature. In the lower region, several peaks were expected be found between 150 

and 300 cm‐1, however it was found a unique peak at 241 cm‐1. Finally, in the region 

200‐1200, it was expected to find some clear peaks at 1080‐1090 cm‐1 but nothing was 

observed. 

- Silica: At this point, only one Raman laser at 785 nm was available for these 

experiments. Also, it should be mentioned that, Silicon fluoresces is much stronger at 

780 nm than it is at 532 nm, so most the bibliographical references are referred to 

analysis in the range of 500‐550 nm. However, it was expected to find a strong peak at 

520 cm‐1 in the case of pure crystalline silica (Quartz, Cristobalite, Coesite, Tridymite or 

Koetita) or at 480 cm‐1 in the case of amorphous material (silicate glass). 

 

8.1.6.2.2 Direct capture over controlled material mixtures contained in pipette 

 

In line with what was done previously on pure materials, the analysis of mixed materials was 

done using the same experiment configuration. In this case, after grinding and mixing the 

materials composing the mixtures, three different compositions were prepared: 

- 50% lime and 50% Silica 

- 70% lime and 30% Silica 

- 90% lime and 10% Silica 

In terms of sample preparation, three different spectral processing algorithms combination 

were tested:  

a. Removing the continuous component of the signal, signal smoothing and 

Standardization (dividing by standard) 

b. Spectra smoothing and Standardization (dividing by standard) 

c. Only spectra smoothing 
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The spectral signatures obtained for 50% lime and 50% Silica, after applying the three 

proposed spectral processing, are shown below: 

  

 

Fig.  8.35: 50% lime -50% Silica applying Up-Left) a methodology, Up-Right) b methodology and 

Down) c methodology 

The spectral signatures obtained for 70% lime and 30% Silica, after applying the three 

proposed spectral processing, are shown below: 

  
 

 

Fig.  8.36: 70% lime -30% Silica applying Up-Left) a methodology, Up-Right) b methodology and 

Down) c methodology 
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The spectral signatures obtained for 90% lime and 10% Silica, after applying the three 

proposed spectral processing, are shown below: 

  
 

 

Fig.  8.37: 90% lime 10% Silica applying Up-Left) a methodology, Up-Right) b methodology and 

Down) c methodology 

The data obtained from spectral averaging allowed quantifying, from the linear mixture model 

described in section 8.1.3, the similarity of the mixture with respect to the pure components, 

calculating both the abundance and its standard deviation of each component in the mixture. 

The results are shown in Table 8.6: 

 

 
Removing continuous component, 

Spectra smoothing and Standardization 
(a) 

Spectra smoothing and 
Standardization 

(b) 

Only spectra smoothing 
(c) 

Case (50%-50%) 
[Silica; Lime] 

�� [0.9518; 0.0481] [0.9989; 0.0010] [0.4504; 0.5495] 

� [0.0138; 0.0138] [0.0010; 0.0010] [0.0001; 0.0001] 

Case (30%-70%) 
[Silica; Lime] 

�� [0.9449; 0.0550] [0.9992; 0.0007] [0.3859; 0.6140] 

� [0.0126; 0.0126] [0.0007; 0.0007] [0.0004; 0.0004] 

Case (10%-90%) 
[Silica; Lime] 

�� [0.8906; 0.1093] [0.9981; 0.0018] [0.0871; 0.9128] 

� [0.0261; 0.0261] [0.0010; 0.0010] [0.0871; 0.9128] 

Table 8.6: Mean abundance and Std abundance data obtained 

 

The main conclusion obtained after this experiment is basically that, with the defined 

capturing configuration for pure components mixtures, in terms of abundance only good 

results were obtained with the simplest method for processing the spectrum. This method 

corresponds with only signal smoothing by means of a noise filter. It could be due to the fact 

that some spectral processing method can remove some important spectral responses. 
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8.1.6.2.3 Direct capture over sterile contained in pipette  

 

In this laboratory set up two samples (named as A and B) of collected sterile material from the 

scrap yard were selected and split in two samples each. With the resulting samples, 4 pipette 

tubes were filled to a predefined height and the Raman probe was introduced into the tube. 

Several spectra captured were done for each pipette after mixing the material. 

  

  

Fig.  8.38: Up) Raw spectra data of Sterile A (left) and B (right) without spectral processing and 

Down) Processed spectra data of Sterile A (left) and B (right)  

In this case, the raw spectral data were processed by removing the continuous component of 

the signal, signal smoothing and Standardization (Processing algorithm referenced as A in 

previous sections). 

Fig.  8.39 depicts spectral averaging for the data obtained from sterile A and B after signal 

smoothing: 

 

Fig.  8.39: Mean values obtained from each sterile sample 

The obtained mean spectra are processed trying to determine what proportion of "pure 

components" are in the sterile analysed. Initially, to compare the pure and sterile signals, the 
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averaging spectra normalized on the maximum and on the standard values are calculated of 

each spectrum for both, the pure components and the two sterile samples. 

 

Fig.  8.40: Sterile and pure samples normalized to the maximum 

 

Fig.  8.41: Sterile and pure samples normalized to the standard 

Looking at the graphical analysis results, it is concluded that the spectra signature got from the 

sterile samples are very similar to each other, and much more similar to silica samples 

(especially in the central part 600‐1350 spectral range) than to dolomite or lime samples. 

When calculating the abundance of each pure component contained in sterile according to the 

processing methodology described before, the similarity of sterile spectral signature with silica 

signature is confirmed. Abundance results obtained for each sample are the following: 

Sterile % Silica % Dolomite % lime 

normalized to the 
maximum 

Sample A 0.973 0.012 0.014 

Sample B 0.978 0.011 0.010 

normalized to the standard Sample A 0.870 0.061 0.067 

Sample B 0.892 0.075 0.031 

Table 8.7: Abundance analysis on raw sterile 

These results on abundance do not mean that the sterile contain the calculated percentage in 

weight of silica, but it looks much more like silica than dolomite or lime, which is in line with 

the chemical elemental distribution shown in Table 8.4. It is also important to consider that the 

sample has other components that have not been considered in this analysis. 

The main conclusion got from these “direct capture over sample contained in pipette” 

experiments is that when sampling is performed without any previous sample preparation, 

there are a large number of variables that are not being evaluated, such as the heterogeneity 

of the material, the roughness of the surface, the illumination conditions of experiment ... 

Those experimental variables have a great influence on the acquired signal quality. 
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Before thinking about continuing with the development of the methodology to be used to 

obtain the spectral information of sterile samples without sample pre‐treatment in real 

industrial conditions, it is necessary to test and validate, under well controlled conditions, the 

management of other capture variables such as the configuration of the laser to use be and 

the most appropriate signal processing algorithms. These variables can only be tested over 

carefully prepared samples in order to minimize the capturing process uncertainties. 

 

8.1.6.3 Capture over pressed pellets of samples  

 

The experimental set ups of these analyses can be grouped in categories: 

 Capture over pressed pellets of pure compound samples 

 Capture over pressed pellets of mixed compound samples 

 Capture over pressed pellets of sterile samples 

The analyses over these categories were done using two different Raman Laser source at 785 

nm and at 514 nm. 

8.1.6.3.1 Capture over pressed pellets of pure compound samples 

 

For this analysis, 2 samples of each pure component (Silica [SiO2], Dolomite [CaMg (CO3)2], 

Calcite [CaCO3] and Iron Oxide [Fe2O3]) were prepared in pressed pellets as shown in Fig.  8.42: 

 

Fig.  8.42: Samples of pure compounds 

Similar to the work done in previous analysis, two different spectral processing algorithms 

were tested:   

a. Removing the continuous component of the signal, signal smoothing and 

Standardization (dividing by standard) 

b. Spectra smoothing and Standardization (dividing by standard) 

Analyses over dolomite samples: 

The first analysis proposed over dolomite pressed pellet samples are conducted using a 

stabilized Raman Laser at 785 nm 
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Fig.  8.43: Dolomite Spectral data at 785 nm. Up-Left) without processing, Up-Right) A 

methodology and Down) B methodology 

In order to be able to compare the results obtained from the direct capture in pipette with the 

results got from the capture over pressed pellets, the average value of the spectral signatures 

after applying the processing algorithm B for both cases are drawn 

 

Fig.  8.44: Comparative analysis of dolomite between spectral data coming from direct capture in 

pipette and over pressed pellets  

After analyzing these results, it can be concluded that the spectral signatures got from pressed 

pellets are more regular than the same spectral signals extracted from direct capture in 

pipette. 

As far as characteristic peaks are concerned: 

- With this experiment setup, a new peak is observed at 355 cm‐1 (significant). According 

to the literature, a peak is expected around 299 cm‐1 in dolomite, which is located far 

from the peak found. 
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- On the other hand, small peaks (wide) are detected at 674 cm‐1 and 711 cm‐1. 

According to the literature a peak is expected around 724 cm‐1 

- The main characteristic peak at 1086 cm‐1 is clearer than in the initial captures. 

According to initial bibliographical studies, a peak was expected around 1097 cm‐1 in 

dolomite 

- Finally, for> 1100cm‐1, the spectrum is similar to the initial captures, additional 

undocumented peaks were detected (1179, 1364, 1477, 1579, 1773). 

As previously discussed, laser power affects the shapes and intensities of the resulting bands. 

However, the laser power must be carefully selected to maximize the signal‐to‐noise ratio and 

minimizing black‐body radiation caused by the sample heating. Also, the extension of the 

exposure time will increase the efficiency and sensitivity of Raman spectroscopy. In order to 

analyze how these variables, influence on the obtained spectral signature, several sampling of 

Dolomite’s pressed pellets were carried out varying both the laser power (between 300 and 

950 mW) and the exposure time (between 3 and 900 sec). 

Fig.  8.45 shows the results of the tests conducted testing different laser power and exposure 

time: 

  
laser power (315-350 mW) and exposure time (20 sg) laser power (500-550 mW) and exposure time (5 sg) 

  
laser power (600 mW) and exposure times (5-30 sg) laser power (950 mW) and exposure time (3 sg) 

Fig.  8.45: Dolomite response to different laser power and exposure time at 785 nm 

In order to evaluate the spectral response of dolomite materials to Raman Laser at 514 nm, 

the selected samples are exposed to green Raman Laser. The acquiered spectrum is shown in 

Fig.  8.46 
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Fig.  8.46: Dolomite response at 514 nm 

The spectrum collected with the green laser shows peaks around 290, 370, 510 and 1100cm‐1, 

and one wider peak around 700 cm‐1. 

The most significant difference with respect to 784 nm laser is that the peak at 510 nm 

“moves" since 2 peaks are usually detected just under 500 nm. 

In this case, the results obtained with the laser at 514 nm are comparable to the results 

obtained with the laser at 784 nm. 

Analyses over Calcite samples: 

As done before, the first analysis proposed over calcite pressed pellet samples are conducted 

using a stabilized Raman Laser at 785 nm 

  
 

 

Fig.  8.47: Calcite Spectral data at 785 nm. Up-Left) without processing, Up-Right) A methodology 

and Down) B methodology 
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After analysing the results, similarly to the results obtained in dolomite analysis case, the 

spectral signatures got from pressed pellets are more regular than in the direct acquisitions 

over the material contained in the pipette. The spectral signatures obtained with the new 

experimental configuration differ from the signatures obtained previously. 

 

Fig.  8.48: Comparative analysis of calcite between spectral data coming from direct capture in 

pipette and over pressed pellets 

Analysing the characteristic peaks, the following statements can be highlights: 

- With this experiment setup, same peak than observed in dolomite case at 355 cm‐1 

(significant) is got. According to the literature, a peak is expected around 281 cm‐1 in 

calcite, which is located far from the peak found. 

- Relatively wide peak is found at 480 cm‐1. In the literature no reference was found 

referring to it. 

- On the other hand, small wide peak was detected at 711 cm‐1, which corresponds 

closely with those found in the literature. Thus, the main characteristic peak of calcite 

at 1085 cm‐1 is now clearly identify at 1084 cm‐1. 

- For wavelengths greater than 1100cm‐1, The "large" peaks observed before are not 

observed any more. Now there are smaller and wider peaks at 1338, 1396, 1692, 1731, 

1779 and 1825 cm‐1. 

For Calcite case, similar conclusions than for dolomite material are reached. So that it does not 

seems worthy to repeat the experiments for assessing the laser power and the exposure time. 

In this particular case, several experiment for analysing the influence of laser focus over the 

sample are carried out. In order to identify the distance between the Raman optic and the 

sample that offers the clearest spectral signature, the sensor is placed manually at different 

distances from the sample. The results of this experimental tests are shown is Fig.  8.49: 
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Fig.  8.49: Analysis on Laser focus tests for CaO 

In order to evaluate the spectral response of calcite materials at 514 nm, the selected samples 

are exposed to green Raman Laser. The detected spectrum is shown in Fig.  8.50 

 

Fig.  8.50: Calcite response at 514 nm 

The spectrum collected with the green laser shows peaks around 370 and 1100cm‐1, and one 

wider peak around 700 cm‐1. 

Similarity to Dolomite case, the most significant difference with respect to 784 nm laser is that 

one peaks is detected just under 500 nm. 

In this case, the results obtained with the laser at 514 nm are comparable to the results 

obtained with the laser at 784 nm. 

 

Analyses over Silica samples: 

When analysing samples composed by SiO2 with Raman Laser at 785 nm, the following spectral 

signatures are got for the different processing methodologies proposed: 
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Fig.  8.51: Silica Spectral data at 785 nm. Up-Left) without processing, Up-Right) A methodology 

and Down) B methodology 

As shown in Fig.  8.51, the results from pressed pellet samplings experiment were like the 

previous ones over direct capture in pipettes. No peaks comparable to those documented on 

SiO2 were detected; neither in the crystalline structure (quartz, Cristobalite, Coesite, Tridimine 

and Stishovite), nor in the amorphous form. 

 

Fig.  8.52: Comparative analysis of Silica between spectral data coming from direct capture in 

pipette and over pressed pellets 

As it was already mentioned in section 8.1.1.2.3, when using Raman Spectroscopy for Silicon 

Analysis some considerations related to the laser (power and wavelength) and the acquisition 

exposure time must be carefully taken into account, as well as Fluorescence effect that is 

potentially capable of overwhelming the Raman scattering signal. This last effect may justify 

the absence of characteristic peaks in the previous tests for SiO2 samples. 
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In order to analyse how these variables, influence on the obtained spectral signature, several 

sampling of silica pressed pellets were carried out varying both the laser power (between 300 

and 950 mW) and the exposure time (between 3 and 900 sec). 

  
Laser power (300mW) and exposure time (900-300 sg) Laser power (325mW) and exposure time (900- 30 sg) 

  
Laser power (350mW) and exposure time (300-30 sg) Laser power (550mW) and exposure time (23 sg) 

Fig.  8.53: Silica response to different laser power and exposure time at 785 nm 

The following figure shows the average values of the normalized spectra of the samples taken 

with the different laser power and exposure time configurations 

 

Fig.  8.54: Average spectra (normalized) with different laser power and exposure time 

configurations 

Beside the influence of the laser set up (power and exposure time) on the quality of the 

acquired signal, an analysis on the influence of the focus distance between the sensor and the 

SiO2 samples is conducted following same methodology than used for calcite. 

In this case, with similar focus distances than used with CaO, the signal is saturated.  
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As shown in Fig.  8.55, using closer positions, the signal is intense and with a positive slope 

(green graph). With lager distances the signal is less intense and with a negative slope (orange 

and blue graphics). 

 

Fig.  8.55: Laser focus analysis for SiO2  

Finally, Fig.  8.56 shows the spectral response of silica‐based materials at 514 nm is analyzed.  

 

Fig.  8.56: Silica response at 514 nm 

The collected spectrum using green laser does not shows clear peaks to identify the 

composition of the sample.  

 

Analyses over Iron oxide samples: 

As done with the other samples, Fe2O3 is analysed using Raman laser at 785 nm by placing the 

sensor at different distances from the sample, first slightly out of focus and then focusing it 

better (at an intermediate distance from the initial captures). 

In this case, with good focus, the signal is saturated. In closer positions, the signal is intense 

and with a positive slope (green curve). In more distant positions (closer or further away than 

the focused one) the signal is less intense also with a positive slope (orange and blue curves). 
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Fig.  8.57: Laser focus analysis for Fe2O3 

After analysing the spectral information generated in the previous tests at 785 nm, no 

characteristic peaks reported in the literature are identified. However, if same experiments are 

conducted with a Raman at 514 nm, the iron oxide sample is clearly identified as a mixture of 

iron oxide in the form of hematite and goethite. 

 

Fig.  8.58: Fe2O3 response at 514 nm 

 

8.1.6.3.2 Capture over pressed pellets of mixed compound samples 

 

For this analysis, samples of the different pure components selected earlier (Silica [SiO2], 

Dolomite [CaMg (CO3)2], Calcite [CaCO3] and Iron Oxide [Fe2O3]) were mixed to prepare 

pressed pellets as shown in Fig.  8.59. 

In this case, and based on the conclusions reached in previous sections, the most convenient 

capturing parameters have been identified and set as follow:  

 Laser power: 750 mW 

 Integration time: 2 seconds 

 Distance between sensor and sample individually adjusted for each case 
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Sample ID 
CaO 
(%) 

Dolomite 
(%) 

Fe2O3 
(%) 

SiO 
(%)2 

Sample 1 25 0 75 0 

Sample 2 25 0 75 0 

Sample 3 25 0 0 75 

Sample 4 25 0 0 75 

Sample 5 33 0 33 33 

Sample 6 33 0 33 33 

Sample 7 50  50 0 

Sample 8 50 0 50 0 

Sample 9 50 0 0 50 

Sample 10 50 0 0 50 

Sample 11 75 0 0 25 

Sample 12 75 0 0 25 

Sample 13 75 0 25 0 

Sample 14 75 0 25 0 

Sample 15 0 0 75 25 

Sample 16 0 0 75 25 

 Sample 17 0 0 25 75 

Sample 18 0 0 25 75 

Sample 19 0 0 50 50 

Sample 20 0 0 50 50 
 

Fig.  8.59: Chemical composition of Mixed compounds pellets 

Note that Dolomitic line was not used any more due to the similarity of the spectral signature 

with lime. 

CaO / SiO2 Mixtures: 

Fig.  8.60 describes the result obtained over the analysis of the samples identified as sample 3, 

sample 4, sample 9, sample 10, sample 11 and sample 12 in Fig.  8.59. 

 

Fig.  8.60: Mixtures of CaO and SiO2 in different proportions 

Throughout the whole spectral range analysed, there is no relationship between the chemical 

composition of the pellets and the Raman signal intensity acquired for the different samples. 

Also, the spectral signatures obtained are quite similar to the curves previously identified for 

pure SiO2 samples and no characteristic peaks or traces identified in the pure CaO pellets 

analysed before are detected. 

CaO / Fe2O3 Mixtures:  

Fig.  8.61 describes the result obtained over the analysis of the samples identified as sample 1, 

sample 2, sample 7, sample 8, sample 13 and sample 14 in Fig.  8.59 
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Fig.  8.61: Mixtures of CaO and Fe2O3 in different proportions 

For this case, the spectral signatures obtained are quite similar to the curves previously 

identified for pure Fe2O3 samples and no characteristic peaks or traces identified in the pure 

CaO pellets analysed before are detected. However, samples with less content of CaO have a 

lower signal intensity level (except the sample identified as sample 8), which is in good 

agreement with the signal intensity generated by both pure components when analysed 

separately 

SiO2 / Fe2O3 Mixtures:  

Fig.  8.62 describes the result obtained over the analysis of the samples identified as sample 

15, sample 16, sample 17, sample 18, sample 19 and sample 20 in Fig.  8.59 

 

Fig.  8.62: Mixtures of SiO2 and Fe2O3 in different proportions 

For the lower wavelength range, the signal intensity, when high values Fe2O3 are present, 

shows coherence but, as the SiO2 content increases, this coherence disappears. However, 

throughout the whole spectral range analysed, there is no relationship between the chemical 

composition of the pellets and the Raman signal intensity acquired for the different samples. 

Also, as happened for SiO2/CaO mixtures case, the spectral signatures obtained are quite 

similar to the curves previously identified for pure SiO2 samples and no characteristic peaks or 

traces identified in the pure Fe2O3 pellets analysed before are detected. 

CaO / SiO2 / Fe2O3 Mixtures:  

Fig.  8.63 describes the result obtained over the analysis of the samples identified as sample 5 

and sample 6 in Fig.  8.59 
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Fig.  8.63: Mixtures of CaO, SiO2 and Fe2O3 in different proportions 

Again, the spectral signatures obtained are quite similar to the curves previously identified for 

pure SiO2 samples and no characteristic peaks or traces identified in the pure Fe2O3 nor CaO 

detected. 

The abundance analysis was done, defining as endmembers (base components) the samples 

made on the pure components, for each compound per sample according the methodology 

described in section 8.1.3. The calculation procedure for abundance estimation was performed 

as follow: 

 A pre‐processing of each spectra has been carried out. According this pre‐processing, 

the beginning and end of the spectral signature was removed, analysing only the 

spectral information contained in 250 ‐ 2000 cm‐1 range. 

 On the resulting signal, the minimum is subtracted, so that the minimum signal for 

each of the spectra is equal to 0 

 Finally, each of the spectra resulting from the previous step has been normalized with 

respect to its maximum to facilitate the comparison between different acquisitions. 

The results obtained are shown in the following table: 

  Real Estimated 
 

CaO SiO2 FeO CaO SiO2 FeO 

CaO 33% + SiO2 33% + Fe2O3 33% 33 33 33 0,01 99,97 0,01 
CaO 25% + Fe2O3 75% 25 0 75 1,93   98,07 

CaO 50% + Fe2O3 50% 50 0 50 0,37   99,63 
CaO 75% + Fe2O3 25% 75 0 25 1,34   98,66 

CaO 25% + SiO2 75% 25 75 0 0,03 99,97   
CaO 50% + SiO2 50% 50 50 0 0,04 99,96   

CaO 75% + SiO2 25% 75 25 0 0,02 99,98   
SiO2 25% + Fe2O3 75% 0 25 75   99,95 0,05 

SiO2 50% + Fe2O3 50% 0 50 50   99,94 0,06 
SiO2 75% + Fe2O3 25% 0 75 25   99,97 0,03 

Table 8.8: Abundance estimation for spectra information acquired with Raman spectroscopy 

From Table 8.8, It can be concluded that all samples containing SiO2 are identified. However, 

for all of them the estimated SiO2 amount is higher than 99% regardless of the actual amount 

of SiO2 contained in the sample. 

On the other hand, those samples that do not contain SiO2, are identified as Fe2O3, also 

regardless of the amount of Fe2O3 in the mixture.  
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Looking at these results, it is concluded that it is not possible to calculate abundances through 

the acquired spectral signatures. The main reason is that the spectra response obtained do not 

identify the composition when certain compounds are in the mixture analyzed 

 

8.1.6.3.3 Capture over pressed pellets of sterile samples  

 

For this analysis, the two sterile samples, identified as sample A and sample B, were also 

prepared in pressed pellets. 

As in the previous analysis, two different spectral processing algorithms were tested for 

carrying out this analysis:   

a) Removing the continuous component of the signal, signal smoothing and 

Standardization (dividing by standard) 

b) Spectra smoothing and Standardization (dividing by standard) 

Fig.  8.64 shows the results after Raman spectra analysis: 

  
  

  
  

  

Fig.  8.64: Sterile A (Left) and B (Right) Spectral data; Up) without processing, Midle) after 

removing continuous component and Down) after spectra smoothing and standardization 
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Fig.  8.65, the averaging of the spectral data from different captures for each material, using 

processing algorithm B, are compared with the results obtained after same data processing of 

the samples captured directly from the pipettes.    

 

Fig.  8.65: Comparative analysis between Sterile A and B and silica from pressed pellect set up 

Also, and given the similarities observed between the silica and sterile signals, the following 

figure draws together these signatures to allow a quick comparative analysis 

 

Fig.  8.66: Comparative analysis between Sterile A and B and silica from pressed pellet set up 

In view of the results, the conclusion that can be drawn is that the Raman spectra signature 

got from sterile is basically the same as the silica's signature. This might indicate that silica 

gives a higher signal than calcite, dolomite or Iron oxide and masks these components. 
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8.1.7 Main conclusions on the use of Raman spectroscopy for the 

characterization of sterile 
 

In Raman spectroscopy, the energy of the incident light is not enough to excite the molecule to 

a greater electronic level of energy, but it produces change in the vibrational state of the 

molecule. The analysis of these vibrational behaviors has proved to be valid for surface 

characterization of materials in different fields using laboratory equipment. 

In steelmaking industry, where hard environment conditions are present, those kinds of 

laboratory system cannot be applied. However, recently, there have been significant 

improvements in Raman technology (stabilized, small, inexpensive laser sources, optical filter 

technology, and charge‐coupled device (CCD) detectors) that could allow being used directly in 

site.  

In this work several Raman systems have been tested, modifying the samples preparation 

techniques and the system parameters configuration. Based on these analyses, the following 

conclusions are reached in relation to compound analysis capabilities of Raman technology: 

 Dolomite: It is possible to easily identify some characteristic peaks reported in the 

bibliography associated with this material; One small peak close to the theoretical at 

724 cm‐1 and the main characteristic peak at 1086 cm‐1. 

On the other hand, it is possible to produce same results with both laser at 785 nm 

and at 514 nm 

In the case of Dolomitic materials, laser power and sensor exposure time do not affect 

too much to the obtained results. 

 Calcite: It is possible to identify some characteristic peaks reported in the bibliography 

associated with this material; small wide peak was detected at 711 cm‐1, which 

corresponds closely with those found in the literature. Thus, the main characteristic 

peak of calcite at 1085 cm‐1 is now clearly identify at 1084 cm‐1.  

In this case, the results obtained with the laser at 514 nm are comparable to the 

results obtained with the laser at 784 nm. 

Like Dolomitic materials, laser power and sensor exposure time do not affect too much 

to the obtained results over Calcite materials. 

 Silica: In the case of silica, with the laser at 784 nm (green laser) no significant 

information was obtained.  

Also, the results are quite dependable to the laser configuration at 514 nm; the best 

results were obtained at 350 mW and with an exposure time of 300 sg  

 Fe2O3: Although it is not possible to get useful spectral information from Iron oxide 

samples at 785 nm, when using Raman at 514 nm, different iron oxide components 

can be clearly identified in the sample 
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 Sterile: In view of the results, the conclusion that can be drawn is that the Raman 

spectra signature got from sterile is basically the same as the silica's signature. This 

might indicate that silica gives a higher signal than calcite or dolomite and masks these 

components. 

Since the main component in the sterile present in scrap is compose by silica 

(amorphous SiO2 do no present Raman signal), Raman spectroscopy has been proved 

not to be a useful technique for quick analysis of nonferrous components present in 

scrap. 

As summary, using Raman spectroscopy, well defined spectra for Iron and calcite compounds 

are obtained. However, when amorphous SiO2 is present in the sample, the spectral signature 

is totally saturated by SiO2 signal. This effect makes not possible to analyses sterile material 

composed by silica. 

Besides SiO2 effect, it was also identified some challenges in the capturing procedure definition 

related to the sample preparation and high variability in the optimal laser parameter 

depending on the compound to be analyzed. This makes not possible to propose a portable 

solution for ferrous scrap sterile analysis using only Raman spectroscopy. 
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8.2 Hyperspectral Imaging 
 

Nowadays, one promising approach for quick characterization of unknown materials is based 

on hyperspectral imaging. 

Hyperspectral analysis techniques make possible to obtain the emission and reflection 

spectrum of an element remotely by estimating the emissivity or reflectivity of the element to 

be analyzed, in terms of it wave length. This spectral behavior of each material at different 

wavelengths depend on various factors, including the chemical composition. However, the 

spectral information contained in the signal presents great variability and it is affected by 

other factors such as lighting, noise or low atomic excitation. For this reason, the main 

challenge when applying this hyperspectral approach is to build robust algorithms to obtain 

the spectral information inherent to that signal as well as the statistical techniques for 

performing robust data regressions. 

 

8.2.1 Literature survey about Hyperspectral imaging  
 

Light is composed of a bean of photons, associated to different frequencies (energies). The 

electromagnetic spectrum of an object can be defined as the distribution of the energetic 

intensity emitted, reflected or absorbed at a given range of wavelengths. This way, an incident 

light ray (L) is defined by the intensity of that ray in each one of the associated wave lengths. 

When this ray encounters a surface, part of it is absorbed, another one is transmitted and a 

third one is reflected. The reflected part is determined by the spectrum of the incident ray, the 

geometry of the body, the degree of mirror or Lambertian (diffuse) behavior of the object and 

its reflectivity (Fig.  8.67). This reflectivity is determined by its molecular characteristics and it 

is different depending on its Chemicals composition. As a result, for example, a red object will 

reflect the rays of wave length close to red, while it will absorb other wave length rays (e.g. 

blue) (133). 

 

Fig.  8.67: Dichromatic reflection model 

Based on these parameters and considering a known set of conditions, it is possible to 

estimate the real reflectivity of the object, assuming several lighting hypotheses. The 
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reflectivity data of an object represents its behavior for different wave lengths, which will be 

used to infer some aspects related to its chemical properties. 

Hyperspectral imaging, also known as imaging spectroscopy, is concerned with the 

measurement, analysis and interpretation of spectra acquired from a given scene (or specific 

object). More precisely, hyperspectral instruments acquire electromagnetic energy scattered 

within their instantaneous field view in hundreds of spectral channels with high spectral 

resolution, covering selectively, and according to the acquisition device technology, the visible 

and the different infrared ranges (IR) of electromagnetic spectrum. The signal recorded by a 

hyperspectral sensor at a given band and from a given pixel is often a mixture of the light 

scattered by the constituent substances located in the respective pixel spatial coverage. 

In simple terms, a hyperspectral image is an extended image in which, instead of having three 

RGB colour channels (red, green, blue), there are available a number N of channels each of 

which is associated to a length of wave. This is a combination of a spectrograph and a digital 

camera. 

There are numerous methods to obtain these images; one of the most used is based on 

diffraction net or a prism in which the system captures all spectral bands simultaneously. To 

this end, the variability between refraction angle and wavelength is used. Thus, after capturing 

a line of an image, the spectral information is extracted through a prism which disperses each 

of the wavelengths of the image. Thus, the image obtained contains; in abscissa, the captured 

line position and, in ordinates, each of the spectral frequencies. To obtain the complete image 

the system combines multiple snapshots of the same image. 

 

Fig.  8.68: Principle of hyperspectral imaging by refraction 

Hyperspectral techniques allow obtaining the emission spectrum or reflection of an element 

remotely. This allows estimating the reflectivity or emissivity of one element in relation to its 

wavelength, and this information is dependent on several factors, including the chemical 

composition. 

The selection for an application of the spectral range of the camera as well as the exact 

number of spectral channels (which can be typically between 256 and 1024 bands) and the 

spectral resolution (which can be typically of 10 nm) depends on the physical properties of the 

phenomena to be studied and induces very different costs of the device. This versatility allows 

the systems to detect, classify and identify different material, thus overcoming some of the 

limitations of the colour cameras which operate only in the range of visibility with low spectral 

resolution 
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As opposed to standard images observed by the human eye, hyperspectral images contain 

complete spectral information of each spatial point of the image. This image is known as 

hyperspectral cube (Fig.  8.68) and consists of a three‐dimensional matrix, in which two 

dimensions represent the spatial position of the point and the third dimension represents each 

spectral band. From a different point of view, a hyperspectral image can simply be considered 

as a vectorial extension of a monochrome image. This approach allows using the same tools as 

for a monochrome (grey) image, but from a vectorial perspective. 

In hyperspectral images, each pixel of the image is represented by a vector, whose 

components correspond to one of the wave lengths captured, offering not only information 

related to the colour associated to the scene, but also information related to its molecular 

properties, as seen previously. Similarly, by selecting a given wave length, the two‐dimensional 

image associated to that wave length can be determined, obtaining spectral and spatial 

information at the same time. 

In short, the analysis by using hyperspectral technology in hard environments is based on the 

design of a mathematical function that relates the values of reflectivity captured by the 

hyperspectral camera with the real physical and chemical values of the element by a set of 

samples to generate a mathematical function to perform this transformation (regression). This 

technique is known in spectroscopy as calibration. 

Many of the algorithms for hyperspectral analysis were developed for remote sensing 

applications (134) (135) (136) (137) (138) (139). Although they can be conceptually similar 

there are differences on the application that precludes the use of standard hyperspectral 

algorithms on every kind of application. We are going to focus on the algorithms and 

techniques related to material characterization applications: 

1. Image capture and spectra selection: Using the adequate sensor that should be related 

to the materials to be characterized, their emission spectra and their emission lines. 

2. Image normalization: The acquisition system must be calibrated. Indeed, using a 

simple polynomial calibration over a known spectrum (e.g. fluorescent tube or a laser) 

is a very precise calibration way. Besides the camera calibration another 

characterization must be done in order to correct the effect of lightning. 

 

8.2.1.1 Previous applications of Hyperspectral technique in industrial 

applications 

 

The number of published works which have studied the potential interest of hyperspectral 

imaging for steel industry applications is extremely limited. However, there are several 

researches done for using this kind of technologies in industrial sectors different form steel 

sector. Here is a brief description of some of them: 

 The application of hyperspectral in steel industry can be inspired from the more 

developed case of wood and paper industry (140). A very interesting study on the 
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industrial application of inline paper sorting (according to the nature of the cellulose 

fiber) in recycling plants using a NIR hyperspectral camera was presented in 2005 

(141). The proposed algorithm is basically composed of a pre‐processing step (white 

and dark correction), dimensionality reduction (using PCA or LDA) and classification 

using k‐NN. From this study, we can conclude that the (quasi) real‐time requirements 

of inline quality control involves that the image analysis algorithms should be carefully 

optimized.   

 On the other hand, wavelengths in the near infrared (NIR) range can be used for 

materials classification. However, sorting paper according to quality is a very difficult 

task due to the close similarities between the materials. Therefore, we have also found 

a development of a unique industrial inline material sorting system which uses the 

spectral imaging technique (141).  

 Another application for the technology studied in this report is the nonferrous waste 

materials sorting. This kind of materials cannot be sorted by classical procedures due 

to their colour, weight and shape similarities. The experimental results obtained reveal 

that factors such as the various levels of oxidization of the waste materials and the 

slight differences in their chemical composition preclude the use of the spectral 

features in a simplistic manner for robust material classification. To address these 

problems, the proposed FUSSER (Fuzzy Spectral and Spatial classifier) algorithm 

merges the spectral and spatial features to obtain a combined feature vector that is 

able to better sample the properties of the nonferrous materials than the single pixel 

spectral features when applied to the construction of Multivariate Gaussian 

Distributions (74). 

The experimental results indicate that the proposed algorithm increased the overall 

classification rate from 44% using RGB data up to 98% when the spectral‐spatial 

features are used for non‐ferrous material classification 

 The application of Hyperspectral Imaging systems is now well introduced for bulk 

sorting of materials. Since the work with the complex nature of information of 

Hyperspectral Imaging systems and the huge data volumes generated are recognized 

to be quite developed yet. It has been done some work in the application technology 

for the inline quality control of potatoes on the example of Sugar‐Ends detection is 

presented (142) 

 Another industrial sector where the multivariate imaging has been already used for 

quality control is the pharmaceutical industry, see the review (143), with as typical 

applications the measure of coating thickness and the counterfeit drug identification. 

However, this kind of “chemometrics” systems requires spectroscopic technologies, 

such as Raman or vibrational NIR spectroscopy, which are not compatible with the 

requirements of the inline quality control of steel products. 
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8.2.1.2 Prior spectra knowledge 

 

Spectral reflectance in the visible and near infrared (0.35 to 2.55 µm) offers a rapid, 

inexpensive, non‐destructive technique for determining chemical features of certain materials. 

In this section some information obtained after a literature survey are presented. Previous 

laboratory works may be used as starting point of the current research line for identifying the 

main reflection characteristic of the different components present in ferrous scrap sterile.  

 

8.2.1.2.1 Calite (CaCO3) and Dolomite (CaMg(CO3)2) 

 

Regarding Calcite and Dolomite materials, several studies have been found in the literature 

reporting two strong bands at 2.340 µm and 2.537 µm in the particular case of calcite and at 

2.323 µm and 2.515 µm in the case of dolomite (144) (145) (146). 

  

Fig.  8.69: Spectral signature of Calcite and dolomite reported by (144) left and by (145) right 

As shown in Fig.  8.69. the spectra signature of carbonate minerals containing no transition 

metal cations are nearly straight lines near unity reflectance at wavelengths shorter than 1.6 

µm. However, the presence of ferrous iron in calcite and dolomite can produce a broad 

absorption effect near 1.0 µm that can be useful for material identification purposes. This 

effect is shown in Fig.  8.70: 

 

Fig.  8.70: Absorption band in carbonate materials due to the presence of Fe2+ (144) 
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8.2.1.2.2 Silica (SiO2): 

 

As far as the analysis of silica is concerned, several studies have been found focusing on the 

characterization of rice husk ash (material used in the present study), as amorphous silica 

material by means of other technologies such as SEM (147), XRD (148) and FTIR (149). 

However, bibliographic references on the analysis of this type of material using hyperspectral 

techniques have not been found. 

So that, the findings of this research work will allow to settle the foundations for future 

research works on the use of hyperspectral techniques for the analysis of Silica in other fields 

 

8.2.1.2.3 Iron Oxides (FeO / Fe2O3) 

 

Several studies have been found with regards the characterization of ferric iron minerals 

(hematite and goethite) (150) (151) (152).  

In (150), distinct spectral curves in the visible near‐infrared (VNIR) have been identified at 

about 465 nm, 650 nm and 850–950 nm. 

 

Fig.  8.71: Reflectance analysis and absorption bands of Ferric iron (Fe3+) 

However, the shape or magnitude of the spectral curve of iron oxides can change due to 

numerous factors that need to be further investigated in the current work. 

Also, (151) analyzed different absorption features in VNIR and SWIR reflectance spectra of 

several mineral species that can be used in this study. The characteristic absorption features 

for these materials correspond to specific molecular bonds such as OH, H2O, CO3 and other 

components of hydrous silicate minerals including AlOH, MgOH and FeOH bonds. 
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Fig.  8.72: (A) Short wave infrared (SWIR) reflectance spectra for reference library samples of 

carbonate and chlorite minerals. (B) Long wave infrared (LWIR or TIR) reflectance spectra for 

carbonate-group minerals and the positions of key spectral features used for diagnosis. 
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8.2.2 Laboratory equipment for spectral analysis 
 

In the case of Hyperspectral processing, there are two key elements to consider; the 

Hyperspectral sensor (spectral range, sensibility, spectral resolution) and the lighting system 

used for exiting the sample.  

The equipment used for conducting the proposed analysis were: 

 Hyperspectral sensor: The hyperspectral optical sensor receives the light reflected 

from the material’s surface and gets the intensity in each of the wavelengths analyzed. 

For this research activity, two sensors were tested: 

o Linear hyperspectral optical sensor in the VNIR range (400 ‐ 1000nm): The 

sensor is composed by a spectrometer (Specim V10_04204) combined with a 

scientific CMOS camera (JAI‐TM‐1327GE) 

 

Optical Characteristics: 

Type: Specim V10_04204 

Range: 400‐1000 nm 

Spectral resolution: 3.0 nm (30 um slit) 

Spectral sampling: 0.78‐6.27 nm/pixel 

Spatial resolution: RMS spot size < 9 um 

Electrical Characteristics: 

Detector: CMOS 

Spatial Pixels: 1312 

Spectral Bands: 768 

Pixel size: 8 x 8 um 

Camera Control: CameraLink 
 

Fig.  8.73: VNIR Spectrometer technical characteristics 

o Two‐dimensional hyperspectral optical sensor in the SWIR range by 

sisuCHEMA (1000‐2500nm) 

 

Optical Characteristics: 

Type: Specim sisuCHEMA 

Range: 970‐2500 nm 

Spectral resolution: 10 nm 

Spectral sampling: 6.3 nm/pixel 

# Spatial pixel/line: 320 

Other Characteristics: 

Illumination: Diffused line 

Data Format: BIL file format, Evince end ENVI 

Calibration: Internal standard reference target 
 

Fig.  8.74: SWIR Spectrometer technical characteristics 
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 Lighting system: The light is provided by wide spectrum illumination lamp that assures 

there is enough intensity on the wavelength range. The lighting system is based on a 

halogen bulb of 2218 lumens and forms 60º with the camera axial axis to reduce the 

effect of specular illumination. 
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8.2.3 Data processing algorithms 
 

For analyzing the acquired spectral signature obtained by hyperspectral imaging and to extract 

the maximum spectral information as possible, as well as to stablish the comparative criteria 

between different samples, two types of methodologies are proposed: 

First, for interpreting the acquired spectra three types of data processing are necessary: 

 Spectra acquisition: The acquired spectral data is represented by an image where each 

element at column j represents a spatial point of the linear camera and each row 

element i corresponds to the radiance received at a wavelength λi.. In Fig.  8.75 the 

imaging processing method is depicted. 

 

Fig.  8.75: Imaging processing method description (153) 

Let Lj be the vector representation of the spectrum defined by the intensity responses 

of the M wavelengths at a spatial column j of the image represented as: 

 �����
= {��,��,...,��}� 

(8.5) 

 Signal processing: In order to extract as much information from the spectral signature 

as possible, several signal processing techniques are proposed: 

o Median: It represents the value of the central position variable in a set of 

ordered data. In the case of multispectral analysis, for each wavelength, the 

reflectance value of 5 different spectra are taken and sorted, and the third 

value in the row (which is in the middle) is chosen. 

o Signal Smoothing: This processing technique consists on filtering the noise 

through convolution of a Gaussian filter. Each value of the spectrum is 

replaced by a weighted average of the nearby points using as weighting factors 

those corresponding to a Gaussian bell according the following equation: 

 

 (8.6) 

o Signal normalization: This signal processing technique consists on performing 

the desaturation of the signal (subtracting the minimum so that it starts at 0) 
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and normalizing the resulting spectrum (dividing by the maximum) so that the 

new available data is between 0 and 1 and allows direct comparison. 

 Calibration algorithm: The illumination system is based on a halogen lamp that is 

subject to temporal degradation. This causes incident radiance to change among 

different systems and to decay through lamp lifetime. The Spectralon (154) based 

calibration plate is used to calculate a polynomial correction method that calculates 

the lamp spectral radiance and compensates for the spectral light radiance changes 

(155). The calibration plate is made of four diffuse Spectralon tiles with 2%, 50%, 75% 

and 99% nominal reflectance. This reflectance level defines the calibrated working 

range reflectivity of the samples. A second‐degree calibration polynomial is calculated 

pixel‐wise to map each image intensity pixel (i=spectral wavelength, j=spatial position) 

to the theoretical radiance of the Spectralon tiles at the calibration plate as shown in 

Fig.  8.76 and represented by equation (8.7). 

 

Fig.  8.76: Spectralon based calibration plate 

 ��,� = ��,� ·�����,�
� + ��,� ·�����,�

+ ��,� 
(8.8) 

Where jia , , jib , and jic ,  are the pixel‐wise polynomial coefficients obtained by 

least‐squares optimization which map the perceived intensity with the theoretical 

reflectance of the Spectralon tiles. This procedure decorrelates the perceived radiance 

with the lamp spectral radiance. Calibration parameters are calculated weekly in order 

to correct lamp degradation over time. 

Second, the Chemical composition is estimated as following:  

 Chemical composition estimation is done assuming a linear mixture model to calculate 

the percentage (abundance) of each base spectrum (endmember) in the observed 

Raman spectrum of the mixture. 

Due to signal complexity and high overlap between classes, classical unmixing 

methodologies based on linear methods do not yield appropriate results. To overcome 

this problem the Dobigeon Bayesian algorithm (131) (132) is adapted as a Bayesian 

generalization of a linear unmixing model on the normalized hyperspectral images of 

the different samples. 
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� = � ���� + �

�

���

 (8.9) 

Where; y is the observed spectrum, m is each endmember (base) spectrum and each α 

value is related to the spectral abundance of each endmember and n represents the 

noise. 

The α set follows the following constraints: 

 
∀� ∈  {1,… ,�},�� ≥ 0 ��� � ∝�= 1.

�

���

 (8.10) 

Based on this model, a set of statistical variables were defined: 

Variable Distribution Notes 
Alpha Dirichlet distribution This assure positivity and sum=1 

Sigma Half Normal Sd=1 

M Observed data Observed pure reflectance 
desaturated vectors 

Table 8.9: Statistical variables in the linear mixture model 

The probability is defined as a normal distribution between the observed and the 

reconstructed spectra by the statistical variables 

 

�(� | ��,��) = �
1

2���
�

�
�

exp �− 
‖� −  ����‖�

2��
� (8.11) 

In order to calculate the statistical distribution of the observed variables, the Bayesian 

Markov chain Monte Carlo algorithm (MCMC) is applied. The MCMC estimation 

method allows to obtain the most probable probability of abundance and its statistical 

distribution. Also, the distribution of the different abundances is calculated. 
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8.2.4 Capturing procedure – Experimental set up 
 

In this section, the two experimental configuration method used for spectral acquisition during 

laboratory tests are described. 

In the very initial phase of the present work (hyperspectral imaging for sterile 

characterization), the laboratory set up used is shown in Fig.  8.77. This set up corresponds to 

the linear and static analysis of the selected samples in Visual + Near IR spectral range (400‐

1000 nm). The research was carried out using an existing equipment developed in 

ArcelorMittal for the chemical analysis of white slags originated in the steel treatment in the 

ladle process (76) (156) and under the patent application PCT/IB2015/053453. 

  
 

 

Fig.  8.77: Detail of the CARESBLOMETER system used by AM for LF slag analysis 

The second laboratory configuration tested in this PhD thesis corresponds with a dynamic 

analysis of the selected samples. A new laboratory set up has been specifically developed for 

this experiment and consists on a conveyor belt driven by a servomotor and controlled by a 

FESTO CMMP‐AS system. The system has got a programmed starting and ending point for the 

displacement of a tray placed on the belt. This tray carries the sterile samples to be analyzed. 

In the zenith position of the conveyor belt, two linear hyperspectral sensors (SisuCHEMA SWIR 

by SPECIM and PFD‐65‐V10E by SPECIM) have been placed to cover the spectral range among 
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400‐1000 nm and 900‐2500 nm. The two hyperspectral sensors were adjusted in such a way 

that the collected data from both sensors corresponds with the same spatial line. Thus, to 

ensure the control on lighting environmental conditions, the system is provided by an 

illumination system composed by two 50W halogen lights. Fig.  8.78 and Fig.  8.79 show the 

described system: 

 

Fig.  8.78: Snapshot of the system installed in the laboratory 

 

Fig.  8.79: Schematic representation of the laboratory set up 
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8.2.5 Sample selection and preparation 
 

Similarly, to previous experiments, the compounds selected to simulate real sterile in scraps 

were CaO, MgO, SiO2.and Fe2O3 (same sources than before). In the case of hyperspectral 

processing, different samples combinations were prepared using the pressed pellet technique 

as shown in Fig.  8.80. For each mix, 2 samples were prepared. 

 

Fig.  8.80: Pressed pellet of pure compound mix to simulate scrap sterile 
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8.2.6 Experimental results 
 

Similarly, to the other tested technologies within this work, the objective of this novel activity 

is to evaluate whether hyperspectral imaging is suitable for implementing a new in situ 

analytical technique for the characterization of sterile materials contained in scrap.  

The activities explained in this section aim to determine the most suitable capturing conditions 

under controlled laboratory conditions (lighting, temperature, environmental pollution, 

sample preparation). To this end, artificially prepared samples with well‐defined chemical 

compositions will be used, so that, and supported by previous bibliographical references, it will 

be possible to establish the processing and analysis patterns of the spectral signatures 

obtained, which will then be applied under real industrial conditions. 

 

8.2.6.1 Initial calibration procedure 

 

The main challenge when proposing hyperspectral imaging lies on the fact that the trained 

models extracting features are not generalizable from one site to other. Also, when big 

changes in the environmental conditions occur, these analytical solutions are hardly 

generalizable. To solve these issues, the first step is to define a robust calibration 

methodology. 

Given the importance of the calibration process in this type of technologies it is worth 

dedicating a complete section focus on defining the calibration methodology used during the 

current activity.  

The sensor calibration pipeline in a hyperspectral sensor for chemical analysis should be 

composed by three main blocks that will correct all the possible sources of noise in the 

illumination. These blocks are; Initial calibration, Spectral normalization and Irregular 

reflection correction. 

Hyperspectral device’s sensors proportionally transform the incoming luminous energy 

(radiation) of each point of a scene into an electrical signal. During this process noise is added 

to the signal. Theoretically, in dark conditions the electrical signal generated by the image 

should be equivalent to zero. However, this is not the case due to the dark current. The dark 

current consists of a constant part (readout noise) and a non‐constant part depending on the 

detector’s temperature and the integration time (thermal noise). The first block is the initial 

calibration of the complete camera system including Dark calibration. This calibration has the 

objective of remove irregularities produced by hardware elements in the camera (static 

effects). The set composed by the camera sensor and the prism will be calibrated during the 

assembly of the hyperspectral camera and this is the initial calibration. To this end, the 

manufacturer of the camera provides a calibration polynomial that relates the wavelengths of 

the spectra. This polynomial is required to have a camera invariant model, as all the spectra 

will be defined in terms of its wavelengths and not in terms of its pixel position in a particular 

camera. 
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On the other hand, Dark calibration consists on measuring the dark current by obscuring the 

light entrance to the detector and the subtracting it from the sensor’s raw digital current 

values. In order to do the dark calibration, a dark scene was captured before every capturing 

campaign to be used as reference dark signal 

  

Fig.  8.81: Dark reference 

Regarding dynamic effect corrections (changes in illumination along time), a periodic 

calibration must be implemented. A relative reflectance calibration is required. 

As it was described previously, when any image processing technique is used for analyzing a 

scene, it is necessary to define the procedures that ensure system reliability along time at 

different environment conditions such as light, temperature variation or optic cleanliness.    

The spectral calibration element selected to calibrate the hyperspectral sensors and to ensure 

the robustness of the acquisition results is based on 4 reflectance patterns provided by 

Spectralon (154). These reflectance patterns present known diffuse reflectance of 12%, 25%, 

50% and 99%. Along the whole spectral range Then a second‐order calibration polynomial is 

calculated pixel‐wise to map each image intensity pixel to the theoretical radiance of the 

Spectralon (154) tiles at the calibration plate and so that, the "state" of illumination at every 

moment can be estimated. 

 Calibration of the laboratory set up for static analysis (Visual + Near IR). 

For the hyperspectral sensor covering 400‐1000 nm spectral range (Specim V10_04204), the 

reflectance information obtained after acquiring the 4 reflectance patterns are shown in Fig.  

8.82 

Captured 

Image 

  

Reference 99% 50% 
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Captured 

Image 

  

Reference 25% 12% 

Fig.  8.82: Calibration references images captures by Specim V10 camera 

Since in this laboratory set up a linear sensor is used, the reflectance information for 

calibration is obtained placing manually each of the 4 reflectance patterns in front of the 

camera and acquiring one line of the scene (note that X axis represents the space and the Y 

axis the reflectance intensity at every sensitive wavelengths). 

Subsequently, to obtain the real reflectance value corresponding to each pixel of a capture, a 

polynomial equation generated by the 4 points of the reference patterns is calculated.  

Since each wavelength could present a different behavior, it is necessary to calculate the 

polynomial equation for each wavelength independently. Then, the polynomial equations are 

applied to the captured reflexion value of every pixels at each particular wavelength using the 

Wavelength calibration equation provided by the spectrograph supplier represented as: 

 � = 3.66��� ∙ �� + 0.60131 ∙ � + 368.3846 (8.12) 

 

Fig.  8.83: Schematic representation of the calibration process for one specific wavelength 

Fig.  8.84 depicts the spectral transformation after applying the mentioned calibration process 

based on reflectance patterns. Where the picture on the left side of the image shows the 

acquired values for each of the 4 plates and the picture on the right side shows the 

linearization of the data after applying the calibration polynomial equations.    
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Fig.  8.84: Calibration process; (left) raw acquired data and (right) calibrated response 

 Calibration of the laboratory set up for Dynamic analysis (VNIR + SWIR). 

For the Dynamic analysis, two different sensors were used; V10_04204 sensor by Specim (400‐

1000 nm) and Sisuchema sensor by Specim (970‐2500 nm). For this set up, instead of the static 

capturing, the samples are displacing in front of the sensor on a conveyor belt, and the whole 

surface of the sample is acquired by reconstructing line by line the scene.   

As it was done with the VINIR sensor in the static set up, first thing to be done before every 

capture campaign was the relative reflectance calibration to be applied later to every acquired 

hyperspectral images. This step aims to correct the significant signal variations, which are 

caused by the non‐uniformity of the illumination and the focal plane array of the camera, 

known as pattern noise. 

From the spectral processing point of view, the methodology followed for calibrating the 

sensors in the dynamic set up is the same followed for calibrating the sensor in the static set 

up. However, with the dynamic set up there is available spatial information that can be used to 

improve the calibration.  

As shown in the Fig. 137, the reflectance information of the 4 references are now available in 

the same image, in which for each element there are numerous pixels providing the same 

reflectance value. 

 

Fig.  8.85: Known Reflectance patterns acquired in the dynamic set up 

One of the main advantages offered by the dynamic set‐up is that, during the calibration 

process, it allows eliminating the non‐uniformities that the sensor produces in the different 

wavelengths. For example, the sisuCHEMA camera does not generate the same spectrum for 



 
New method proposal for chemical characterization of sterile material in scrap.  

268 
 

all points of each reference target. In the following image a very intense peak is observed for 

another wavelength (1854 nm). 

 

Fig.  8.86: Individual spectra acquired for reflectance 12% 

The methodology used to avoid spectral non‐uniformity problems consists of acquiring, for 

each reference, 5 nearby points and calculating the median of those 5 spectra. Fig.  8.87 shows 

all the individual spectra for the 12% reflectance target, as well as the median of them. 

 

Fig.  8.87: Methodology for spectral non-uniformity correction 

Once the actual reflectance information for each pixel obtained for the four patterns is 

available, the constants of the polynomial that fits these values with the theoretical value 

associated with each of the references patterns were calculated (for each wavelength). This 

procedure is shown in Fig.  8.88: 

 

Fig.  8.88: Calibration polynomial constants calculation (example for 2546 nm) 

In Fig.  8.89, several wavelengths have been selected randomly and the theoretical value of 

reflectance against the real value provided by the calibration polynomial has been 

represented. As seen, the curve fit is almost perfect. 
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Fig.  8.89: Calibration polynomial fitting 

With the second order polynomial constants obtained separately for each wavelength in the 

selected spectral range, the normalized reflection data for the Spectralom patterns and dark 

for the two cameras and the whole spectral range are shown in: 

  

  

Fig.  8.90: Application of the linear adjustment on the reference patterns; Up) JAI camera and 

Down) sisuCHEMA camera 

 

8.2.6.2 Static analysis of the selected samples in Visual + Near IR spectral 

range (400-1000 nm) 

 

The initial analysis of Hyperspectral processing for quick characterization of scrap sterile was 

carried out using an existing equipment developed by the Global Research and development 
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centre that ArcelorMittal has in the Basque Country. This system, under patent application 

PCT/IB2015/053453 has proved its capabilities as a tool for quick analysis of the slag produced 

during Ladle furnace treatment of steel. 

The principle used by this system to generate the spectral signature by reflection in the 

samples is the following: 

- A well‐known lighting system illuminates the sample to be analyzed 

- The reflection response of the light on the sample varies depending on certain physical 

and chemical parameters of the sample to be analyzed 

- The linear spectral sensor acquires the signal generated by the surface of the sample 

and a dedicated software generates the spectra dataset. 

Fig.  8.91 depicts the sample processing process described above: 

 

Fig.  8.91: Description of Samples processing 

According this procedure, the different materials analyzed are listed below: 

Sample ID % FeO % CaO %SiO2 

Sample 1 50 50 0 

Sample 2 0 50 50 

Sample 3 50 0 50 

Sample 4 50 25 25 

Sample 5 25 50 25 

Sample 6 25 25 50 

Table 8.10: Pure compounds distribution for mixing analysis with hyperspectral 

To determine the feasibility of this detection approach, several discs have been prepared (five 

per composition) with the mixed distributions listed in Table 8.10. The objective of the analysis 

is to capture the information for evaluating whether these kinds of technologies can detect the 

chemical mixtures. The acquired spectral signatures are showed below.  
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Fig.  8.92: Acquired spectral signatures for the 6 samples. Right) Raw data from 5 samples and 

Left) average data 

Fig.  8.93 shows the comparative reflectance analysis over two compound mixtures:   
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Fig.  8.93: Comparation among two compound mixtures 

And Fig.  8.94 shows the comparative analysis results on three materials mixtures:   

 

Fig.  8.94: Comparation among three compound mixtures 

Looking at these analyses, it can be intuited that the presence of dolomite increases the 

reflectance of the sample along the whole wavelength range. However, as shown in Fig.  8.95, 

the presence of SiO2 modifies the response of lime 

 

Fig.  8.95: Comparative analysis of all samples containing dolomite 

The main conclusions to be highlighted after the preliminary analysis of the capacity of the 

hyperspectral imaging technique for sterile characterization are: 

 There are no valleys nor characteristic peaks in the graphics displayed. 
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 There are certain patterns in the spectral signature that can be exploited: 

o The higher the percentage of dolomite, the more reflectance. 

o The higher the percentage of silica, the less reflectance. 

o As expected, the results are consistent with the color (lighter or darker) of the 

samples. 

It seems worthy to keep going on with more technical feasibility analyses. 

 

8.2.6.3 Dynamic analysis of the selected samples in Visual + Near IR (400-

1000 nm) and in SWIR (900-2500 nm) spectral ranges 

 

The main disadvantage of the static approach using a linear camera is that there are not 

references of the material surface that is being analyzed. So that the pressed pellets must be 

carefully manipulated, as some aspects like material heterogeneities or dirt on the material 

surface influence on the results. 

Once proven that it is possible to extract useful information by means of hyperspectral 

techniques and aiming to ensure the knowledge generation which is the final purpose of the 

present thesis work, it is necessary to extract the information from the entire surface to be 

analyzed. There are two different options for extracting 2 dimensional images of the sample 

surface:  

 The use of linear sensors: the main advantage of this technology is a high spectral 

resolution which allows to have an enormous amount of information of the captured 

image. On the other hand, Linear sensors present as main disadvantage the necessity 

of moving the scene in front of the camera to reconstruct a 2D image. 

 The use of matricial sensors: This technology offers the possibility of generating quick 

snapshots of the region of interest but, its main drawbacks are the low number of 

spectral channels available and the higher cost. 

For this particular case, the option chosen was the use of linear sensors due to the high 

spectral resolution that these sensors offer. However, it was needed to develop a more 

technical laboratory set up for generating the required push broom effect for reconstructing 

2D images. The developed laboratory set up was already described in section 8.1.4. 

As described previously, the proposed laboratory set up consists of a conveyor belt driven by a 

servomotor which generates the displacement of the samples in front of the hyperspectral 

sensors: 

- On one side, the system PFD‐CL‐65‐V10E‐OEM 1312x1024‐65i / s‐VNIR‐CMOS‐CL is a 

combination of a spectrograph and a monochrome camera. It generates an image 

whose Width corresponds to the spatial resolution of the camera (1312 pixels) and the 
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Height corresponds to the frequency spectrum associated with the corresponding pixel 

according the Wavelength calibration equation provided by the supplier. 

- On the other hand, SPECIM: SisuCHEMA SWIR is a compact sensor that generate 

images with a spatial resolution of 320 pixels. 

The samples to be analyzed are placed inside the tray and, due to the movement produced by 

the conveyor with respect to the cameras (shown Fig.  8.96), two complete images of the 

tablet are obtained (one for each camera). 

  

Fig.  8.96: Sample placement in front of cameras for analysis (Left) and 2D images Re-constructed 

from the information collected by each sensor (Right) 

Using the presented laboratory set up, several capturing campaigns were carried out. 

 

8.2.6.3.1 Capturing Campaign 1:  

In the first capturing campaign, 15 samples with different pure compound mixture were 

prepared. 

 

Sample ID % FeO % Dolo  %SiO2 

Sample 1 0 0 100 

Sample 2 0 100 0 

Sample 3 100 0 0 

Sample 4/5 50 25 25 

Sample 6/7 25 50 25 

Sample 8/9 25 25 50 

Sample 10/11 50 50 0 

Sample 12/13 0 50 50 

Sample 14/15 50 0 50 
 

Fig.  8.97: Pure compounds distribution for mixing analysis with hyperspectral in campaign 1 

For the analysis of each sample, the following procedure was carried out: 

 The spectral patterns of the reference targets were obtained and, using the 

"theoretical reflectance spectra", the coefficients of the polynomial (for each 

wavelength) to be used in the linear adjustment were calculated. 

 From each sample, the information of some selected pixels is extracted (median of 5 

nearby points), the information is smoothed. 

 The spectral signature is normalized by dividing itself by its maximum value. 
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Pure component analyses: 

Fig.  8.98 shows the raw spectral signature got from the SiO2, FeO and dolomite pure 

compounds for both hyperspectral sensors: 

  
 

  

Fig.  8.98: Spectral signature of pure compounds with no processing (Up) and after normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

show the spectral signature after linear adjustment got from the SiO2, FeO and dolomite pure 

compounds for both hyperspectral sensors: 

  
  

  

Fig.  8.99: Linearized Spectral signature with no processing (Up) and Linearized spectral signature 

after normalization (Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 
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Analyses over Mixture materials (4, 6, 8, 10, 12, 14): 

Fig.  8.100 shows the raw spectral signature got from the mixed materials pellets for both 

hyperspectral sensors: 

  
 

  

Fig.  8.100: Spectral signature of mixed materials pellets with no processing (Up) and Spectral 

signature of mixed materials pellets alter normalization (Down) for JAI sensor (left) and for 

sisuCHEMA sensor (right) 

Next pictures show the spectral signature after linear adjustment got from mixed materials: 

  
 

  

Fig.  8.101: Linearized Spectral signature with no processing (Up) and Linearized spectral 

signature after normalization (Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 



 
New method proposal for chemical characterization of sterile material in scrap.  

277 
 

Analyses over Mixture materials (5, 7, 9, 11, 13, 15): 

Fig.  8.102 shows the raw spectral signature got from the mixed materials pellets for both 

hyperspectral sensors: 

  
 

  

Fig.  8.102: Spectral signature of mixed materials pellets with no processing (Up) and Spectral 

signature of mixed materials pellets alter normalization (Down) for JAI sensor (left) and for 

sisuCHEMA sensor (right) 

Fig.  8.103 shows the spectral signature after linear adjustment got from mixed materials: 

  
 

  

Fig.  8.103: Linearized Spectral signature with no processing (Up) and Linearized spectral 

signature after normalization (Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 
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Calculation of compound abundances: 

The abundance was done, defining as endmembers (base components) the samples made on 

the pure components, for each compound per sample according the methodology described in 

section 8.1.3. The calculation over the spectral information acquired by each sensor was 

performed in the aforementioned conditions: 

- Raw spectra information without normalizing. 

- Normalized raw spectra information. 

- The linear adjustments (without normalizing) of each spectral signature. 

- The normalized linear adjustments of each spectral signature. 

The results obtained are shown in the following figures: 

Fig.  8.104 shows Raw spectra information without normalizing (VIS + NIR spectral range): 

Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 24,97 74,50 0,53 

50 50 0 24,14 75,40 0,47 

25 25 50 9,77 89,92 0,31 

25 25 50 15,39 83,82 0,78 

25 50 25 7,81 91,81 0,39 

25 50 25 22,65 76,50 0,85 

50 25 25 30,09 66,28 3,63 

50 25 25 20,56 78,93 0,50 

50 0 50 29,35 70,20 0,45 

50 0 50 50,24 49,53 0,23 

0 50 50 0,09 28,98 0,00 

0 50 50 0,01 99,15 0,84 
 

 

 

 

Fig.  8.104: Abundance estimation for raw spectra information without normalizing (JAI sensor) 

Looking at these results, the proposed method can estimate the percentage of lime in the 

mixture. However, the algorithm is only capable to see trend in the SiO2 estimation and is not 

able to identify FeO content in the sample. 

For Raw spectra information without normalizing (SWIR spectral range), same analysis is 

depicted in Fig.  8.105: 
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Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 11,25 88,51 0,24 

50 50 0 13,18 30,67 56,15 

25 25 50 6,08 89,13 4,79 

25 25 50 8,36 90,71 0,93 

25 50 25 3,50 84,24 12,27 

25 50 25 16,51 79,44 4,05 

50 25 25 11,96 88,01 0,03 

50 25 25 7,15 92,39 0,46 

50 0 50 9,03 90,76 0,21 

50 0 50 22,06 77,70 0,23 

0 50 50 0,00 99,93 0,06 

0 50 50 0,76 71,33 27,91 
 

 

 

 

Fig.  8.105; Abundance estimation for raw spectra information without normalizing (sisuCHEMA) 

Looking at these results, the proposed method cannot estimate the percentage in SiO2 nor FeO 

and it only can do the qualitative interpretation of CaO content in the samples. 

Regarding the result got from Normalized raw spectra (VIS + NIR spectral range: 

Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 0,27 99,15 0,58 

50 50 0 20,69 78,80 0,50 

25 25 50 0,77 92,24 6,99 

25 25 50 3,22 87,92 8,86 

25 50 25 9,69 88,45 1,86 

25 50 25 14,22 85,33 0,45 

50 25 25 0,48 98,81 0,71 

50 25 25 0,23 99,20 0,57 

50 0 50 0,31 98,91 0,78 

50 0 50 18,55 80,62 0,83 

0 50 50 0,15 32,30 67,56 

0 50 50 0,04 97,29 2,67 
 

 

 

 

Fig.  8.106: Abundance estimation for normalized raw spectra (JAI sensor) 
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Looking at these results, the proposed method cannot estimate the percentage in SiO2. 

However, after data normalization clearer qualitative estimation of CaO and Fe2O3 contents in 

the samples can be done. 

Fig.  8.107 shows the analysis on abundance for Normalized raw spectra in SWIR spectral 

range: 

Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 66,24 32,63 1,13 

50 50 0 16,65 83,17 0,18 

25 25 50 33,52 65,62 0,86 

25 25 50 40,63 59,13 0,23 

25 50 25 14,44 84,84 0,73 

25 50 25 65,42 33,81 0,77 

50 25 25 89,23 9,51 1,26 

50 25 25 72,05 27,07 0,88 

50 0 50 88,90 9,57 1,53 

50 0 50 92,88 6,07 1,05 

0 50 50 2,28 71,01 26,71 

0 50 50 0,35 73,32 26,33 
 

 

 

 

Fig.  8.107: Abundance estimation for normalized raw spectra (sisuCHEMA sensor) 

For this case, the proposed method seems to be capable to estimate the percentage of CaO 

and SiO2 in the mixture. However, the algorithm does not to see Fe2O3 in the sample. 

The linear adjustments without normalizing (VIS + NIR spectral range) is shown Fig.  8.108: 

Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 19,63 80,32 0,06 

50 50 0 19,35 78,86 1,79 

25 25 50 7,40 91,51 1,09 

25 25 50 11,70 87,13 1,16 

25 50 25 6,07 92,13 1,80 

25 50 25 17,83 81,55 0,62 

50 25 25 23,73 74,03 2,24 

50 25 25 15,67 83,16 1,17 

50 0 50 22,49 76,92 0,60 
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50 0 50 43,15 55,08 1,77 

0 50 50 0,18 16,84 82,98 

0 50 50 0,05 91,05 8,91 
 

 

Fig.  8.108 Abundance estimation for raw spectra after linear adjustments without normalizing 

(JAI) 

Looking at these results, the proposed method can estimate the percentage of lime in the 

mixture. However, the algorithm is not able to identify FeO nor SiO2 content in the sample. 

For the linear adjustments without normalizing in SWIR spectral range: 

Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 10,73 89,20 0,07 

50 50 0 13,70 41,19 45,11 

25 25 50 6,42 92,77 0,81 

25 25 50 7,89 90,24 1,86 

25 50 25 2,98 79,29 17,73 

25 50 25 15,63 80,43 3,94 

50 25 25 11,35 88,11 0,54 

50 25 25 6,77 92,39 0,84 

50 0 50 8,52 90,33 1,15 

50 0 50 20,99 77,92 1,09 

0 50 50 0,01 99,90 0,09 

0 50 50 0,73 71,29 27,98 
 

 

 

 

Fig.  8.109; Abundance estimation for raw spectra after linear adjustments without normalizing 

(sisuCHEMA) 

Looking at these results, the proposed method cannot estimate the percentage in SiO2 nor 

Fe2O3 nor Lime content in the samples. 

The abundance analysis applying the last proposed spectral processing (Normalized linear 

adjustments) for VIS + NIR spectral range is shown in Fig.  8.110: 
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Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 0,89 91,71 7,40 

50 50 0 2,17 97,36 0,47 

25 25 50 0,67 95,96 3,37 

25 25 50 0,53 48,26 51,21 

25 50 25 1,51 96,49 2,00 

25 50 25 0,80 97,28 1,92 

50 25 25 0,94 6,86 6,70 

50 25 25 0,97 95,60 3,43 

50 0 50 0,90 82,10 17,00 

50 0 50 1,20 96,42 2,39 

0 50 50 0,07 4,23 95,70 

0 50 50 9,32 90,42 0,25 
 

 

 

 

Fig.  8.110: Abundance estimation for normalized linear adjustments (JAI) 

Looking at these results, the proposed method cannot estimate the percentage in SiO2 nor 

Fe2O3 nor Lime content in the samples 

For Normalized linear adjustments in SWIR spectral range, the results on abundance are: 

Real Estimated 

Dolo SiO2 FeO Dolo SiO2 FeO 

50 50 0 26,54 71,41 2,05 

50 50 0 32,65 66,34 1,01 

25 25 50 15,91 83,27 0,82 

25 25 50 38,43 59,44 2,13 

25 50 25 2,47 97,10 0,42 

25 50 25 26,75 70,71 2,54 

50 25 25 24,52 73,81 1,67 

50 25 25 25,88 72,08 2,04 

50 0 50 22,59 76,23 1,19 

50 0 50 32,45 65,78 1,77 

0 50 50 0,01 79,52 20,47 

0 50 50 0,04 76,29 23,67 
 

 

 

 

Fig.  8.111: Abundance estimation for normalized linear adjustments (sisuCHEMA) 
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With the proposed method cannot estimate the percentage in none of the analyzed 

components in the samples. 

The main conclusions reached after analyzing the data got during capturing campaign 1 are 

summarized below: 

 In the case of Raw spectra information without normalization of pure compounds, the 

reflexion intensity of Dolomite lime is higher than for the rest of compounds. It also 

observed a specific spectral behavior of dolomite between 1200 and 1400 nm. For 

Fe2O3 and SiO2, there are small differences in the signal intensity along the whole 

spectral range (being higher for SiO2). 

 For compound mixtures when analyzing Raw spectra information;  

o Samples composed by two compounds: There is a good grouping of signal 

associated to the compound mixtures, but the intensity of the signals does not 

correspond with the expected order. Sorting from high intensity (Dolomite) to 

lower intensity (FeO), it was expected to have the higher signal in the mixture 

composed by Dolomite+SiO2 but this effect does not occur.  

o Samples composed by three compounds: the coherency with regards pure 

compounds is meet (the higher the Dolomite, the higher the intensity of the 

mixture, the higher the SiO2, the lower the intensity of the mixture. 

 For normalized raw spectra information, between 1900 and 2200 nm the three pure 

compounds are clearly identified, and the three mixtures are coherent in term of 

signal intensity sorting. Also, material mixtures signals seem to be in accordance with 

expected values.  

 The results coming from the linear adjustments (with and without normalization) the 

observations are quite similar than the ones got before in case of VIS+NIR spectral 

range. For sisuCHEMA’s sensor spectral range, no clear pattern is observed. 

 When applying the components abundance estimation algorimths over the different 

spectral processing methodologies proposed: 

o The individual abundance estimation algorithm is offering some qualitative 

information for SiO2 and CaO in the case of raw spectral data without and with 

normalization, but not useful information is extracted for linearization 

processing methods.  

o Fe2O3 content in the samples is not estimated using any abundance calculation 

method. 

 Finally, some punctual incoherencies where found is few samples. The method 

selected for data acquisition (median of only 5 nearby points) could be questioned. 

 

 



 
New method proposal for chemical characterization of sterile material in scrap.  

284 
 

8.2.6.3.2 Capturing Campaign 2:  

 

In the second capturing campaign, 12x2 samples with different pure compound mixture were 

prepared. 

 

Sample ID % Fe2O3 % Dolo  %SiO2 

Sample 1/2  0 0 100 

Sample 3/4 0 100 0 

Sample 5/6 100 0 0 

Sample 7/8 25 75 0 

Sample 9/10 50 50 0 

Sample 11/12 75 50 0 

Sample 13/14 25 0 75 

Sample 15/16 50 0 50 

Sample 17/18 75 0 25 

Sample 19/20 0 25 70 

Sample 21/22  0 50 50 

Sample 23/24 0 75 25 
 

Fig.  8.112: Pure compounds distribution for mixing analysis with hyperspectral in campaign 2 

Sine one of the main conclusions reached in capturing campaign 1 was that the method 

selected for data acquisition based on median of 5 nearby points could generate some 

incoherencies, for this second capturing campaign a new sample processing method is 

proposed: 

- The dark signal of the hyperspectral cameras is obtained (by occluding the optic path) 

and the median of all the pixels is calculated. 

- The reference patterns are acquired, and the median value of all pixels is obtained. 

The Dark signal is subtracted to this value and the polynomial coefficients (for each 

length wave) to be used in linearization process are got. 

- Since the result of the previous processing step offers a highly noise‐signal ratio and 

discontinuities between consecutive wavelengths, a Gaussian smoothing is applied. 

- Finally, to make a comparative analysis of spectra, it is normalized by dividing each 

spectra signature by its maximum. 

- A new method for spectral information extraction is implemented. The new procedure 

consists on defining a ROI inside the sample area to obtain the mean intensity value of 

every pixel inside this ROI: 
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Fig.  8.113: Example of the new spectral information extraction method 

Pure component analyses: 

Like the study carried out in the capture campaign 1, the first analysis was made on pressed 

pellets composed of pure components of CaO, SiO2 and Fe2O3 

Fig.  8.114 shows the raw spectral signature, linearized and normalized signal got from the 

pure materials for both hyperspectral sensors: 

  

  

  

Fig.  8.114: Spectral signature of pure compounds with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 
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- Analyses over Mixture materials (3, 4, 5, 6, 7, 8, 9, 10, 11, 12): 

Fig.  8.115 shows Fe2O3/Dolomite mixtures raw spectral signature, linearized and normalized 

signals got from the pure materials for both hyperspectral sensors: 

  

  

  

Fig.  8.115: Spectral signature of Fe2O3/Dolomite with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

 

Analyses over Mixture materials (1, 2, 5, 6, 13, 14, 15, 16, 17, 18): 

Fig.  8.116 shows Fe2O3/SiO2 mixtures raw spectral signature, linearized and normalized signals 

got from the pure materials for both hyperspectral sensors: 
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Fig.  8.116: Spectral signature of Fe2O3/SiO2 mixtures with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

 

Analyses over Mixture materials (1, 2, 3, 4, 19, 20, 21, 22, 23, 24): 

Fig.  8.117 shows CaO/SiO2 mixtures raw spectral signature, linearized and normalized signals 

got from the pure materials for both hyperspectral sensors: 
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Fig.  8.117: Spectral signature of CaO/SiO2 mixtures with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

 

The main conclusions reached after analyzing the data got during capturing campaign 2 are 

summarized below: 

 For pure components, same conclusions than in measurement campaign 1 were 

reached. 

 In the case of Fe2O3 / CaO mixtures, for VIS+NIR spectral range, an increase in the 

reflection signal intensity is observed as the CaO content in the samples increases for 

all the cases in which the raw signal is analyzed. This clear relationship of signal 

intensity with the CaO content is maintained when analyzing the information obtained 

after spectra linearization. 

In the SWNIR spectral range, it is observed that between 1100 and 1300 nm as the CaO 

content of the sample increases, the signal intensity is greater. Also, in the spectral 

range between 2300 and 2400 nm, the higher the content of Fe2O3 higher is the signal 

intensity required. 
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 For Fe2O3 / SiO2 mixtures, The JAI sensor offers expected correlations between 

intensity signal and composition for pure compounds and mixed samples. This signal 

correlation is also maintained after spectra linearization.  

In the spectral range of the sisuCHEMA sensor, and after signal normalization process, 

it is observed that between 1100 and 1300 nm previous observed relationships are still 

clear. In the spectral range between 2300 and 2400 nm, those relationships are 

inverted 

 Finally, in the case of CaO / SiO2 mixtures, similarly to previous cases, an increase in 

the reflection signal intensity is observed as the CaO content in the samples increases 

for raw and linearized data. This clear relationship of signal intensity with the CaO 

content is maintained when analyzing the information obtained after spectra 

linearization. 

For this particular case, the normalization process does not offer any useful 

information. 

 Finally, the new method for spectral information extraction based on ROI definition 

offers better results than the methods used in campaign 1 

 

8.2.6.3.3 Capturing Campaign 3:  

 

In the second capturing campaign, some pure compounds spectral features characteristics 

were observed in mixed pressed pellets samples. However, several inconsistencies were also 

found (mainly associated with the presence of SiO2 in the sample). In the third capturing 

campaign 13x2 samples with different pure compound mixtures were prepared to validate the 

conclusions reached in campaign 2. 

 

Sample ID % FeO % Dolo  %SiO2 

Sample 1/2  100 0 0 

Sample ¾ 0 100 0 

Sample 5/6 0 0 100 

Sample 7/8 1/3 1/3 1/3 

Sample 9/10 0 75 25 

Sample 11/12 0 50 50 

Sample 13/14 0 25 75 

Sample 15/16 75 25 0 

Sample 17/18 50 50 0 

Sample 19/20 25 75 0 

Sample 21/22  75 0 25 

Sample 23/24 50 0 50 

Sample 25/26 25 0 75 
 

Fig.  8.118: Pure compounds distribution for mixing analysis with hyperspectral in campaign 1 

For the spectral signature analysis of each sample, same procedure than in campaign 2 was 

followed. 
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Pure component analyses: 

Similar than in previous capturing campaigns, the first analysis was made on pressed pellets 

composed of pure components of CaO, SiO2 and Fe2O3 

Fig.  8.119 shows the raw spectral signature, linearized and normalized signal got from the 

pure materials for both hyperspectral sensors: 

  

  

  

Fig.  8.119: Spectral signature of pure compounds with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

 

Analyses over Mixture materials (1, 2, 3, 4, 15, 16, 17, 18, 19, 20): 

Fig.  8.120 shows Fe2O3/Dolomite mixtures raw spectral signature, linearized and normalized 

signals got from the pure materials for both hyperspectral sensors: 
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Fig.  8.120: Spectral signature of Fe2O3/Dolomite with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

 

Analyses over Mixture materials (1, 2, 5, 6, 21, 22, 23, 24, 25, 26): 

Fig.  8.121 shows Fe2O3/SiO2 mixtures raw spectral signature, linearized and normalized signals 

got from the pure materials for both hyperspectral sensors: 
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Fig.  8.121: Spectral signature of Fe2O3/SiO2 mixtures with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

 

Analyses over Mixture materials (3, 4, 5, 6, 9, 10, 11, 12, 13, 14): 

Fig.  8.122 shows Dolomite/SiO2 mixtures raw spectral signature, linearized and normalized 

signals got from the pure materials for both hyperspectral sensors: 
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Fig.  8.122: Spectral signature of Dolo/SiO2 mixtures with no processing (Up), linearized Spectral 

signature with signal smoothing (Mid) and linearized Spectral signature with signal normalization 

(Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 

Analyses over Mixture materials (1, 2, 3, 4, 5, 6, 7, 8): 

Fig.  8.123 shows Fe2O3/SiO2/Dolo mixtures raw spectral signature, linearized and normalized 

signals got from the pure materials for both hyperspectral sensors: 

  

  

  

Fig.  8.123: Spectral signature of Fe2O3/Dolo/SiO2 mixtures with no processing (Up), linearized 

Spectral signature with signal smoothing (Mid) and linearized Spectral signature with signal 

normalization (Down) for JAI sensor (left) and for sisuCHEMA sensor (right) 
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Calculation of compound abundances: 

Similar than in previous analysis, the abundance was done, defining as endmembers (base 

components) the samples made on the pure components, for each compound per sample 

according the methodology described in section 8.1.3 

In the previous analysis, the abundance estimation algorithms were tested for several 

processing methodologies; raw unprocessed spectra, normalized raw spectrum, smoothed 

linearized spectrum and normalized linearized spectrum. However, the only analysis offering 

some qualitative information for SiO2 and CaO (not for Fe2O3) was for the case of raw spectral 

data without and with normalization. This may be due to the fact that the spectra linearization 

process can lead to the loss of relevant information. 

The results obtained are shown in the following images. 

Fig.  8.124 shows Raw spectra information without normalizing (VIS + NIR spectral range): 

Real Estimated 

CaO SiO2 FeO Dolo SiO2 FeO 

33 33 33 3,56% 5,97% 90,47% 

25 0 75 9,76% 
 

90,24% 

50 0 50 9,47% 
 

90,53% 

75 0 25 19,75% 
 

80,25% 

25 75 0 2,74% 97,26% 
 

50 50 0 5,98% 94,02% 
 

75 25 0 12,65% 87,35% 
 

0 25 75 
 

0,34% 99,66% 

0 50 50 
 

0,91% 99,09% 

0 75 25 
 

1,89% 98,11% 
 

 

 

 

Fig.  8.124: Abundance estimation for raw spectra information without normalizing (JAI sensor) 

Looking at these results, with a hyperspectral sensor in the VIS+NIR range is it possible to 

estimate quantitatively the presence of CaO contained in the sample. However, when 

analyzing the rest of the components, the algorithm behaves differently (The trends of SiO2 

and Fe2O3 are different) if there is CaO in the mixture. 

Raw spectra information without normalizing (SWIR spectral range): 
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Real Estimated 

CaO SiO2 FeO Dolo SiO2 FeO 

33 33 33 12,53 8,66 78,81 

25 0 75 2,26 
 

97,74 

50 0 50 3,32 
 

96,68 

75 0 25 5,46 
 

94,54 

25 75 0 16,27 83,73 
 

50 50 0 18,24 81,76 
 

75 25 0 19,67 80,33 
 

0 25 75 
 

0,63 99,37 

0 50 50 
 

0,67 99,33 

0 75 25 
 

0,45 99,55 
 

 

 

 

Fig.  8.125: Abundance estimation for raw spectra information without normalizing (sisuCHEMA) 

Looking at these results, with a hyperspectral sensor in the VIS+NIR range is it possible to 

estimate quantitatively the presence of CaO contained in the sample. However, when 

analyzing the rest of the components, the algorithm behaves differently (The trends of SiO2 

and Fe2O3 are different) if there is CaO in the mixture 

The main conclusions reach after analyzing the data got during capturing campaign 3 are 

summarized below: 

 For pure components, same conclusions than in measurement campaigns 1 and 2 

were reached. 

o In the VIS + NIR range (JAI sensor), CaO clearly stands out from the other two 

in the case of raw spectra, adjusted.  

 No relationship was observed for normalized spectral information. 

 Fe2O3 and SiO2 are very similar to each other 

o For SWIR range (sisuCHEMA sensor), all pure compounds are clearly 

differentiable for the spectral data, with and without processing: 

 CaO: peak absorption at 1420 nm 

 Fe2O3: Clear slope and greater signal than SiO2 

 SiO2: Gradient slope that is accentuated at the end 

In the case of the normalized spectrum, there is a strange behavior between SiO2 and 

Fe2O3 at high wavelengths. 



 
New method proposal for chemical characterization of sterile material in scrap.  

296 
 

 In the case of Fe2O3 / CaO mixtures, for the case using the JAI sensor, as the Fe2O3 

content increases, the signal intensities associated with the spectra for different 

compositions are confused. 

On the other hand, for sisuCHEMA sensor, an increase in the reflection signal intensity 

is observed as the CaO content in the samples increases for all the cases in which the 

raw signal is analyzed. This clear relationship of signal intensity with the CaO content is 

maintained when analyzing the information obtained after spectra linearization. 

o It is observed that between 1100 and 1400 nm as the CaO content of the 

sample increases, the signal intensity is greater.  

o Also, in the spectral range between 1800 and 2300 nm for the normalized 

spectra, the higher the content of Fe2O3 higher is the signal intensity required. 

o In no case (except for pure CaO) the characteristic absorption peak of CaO at 

1400 nm is observed. 

 For Fe2O3 / SiO2 mixtures, when analyzing the raw spectra and the adjusted spectra 

acquired data, the spectral signatures for all the pure components with the JAI sensor 

offer similar signal intensities throughout the whole spectral range (no differentiation 

between pure SiO2 and pure Fe2O3). Nevertheless, the signals of the mixtures do show 

an order of intensity depending on the composition of the sample (the higher the SiO2, 

the greater the intensity of the acquired signal). 

In the case of sisuCHEMA sensor, the pure samples associated with each component 

are clearly differentiated. Likewise, the mixture samples are clearly grouped according 

to their composition (as a remarkable fact, the acquired signal intensity for the mixed 

samples is greater, for all the cases, than for each of the individual pure components). 

In the case of normalized spectra, there is no relationship between the composition of 

the mixtures and the shape of the graphs. Apart from the spectral range 1100 ‐ 1300 

nm, where it is observed that the greater the proportion of SiO2, the greater the 

intensity of the acquired signal. 

 In the case of CaO / SiO2 mixtures, similar than in previous cases, an increase in the 

reflection signal intensity is observed as the CaO content in the samples increases for 

raw and linearized data for JAI sensor. However, in the case of SWIR spectral range, it 

is not possible to differentiate mixed materials. 

The normalization process only offers useful information for sisuCHEMA sensor 

 Finally, when analyzing mixed composed by a 1/3 part of each compound (SiO2, Fe2O3, 

CaO), in the case of the raw and adjusted spectral signature, consistency is observed 

between the signals intensities response for mixing of three components with respect 

to the pure components for both sensors. 

When the standardized spectral information is analyzed, for the JAI case, there is no 

identified relationship between the composition of the mixtures and the shape of the 
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signatures. On the other hand, for sisuCHEMA case, a clear relationship between the 

composition of the mixtures and the shape of the graphs:  

o At lower wavelengths (1100 and 1600 nm) the more CaO the mixture has, the 

higher the signal.  

o At higher wavelengths (between 1800 and 2100 nm) the more CaO in the 

mixtures, the lower the signal. 
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8.2.7 Main conclusions on the use of Hyperspectral spectroscopy 

for the characterization of sterile 
 

Hyperspectral imaging analysis techniques seem to be a good solution for quick 

characterization of unknown materials, since it allows estimating the emissivity or reflectivity 

of the element to be analyzed, in terms of its wavelength.  

The spectral behavior of one material at different wavelengths depend on various factors, 

including the chemical composition. However, the spectral information contained in the signal 

presents great variability and it is affected by other factors such as lighting, noise or low 

atomic excitation. And the research work proposed aimed to assess the capability of this 

technique for quick sterile scrap characterization in steelmaking sector.  

The starting point of this work was a deep analysis of the state of the art in terms of spectra 

knowledge. Then two different experimental set ups for spectral acquisition were defined and 

built in laboratory; Static analysis of the selected samples in Visual + Near IR spectral range and 

Dynamic analysis of the selected samples in Visual + Near IR and in SWIR spectral ranges. 

Finally, calibration procedures were established for each of the laboratory set up. 

Regarding the methods tested for spectral data acquisition, two different approaches were 

tested: 

 Selection of 5 random point on the samples and spectral averaging: several 

inconsistencies were detected in the results which can be associated to samples 

manipulation, surfaces deteriorations, dirt. Those effects are not under control in 

laboratory conditions, so that this is not a valid method for industrial conditions. 

 Defining of a Region Of Interest inside the sample area to obtain the mean intensity 

value of every pixel inside this ROI. This method for spectral information extraction 

based on ROI definition offers better results. 

The straightforward analyses of the acquired spectral information, allow reaching the 

following conclusions in relation to hyperspectral technology capabilities for quantitative 

estimation of sterile compounds: 

 In the case of Static analysis in Visual + Near IR spectral range (linear sensor), certain 

patterns in the spectral signature that can be exploited, however, nor characteristic 

peaks were identified. 

 On the other hand, for Dynamic analysis in Visual + Near IR + SWIR spectral ranges 

(matricial sensor), the main conclusion can be summarized as follow: 

o Pure compounds analysis:  

 Reflexion intensity of calcite materials in bigger than for the rest of 

compounds in the whole spectral range (expected spectral response 

was got at 1200‐1400 nm). 
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 For Fe2O3 compound showed a specific spectral slope (greater signal 

than SiO2 was reported) 

 In SiO2 compound also showed a specific spectral slope (being 

accentuated at the end). 

 The best spectral range for distinguish between Fe2O3 and SiO2 is 

2300‐2400 nm for all spectra processing methodologies tested. 

However, for normalized raw spectra information, between 1900 and 

2200 nm the three pure compounds are clearly identified. 

o CaO / SiO2 compounds (two compound mixtures):  

 VIS+NIR sensor offers expected correlations of intensity signal in the 

case of CaO and SiO2 mixtures (It is observed that between 1100 and 

1400 nm as the CaO content of the sample increases, the signal 

intensity is greater) 

 Using SWIR sensor, it is not possible to differentiate mixed materials. 

o Fe2O3 / SiO2 compounds (two compound mixtures):  

 In the spectral range between 1800 and 2300 nm for the normalized 

spectra, the higher the content of Fe2O3 higher is the signal intensity 

required. 

o Fe2O3 / CaO compounds (two compound mixtures):  

 No clear information in VIS+NIR range were observed.  

 For SWIR spectral range, carbonate compounds (higher signal 

intensity) were identified in 1100‐1400 nm spectral range. Also, at 

1800‐2300 nm Fe2O3 content can be observed. 

o Fe2O3 / CaO /SiO2 compounds (three compound mixtures):  

 The coherency with regards pure compounds is meet (the higher the 

Dolomite, the higher the intensity of the mixture, the higher the SiO2, 

the lower the intensity of the mixture) 

 Finally, when analyzing the output of the proposed methodology for abundance 

estimation from spectral information, the following conclusion can be highlighted: 

o The individual abundance estimation algorithm is offering some qualitative 

information for SiO2 and CaO in the case of raw spectral data without and with 

normalization, but not useful information was extracted for any of the 

linearization processing methods proposed. 

o Fe2O3 content in the samples is not estimated using any abundance calculation 

method. 

As summary, using hyperspectral imaging spectroscopy, could be possible to identify the 

presence of CaO, Fe2O3 (in VIS+NIR range) and SiO2 (in SWIR range). For quantifying the 
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amount of those compounds in the mixture, the proposed abundance estimation algorithm 

offers some qualitative information for SiO2 and CaO when analyzing raw spectral data. But 

Fe2O3 content cannot be estimated. 
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8.3 FTIR Spectroscopy    
 

In previous investigations, RAMAN spectroscopy technologies and Reflexive hyperspectral 

imaging were studied for assessing the capabilities of these techniques for qualitative analysis 

of the chemical composition of the sterile in scrap. 

In this section we propose the use of reflection Fourier Transform InfraRed spectroscopy (FTIR) 

for sterile characterization purpose. In FTIR technique, interferometry is used to record 

information about the material to which the infrared beam is applied.  

 

8.3.1 Literature survey about FTIR spectroscopy  
 

8.3.1.1 Fundamentals and physic principles 

 

Like other spectroscopy techniques, FTIR is composed by source, a sample and a detector.  As 

shown in Fig.  8.126, FTIR technique consists on sending the generated energy of the source 

through an interferometer and onto the sample. In every scan, all source radiation gets to the 

sample. The light passes through a beam‐splitter, which sends the light in two directions at 

right angles. One beam goes to a stationary mirror then back to the beam‐splitter.  The other 

goes to a moving mirror. The motion of the mirror makes the total path length variable versus 

the one taken by the stationary‐mirror beam. When the two signals meet up again at the 

beam‐splitter, they are recombined. The difference in path lengths creates constructive and 

destructive interference (interferogram). The recombined beam passes through the sample. 

The sample absorbs all the different wavelengths characteristic of its spectrum, and this 

subtracts specific wavelengths from the interferogram.  The detector now reports variation in 

energy versus time for all wavelengths simultaneously. A laser beam is superimposed to 

provide a reference for the instrument operation. Then, a Fourier transform function allows to 

convert an intensity‐vs.‐time spectrum into an intensity‐vs.‐frequency spectrum. 

 

Fig.  8.126: General structure of Fourier Transform InfraRed spectroscopy 

The resulting signal in the detector is a spectrum that represents the molecular "footprint" of 

the sample. Infrared spectroscopy could be useful since different chemical structures 

(molecules) produce different spectral signatures. 
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One of the major advantages FTIRs, with regards other infrared spectrometers is their ability to 

measure spectra with high signal‐to‐noise ratios (157), however, an important aspect to 

consider when proposing an analysis using FTIR spectroscopy is the sample manipulation 

technique to be used. Certain sample handling techniques are more effective than others for 

specific types of samples, so to obtain a high‐quality spectrum quality, it is important to know 

which manipulation technique works best for the type of sample to be analyzed. There are 

four main sampling techniques for FTIR (158): 

- Transmission: The sample is placed directly into the infrared (IR) beam. As the IR beam 

passes through it, the transmitted energy can be measured, and a spectrum is 

generated. The transmission technique can be used to analyze organic and 

thermoplastic powders, some type of polymers, several liquids and gases 

- Total attenuated reflectance (ATR): An IR beam is directed onto an optically dense 

crystal with a high refractive index at a certain angle. This internal reflectance creates 

an evanescent wave that extends beyond the surface of the crystal into the sample 

held in contact with the crystal. This technique is commonly used for liquid analysis 

and it also fits well for homogeneous solid samples, surface layer analysis of a multi‐

layered solid or coating analysis 

- Diffuse Radiance (DRIFTS): This method operates by directing the IR energy into a 

sample cup filled with a mixture of the sample and an IR transparent matrix (such as 

KBr). The IR radiation interacts with the particles and then reflects off their surfaces, 

causing the light to diffuse, or scatter, as it moves throughout the sample. Diffuse 

radiance technique is commonly used for the analysis of both organic and inorganic 

samples that can be ground into a fine powder (less than 10 microns) and mixed in a 

powder matrix such as potassium bromide (KBr) 

- True Specular Reflectance: This is a surface measurement technique that works on the 

principle of reflective efficiencies. Specular reflectance is commonly used for the 

analysis of both organic and inorganic samples having large, flat, reflective surfaces 

 

8.3.1.2 Previous applications of FTIR spectroscopy technique in industrial 

applications 

 

Fourier transform infrared spectroscopy (FTIR) is a fast and non‐destructive analytical method, 

associated with chemometrics, it has become a powerful tool for the pharmaceutical industry 

(159) (160) (161) (162) (163). Also, in the general chemistry field several works can be found 

dealing with the use of spectroscopic characterization of polymers (164) (165) (166) and 

biological materials (167). Some research with FT‐IR spectroscopy can be found in literature 

applied to inorganic minerals and pigments characterization (168), surface Analysis (169), 

characterization of optical behavior of certain materials like highly reflective materials [81] or 

characterization of the emittance behavior of materials (170). 
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There are several researches done for using this kind of technologies in industrial steel sectors 

mainly in residues/by‐product characterization;  

- Understanding of EAF or LF slag chemistries, both during the processing phase or for 

subsequently application as by‐product (171) (172) (173) (174). 

- Characterization of EAF dust characterization for valuable material recovery (175) 

(176). 

 

8.3.1.3 Prior spectra knowledge 

 

The main advantages of FTIR spectroscopy are simplicity, practically no sample preparation 

and a superior speed of more than 100 spectra per second. In addition to this, the flow 

through setup means that continuous, real‐time monitoring is possible 

In this section some information about spectra characteristic peaks of some materials, 

obtained after a literature survey, are presented.  Previous laboratory works may be used as 

starting point of the current research line for identifying the main reflection characteristic of 

the different components present in ferrous scrap sterile. 

8.3.1.3.1 Calite (CaCO3) and Dolomite (CaMg(CO3)2) materials 

 

Regarding the use of FTIR spectroscopy as analytical technique applied to characterize and 

understand Calcite and Dolomite materials spectral behavior, several studies have been found 

in the literature (177) (178) (179) (180). 

According the literature, each carbonate shows characteristic absorption bands. The most 

common groups have been widely reported as calcite, dolomite, and aragonite groups, and the 

spectral difference may be related to crystal structure. In this sense, carbonates have a strong 

and broad asymmetric absorption peak at 1300‐1500 cm−1 due to the ν3 asymmetric stretching 

vibration mode of CO3
−2. They also present a lower amplitude peak at 850– 880 cm−1 due to 

the ν2 asymmetric vibration mode of CO3
−2, which is characterized by a notch on the falling 

limb. It can be found another relevant peak at 700–746 cm−1 due to the ν4 symmetrical in 

plane bend vibration mode of CO3
−2. 

Fig.  8.127 graphically describes the above mentioned: 

 

Fig.  8.127: Vibrational modes of CO3
-2  (181) 
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In Fig.  8.127, it is also observed that there is an absorption band at 1081 cm−1 for calcite 

groups (in the other carbonates ranging from 1000–1100 cm−1), but they are less obvious and 

therefore they are not usually taken into consideration.   

Another consideration to be taken into consideration when analyzing carbonate materials is 

that the increase in Mg content moves the ν4 peaks to the left. This effect is shown in  Fig.  

8.128: 

 

Fig.  8.128: Effect of Mg in Carbonate materials (181) 

8.3.1.3.2 SiO2 materials 

 

Concerning silica, several studies have been found focusing on understanding its spectral 

behavior (181) (149) (182), however it is worth mentioning that silicates are more complex 

than carbonates minerals due to the complicated tetrahedron SiO4 structures that can form 

and complex chemistries. 

Similar than with other materials, the positions of the peaks help identify the mineral nature 

and the peak heights can be used for developing the calibration curves using the constant ratio 

method (CRM) (181). The CRM works by finding the relationship between a chosen peak and 

the peak of another mineral present as shown in Fig.  8.129 according (8.13) 

 

Fig.  8.129: ATR-FTIR spectrum of a known sample with 50% calcite and 50% quartz 

 
��� =

�1

(�1 + �1)
 (8.13) 

Where;  

 C1 is the Calcite absorption peak height 

 Q1 is the chosen analyte peak 
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Beyond the CRM method described above for estimating material presence from spectral 

comparison with regard a reference mineral (Calcite), it is known that Silicon minerals show 

strong broad absorption bands at 1030 cm‐1 and 800 cm‐1, which correspond to the stretching 

vibrations of Si‐O and Si‐O‐Si respectively. Similarly, the absorption peaks at 530 cm‐1, 725 cm‐1 

and 1417 cm‐1 can be assigned to Si‐O asymmetrical bending (Si‐O symmetrical bending and 

Si=O stretching vibration). In addition, the crystallinity may be calculated by comparing the 

ratio of intensity of the characteristic peaks at 766 and 700 cm‐1 (149) (182). Also, an 

absorption band near 1083 cm−1, assigned to Si–O vibrations of amorphous silica has been 

reported by some authors (182) 

In previous tests for analyzing Hyperspectral and RAMAN spectroscopy techniques, the raw 

material used for simulating Silica presence in scrap sterile was Rice Husk Ash (RHA). Fig. 218 

shows some transmittance FTIR spectra of RHA reported in literature (149): 

 

Fig.  8.130: FTIR spectra of RHA samples 

8.3.1.3.3 FeO / Fe2O3 materials 

 

Several studies have been found with regards the characterization of ferric iron minerals  

FTIR spectra of iron oxides are well established (183) (184) (185) (186). According the 

information reported in literature the main absorption band associated to Fe–O lattice 

vibration can be found at lower wavenumber. 

In the case of magnetite (Fe3O4), FTIR spectrum exhibits two strong infrared absorption bands 

at 570 cm−1 (Fe–O stretching mode of the tetrahedral and octahedral sites for the υ1) and 390 

cm−1(Fe–O stretching mode of the octahedral sites for the υ2). At this wavelength range, two 

other absorption bands at 268 cm−1 and 178 cm−1 are present. 

For Maghemite (γ‐Fe3O4), the main absorption bands can be found at 630, 590, and 430 cm−1. 

And at 1018 cm‐1 and 750 cm‐1 for OH stretch for lepidocrocite (γ‐FeOOH) 

In the case of Hematite (α‐Fe3O4), the main absorption bands can be found at 540, 470, and 

352 cm−1. And at 1124 cm‐1, 890 cm‐1 and 810 cm‐1 for OH stretch for lepidocrocite (α ‐FeOOH) 
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Fig.  8.131: FTIR spectra, over 400–4000 cm−1 spectral range showing IR bands of hematite, 

kaolinite, sulphate, quartz and nitrates 

On the other hand, similar to what was found for Silicates minerals, calcium oxide (lime) is 

usually added to Fe2O3 samples as a standard reference in obtaining the calibration curves 

(183). 
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8.3.2 Laboratory equipment for spectral analysis 
 

The equipment used for conducting the proposed analysis were: 

 VERTEX 70v FTIR spectrometer: permanently aligned RockSolid TM interferometer, 

which is equipped with gold‐coated optics and has a 30° angle of incidence for 

maximum efficiency and sensitivity as well as minimum polarization effects. Digital 

electronics ensure optimal interferometer control, highest sensitivity and long‐term 

stability. 

Performance: 

Spectral range: Mid-IR, NIR, Far-IR/THz, Visible/UV 

10 cm -1 to 28,000 cm -1 (360 nm) 

Spectral resolution: < 0.4 cm -1  

Optical Bench: 

Optics Housing: Standard vacuum or purgeable, 

includes dry vacuum pump 

Input / Ouput Ports: 2 / 5 

Sample compartment: Vacuum 

Components & Electronics: 

Interfermeter: RockSolidTM   

Detectors internal: Up to two 24 bit dual-channel ADC 

DigiTectTM 

Detectors external: Four, multiplexed up to 16 

Dedicated Techniques: 

Rapid Scan: >70 spectra/sec at 16 cm -1 

spectral resolution 

Slow Scan 

& Step Scan: 

100 Hz (0.0063 cm/sec), Phase 

modulation and internal demodulation, 

Temporal resolution 

6 µsec/2.5 nsec 

 

Fig.  8.132: FTIR Spectrometer technical characteristics 
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 For the capture, the visualization and the processing of the spectra, a PC equipped 

with the integrated OPUS spectroscopy software. OPUS is the leading spectroscopy 

software for the advanced measurement, processing and evaluation of IR, NIR and 

Raman spectra. 

 

Fig.  8.133: OPUS spectroscopy software snapshot 
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8.3.3 Laboratory tests 
 

Similarly, to the other tested technologies within this work, the objective of this activity is the 

development and implementation of a new in situ analytical technique for the characterization 

of sterile materials contained in scrap.  

The activities explained in this section aim to determine the most suitable capturing conditions 

under controlled laboratory conditions (lighting, temperature, environmental pollution, 

sample preparation). To this end, artificially prepared samples with well‐defined chemical 

compositions will be used, so that, and supported by previous bibliographical references, it will 

be possible to establish the processing and analysis patterns of the spectral signatures 

obtained, which will then be applied under real industrial conditions. 

 

8.3.3.1 Samples selection and preparation 

   

As it was already mentioned in previous sections, the main compound tested were CaO, MgO, 

SiO2, Al2O3, Fe2O3. In this sense, CaO, Fe2O3 and SiO2 are easily obtainable materials in 

industrial activities. 

- SiO2; A material based on calcined rice husk has been selected. This material is used in 

steelmaking as coverage material to prevent thermal losses of the steel during the 

casting process. The chemical composition (according the supplier) is about 92% of 

SiO2, 1% of CaO, 1,5% of Al2O3 and 1% of Fe2O3 

- CaO; This material is obtained from calcined calcite stone. This material is required in 

steelmaking for phosphorous removal in the electrical Arc Furnaces process. The 

chemical composition (according the supplier) is about 1,5% of MgO and 97% of CaO. 

- Fe2O3: This material can be easily found in different parts of the steelmaking process. 

In order to get a product with the higher iron Oxide as possible, mill scale will be used 

as reference material. Rolling Mill scale present a percentage of iron oxides up to 84%, 

presenting mostly Wuestite, Hematite and Magnetite. 

In order to conduct FTIR analysis, it was necessary to prepare pressed pellet with a mixture of 

the sample with potassium bromide (KBr is not visible to FTIR). In this case and after testing 

several concentrations (since we are working with dark samples), the most convenient mixture 

corresponds with 1 mg of sample and 300 mg of KBr. 

Once the manufacturing process and the mixtures requirements are set, 8 pressed pellets 

samples were made mixing the pure components to analyze the position of the absorption 

bands and their relationships with the actual chemical composition (using CaO absorption 

bands as calibrating reference). 

Fig.  8.134: summarizes the material distribution used in this section: 
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Sample ID % CaO % Fe2O3 %SiO2 

Sample 1 100 0 0 

Sample 2 0 100 0 

Sample 3 0 0 100 

Sample 4 50 50 0 

Sample 5 20 80 0 

Sample 6 50 0 50 

Sample 7 0 50 50 

Sample 8 0 80 20 
  

Fig.  8.134: Pressed pellets of pure compounds mixings 

 

8.3.3.2 Capturing procedure 

 

The capturing procedure consisted on exposing the different samples to a source of infrared 

light. The FTIR spectrometer makes a scanning from 4000 cm‐1 to 600 cm‐1 wavelengths. The 

intensity of the light transmitted through the sample (infrared spectrum of the sample) is 

measured at each wavenumber. This measurement allows calculating the amount of light 

absorbed by the sample by analyzing the difference between the intensity of the light before 

and after passing through the sample cell. 
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8.3.4 Laboratory tests results 
 

The objective of the laboratory experiments proposed in this section was to gain knowledge 

and expertise in defining the best optical configuration, material manipulation and mastering 

spectral signature processing when FTIR spectrometers are used for oxides characterization 

present in Scrap dirt.  

The development of these tests under controlled laboratory conditions will guarantee 

subsequently better results if this technique is proposed for industrial conditions where there 

will be a greater number of environmental uncertainties, material heterogeneities, presence of 

unknown components and/or different degrees of moistures in the samples. In this section, 

the results obtained during laboratory tests are described 

Pure compounds analysis: 

As mentioned before, three pure compounds have been tested: 

CaO compound: A tablet containing 1 mg CaO sample in 300 mg KBr was prepared. In Fig.  

8.135 FTIR spectra for CaO compound is shown: 

 

Fig.  8.135: FTIR spectra for CaO compound 

Two main absorption bands are clearly observed at 1400 and 900 cm‐1. The commercial 

Software for spectrum identification includes identifies this spectrum with calcium carbonate 

(CaCO3). These main bands will be used to identify this compound in samples containing 

mixtures. 

On the other hand, the bands above 2600 nm are associated with the moisture contained in 

the sample and with environmental CO2. 

SiO2 compound: A tablet containing 1 mg SiO2 sample in 300 mg KBr was prepared. In Fig.  

8.136, the FTIR spectrum obtained for the mixture is shown: 
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Fig.  8.136: FTIR spectra for SiO2 compound 

The main absorption bands identified in the acquired spectra due to the presence of SiO2 in 

the sample were located at around 1100, 800 y 500 cm‐1. 

According the literature survey done, In Silicon minerals an absorption band near 1083 cm−1, 

assigned to Si–O vibrations of amorphous silica should be found. Also, a strong broad 

absorption band at 800 cm‐1 corresponding to the stretching vibrations of Si‐O‐Si should be 

present. Regarding the band identified at 500cm‐1, it could be associated to the absorption 

peaks at 530 cm‐1 (Si‐O asymmetrical bending) reported by some authors. 

Fe2O3 compound: A tablet containing 1 mg Fe2O3 sample in 300 mg KBr was prepared. In Fig.  

8.137 the FTIR spectrum obtained for the mixture is shown: 

 

Fig.  8.137: FTIR spectra for Fe2O3 compound 

For Fe2O3 materials, two Sharp bands are observed in 600 ‐ 400 cm‐1 spectral range. This shows 

coherence with the expected absorption band reported for magnetite (at 570 cm−1 and 390 

cm−1), for Maghemite (at 590 cm‐1, and 430 cm−1) and for Hematite (at 540cm‐1 and 470 cm−1). 
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Mixed compounds analysis: 

As described before, the selected pure compounds were mixture and analyzed using FTIR 

technologies. 

Mixture based on Fe2O3 / CaO compounds: Two different mixtures were prepared; One 

mixture containing 0,5 mg Fe2O3 + 0,5 mg CaO sample in 300 mg KBr, and a second mixture 

containing 0,75 mg Fe2O3 + 0,25 mg CaO sample in 300 mg KBr.  

Fig.  8.138 shows FTIR spectrum obtained for the mixture is shown: 

 

Fig.  8.138: FTIR spectra for Fe2O3 / CaO mixtures. Left) 1:1 and right) 4:1 

In the spectra signatures obtained from CaO/Fe2O3 mixtures, no band corresponding to iron 

oxides compound were observed. This spectral response seems to be completely blocked by 

the CaO signal. 

Mixture based on SiO2 / CaO compounds: One mixture containing 0,5 mg SiO2 and 0,5 mg CaO 

together with 300 mg KBr was prepared. 

Fig.  8.139 shows FTIR spectrum obtained for the mixture is shown: 

 

Fig.  8.139: FTIR spectra for SiO2 / CaO mixtures (1:1 mixture) 
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In this case, the main characteristic band of each component is clearly observed, so it would be 

possible to make an approximation to quantitative analysis based on the FTIR spectrum 

obtained from a mixture. 

Mixture based on Fe2O3 / SiO2 compounds: Two different mixtures were prepared; One 

mixture containing 0,5 mg Fe2O3 + 0,5 mg SiO2 sample in 300 mg KBr, and a second mixture 

containing 0,75 mg Fe2O3 + 0,25 mg SiO2 sample in 300 mg KBr.  

Fig.  8.140 shows FTIR spectrum obtained for the mixture is shown: 

 

Fig.  8.140: FTIR spectra for Fe2O3 / SiO2 mixtures. Left) 1:1 and right) 4:1 

After analyzing the obtained spectral signature, the absorption band associated with the 

presence of SiO2 can be easily identifiable. However, no band associated with iron oxides 

compounds is observed. 

On the other hand, in the mixture composed of a higher content of Fe2O3, some contamination 

with CaO can be observed. 

It can be concluded that the signal produced by the presence of Fe2O3 is totally blocked by the 

presence of other compounds 
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8.3.5 Main conclusions on use of FTIR for sterile characterization 
 

In the present work, a laboratory FTIR spectrometer (VERTEX 70v model, supplied by Bruker) 

was used to evaluate the capability of the proposed technology to do a fast analysis of the 

different compounds present in ferrous scrap.  

The following conclusions have been obtained: 

 In the case of pure compounds, FTIR technology allows identifying clearly individual 

compounds according to their spectral signature reported in literature. The materials 

used for the tests were identified as: 

o Iron Oxide sample: Hematite and Goethite 

o Calcium sample: CaO and carbonates 

o SiO2 sample: amorphous silica 

 CaO and SiO2 present very clear and well‐defined spectral absorption signals well 

aligned with the bibliographic work done. So they could be quantified in mixtures 

containing both compounds, even in the presence of ferrous oxides compounds. 

 The signal produced by the presence of Fe2O3 is totally blocked by the presence of 

other compounds. This makes not possible to estimate the presence of iron oxides in 

the samples using FTIR technique. 
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8.4 General conclusions about the use of spectroscopy 

technologies for sterile characterization    
 

Since Ferrous scrap comes to many different origins, the nature of the non‐ferrous materials 

contained in scrap materials is very variable, and therefore it is very complicated to have 

reliable information on the chemical distribution of the scrap mixtures. On the other hand, 

there are other circumstances that increase the dispersion in the chemical distribution of the 

sterile such as mixtures of scrap classes, contamination during manipulation or cheating 

attempts by the scrap dealer, and that should be measured to tune up the subsequent steel 

manufacturing processes allowing to maximize the efficiency of them. 

To dispose of accurate information on chemical composition and amount of sterile materials 

contained in each type of scrap involves an important technological advance for the 

steelmaking sector. 

In the current state of the art, the regular procedure to determine the chemical composition of 

sterile materials is based on X‐Ray fluorescent technique. However, XRF technology present 

some limitation for massive analysis if huge piles of scraps need to be characterized; tests need 

to be done in laboratory conditions, laborious sample preparation is required for spot analysis.  

During this work, several well‐known spectroscopy techniques have been tested aiming to 

evaluate their capabilities to be used for estimating the chemical composition of the dirt 

present in ferrous scraps in a quick and simple manner.  

In the case of Raman spectroscopy, well defined spectra for Iron Oxides and Calcite 

compounds are obtained, presenting clear characteristic peak easily identified at the different 

Raman spectral ranges (785 nm and at 514 nm) with not regard the laser power nor sensor 

exposure time. Those compounds have been widely studying in mineralogy studies and the 

findings obtained in the present work are well aligned with the information got from literature.  

On the other side, when amorphous SiO2 is present in the sample, the spectral signature is 

totally saturated by SiO2 signal. This effect makes not possible to analyses sterile material 

composed by silica. 

For Hyperspectral spectroscopy, and since a passive (non‐artificially excited samples) approach 

was used, the very first conclusion reached was that for extracting useful information of one 

sample, high number of points on the sample must be analyzed at the same time, minimizing 

the variability effect of capturing environment such as light or dirt. 

Secondly, it was demonstrated that SWIR sensor (2300‐2400 nm) could be used for roughly 

estimating the presence of iron oxide Fe2O3 in sterile samples, VIS+NIR sensor offer 

quantitative information of the presence of CaO in the samples. Spectral information about 

the presence of Silica can be extracted from both VIS+NIR and SWIR ranges. 

One important disadvantage of using hyperspectral spectroscopy for chemical analysis of 

unknown samples is that the more complex the composition of a sample, the more complex its 
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spectrum becomes, and the more difficult it is to disaggregate the individual compound 

spectral features for estimating the whole chemical composition of the sample. 

When applying FTIR spectroscopy, individual compounds of CaO and SiO2 present very clear 

and well‐defined spectral absorption signals well aligned with the bibliographic work done. So 

they could be quantified in mixtures containing both compounds. 

However, similar to what happened with silica when analyzed with Raman technology, the 

signal produced by the presence of iron oxides is totally blocked by the presence of other 

compounds, making not possible to estimate the presence of iron oxides in the samples using 

FTIR technique. 

Sterile materials in Ferrous scraps are a complex mixture of residues like rubber, glass, wood 

and plastics with oxides materials. Those oxides are mainly CaO, Fe2O3 and SiO2. According the 

findings achieved in this work, there is none analytical method capable to get information for 

all these compounds at the same time.  

The subsequent step to this research activity should be to prepare an analytical portable 

station composed by the different spectrographs that have proved capabilities for extracting 

chemical information from the sample of sterile. A set up similar to the one shown in Fig.  

8.141 could be proposed:    

 

Fig.  8.141: Proposed analytical portable station 

Since the main compound of interest in scrap sterile, from steelmaking process optimization 

point of view, are SiO2, CaO and Fe2O3 the methodology proposed could be as follow: 
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Fig.  8.142: Proposed analytical method 

The proposed analytical method depicted in Fig.  8.142 would allow to quickly identify the 

main compound present in the unknown sterile material. It could be done depending on the 

response of the different spectrometers. Once the main compounds are identified, the 

spectral signatures coming from the right spectrometers could be analyzed looking for the 

spectral features. Then new processing algorithms must be developed for extracting 

quantitative information from the new proposed analytical portable station.   
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 9 
New method proposal for sterile 

quantification in scrap deliveries. 
For understanding the economic affection of sterile materials in Electric Arc Furnace 

performance, besides its chemical distribution, the total amount dirt contained in scrap is 
necessary to be known. This chapter presents a novel tool for automatic quantification of the 
sterile contained in scrap materials. Although the proposed solution has been developed and 
validated in laboratory conditions, its industrial application would lead to great technological 
advance in steelmaking scrap yard facilities due to the automatization of key daily operations 
at material reception area. 
 

In previous chapters, some of the most known steel scrap specifications were presented. The 

different international Steel Scrap Specification defines the scrap categories (qualities) not only 

by their origin or their shape but also by their content in residual elements, content in sterile 

and by also their density. 

Those specifications are compromises between what steelmakers need (high density for 

productivity, low tramp elements for metallurgy, low sterile content for cost), and what scrap 

dealers can reach with their treatment tools. However, what is actually observed in the scrap 

reception processes at the steel mills, it is that the supplied material quality varies widely, and 

in many cases, scrap suppliers do not meet the minimum requirements defined in those 

specifications (Mixture of materials with different qualities, inadequate dimensions, Forbidden 

elements, contamination with other elements such as earth, slag or grease, cheats, …).  Fig.  

9.1 shows several examples: 

  

Fig.  9.1: Examples of non-compliance with the scrap quality specifications 

It is therefore necessary to find techniques which allow to check at reception in scrap yards the 

good belonging of the batches to the announced categories. 
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9.1 Current available techniques for sterile quantification 
 

Nowadays, the most extended practice for sterile quantification consists on the visual 

inspection of each scrap delivery. Then a very experienced scrap yard operator, based on 

subjective criteria, estimates the quantity of sterile present as well as other possible non‐

compliance with the scrap quality specifications. Subsequently the scrap yard operator applies 

an economic penalization the supplied. 

Periodically, and in order to verify the good judgment of the scrap yard operator or to analyse 

a particular supply, concrete tests are carried out. This method basically consists on unloading 

a scrap truck on a concrete surface at the scrap yard. Then the scrap is collected by magnetic 

means. The remaining material (nonmagnetic material) is finally sorted by hand and then 

weighed (see section 6.2.2 for more information). It allows to estimate the most general 

quality parameters in a very simple manner. 

Besides the material purchasing price, and due to the high influence that the scrap quality has 

on aspects such as the overall efficiency of the steelmaking process, the final quality of 

steelmaking products, productivity or variable transformation costs, there is a growing 

awareness of the necessity of using higher scrap quality although this leads to an increase in 

raw material costs. One alternative that is becoming more and more booming is the 

installation of scrap cleaning machines in the scrap yards. Fig.  9.2 depicts one example of the 

industrial layout of these kinds of installations. 

 

Fig.  9.2: E1 Scrap cleaning machine at one ArcelorMittal site in Spain 

According scrap cleaning machine suppliers, the main benefits of cleaning scrap are listed 

below (187):   

 Saving EAF energy: 12‐18 kWh/steel ton. 

 Saving Graphite Electrodes: 0.05 kg/steel ton. 

 Saving Lime: 3 kg/steel ton. 
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 Increase productivity: 27,000 ton/year. 

 Higher steel quality, lower presence of Cu, Ni, Zn, etc. 

 Do not pay for non‐ferrous or get value from them. 

 Reduce the slag amount. 

 Minimize dust emissions and filter replacement. 

 Increase the life of your EAF refractory lining. 

Besides the scrap quality enhance after cleaning operation, these cleaning facilities can be 

used for checking, at reception in scrap yards, the quality compliance of each scrap deliver. In 

this sense, the benchmark situation for those installations could be the use of the information 

provided by the scrap cleaning machine to measure the amount of non‐ferrous material mixed 

with the scrap and apply direct quality penalties to the scrap suppliers truck by truck. The 

aforementioned practice can be described as follow: 

1. Every scrap truck is registered at the factory arrival (plate number and weight). 

2. Scrap is delivered at the scrap yard where is discharged in the material receiving 

hopper of the cleaning machine (each scrap truck is processed separately). 

 

Fig.  9.3: Scrap discharge in the receiving hopper of the cleaning machine 

3. The cleaning machine sorts no‐ferrous materials from ferrous materials. 

 

Fig.  9.4: Non-ferrous material pile 

4. Non‐ferrous material separated after the processing of each truck is collected with a 

backhoe provided with scale. 
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Fig.  9.5: Non-ferrous material weighting 

5. The non‐ferrous material is accumulated in a pile to be later on sold. 

6. Every scrap truck is registered at the factory departure (plate number and weight). 

7. A report is generated. 

Despite the high potential of scrap cleaning machines, this equipment presents several 

drawbacks worth mentioning;  

1. Installing a cleaning machine requires high CAPEX (around 0.5 M€) 

2. Only allow to clean certain scrap grades (E1, E5, E40) depending on the initial design. 

The machine design is done for a very particular scrap specification, and once defined 

it is only valid for processing scrap material with the initially selected specification 

3. The processing capacity of these machines is less than the scrap delivery rate to the 

scrap yard, so they cannot be used for the sterile amount assessment truck by truck. 

Also, high maintenance resources must be allocated to ensure high productivity of the 

cleaning facility. 

These disadvantages make the visual examination done by the scrap classificator and the 

estimation of the sterile content based on subjective criteria to continue being the most 

widespread methods in the steelworks during the scrap reception process.  

The reflexion done at this point is that, if an experienced person is able to estimate the sterile 

content present in every scrap truck by visual analysis during the discharge operation, there 

must be sufficient visual information in the scene to obtain objective data on the scrap quality 

when the proper machine vision techniques are applied for information extraction. The 

innovative activity presented in this section aims to:  

 Explore the possibility of combining machine vision techniques with Hyperspectral 

imaging as a new method for extracting quantitative information of the sterile present 

in Ferrous scrap under laboratory conditions. This first phase allows, not only to 

evaluate the potential of the proposed system, but also to build the basic architecture 

and to do the network parameters tuning to extrapolate meaningful information from 

one scrap grade for others.   

 Demonstrate the technical feasibility of the proposed solution in industrial conditions. 

To do so, the new system is installed in a real scrap cleaning machine for evaluating 

the output of the system against real process data.   
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9.2 State of the art on Machine Learning 
 

9.2.1 Basic about machine learning 
 

Machine Learning is one of the key elements of Artificial Intelligent which is nowadays a trendy 

subject in the research or industry fields. Companies and universities devote many resources 

to advance their knowledge in this field. Recent advances offer very solid results for different 

tasks, comparable to human performance. 

To understand the evolution of machine learning techniques till today, we must go back to 

1642, when one of the first mechanical adding machines was designed by Blaise Pascal. It used 

a system of gears and wheels similar to those found in odometers and other counting devises. 

Pascal’s adder, known as the Pascaline, could both add and subtract and was invented to 

calculate taxes 

In 1694, Gottfried Wilhelm Von Leibniz produced a similar machine to the Pascaline, that was 

more accurate and could perform all four basic arithmetic operations (addition, subtraction, 

multiplication and division). Leibniz also created the binary number system used by all modern 

computers. 

Storing data was the next challenge to be met. In 1801, the first use of storing data was in a 

weaving loom invented by Joseph Marie Jacquard that used metal cards punched with holes to 

position threads. A collection of these cards coded a program that directed to loom. This 

allowed for a process to be repeated with a consistent result every time. 

Logic is a method of creating arguments or reasoning with true or false conclusions. George 

Boole created in 1847 a way of representing this using Boolean operator (AND, OR, NOR) and 

having responses represented by true or false, yes or not, and represented in binary as 1 or 0. 

Web searches still use these operators today. 

Later on, in 1890, Herman Hollerith created the first combined system of mechanical 

calculation and punch cards to rapidly calculate statistics gathered from millions of people. 

An important milestone took place in 1945 with the development of The Mark I. This was built 

at IBM and designed by Howard Aiken and it was the first combined electric and mechanical 

computer. The Mark I could store 72 numbers and it could perform complex multiplications in 

6 seconds and divisions in 16. While Mark I is far from current computer, this is still faster than 

most humans. 

One year later, the first fully electronic computer was built by John Mauchly and John Eckert 

and named ENIAC (Electronic Numerical integrator and Computer). ENIAC was a thousand 

times faster than the Mark I. This computer weighed about 30,000 kilograms and fit on wall 3 

meters high and 24 meters across. 

Arthur Samuel was an IBM scientist who used the game of checkers to create the first learning 

program in 1952. His program became a better player after many games against itself and a 
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variety of human players in a “supervised learning mode”. The program observed which moves 

were winning strategies and adapted its programming to incorporate those strategies. 

In 1957, Frank Rosenblatt designed the perceptron which is a type of neuronal network. A 

neuronal network acts like a brain. The perceptron connects a web of points where simple 

decisions are made that come together in larger program to solve more complex problems.  

The first programs able to recognize patterns began to be developed in 1967. These programs 

were designed based on a type of algorithm called the nearest neighbour. When the program 

is given a new object, it compares this with data from the training set and classifies the object 

to the nearest neighbour, or most similar object in memory. 

Gerald Dejong introduced Explanation Based Learning (EBL) in a journal article published in 

1981. In EBL, prior knowledge of the world is provided by training examples which make this a 

type of supervised learning. The program analyses the training data and discards irrelevant 

information to form a general rule to follow. 

In the 1990’s we began to apply machine learning in data mining, adaptive software and web 

applications, text learning and supervised and unsupervised learning. As well, reinforcement 

learning algorithms were developed. 

The new millennium brought an explosion of adaptive programming. Anywhere adaptive 

programs are needed, machine learning is there. These programs are capable of recognizing 

patterns, learning from experience, abstracting new information from data, and optimizing the 

efficiency and accuracy of its processing and output.   

In terms of machine learning techniques development evolution, Fig.  9.6 offers a good picture 

of the relationship between the moment when each one of the main techniques used arises 

and its evolution in popularity of use 

 

Fig.  9.6: Machine learning development timeline (188)  
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9.2.2 Machine learning as general Artificial intelligent approach 
 

Machine learning is an artificial intelligence (AI) discipline geared toward the technological 

development of human knowledge. Machine learning allows computers to handle new 

situations via analysis, self‐training, observation and experience. So basically, it studies 

computer algorithms for learning to do particular things. 

Doing a basic comparison between conventional programming methods and new machine 

learning techniques, it can be said that: 

 Traditional Programming: Data and program are run on the computer to produce the 

output. 

 Machine Learning: Data and output are run on the computer to create a program. This 

program can be used in traditional programming. 

The learning process is always based on observations or data, such as examples, direct 

experience, or instruction. So, and according previous classification, machine learning is about 

learning to do better in the future based on what was experienced in the past. 

Machine learning tasks are typically classified into three broad categories, depending on the 

nature of the learning "signal" or "feedback" available to a learning system. These are (189) : 

 Supervised learning: The computer is presented with example inputs and their desired 

outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs 

to outputs. Example problems are classification and regression. 

 Unsupervised learning: No labels are given to the learning algorithm, leaving it on its 

own to find structure in its input. Unsupervised learning can be a goal in itself 

(discovering hidden patterns in data) or a means towards an end (feature learning). 

Example problems are clustering, dimensionality reduction and association rule 

learning. 

 Reinforcement learning: A computer program interacts with a dynamic environment in 

which it must perform a certain goal. The program is provided feedback in terms of 

rewards and punishments as it navigates its problem space. Example problems are 

classification and regression 

In Machine Learning there are many algorithms which help discover the underlying physical 

process under the available data. The choice of an algorithm depends on the characteristics of 

the data. Perhaps the most useful way to group algorithms is based on its similarity in terms of 

their function (how they work). 

 In classification, inputs are divided into two or more classes, and the learner must 

produce a model that assigns unseen inputs to one or more (multi‐label classification) 

of these classes. This is typically tackled in a supervised way. Spam filtering is an 

example of classification, where the inputs are email (or other) messages and the 

classes are "spam" and "not spam". 
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 In regression, also a supervised problem, the outputs are continuous rather than 

discrete. 

 In clustering, a set of inputs is to be divided into groups. Unlike in classification, the 

groups are not known beforehand, making this typically an unsupervised task. 

 Density estimation finds the distribution of inputs in some space. 

 Dimensionality reduction simplifies inputs by mapping them into a lower‐dimensional 

space. Topic modelling is a related problem, where a program is given a list of human 

language documents and is tasked to find out which documents cover similar topics. 

According previous classification, Fig.  9.7 shows the Machine Learning Algorithms Mind map. 

 

Fig.  9.7: Machine Learning Algorithms Mindmap (190) 
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9.2.3 Deep Learning approach 
 

Deep learning is an automatic learning technique that teaches computers to do what people 

does naturally (learn by experience). With deep learning, a computer model learns to perform 

classification tasks directly from images, text or sound. Classification models based on these 

technologies can achieve cutting‐edge precision that sometimes exceeds human performance. 

The models are trained using a huge number of tagged data and neural network architectures 

that contain many layers. 

Although the first theories about deep learning were developed in the eighties, there are two 

main reasons why it has only recently become useful: 

 Deep learning requires large amounts of tagged data. 

 Deep learning requires significant computing power. High‐performance GPUs with 

parallel architecture, in combination with clusters or with cloud computing, allow 

reducing the time needed to train a deep learning network from weeks to hours or 

even less. 

The latest advances in this field, together with higher computational capabilities, have led the 

state of the art to a point at which could exceed human's performance in some classification 

tasks; for example, in the classification of objects contained in images.  

Fig.  9.8 shows the best yearly performance on image classification (ILSVRC challenge) (191). 

According to ILSVRC, since 2014 classificator based on neuronal networks architectures 

overcome human performance on image classification tasks 

 

Fig.  9.8: Error rate of the winner classification on the ILSVRC challenge 

There are several industrial sectors where Deep learning applications are being used more and 

more. 

 Autonomous driving: Researchers in the automotive field use deep learning to 

automatically detect objects such as stop signs and traffic lights. In addition, deep 

learning is used to detect pedestrians, which helps to reduce accidents (192) (193). 
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 Aerospace and defence sector: Deep learning is used to identify objects from satellites 

that locate areas of interest (194) and identify safe or unsafe areas for troops 

deployment (195). 

 Medical research: Cancer researchers use deep learning to detect cancer cells 

automatically (196) (197). Some UCLA teams have built an advanced microscope that 

produces a multi‐dimensional data set used to train a deep learning application to 

accurately identify cancer cells (198). 

 Industrial automation: Deep learning is helping to improve the safety of workers in 

environments with heavy machinery, thanks to the automatic detection of people or 

objects when they are at an unsafe distance from the machines (199) (200) (201). 

 Electronics: Electronic learning is used in automated listening (202) and speech 

translation (203). For example, home help devices that respond to the voice and know 

their preferences are based on deep learning applications. 

However, and despite the great potential demonstrated, these technologies are not being 

exploited yet in raw material classification activities in steelmaking industry. 

 

9.2.3.1 Most advanced Deep Learning architectures 

 

As it was mentioned before, in recent years, the structure and topology of deep neural 

networks have attracted significant research interests, since them have achieved huge success 

in a wide range of tasks of computer vision.  

Although they were originally introduced over 20 years ago, improvements in computer 

hardware and network structure have enabled the training of truly deep CNNs only recently. 

Moving from traditional computer vision techniques to CCN architectures. 

This section aims to give a snapshot of the main Computer Vision architectures evolution over 

the last few years: 

In the 90s the first successful applications of Convolutional Networks were developed to 

recognise hand written digits. The best known was LeNet (204) which contained 5 layers in its 

more advanced form. 

 

Fig.  9.9: Detail on LeNet5 architecture (204) 
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To find the next relevant milestone in the development of neural networks it is necessary to 

move forward in time. In 2012 AlexNet (205) CCN architecture was submitted to the ImageNet 

ILSVRC Challenge. This network had a very similar architecture to LeNet, but was deeper, 

bigger, and features convolutional stacked on top of each other. AlexNet contains 5 

convolutional and three fully‐connected layers, and it introduced ReLU non‐saturating 

nonlinearity f(x) = max(0, x) which later on became gold standard choice for activation 

functions. 

 

Fig.  9.10: Detail on LeNet5 architecture (205) 

In 2103, an improvement of AlexNet called ZFNet (206) appeared. This new convolutional 

Network expanded the size of the middle convolutional layer and made the stride and filter 

size on the first layer smaller.  

Later on, in 2014 VGGNet (207) demonstrated that the depth of the network is a critical 

component for good performance. It contained 16 Convolutional / Fully connected layers and 

an extremely homogeneous architecture (3x3 convolutions and 2x2 pooling from the 

beginning to the end). The spatial resolution is preserved after convolution by padding the 

image. A stack of conv layers is followed by FClayers. All hidden layers are equipped with ReLU. 

 

Fig.  9.11: Details on VGGNet architecture (207) 

By this time, the general understanding was that having larger nets improved the performance 

of the models. It is possible to increase size; either by depth (Number of network levels) or 

width (number of units at each level). However, Network depth substantially increases the 
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number of parameters, and with limited training sets, this leads to over‐fitting. The main 

contribution of GoogleLeNet (208) convolutional network was the dramatical reduction of the 

number of parameters (from 60M in AlexNet to 4M) 

The most well‐known architecture with this structure is ResNet (209) which won the ILSVRC‐

2015 classification. 

 

Fig.  9.12: Deatils on ResNet architecture (209) 

The residual block structure in ResNet also inspires a series of ResNet variations, including 

ResNext, WRN and PolyNet.  

ResNets like architectures bypass signal from one layer to the next via identity connections 

maintaining many short paths in the network. This randomly dropping layers during training 

allow better information and gradient flow. Although these different approaches vary in 

network topology and training procedure, they all share a key characteristic: they create short 

paths from early layers to later layers 

However, all recent variations of ResNets showed that many layers contribute very little and 

can in fact be randomly dropped during training. This makes the state of ResNets similar to 

recurrent neural networks, but the number of parameters of ResNets is substantially larger 

because each layer has its own weights 

DenseNet (210) was a newly proposed structure, where any layer in a block is the output of all 

preceding layers, and the input of all subsequent layers. This allows obtaining significant 

improvements over most of the previous presented architectures, whilst requiring less 

computation to achieve high performance. 

Besides better parameter efficiency, one big advantage of DenseNets is their improved flow of 

information and gradients throughout the network, which makes them easy to train. Each 

layer has direct access to the gradients from the loss function and the original input signal, 

leading to an implicit deep supervision. This helps training of deeper network architectures. 

 

Fig.  9.13: Deatils on DenseNet architecture (210) 
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Several observations can be made from the DenseNet architecture described in Fig.  9.13: 

1. All layers spread their weights over many inputs within the same block. This indicates 

that features extracted by very early layers are, indeed, directly used by deep layers 

throughout the same dense block. 

2. The weights of the transition layers also spread their weight across all layers within the 

preceding dense block, indicating information flow from the first to the last layers of 

the DenseNet through few indirections. 

3. The layers within the second and third dense block consistently assign the least weight 

to the outputs of the transition layer, indicating that the transition layer outputs many 

redundant features. This is in keeping with the strong results of DenseNet‐BC where 

exactly these outputs are compressed. 

4. Although the final classification layer, shown on the very right, also uses weights 

across the entire dense block, there seems to be a concentration towards final feature‐

maps, suggesting that there may be some more high‐level features produced late in 

the network 

In this way, the deep residual network is treated as a long sequence and hidden units are 

linked by skip connections. While this recurrent structure benefits feature re‐usage and 

iterative learning, the residual information is restricted among neighbouring layers and cannot 

be considered across multiple layers, because the recurrence only happens once at each single 

layer. 
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9.3 General approach for sterile Estimation 
 

The innovative activity shown in this chapter proposes the development of a new industrial 

tool able to do an online estimation of the quantity of sterile (low Scrap quality) present in the 

scrap deliveries to the scrap yards in steelshops. The main benefit provided by this new 

approach is the objectivity of the analysis that could substitute the subjective estimation of the 

scrap classification personnel. 

For the complete development of the proposed tool, three phases of development should be 

carried out: 

1. Laboratory analysis (work to be developed within the scope of this thesis): This task 

looks for understanding the capabilities of DeepLearning methodology for the selected 

application. Laboratory analysis will allow to well understand the real problem, define 

the most convenient network architecture and hyperparameters tune up. To this end, 

a laboratory testing station was built in which the conditions of the experiment are 

perfectly controlled (lighting, systems calibration, static scene and control over the 

weights and chemical compositions of analysed materials) 

2. Semi‐Industrial analysis under controlled conditions (To be proposed in this Thesis): 

Once the first DeepLearning network architecture is available, this second phase was 

carried out under well controlled industrial conditions. To do so, the prototype 

developed in the laboratory stage is adapted to semi‐industrial conditions. For this 

purpose, a regular scrap cleaning machine for E1 scrap type processing will be used (E1 

scrap may represent between 20‐40% of the total ferrous scrap processed in a 

conventional steelshop scrap yard for structural long product manufacturing). This 

approach allows implementing an image features extraction methodology, which 

together with the hyperspectral images acquired, will allow to optimize the classifier 

developed in the previous phase. 

3. Industrial development and proof of concept (posed as next step to the thesis): In this 

final phase, the DeepLearning architecture implemented in the previous phase is 

adapted to real industrial conditions. So that after a training period, the new system 

would be able to estimate the amount of sterile present in any scrap delivery, no 

matter the scrap quality 

For reaching the final goals set in the aforementioned phases, it is needed to well define the 

following aspect of the proposed technology: 

 Sensor 

 Data processing algorithms  
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9.3.1 Hyperespectral sensors 
 

Up to now, it is clear that the automated feature extraction made by the Convolutional 

Neuronal Networks makes deep learning models very accurate for machine vision tasks. Also, 

another important consideration to be done when building an image classificator is the vision 

sensor. 

When the objective of the classificator is to perform the classification of certain classes likely 

present in the image data set, a conventional RGB camera could be enough. However, the 

challenge proposed in the present work tries to extract hidden information from enormous 

heterogeneous images in which the differentiation between scrap and sterile is not always 

clear. 

  
  

  

Fig.  9.14: Examples of Scrap types: Up left) Old Light scrap, Up right) Old heavy scrap, Down left) 

Old fragmentized scrap, Down right) New production thin scrap 

In order to dispose as much information as possible, the hyperspectral approach is sensed to 

be most suitable. So that, the first thing to do is the selection of the most convenient 

hyperspectral sensor for covering Visual, Near Infrared and Short‐wave infrared spectral 

ranges. 

 

9.3.1.1 Analysis on the available Commercial sensor 

 

The objective of this section, in addition to exploring the different options in terms of spectral 

range available in the market for the vision equipment, is to analyse the commercial options 

between linear and matricial sensors in order to select the most convenient one for each of 

the three phases defined in the previous section. 
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Linear sensors: 

The first phase of the proposed solution consisted on the development of laboratory 

experiments that will allow to, firstly demonstrating the applicability of the joint approach of 

hyperspectral imaging and data classification through DeepLearning, and secondly, 

establishing the basic requirements of a system that must subsequently be functional in 

extreme industrial conditions.  

For a laboratory set up, in which it is relatively easy to manipulate the scrap/sterile samples by 

push broom methods, it is clear that the linear sensors are the most convenient. These 

Hyperspectral cameras would provide huge amount of spectral information facilitating a better 

understanding of the scene.  

In the case of linear sensors, considering the high price of this type of equipment in far infrared 

ranges on one side, and the good results already obtained in similar experiments (according 

suppliers’ recommendations) on the other side, SisuCHEMA sensor by SPECIM and V10E by 

SPECIM were the selected sensors for this activity. 

Below, the technical characteristics of the aforementioned equipment are presented: 

 Linear hyperspectral optical sensor in the VNIR range (400 ‐ 1000nm): The sensor is 

composed by a spectrometer (Specim V10_04204) combined with a scientific CMOS 

camera (JAI‐TM‐1327GE) 

 

Optical Characteristics: 

Type: Specim V10_04204 

Range: 400‐1000 nm 

Spectral resolution: 3.0 nm (30 um slit) 

Spectral smpling: 0.78‐6.27 nm/pixel 

Spatial resolution: RMS spot size < 9 um 

Electrical Characteristics: 

Detector: CMOS 

Spatial Pixels: 1312 

Spectral Bands: 768 

Pixel size: 8 x 8 um 

Camera Control: CameraLink 
 

Fig.  9.15: VNIR Spectrometer technical characteristics 

 Two‐dimensional hyperspectral optical sensor in the SWIR range by sisuCHEMA (1000‐

2500nm) 
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Optical Characteristics: 

Type: Specim sisuCHEMA 

Range: 970‐2500 nm 

Spectral resolution: 10 nm 

Spectral smpling: 6.3 nm/pixel 

# Spatial pixel/line: 320 

Other Characteristics: 

Illumination: Diffused line 

Data Format: BIL file format, Evince end ENVI 

compatible 

Calibration: Internal standard reference 

target (auto) 
 

Fig.  9.16: SWIR Spectrometer technical characteristics 

 

Matricial sensors: 

Based on the findings made in the laboratory phase, a semi‐industrial set up is proposed to 

demonstrate the usefulness of the proposed solution. 

However, contrary to what happened with the analytical methodology followed in the 

laboratory, in such an extremely aggressive environment as the scrap yard in a steelshop mill 

(outdoor systems, high machinery activity, dust, temperature variations, vibration…), a sensor 

based in linear technology is not applicable. The system proposed for the final industrial 

application must be based on a matricial sensor that captures the scene of the scrap unloading 

in a static way (since the PushBrom effect that was easily generated in laboratory conditions 

will not occur). 

The main disadvantage of this proposal is that the spectral resolution of matricial sensor is 

much lower than the linear ones, and these cameras can be found in market covering a high 

variety of spectral range from one to others. And the selection of most convenient sensor 

turns to be one key thing to do. So that, the first research activity proposed at this point was 

the technical analysis of all available sensors for selecting the most suitable for the proposed 

approach.  

The main commercial sensors that were studied, and their main technical features, are 

presented below: 

 Ximea presents 2 different matricial models: MQ022HG‐IM‐SM4X4‐VIS (16 HSI bands 

between 470‐630 nm) and the MQ022HG‐IM‐SM5X5‐NIR (25 HSI bands between 600‐

925 nm) 

 BaySpec proposes 3 different maticial models: OCI‐2000HH (20‐25 HSI bands between 

600‐1000 nm), OCI‐2000V (16 HSI bands between 470‐620 nm)  and OCI‐D20000 (35‐

40 HSI bands between 470‐875 nm) 
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 SILIOS Technologies offers 3 hyperspectral sensors: CMS‐C1 (9 HSI bands between 

400‐700 nm), CMS‐V1 (9 HSI bands between 550‐800 nm) and CMS‐S1 (9 HSI bands 

between 550‐950 nm)  

Table 9.1 allows doing a compative analysis among the different commercial sensors in order 

to facilitate the selection of the most convenient one for he proposed application. 

Supplier Sensor Model Type Spectral 
range 

# 
Bands 

Spatial 
resolution 

Communications SDK Price 

Infaimon Specim sisuCHEMA Linear 1000‐2500 256 320x1 LVDS/Camera LINK NI Available 

Infaimon  Specim PFD‐CL‐65‐
V10E 

Linear 400‐1000 1040 1312x1 GigE NI Available 

Infaimon Specim FX 10 Linear 400‐1000 224 1024x1 Camera LINK LUMO 
tool 

13k€ 

Infaimon  Specim FX 10e Linear 400‐1000 224 1024x1 GigE LUMO 
tool 

14.1k€ 

Infaimon Specim FX 17e Linear 900‐1700 224 640x1 GigE LUMO 
tool 

43.7k€ 

Infaimon  BaySPEC BayOCI‐
D2000 

Matricial 475‐875 35 500x270 GigE / USB Yes 59.2k€ 

Infaimon BaySPEC Bay OLI2000 Matricial 600‐1000 25 400x200 GigE / USB Yes 36.1k€ 

Ximea XiSpec MQ022HG‐
IM‐SM4X4‐

VIS 

Matricial 470‐630 16 512x272 USBVision/GernICam Yes 14.8k€ 

Ximea XiSpec MQ022HG‐
IM‐SM5X5‐

NIR 

Matricial 600‐975 25 409x217 USBVision/GernICam Yes 15.5 k€ 

Ximea XiSpec MQ022HG‐
IM‐LS100‐NIR 

Linear 600‐975 100 2048x1 USBVision/GernICam Yes Available 

Ximea XiSpec MQ022HG‐
IM‐LS150‐

VISNIR 

Linear 470‐900 150 2048x1 USBVision/GernICam Yes Available 

SILIOSTech CMS CSM‐C Matricial 400‐700 9 1280x1024 GigE / USB Yes 7.5k€ 

SILIOSTech CMS CSM‐V Matricial 550‐800 9 1280x1024 GigE / USB Yes 8.3k€ 

SILIOSTech CMS CSM‐S Matricial 550‐950 9 1280x1024 GigE / USB Yes 8.5k€ 

Table 9.1: Comparative analysis among commercial sensors 

 

9.3.1.2 Technical analysis of the sensors 

 

The simplest comparative analysis that can be done as a first step for the sensor technology 

selection is the analysis of the pros and cons between linear and matricial sensors. In this 

regard, the following should be highlighted: 

 Linear sensor: The main advantage of this technology is a high spectral resolution 

which allows to have an enormous amount of information of the captured image. On 

the other hand, Linear sensors present as main disadvantage the necessity of moving 

the scene in front of the camera to reconstruct a 2D image. 

These features make linear sensors the most convenient solution for laboratory tests, 

in which it is easy to build a laboratory set‐up for sample displacements in front of the 

camera allowing understanding the capabilities of the technology due to the high 

amount of spectral data.  
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 Matricial sensor: This technology offers the possibility of generating quick snapshots of 

the region of interest but, its main drawbacks are the low number of spectral channels 

available and the higher cost. 

Another advantage is that, by having a lower spectral resolution, the system generates 

smaller files which facilitates information processing (disk space, memory required, 

processing times and analysis). 

Considering that in the industrial application of the proposed system we will probably 

have static scenes, matricial sensors would be the only possible solution for scrap 

deliveries analysis in site. 

The main question to be resolved at this point is whether the spectral resolution is critical or 

not for the application to be developed. This question arises due to the fact that there may be 

similarity to what happens with a natural image in which with 16 visible bands 99% of the 

information is obtained. 

Thus, in order to select not only the sensor technology, but also the most appropriate camera 

option, a preliminary analysis of scrap characterization was carried out with a small group of 

images. The objective of this initial analysis was to determine if there is any spectral range 

within the available commercial equipment in the market in which the main features of the 

ferrous scrap and sterile parts are shown. 

To carry out the preliminary analysis, the steps followed are listed below: 

1. A dataset of images composed by artificial prepared mixtures of scrap and sterile were 

captured by the two available hyperspectral linear cameras (JAI from 400 to 1000 and 

NIR from 970 to 2500). Since the presence of scrap (identified as C) and sterile 

(identified as A) is exactly known pixel by pixel, a bounding box was created manually 

labelling each pixel of the image C and A. For doing the Bounding box annotation in 

images a free python tool utility called Sloth (211) was used. 

 

  

Fig.  9.17: Examples of artificial prepared mixtures of scrap and sterile 
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Fig.  9.18: Hyperspectral image acquired with the bounding box for JAI (left) and NI (right) 

cameras 

2. Additionally, prior to each capture, the "dark current" and "reference white" signals 

are acquired for each of the image: 

a. In the "dark current" signal case, an acquisition is done with the sensor 

objective blocked. Once dark signal file is generated, 1000 points are randomly 

selected in the space and the average is calculated and used as Dark for 

captures calibration for the 1040 (JAI) or 256 (NI) wavelengths. 

b. In the case of "white reference", the Spectralon patterns were captured and 

the area in with the whitest pixels are detected is recorded as reference for 

calibration. 

3. Once the images are acquired, a data matrix (DataFrame) containing the wavelengths 

(X axis) and the classification of the pixels at A and C and sensor type (Y axis) is 

available. 

  

Fig.  9.19: Data set available in sensor selection analysis 

4. The spectra corresponding to each of the classes (scrap as C and sterile as A) are drawn 

in different colours to analyse if differences are observed between the two cameras 

(Vis + IR and SWIR). 

In Fig.  9.20:, samples that have been processed are displayed for the entire spectral 

range (400nm – 2500 nm): 
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Fig.  9.20: Raw spectral data acquired with JAI (left) and NI (right) sensors 

The following graph shows the median of the values and the standard deviation: 

  

Fig.  9.21: Median of spectral data acquired with JAI (left) and NI (right) sensors 

Finally, to simplify the analysis of the acquired information, Fig.  9.22: and Fig.  9.23: 

represent the pixels values as a median of the raw values captured. In the X axis the 

wavelength corresponding to different cameras ranges analysed in the previous 

section according to their specifications have been drawn in different colours. 

 

Fig.  9.22: Normalized (white_ref) of spectral data acquired with JAI  sensors 
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Fig.  9.23: Normalized (white_ref) of spectral data acquired with NI sensors 

5. Once the spectral data obtained in the visible spectrum with the linear sensors are 

available (the cost of the matricial sensors in the IR range is so high that it is not even 

considered in the present project), the behaviour of the different commercial matricial 

sensors are simulated and presented in Fig.  9.26. To do this, the spectral responses 

shown in in Fig.  9.24 (wavelengths to which they are sensitive), the FWHM (Full Width 

at Half Maximum) and the standard deviation of each FWHM for each sensor was 

used.  

For the low resolution hyperspectral cameras, to obtain the spectral response o 

sensibility curves, each band is modelled with the central frequency of the band given 

by the suppliers’ technical specification (wl_nm) and their bandwidths in nanometers 

(bw_nm) given. i.e. for XimeaVIS sensor, these values are: 

wl_nm = [465, 474, 485, 496, 510, 522, 534, 546, 548, 
562, 578, 586, 600, 608, 624, 630] 
bw_nm = [20]*16 

 

JAI camera output signal (Fig.  9.25) is transformed by these values, generating a 

representation of what each specific camera would see. To do so, the JAI signal (read 

from a series of samples) is multiplied by the graphs generated above 

In the case of hyperspectral cameras that information is obtained from the technical 

specifications offered by the manufacturer, and in the case of the visible cameras, the 

file "camspec_database.txt" (212) has been used. This file specifies the response to 

RGB at wavelengths between 400 and 720 every 10 nm for several colour cameras. 
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Fig.  9.24: Spectral sensitivity of simulated cameras 

 

Fig.  9.25: JAI camera output signal 

 

 

Fig.  9.26: Signal reconstruction for simulated cameras 

For each multispectral matricial camera (which present a low spectral resolution), The 

sensitivities of each band are modelled using the centre frequency of the band 

provided by the technical specifications of the sensor and a bandwidth in manometers 

(bw_nm) given or estimated, then the JAI signal, which has a very high spectral 

resolution, is filtered by each of these filters to obtain the corresponding response. 

The obtained information shown the theoretical response that each matricial camera 

(X values) would have for each of the different samples acquired with JAI camera after 

applying the analytical methodology proposed.  
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6. Then, for camera convenience evaluation purpose, the samples were divided into two 

groups, 50% the samples were used for training and the rest were used for testing, and 

the following classifiers were applied: 

a. XGBOOST Clasiffier (eXtreme Gradient Boosting package): This is an ensemble 

method (It supports various objective functions, including regression, 

classification and ranking) that seeks to create a strong classifier (model) based 

on “weak” classifiers. By adding models on top of each other iteratively, the 

errors of the previous model are corrected by the next predictor, until the 

training data is accurately predicted or reproduced by the model 

b. RANDOM FOREST Classifier:  This is a popular ensemble method that can be 

used to build predictive models for both classification and regression 

problems. Random Forest algorithm creates an entire forest of random 

uncorrelated decision trees to arrive at the best possible answer. 

c. SVM Classifier (Support Vector Machines): This is a supervised machine 

learning algorithm which can be used for both classification or regression 

challenges. The algorithm plots each data item as a point in n‐dimensional 

space (where n is number of features you have) with the value of each feature 

being the value of a particular coordinate. Then, the classifier performs 

classification by finding the hyper‐plane that differentiate the two classes very 

well. 

7. Subsequently, and using the same classifiers, a Cross Validation was carried out for 

each model (5 K‐folds) and the average score was calculated. 

8. A PCA (Principal Component Analysis) for dimensional reduction is performed for the 

data generated by each of the cameras twice; Reducing to 8 component and 3 

components (instead of the 1040 channels provided by the JAI camera)  

9. Finally, a t‐SNE (t‐distributed Stochastic Neighbour Embedding) is used for results 

visualization: This tool allows to reduce data dimensionality and visualize high 

dimensionality data based on the probability distribution of the neighbours (manifold) 

(213). This algorithm uses the "perplexity" parameter to adjust the number of 

neighbours used in the reduction. The results of t‐SNE analysis is depicted in Fig.  9.27: 
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Fig.  9.27: tsne analysis on 10_samples using Ximea sensor data (2 upper lines) and Silos sensor 

data (3 lower lines). 

Since t‐SNE models each high‐dimensional object by a two‐dimensional point, in such a 

way that similar data are modelled by nearby points, and dissimilar objects are 

modelled by distant points with high probability, it is a good technique for creating a 

single map comparing estimation between sterile and scrap data in the images. As it is 

observed in Fig.  9.27, the points that represent data of sterile and scrap are more 

separated in the case of the Ximea VIS and CMS‐C, which shows that these sensors are 

the most likely to succeed if they are used for the development of a classification 

application between both. 

The following table shows the results generated by the different classifiers. To do so, the 

average output value of each of the three tested classifiers were calculated and a color‐coded 

matrix has been applied according to the highest and lowest value. 

 
rf svm xgboost Mean PCA dims 

Canon 5DMarkII 0,7330 0,7375 0,6907 0,7204 0 

Nikon D40 0,7323 0,7316 0,6937 0,7192 0 

Pentax Q 0,7328 0,7316 0,6940 0,7195 0 

Point Grey Grasshopper 50S5C 0,7500 0,7444 0,7067 0,7337 0 

Point Grey Grasshopper2 14S5C 0,7404 0,7335 0,7033 0,7257 0 

SiliosCMSC 0,7412 0,7102 0,6833 0,7116 0 

SiliosCMSS 0,6779 0,6960 0,6293 0,6677 0 

SiliosCMSV 0,7016 0,7212 0,6870 0,7033 0 

XimeaNIR 0,6758 0,7007 0,6339 0,6701 0 

XimeaVis 0,7925 0,7825 0,7189 0,7646 0 

Canon 5DMarkII 0,7482 0,7375 0,7223 0,7360 3 

Nikon D40 0,7400 0,7316 0,7156 0,7291 3 

Pentax Q 0,7482 0,7316 0,7298 0,7365 3 

Point Grey Grasshopper 50S5C 0,7700 0,7444 0,7647 0,7597 3 

Point Grey Grasshopper2 14S5C 0,7395 0,7335 0,7244 0,7325 3 
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SiliosCMSC 0,6942 0,6989 0,6974 0,6968 3 

SiliosCMSS 0,7079 0,6932 0,6782 0,6931 3 

SiliosCMSV 0,7567 0,7200 0,7530 0,7432 3 

XimeaNIR 0,6674 0,6812 0,6511 0,6665 3 

XimeaVis 0,7968 0,7593 0,7900 0,7820 3 

SiliosCMSC 0,7912 0,7102 0,8096 0,7704 8 

SiliosCMSS 0,7326 0,6960 0,7128 0,7138 8 

SiliosCMSV 0,8004 0,7212 0,8168 0,7795 8 

XimeaNIR 0,7070 0,7137 0,7067 0,7091 8 

XimeaVis 0,8484 0,7791 0,8681 0,8319 8 

Table 9.2: Matricial hyperspectral sensors analysis 

On the other hand, if we analyse the spectral behaviour of the acquired data throughout the 

analysed spectral range, it was noticed that between 450 and 650 nm, the spectral signature 

corresponding to sterile shows a horizontal trend and the spectral signature corresponding to 

scrap shows some ascending slope. 

Given that the final objective of the presented development is the discrimination by means of 

image classification of the two components, this observed difference can be very useful. 

 

Fig.  9.28: Analysis of the spectral range of interest 

According these results, the most convenient camera for the proposed application seems to be 

the sensor provided by Ximea in the visible range 
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9.3.2 Data processing algorithms  
 

The data processing procedure proposed in this work can be summarized as follow: 

 To define the problem as a scalar regression in which the amount of sterile, scrap and 

their relationship are predicted starting with Hyperspectral image (HIS) information as 

input data. It is based on the hypothesis that the outputs can be predicted from the 

inputs and that there are enough samples to learn the relationship between inputs 

and outputs. An analysis of the captured samples and the ground truth will be carried 

out 

 To define a general protocol to determine which part of the samples will be used for 

the training and which ones for the validation of the results. 

 Definition of the metrics to determine how good the prediction is. 

 To identify a base model that will serve as a reference for predicted results comparison 

(Baseline). 

 Development of new regression models able to improve the predictions of the 

previously defined base model. For this case, the convolutional neural networks (CNN) 

offer the most appropriate framework for merging spatial and spectral information 

features.  

Table 9.3 shows a list of the mathematical processing solutions proposed for the project's 

objectives, together with the type of computer vision task that must be solved for its 

implementation. 

Computer 
vision task 

Input Output Description 

Regression  
(Real value 
estimation)  

HyperSpectral 
Imaging (HSI) 

Percentage  �� ∈ ℝ� 
of estimated weight for 
each component � =
{�,�} in the global image. 

By regression (full image mapping to a value of pA and pC) 
via Deep learning, learning spectrum‐spatial 
representations, starting from the HSI as input. The 
convolutional neural networks (CNN) offer the most 
appropriate framework for the joint analysis of spatial and 
spectral information. Architectures for encoder type 
classification (e.g. [28], [29]) will be tested, adapting their 
last layers to the regression problem. The training can be 
done: 

 From scratch (i.e. with the network weights initialized 

in a pseudo-random way). It requires many input 

images. 

 Using fine-tuning or transfer learning techniques (i.e. 

starting from pre-trained weights for a different 

database [30] and training only part of the network). In 

this case it is a complex process, since the network is 

preloaded on RGB images and the weights must be 

transferred to HSI type data. 

Regression  
(Real value 
estimation)  

HyperSpectral 
Imaging (HSI) 

Percentage  �� ∈ ℝ� 
of estimated weight for 
each component � =
{�,�} in the global image. 

Similar approach as in the previous case but with the RGB 

type entry. This makes the fine‐tuning option simpler, since 

the input data is RGB‐type in both tasks (training and 

validation). 
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Regression  
(Real value 
estimation)  

HyperSpectral 
Imaging (HSI) 

Percentage  �� ∈ ℝ� 
of estimated weight for 
each component � =
{�,�} in the global image. 

Similar approach as in previous cases, but with a gray scale 

entry. In this case it would be dismissed the spectral 

information, and only the spatial features are exploited. 

Both training from scratch and fine tuning training can be 

carried out, although in the latter case the luminance 

channel must be replicated three times in order to apply 

the trained weights on RGB images. 

Regression  
(Real value 
estimation)  

HyperSpectral 
Imaging (HSI) 

Percentage  �� ∈ ℝ� 
of estimated weight for 
each component � =

{�,�} in the global image. 

Multitasking Neuronal Convolutional Network (CNN) for 
joint estimation (Scrap and sterile) on HSI image of the 
previous outputs 

Table 9.3: Analytical mathematical approaches to be tested 

 As shown in the table above, one of the key pre‐processing tasks of the acquired 

information prior to the proposed analysis is, in most of the cases, obtaining an image 

in RGB space from a spectral image. For this processing methodology Color Matching 

Functions (CMF) are used (214). 

 Modification, regularization and adjustment of the hyperparameters of the previously 

developed models until a satisfactory model is achieved. 

Since the objective of this work is the estimation of a series of real values extracted from an 

input image (weight as absolute data and weight ratios as relative data), the problem should 

be considered as a regression task, so the metrics proposed for conducting the algorithms 

analysis are the following: 

 Absolute Error (AE): absolute value of the difference between the predicted value and 

the real value for each quantity. 

 Absolute Percentage Error (APE): AE divided by the actual value for each quantity, so 

as to provide a measure of the relative error of the estimation. 

Both magnitudes are calculated for each sample and are averaged for the entire training or 

testing datasets. This generates the values of MAE and MAPE (Mean AE and Mean APE, 

respectively) for the magnitude of the aggregate percentage ratio: 

 ��� = ℒ���_������_����
= ���_������_����� − ��_������_�����

�

=   
1

�
����_������_�����

� − ��_������_������

�

���
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 (9.2) 

When reporting results, the complete distributions of AE and APE are shown for the 

magnitudes to be predicted, as well as their mean values (MAE, MAPE), medians and standard 

deviations of the errors. 
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9.4 Sterile estimator developed at Laboratory scale  
 

In previous sections, Linear sensors were identified as the most convenient solution for 

laboratory tests, and within market available sensors, SisuCHEMA sensor by SPECIM and V10E 

by SPECIM seem to be the suitable for covering the spectral range between 400‐2500 nm. This 

section describes, not only the activities related to the laboratory set up design, samples 

preparation and DeepLearning architectures designs, but also the obtained results to assess 

whether it is worthy to going on with the proposal in a more industrial approach. 

 

9.4.1 Laboratory set up design 
 

The main objective of this laboratory stage was to well understand the real capabilities of 

combining DeepLearning methodologies with hyperspectral technologies, in order to propose 

an industrial solution composed by the optimal network architecture with the best images 

acquisition and data processing of a defined wavelength range.    

One of the critical points to achieve the objectives defined in this laboratory phase is the 

design of a hyperspectral images acquisition station under very controlled conditions. The 

main criteria used for the design of the capture station are listed below: 

 Necessary to extract as much spectral information as possible  High linear spectral 

resolution sensor using linear cameras. 

 A 2D image is needed  A close control push broom system for sample displacements 

in front of the camera 

 Well‐known Lighting system  to ensure the right calibration procedures    

 Camera aberrations control  Dark current and White current measuring procedure  

 ROI on Samples clearly defined  drawers for sterile / scrap mixes 

 Dedicated Software for acquiring, pre‐processing, post‐processing and data analysis  

Use commercial software 

Based on these criteria, the laboratory set up design was developed (see Fig.  9.29) containing 

the following elements: 

 A conveyor belt driven by a servo motor and controlled by a FESTO CMMP‐AS system. 

This system allows setting a starting and ending point for the tray displacement path 

containing the sterile / Scrap samples. 

 Linear hyperspectral optical sensor composed by a spectrometer (Specim V10_04204) 

combined with a scientific CMOS camera (JAI‐TM‐1327GE) in the VNIR range (400‐

1000nm) providing 768 spectral bands and a hyperspectral camera in the SWIR range 
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by sisuCHEMA (1000‐2500nm). Two hyperspectral linear cameras have been placed 

and adjusted in such a way that both collect the information from the same line. 

 Lighting system composed by 2 Halogen lamps with a nominal power of 50W each. 

 A PC in which a capture SW has been developed that collects the information from 

each of them and displays it on the UI screen. 

 

Fig.  9.29: Conceptual architecture of laboratory prototype 

Fig.  9.30 shows the final prototype implemented in laboratory according the architecture 

proposed in Fig.  9.29 : 

 

Fig.  9.30: Laboratory prototype 
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9.4.2 Samples selection for dataset definition 
 

9.4.2.1 Samples preparation  

 

As shown previously in Fig.  8.1, around 60% of the materials contained in E1 scrap sterile 

correspond to 4 basic compounds (35% SiO2, 20% Fe oxides, 4% CaO, 2% Al2O3).  Although this 

compounds distribution is quite conditioned by the origin and nature of each scrap type. These 

4 main components can be considered as the principal ones. 

In order to simulate different potential sterile mixtures in industrial materials, some kg of 

those pseudo‐pure materials were collected to be used for samples preparation. 

 

Fig.  9.31: Collected pure materials for sterile simple preparation 

In addition to the materials for preparing sterile samples, different elements for sample 

preparation and mixtures control were also available: 

 A scale with weighting range between 1 and 3,000 gr. 

 Several plastic trays (weight 320 gr) for sample allocation. 

 A Homemade hopper that can be attached to the trays and facilitates samples loading 

during mixtures preparation. 

 

Fig.  9.32: Hopper for trays preparation 

 Different sterile components: Al2O3, CaO, SiO2 and Fe2O3,  

 Regular E40 Scrap processed in a scrap shear for obtaining samples with different 

shapes and weights. 
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Fig.  9.33: left) E40 scrap and right) shear for small pieces preparation 

 Several reflectance patterns manufactured by Spectralon: materials with known 

Diffuse reflectance (12%, 25%, 50% and 99%). 

With all needed materials, needed for conducting the proposed experiment according to the 

defined methodology in laboratory conditions, it was also necessary to determine the number 

and the nature of samples to be used for generating the scrap mixtures dataset, ensuring 

variability requirements to guarantee a representative population of samples. In this sense, a 

first analysis is made following this approach: 

 An empty tray weighs 315 gr. 

 Several pieces of scrap are put in a tray and weighed; It is estimated that the total 

amount of scrap used in each weighing should weigh between 1000 and 2000 gr. 

 The regular sterile content present in shredded scrap (E40) is around 10%. 

 For the compound combinations of the aggregates, the calculation unit is set at 20 gr. 

 Tests are done with iron oxide (5.7 gr / cm3), lime (1.1 ‐ 1.3 gr / cm3), alumina (3.5 gr / 

cm3) and with silica (0.2 – 0.3 gr / cm3), verifying the great density difference. These 

big differences in density, made necessary to define carefully the sterile components 

in the mixture to be sure that a 10% over the total sample weight is representative of a 

real situation. 

Next, the criteria for elaborating the physical samples to be acquired are detailed. The 

methodology proposed attempt to guarantee enough data variability for learning, while 

maintaining an operative number of samples. 

Focusing on the preparation of sterile variants (the amount of scrap in the sample was not 

considered.), the problem to be solved is considered as a combinatorial problem with selection 

of M = 4 elements (i.e. endmembers or components of the aggregate: {Silica, Iron Oxide, 

Alumina, CaO}) of a group of N = 2 elements (we define them as presence, 1, or absence, 0 of a 

given unit of volume, so that for each endmember we can select any of the values of N = {0,1}), 

where the number of combinations corresponding to this scenario is given by the formula MN 

(215). 

The volume associated with the components of each combination should then be multiplied by 

a factor l = {1,2,3,4 ... L}, in order to obtain several combinations with the same relative 
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abundance but different volumes / weights added in absolute terms. Thus, the CA number of 

aggregate combinations, would be: 

 �� = � × �� (9.3) 

It should be noted that the output of the regression network must predict one of these values 

for the case of sterile, so it is convenient that the resulting number is high enough for well 

representing the existing variability in the samples. In this work, it was proposed values of N = 

2, M = 4 and L = 4 / 5, and a unit of volume to be determined based on the density of the 

endmembers. 

All mentioned so far corresponds to the creation of high variability for sterile. With regard to 

the scrap part, it was proposed to prepare a fixed number T of aggregate mixtures and 

different scrap fragments for each of the aggregate combinations, so that: 

 Each sample presents the same materials mix amount and sterile mixture 

 A random subset of all available scrap fragments is selected for the different samples 

 An approximate scrap weight to be included in each sample is fixed, so that random 

scrap pieces are selected until the target weight is reached. 

The total number of samples to be captured would be: 

 � = � × �� (9.4) 

As a general rule, it must be considered that the cost of increasing T is lower than increasing L, 

which is lower than increasing N (CT < CL < CN) 

 

Fig.  9.34: Pseudocode of the sample creation procedure 

Fig.  9.35 shows a scheme of the complete procedure. 
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Fig.  9.35: Sample preparation procedure (up) and 2 different Sterile + scrap samples (down) 

An Excel sheet was generated with random combinations of quantities of each of the basic 

compounds that form the sterile part of the mix (silica, lime, alumina and iron oxide). This 

mixture was denominated as aggregate_id. For each of these combinations within an 

agregate_id, 10 equal mixture inputs were generated to combine them with 10 different 

amounts of scrap, which was defined as volquete_id. Each of them were tested to get the 

sample_id. 

In addition to the amounts in grams of the different compounds present in the mix, the 

volume (in ml) of each sample was measured to facilitate the weighing operation. 

Fig.  9.36 shows several lines of the sample preparation sheet: 

 

Fig.  9.36: Material weights definition before sample preparation   
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9.4.2.2 Methodology for Samples acquisition 

 

The initial equipment preparation procedure followed at the beginning of each capturing day is 

described below: 

1. Place the lenses caps on the optics of the two hyperspectral cameras and acquire a 

"black" capture. The files are referenced as "dark_DDMMYY" 

2. Place the spectralon patterns on a tray and acquire reflective references. The files are 

referenced as "patron_DDMMYY" 

3. Quick analysis of the files acquired by HDRCrop free application. 

a. Check that the images are well generated 

b. Check that the assembly is centred. 

c. Check the focus of the cameras. 

As described in the previous section, the procedure of each trial for aggregate_id sample 

generation was: 

1. Take an empty matrass, place it on the scale and set it to 0. 

2. Take the amount of the different compound of the sterile sample specified in the test.  

3. Once all the compounds are available, put them in the bucket for mixing. 

Once the sterile mixtures are obtained, the following procedure was followed for the 

elaboration of the final samples identified as volquete_id: 

1. Several pieces of scrap were selected and weighed (weights between 500 and 2,000 

gr.). 

2. Place the pieces of scrap in the mixing bucket and mix it with the sterile. 

3. Pour the contents of the bucket into the capturing tray supported by the hopper, 

making sure that the scrap does not overcome too much. 

4. The final mixture is weighed. 

5. The tray is placed on the base of the acquiring belt. 

6. Start acquisition model in the capturing software. 

7. Initialization of FESTO system for tray displacement. 

8. When the acquisition is completed, the tray is removed 

9. This operation was repeated 10 times for each aggregate_id, trying to modify the scrap 

weights among captures. 

10. Repeat same operation for all aggregate_id combination. 
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According to the defined procedure, a total of 440 samples were collected. Each acquisition 

generated 4 different files (2 files per cameras): one containing the data, in .raw format, and 

the other containing the header in .hdr format 

The acquisition SW was programmed to stop capturing after 500 lines, which coincides with 

the end of the tray at the programmed forward speed of the conveyor. So, it was important to 

manually activate the trigger capturing event. 

Fig.  9.37 depicts all JAI ‐ Hyperspectral captures done in Lab conditions 
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Fig.  9.37:  The 440 Scrap / Sterile mixtures acquired in the VIS-NIR spectral range (JAI) 

Fig.  9.38 shows all NI‐ Hyperspectral captures in Lab conditions 
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Fig.  9.38: The 440 Scrap / Sterile mixtures acquired in the NIR spectral range (SisuChema) 

 

9.4.2.3 Ground truth analysis 

 

The second step after acquiring the samples in the proposed laboratory set up was to do an 

analysis of the distributions of the different features to be extracted in the images contained in 

the database. 

Fig.  9.39 and Fig.  9.40 show, respectively, the distributions (in the form of non‐normalized 

histograms) of the weights of aggregates and scrap for the entire samples database available. 

As mentioned in previous sections, this database contains 440 samples, corresponding to 44 

mixtures of aggregates with different percentages of the four components used as sterile, and 

different sets of scrap fragments in each of them, with a maximum limit of 10 samples taken 

by each aggregate mixture. This is why, the gr_aggregate histogram presents intervals with 

numbers samples around 10 or 20. Both distributions present very different mean values and 

ranges: [50, 380] gr for aggregates, [500, 2000] gr for scrap. In the case of scrap, the histogram 

also contains a graph showing the location of the quartiles, as well as mean, median and 

standard deviation values. 
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Fig.  9.39: Aggregate weight distribution [gr_aggregates] of the set of samples captured 

 

Fig.  9.40: Scrap weight distribution [gr_scrap] of the set of samples captured 

Fig.  9.41 shows the weight ratio distribution between aggregates and the total weight of the 

mixture (aggregates + scrap) in parts per unit. It is thus observed that the aggregates 

constitute, on average, 15.2% of the total weight of the sample mixture.  

It is important to highlight that when designing the experiment, laboratory samples were 

designed for achieving mixture ranges ratios consistent with the regular scrap deliveries in the 

scrap yard.  

 

Fig.  9.41: Distribution of aggregates weight with respect to the total weight of the samples in p.u 

[gr_aggregate_perc] 
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Finally, in Fig.  9.42 several samples examples are included to the weight histogram (one per 

camera). In this picture it can be clearly intuited that, as we move to the right, the amount of 

scrap decreases progressively in proportion to aggregates amount (different material densities 

must be considered). It is also observed a great variety of appearances of the artificially 

created mixtures, because of a mixing design in which the variability in the composition has 

prevailed against variations in its physical appearance and density, aiming to obtain an 

estimator as robust as possible. 

 

Fig.  9.42: Samples (renderizations corresponding to 3 unique bands for each of the two cameras 

used in the capture, and rebuilt to generate images in square format) extracted from different 

intervals of the distribution histogram 

The analysis over the ground truth of the whole dataset (train + test) allows to stablish a 

simple baseline like "always predict the average" in equal conditions with Deep Learning 

models. 
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9.4.3 Baseline for analysing image database  
 

From image database management point of view, the set of 440 acquired samples were 

divided in two sets: 

 Training set: set of samples used to train the predictive models to be tested. This data 

set represents 80% of the total available samples (#350). 

 Testing set: set of samples used to objectively evaluate the performance (in terms of 

predictive capacity) of the trained model. This data set represents 20% of the available 

samples (#90). 

Note that, deliberately, the creation of a third validation set is omitted (this third data set is 

commonly used to choose the optimal model among a set of them or to optimize the 

hyperparameters of the network), since the objective of this phase is only to check the 

capabilities of deep learning techniques for the proposed task, and not to find the optimal 

model architecture. In this way, the process is simplified. 

On the other hand, it is necessary to set a basic baseline to evaluate the real prediction 

outcomes of the different tested models over each sample (simple method of predicting the 

magnitudes under study that allows to establish a lower numerical reference to beat using the 

most advanced techniques). For this particular case, the baseline is defined as predicting 

always the average value of the whole dataset composing the ground truth. As shown in Fig.  

9.41 this baseline value is 14.4%. 

Fig.  9.43 shows the error distribution result. If the model always predicts a sterile amount 

percentage equal to 0.144, the MAE is 0.058. This means that, on average, there are 5.8 

percentage points of difference between the estimated percentage of aggregates over the 

total weight of the sample and the real percentage. While it might seem a low value, it must 

be considered that the low average ratio in percentage of sterile in the database (15.2%), 

represents 52.3% in terms of MAPE. 

 

Fig.  9.43: Error distribution (left) AE, right), APE) for Baseline 0 consisting in always predicting 

the mean value for [gr_aridos_perc] magnitude 
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9.4.4 Network architecture design: Models based on 

Convolutional Neural Networks (CNN) 
 

Regarding the type of network to be used, and well aligned with reasoning given in the state‐

of‐the‐art analysis section, it was decided to use CNN (Convolutional Neuronal Network) as the 

most convenient model architecture to perform the estimation of the magnitudes to be 

described. These networks allow efficient and optimal fusion of high‐density spectral 

information with local spatial information to make the prediction, enabling: 

 Flexible integration of inputs of different types 

 The simultaneous prediction of several magnitudes by reusing the learned parameters. 

 

9.4.4.1 Data loading and pre-processing 

 

In order to make suitable the available hyperspectral images, some data loading and image 

pre‐processing operations are required: 

- Camera selection and spectral range: According to the results of the sensor selection 

analyses included in section 9.3.1.2, the classifiers gave better results to the 

information existing in the Visible + NearIR range (1040 bands generated by the JAI 

camera). Because of this, only hyperspectral data generated by the JAI sensor was 

used for the sterile estimator design 

- Spatial resolution: The first image pre‐processing activity corresponded with an initial 

fixed‐size cut of each image from a variable length (cropping). The initial size reduction 

generates an image of 416 rows and 768 columns that contain an adjusted view of the 

content of the tray. 

After loading the entire cropping image in memory, asymmetric spatial decimation is 

performed, resulting in a 128x128 pixels image. Then, after each epoch a second fixed 

size cut (114x114) but randomly located for each image is carried, in order to 

contribute to regularization and increase the invariability to translation. 

Other cropping sizes were tested but the non‐used spatial information was high. 

However, the chosen configuration allows to make use of a relatively simple network 

reducing the overfitting risk 

- Spectral resolution: In order to allow adopting an approach based on fine‐tuning (from 

a RGB model pre‐trained from Imagenet images (205)), different options that generate 

a representation of the original hyperspectral image on the basis of three channels 

were considered. All these options ensure to generate a dataset compatible with 

architecture used in the pretraining phase: 
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o Selection of three unique bands (3 out of 1040), one in the lower range, one in 

the mid‐range and the last one in the higher range of the VIS+NIR spectrum. 

This is the simplest and fastest alternative (in terms of data loading and 

implementation speed) and, although limited in terms of expressiveness and 

lost information, it is a useful baseline and with low risk of overfitting. This is 

the first option for setting a lower performance limit in the initial stages of 

development. The bands selected corresponded to positions 100 (at 428,3 

nm), 400 (at 614,1 nm) and 700 (at 806,6 nm). 

o Full spectrum loading and conversion to real colour (RGB) using colorimetry 

techniques like colour matching functions ‐ CMF (i.e.; Spectral sensitivity 

curves that modify the response of the Human Visual System (HVS) to 

impulses at different wavelengths to convert the hyperspectral input into an 

independent representation of the device, such as the XYZ triestimulus values, 

through the integration of the hyperspectral image on CMF). The main 

disadvantage of this approach is that the part of the infrared spectrum (above 

700 nm) is discarded, although the semantics of each channel coincide with 

RGB representation used for the pre‐training dataset. 

o Full spectrum loading and implementation of classic dimensionality reduction 

techniques (not based on deep learning), to generate 3 channels without a 

physical interpretation. The simplest case would be principal component 

analysis (PCA). 

o Full spectrum loading and implementation of a first convolutional layer 

performing the dimensionality reduction to 3 channels in an optimum way, as 

described in (190), to continue using a network trained in Imagenet 

In addition to the proposed image loading and processing options, there is also the possibility 

of working with the full spectrum as input and applying a first 3x3x1040 channel convolutional 

layer. Despite being the option that uses the largest amount of original information, there is a 

greater risk of overfitting, and does not allow the use of pre‐trained network architectures in 

Imagenet, so it would require a greater number of images than the previous alternatives. 

 

9.4.4.2 Data normalization 

 

To keep this research as simple as possible, the initial normalization of hyperspectral images 

carried out was to contain them in a [0,1] range. However, as described in previous sections, 

the acquisition procedure was conceived to apply additional normalizations based on 

reference reflectance patterns and black current correction. Applying any of these 

normalizations would probably result in lower prediction error rates. 
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9.4.4.3 Network architecture design 

 

This section describes the architecture or topology of the developed network. After several 

initial experiments, the selected network architecture consists of a backbone and a series of 

input and output modules / branches. 

 

9.4.4.3.1 Network input branch 

 

As mentioned in section 9.4.4.1, and considering the positive results obtained, the choose 

option was to load only three bands of the original hyperspectral image. Due to this, the 

proposed architecture lacks any additional input branches. The three mentioned bands 

generate a three‐channel image which is directly loaded to the backbone. 

 

9.4.4.3.2 Backbone 

 

For the backbone of the network, a CNN based architecture designed to do image classification 

tasks was used. However, the last layers are adapted to convert it into a regression network 

with multiple outputs. The RGB images classification problem is probably the most classic 

problem within the Computer Vision community, so there are a variety of architectures whose 

behaviour for this task is well studied and that present a great robustness when used;  

 To conduct classification tasks on images of a different nature to those for which the 

network was conceived  

 To perform tasks different to image classification (i.e. semantic segmentation, 

regression). 

In both cases, the network weights initialization can be done randomly (from scratch), or by 

using the values resulting from the pre‐trained network from Imagenet images. 

During this research, three well‐known architectures were selected from Resnet (209) and 

Densenet (210) families (Resnet50, Densenet40 and Densenet121), since all of them have 

demonstrated excellent performance in classification / regression tasks.  

As described in the literature review, the main conceptual innovation of Resnet family 

architectures, compared to previous designs, was the implementation of residual modules, 

which contain, in parallel, a path without any type of processing and another path with several 

convolutional layers, nonlinearities and normalization. This approach allows the input signal 

always having a path without any type of processing, while each of the different modules 

allows to add a residual processing component to it. 



 
New method proposal for sterile quantification in scrap deliveries.  

371 
 

This structure facilitates the gradients flow when architectures present a large number of 

layers, thus avoiding the problem of vanishing gradients and allowing the use of deeper and, 

therefore, more complex models. 

The densely connected networks (Densenet) are built on residual type connections, but 

generating a dense mesh of connections between the different layers, to offer a more efficient 

representation (see Fig.  9.44). 

 

Fig.  9.44: Densenet architecture for image classification tasks 

Finally, and considering that network overfitting effect was not observed, the Densenet121 

topology was chosen. This architecture corresponds with the 121‐layer version of Densenet 

family which is one of the more efficient and tested architectures for classification problems. 

 

9.4.4.3.3 Network output branch 

 

Starting from a 121‐layer Densenet image classification architecture, the network is adapted 

for a real number regression task (aggregate weight ratio over the total weight, i.e. 

gr_aridos_perc). To do this, the layers after the last “dense block” were removed. Next, a 

GlobalAveragePooling layer was added (i.e. aggregation of the activation maps resulting from 

the last convolutional layers via global average) and a 50 neurons layer with dense 

connections, followed by an activation layer with a ReLU type non‐linearity. 

Finally, a last dense connections layer and a single output neuron is added, without any 

activation. This will avoid limiting the output range but ensuring non‐negative quantities 

estimations. 

All attempts to train the network with this type of unique output resulted in errors over the 

validation set, generating results very close to the baseline consisting of predicting the 

average. 

 

Fig.  9.45: Modified Densenet for multi-task regression 

The poor results of the previous experiments indicate that by using a single branch that 

directly estimates the percentage of aggregates, the network is not able to model the logic 

that generate the actual values that must be predict. Therefore, and given that during the 
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acquisition phase of the experiment, special care was taken to systematically measure the 

sample composition of the scrap + sterile mix (weights of sterile and scrap separately, 

distribution ratio, aggregate chemical composition and aggregate volume), it was decided to 

make a design on the upper layers of the network (substitution of the single output branch but 

maintaining the dense layer of 50 neurons) that allows to take advantage of this information. 

Fig.  9.45 shows the resulting modified Densenet‐121 network architecture, while Fig.  9.46 

shows the detail of its last layers and the multitask objective function  

 

Fig.  9.46: Detail of the output layers of the proposed multi-task Densenet architecture 

The network output represented in Fig.  9.46, is described as follow: 

 Branch 1 (blue) of a single neuron (51 parameters) and without activation function 

that estimates the absolute weight of the aggregates, and which has associated a cost 

function term that will optimize the network (L_ (aridos_gr). 

 Branch 2 (green) of a single neuron (51 parameters) and without activation function 

that estimates the absolute weight of the scrap, and it has a second term associated 

with the cost function that will optimize the network (L_ (scrap_gr) 

 A deterministic type layer (without trainable weights) that computes the ratio 

between both estimated quantities. Since it contains redundant information already 

present in the two previous outputs, it was decided not to incorporate this third term 

to the cost function and produce this output only for informational purposes and for 

qualitative evaluation of the network 

For the proposed network architecture, most of the model's weights are the result of 

minimizing, jointly, the error made when making both predictions simultaneously. The aim of 

this multi‐task design is to provide the network with a more explicit indication of how the 

aggregate/scrap ratio magnitude is defined. By having the disaggregated information on 

aggregate and scrap quantities and by estimating both separately too, we are providing the 

network with a much more powerful and efficient monitoring signal than if the network had to 

learn it by itself. 

Although there was the possibility of continuing to delve into this line by disaggregating the 

aggregate branch into independent branches for the estimation of the weights of each of its 
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components (since such information was available as ground truth), it was decided not to do it 

because the results obtained at this point were already very promising. 

 

9.4.4.4 Network training 

 

This section describes some of the main design parameters and decisions considered during 

the training process of the network, as well as the network design elements not defined in 

previous sections. 

 

9.4.4.4.1 Loss function  

 

As specified in section 9.4.4.3.3, the cost function that optimizes the network is composed by 

two terms, each of them penalizing the error in the estimation of the aggregate and scrap 

weights: 

 ℒ =  λ��������
ℒ��������

+  λ����������
ℒ����������

 
(9.5) 

Where: 

- λ��������
 and λ����������

 are two scalar coefficients that weigh the importance of both 

terms. Since the ranges and average values of both magnitudes differ by 

approximately one order of magnitude (see figures Fig.  9.39, Fig.  9.40 and Fig.  9.41), 

it was decided to make both terms contribute equally, to which lambda values are set 

inversely proportional to the average of their corresponding magnitude, calculated for 

the training dataset. 

- ℒ��������
and ℒ����������

 are the loss function associated with the estimation of the 

absolute weight of aggregates and scrap (in gr), respectively. In both cases two 

different functions are tested (Mean Absolute Error – MAE and Mean Squared Error – 

MSE), yielding both satisfactory results. 

 

9.4.4.4.2 Network initialization  

 

Although several initial experiments were done with a random initialization of all the weights 

of the model (from scratch), all of them were run for the first network designs proposed 

(single‐branch architecture design for direct estimation of the percentage of aggregates) and 

none of them converged. On the other hand, using same architecture, but with a fine tuning 

weights initialization approach, there was not convergence either, so it is not possible to 

attribute the convergence or not to the initialization process. 
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All the experiments launched for the three branches architecture (indirect estimation of the 

aggregate ratio) offered a good convergence when the initialization was based on a pre‐

trained Densenet‐121 network over Imagenet, only the last layers were randomizing initialized 

for all its branches. 

Using this fine‐tuning configuration, different strategies for layer “defrosting” were proposed. 

Generally, in a first phase the weights of the pre‐trained layers are frozen and those weights 

randomized initialized are left opened for free learning. This approach resulted in training 

curves whose error did not decrease until defrosting the lower layers, so it was decided to 

perform fine‐tuning in a single phase in which all layers had their weights unlocked for training. 

 

9.4.4.4.3 Image argumentation  

 

When training deep neural networks, the use of data augmentation techniques is frequent, 

these techniques consist of introducing random changes in the appearance of the images, but 

without affecting the label or the ground truth value. Thus, at each epoch the model observes 

a slightly modified version of each sample, so that robustness of the model increases. In this 

research work, the following combined random modifications for image argumentation were 

included: 

- Horizontal and vertical flips 

- +/‐ 90º rotations 

 

9.4.4.5 Workflow for Network set up 

 

This section includes, on the one hand, all the complementary information related to the 

programming language and the development environment that has been used for generating 

the different experiments, and on the other hand, the detailed description of the activities 

carried out throughout all the experiments and that have turned into the final architecture 

proposed in this investigation. 

 

9.4.4.5.1 Programming environment 

 

The development language used for acquiring, processing and the analysis of all information 

contained in the samples images has been Python. PyCharm is the “Python IDE for Professional 

Developers” that has been used to generate, debug and run programs. Throughout the 

research, different libraries and strategies have been used. 
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Fig.  9.47: Python Libraries used in this research 

As for the Hardware platform, a server with Intel Xeon 6‐core processor and Pascal Titan X 

GPU was employed. 

The features offered by the PyCharm environment were used to execute the scripts under 

development on the infrastructure servers and visualize the results on personal work 

computers. 

 

9.4.4.5.2 DeepLearning architecture design RoadMap 

 

The data analysis process was iterative and guided by the results of the different experiments. 

This workflow has allowed developing the final algorithms able to offer valid results on the 

posed problem. This section presents the chronological description of the research work 

carried out in this phase. 

The initial tests were focused on creating the “SW infrastructure” necessary for data 

management. These initial tasks were oriented to the generation of the data set that was used 

later on in the analysis process. The challenge for this first phase laid on the fact that 

Hyperspectral images are not conventional image formats but are schemes to store the actual 

pixel values of an image in a file. There are three common methods of organizing hyperspectral 

data (216); Band‐Interleaved‐by‐Line or Row‐Interleaved (BIL), Band‐Interleaved‐by‐Pixel or 

Pixel‐Interleaved (BIP) and Band‐Sequential or Band‐Interleaved (BSQ).  

These files support a simple and multiband images visualization, and handle black and white, 

grayscale, pseudocolor, true colour and multispectral image data. The BIL, BIP and BSQ files 

are binary files (they have been generated with the raw extension) and must have an 

associated ASCII header file so they can be interpreted. This header file contains secondary 
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data about the image such as the number of rows and columns in the image, the binary 

format, etc. (they have been generated with the extension hdr) 

In the present work the hyperspectral images are encoded according to a Band‐Interleaved‐by‐

Line or Row‐Interleaved. 

The first prediction tests carried out were launched with an initial spatial decimation at 

200x200 pixels (both in the training phase and in the test phase) for two different networks 

architectures: Resnet50 (209) and Densenet121 (210). The training was done from scratch with 

the available images. Only images from the JAI camera (Visible + Near Infrared range) were 

used. As data input, all available spectral channels were utilized, as it was the configuration 

which presented the best results in the camera selection tests. Below are some basic diagrams 

of both networks in their original configuration (initially developed for solving general image 

classification task) 

 

Fig.  9.48:General overview of ResNet50 architecture 

 

Fig.  9.49: General overview of Densenet121 architecture 

To undertake the objective task, the modifications described below were initially made on the 

base architectures presented in Fig.  9.48 and Fig.  9.49: 

 Last layers adaptation to a regression problem for a single output branch (estimation 

of the percentual weight of aggregate); Removal of the dense layer of 1000 neurons 

and the output Softmax layer and replacement by a 50 neurons dense layer with a 

ReLU activation function (for replacing negative values by zeros) and a new single 

neuron layer without activation function. 

 Adaptation of the first convolutional layer of the network to support 1040 channel 

inputs instead of the 3 commonly used for RGB images. 
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The issues encountered in these first attempts were, on one hand that the network results did 

not converge, and on the other hand, the tests carried out in the network for hyperparameters 

adjusting took a long time to complete since 1040 channels were used 

It was decided to reduce the number of spectral channels from 1040 to 3. This had a double 

aim: to reduce the processing times and to be able to use pre‐trained weights in the networks 

facilitating a fine‐tuning process. This also allows to define the spectral reduction strategy 

described before (first select three channels throughout the entire spectrum, then to move to 

real RGB color and finally to make a dimensionality reduction to the 3 main channels). 

There are many network hyperparameters tested during the network developing phase. To 

facilitate these hyperparameters configuration, a config file was generated. One example of 

the config.json file is depicted (it corresponds to experiment 328): 

{ 
  "architecture": "densenet_imagenet121",  
  "batch_size_train": 24,  
  "bottleneck": true,  
  "computing_device": "/gpu:0",  
  "dataset_partition_seed": 666,  
  "depth": 121,  
  "divide_by_std": false,  
  "dropout_rate": 0.0,  
  "earlystopping_patience": 100,  
  "exp_dir": "results/BORRAME",  
  "exp_hierarchy": null,  
  "full_img_dim": [ 
    416,  
    768,  
    3 
  ],  
  "growth_rate": 32,  
  "img_channels": 3,  
  "img_cols": 768,  
  "img_rows": 416,  
  "learning_rate": 0.01,  
  "load_crop_size": [ 
    416,  
    768 
  ],  
  "name_optimizer": "Adam",  
  "nb_dense_block": 4,  
  "nb_epochs": 100,  
  "nb_filter": 64,  
  "nb_layers_per_block": [ 
    6,  
    12,  
    24,  
    16 
  ],  
- 

 
 
 
- 
  "nb_threads_loader": 10,  
  "reduction": 0.5,  
  "remove_mean": true,  
  "results_dir": "results",  
  "scratch_or_finetuned": "finetuned",  
  "seed": 455916186,  
  "spatially_downsampled_crop_size": [ 
    80,  
    80 
  ],  
  "spectral_downsampling_method": 
"3bands",  
  "subsample_initial_block": true,  
  "test_is_actually_validation_set": 
true,  
  "train_as_classifier": false,  
  "train_crop_size": [ 
    64,  
    64 
  ],  
  "train_set_fraction_used": 1.0,  
  "train_split": 0.8,  
  "use_lr_finder": false,  
  "use_sgdr": true,  
  "weight_decay": 1e-05 
 

Fig.  9.50: Hyperparameters config file for experiment 328 

Next, the main network hyperparameters tested during this research are described: 

 computing_device: The training Process of the model Will be executed in the selected 

card (CPU or GUP). 

 architecture: This hyperparameter was set to load several network architectures. The 

tested architectures were ResNet50 and Densenet121, both of them able to select 

between pretrained weights (from Imagenet database) or from scratch options when 
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the training process is launched, according the value of scratch_or_finetuned 

hyperparameter. 

 scratch_or_finetuned: this hyperparameter is combined with architecture 

hyperparameter to define the network architecture and type of training. 

 train_split: This hyperparameter defines the image dataset ratio between training and 

validation.  

 dataset_partition_seed: it is used for random generation of images subsets for 

training and validation. 

 nb_epochs: This is the number of epochs that the network training process will last. 

One epoch is concluded when the whole dataset (all available images) have gone 

through the network. This hyperparameter defines the number of times the network 

processes all images in the dataset. In each epoch, the samples feed the network in a 

different order (the images are mixed) and as part of different batches. In addition, if 

some type of train‐time image augmentation is carried out, each time the network 

observes a modified version of the same original image, without modifying the label. 

 batch_size_train: This hyperparameter defines the branch size. As mentioned before, 

one epoch corresponds with the processing of the whole dataset. Since it is not 

possible to introduce all images at once, they are grouped in branches according the 

batch size value. The more memory there is, the higher that value can be and fewer 

iterations will be needed. Typical values are usual 8, 24, 32, 64, 128, etc. 

 name_optimizer: To minimize the error that occurs in each pass between the 

predicted value by the network and the actual value, an optimizer is used. The usual 

ones are: 

o Stochastic Gradient Descent (SGD) is an algorithm that allows iteratively 

reducing the error committed by the network (the result of the cost function 

used). For this, at each step, the gradient of the error with respect to each of 

the (thousands of) weights of the network is calculated using the 

backpropagation algorithm. Then, each of these coefficients are updated 

according to the gradient value. In this way, it is determined to what extent 

each of these weights contributes to the error, and each of them are corrected 

so that the error decreases as quickly as possible. 

o Adam (which was the used optimizer in the final proposal) adjusts the learning 

speed of the parameters based on the first and second momentum of the 

gradients. 

 The number of samples used for each calculation is defined by the lot size, bs_train 

 Learning_rate, momentum: The learning rate is a network parameter that controls 

how the model weights should change (value and direction) in every step according 

the gradient generated by the backpropagation algorithm.  
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Small values in the leraning_rate leads to longer time to lower the error (and the 

process is more likely to converge to a higher local minimum), while large learning‐rate 

values may cause the process to diverge or the error fails to descend to low enough, 

and to produce significant fluctuations in the error values.  

In short, the learning_rate controls how quickly the network adapts to the problem. To 

consider the historical or inertia of the previous changes, the momentum parameter is 

also added. This hyperparameter smooths the changes of the parameters, causing 

them to remain in the same “direction”. 

 weight_decay: This hyperparameter adds a regularization to the optimizer to avoid 

overfitting. The regularization is a L2 type and it forces the weights values to be small, 

avoiding high values to be concentrated in a few coefficients, adding a cost 

proportional to the square of the weights. 

Within the configuration file, the PC folder where all the data associated with the experiment 

are stored is also defined. It stores results that can be used for debugging process. For 

example, during the experiment 316 the following graph was generated, which shows the non‐

convergence of the network. 

 

Fig.  9.51: Convergence analysis for Experiment 316 network set up  

Many experiments have been done. The main milestones of the network development process 

were three bands analysis (instead of the whole spectrum) and, the multi‐task. 

 

Fig.  9.52: Snapshot of experiments storing methodology 
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After several attempts, positive results were obtained with Densenet121 network architecture 

(pre‐trained with Imagenet and with all the layers released during training) and making an 

initial spatial transformation (decimated) at 128 pixels. Due to the image augmentation, a 

second random cut at 114 pixels is made. 

Below, some MAE graphs for sterile percentage estimation (gr_aridos_perc) are shown for 

three different experiments. These figures show the evolution of the network adjustment 

process: 

 Experiment 607 (3bands No augm. Densenet121.Pretrained on Imagenet. Orig size ‐> 

128‐> 114px. L1 loss.): At the epoch 172 it was proven that the network converges. 

As shown in Fig.  9.53, for experiment 607, the training was stopped prematurely 

because a pre‐established stop condition was reached. This stop condition consisted 

on stopping the training if the cost function for the validation set stopped improving 

within certain number of epochs. Since experiment 621 allowed to lower the error by 

training up to 1000 epochs. This stopping condition was proved to be too low. 

 

Fig.  9.53: Results on experiment 607 after 172 epochs 

 Experiment 621, using similar network set up than in experiment 607 (3 bands No 

augm. Densenet121.Pretrained in Imagenet. Original size ‐> 128‐> 114px. L1 loss). At 

the epoch 1000 it was proven that the network converges. 

 

Fig.  9.54: Results on experiment 621 after 1000 epochs 
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 Experiment 624 (3bands No augm. Densenet121.Pretrained on Imagenet. Orig size ‐> 

128‐> 114px. L2 loss): At the epoch 1000 it was proven that the network converges 

In experiment 621 good results with the L1 loss function (minimization of the 

absolute error between predicted and true values) were obtained. Experiment 

624 proposed replacing L1 by L2 (minimization of the mean square error 

between predicted and true values). In regression problems, L2 can lead to great 

instabilities during the training process. However, in experiment 624 the curves 

evolution suggested that this is not the case, and the obtained errors were even 

lower than those obtained through the L1 loss. 

 

Fig.  9.55: Results on experiment 624 after 1000 epochs 
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9.4.5 Results on laboratory set up 
 

The main objective of the laboratory stage was to well understand the real capabilities of 

combining DeepLearning methodologies with hyperspectral technologies to develop an 

automatic tool for sterile quantity estimator in ferrous scraps. In order to propose an industrial 

solution, it is necessary to identify or develop the optimal network architecture through the 

most convenient images acquisition and data processing at a defined wavelength range. So 

that, at this stage of research, it is crucial to keep the approach as simple as possible to ensure 

to master the technology, in well controlled conditions, before going to “demanding” industrial 

conditions.    

The work done in the laboratory phase can be summarized as follow: 

 A simple laboratory set up was built for easily controlling all experiment aspects 

 The selected sensor for image acquisition corresponds with a linear hyperspectral 

camera in the Visible Near Infrared range (400 ‐ 1000nm) with a high spectral 

resolution 

 Around 500 different samples composed by a mixture of E40 with common oxides 

compounds (SiO2, Fe2O3, CaO, Al2O3) were manually prepared for generating a large 

dataset. 

 DeepLearning Network architecture development, which can be described as follow: 

o Data input based on an RGB model pre‐trained from Imagenet (Selection of 

three unique bands at 428,3 nm, at 614,1 nm and at 806,6 nm). 

o Network architecture (backbone) based on DenseNet 121 

o Output layers composed by two branches aiming to perform multitasks 

analysis 

Once defined the laboratory set up and the network structure, different experiments were 

conducted varying the value of several main network hyperparameters. Experiment 621 

offered the best results regarding MAE and MAPE (as described in section 9.3.2,MAE and 

MAPE are used as network results assessment method). 

Fig.  9.56 shows the training curves of all the objective functions mentioned, in which the semi‐

transparent thick lines correspond to the training set and the solid thin lines to the validation 

set (one sample by epoch is represented): 

 In green: MAE values for sterile ratio estimation over the total weight of material in 

the sample (left), absolute weight of sterile in the sample (middle) and absolute scrap 

weight in the sample (right). 

 In red: MAPE values for the same estimated quantities. 

 In blue: value of the compound error function. 
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Fig.  9.56: exp 621 train-test curves 

It should be noted that (as expected) the network architecture consisting of three branches 

obtained consistent and very robust results with respect to the variations in these 

hyperparameters.  

For the network architecture design and the hyperparameters setup proposed, graphs and 

figures corresponding to L1 loss function are shown. After results analysis, it is observed how 

the error converges to very low values by means of a decreasing exponential curve. Also, there 

is no significant gap between both curves, so it can be concluded that there is no overfitting or 

overtraining, meaning that the model generalizes properly. 

Fig.  9.57, Fig.  9.58, Fig.  9.59 and Fig.  9.60 depict the numerical output of the model (MAE 

and MAPE) for training and test datasets: 
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Fig.  9.57: exp 621 MAE test set 

 

Fig.  9.58: exp 621 MAE train set 
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Fig.  9.59: Exp 621 MAPE test set 

 

Fig.  9.60: Exp 621 MAPE train set 



 
New method proposal for sterile quantification in scrap deliveries.  

386 
 

After analyzing the results, the following conclusions are reached: 

 The average error made by the proposed Deep model is 0,3 %in the aggregate / total 

weight fraction prediction for the test dataset (this value is even lower for the training 

set, reaching 0,4%). It is important to highlight that the baseline showed an average 

error close to 5,8% when predicting always the mean value. Considering absolute 

quantities, the average absolute error corresponds to 3,0 gr for aggregates and 18,1 gr 

for metal scrap for the case of the test data set. 

 Those absolute errors (MAE) corresponds with a relative error (MAPE) of 3,1% for the 

case of the test dataset in the aggregate percentage ratio prediction and 2,9% for the 

validation dataset. It represents errors of 2,6% and 1,6% in the estimation of absolute 

aggregate and scrap weights respectively. 

These results proved that the proposed approach can be considered as valid solution for 

solving this problem. 
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9.4.6 Conclusions on laboratory set up 
 

The aim of the work presented in this section was to propose the necessary laboratory 

experiments that will allow demonstrating the applicability of the joint approach of 

hyperspectral imaging and data classification through DeepLearning.  

One of the critical points to achieve this objective was to design of a hyperspectral images 

acquisition station under very controlled laboratory conditions. The core element of sample 

acquiring station is a hyperspectral sensor composed by a spectrometer in the VNIR range 

(Specim V10_04204) combined with a scientific CMOS camera (JAI‐TM‐1327GE). 

Using the laboratory set up, around 500 samples were manually prepared (mixing E40 with 

SiO2, Fe2O3, CaO and Al2O3) a captured with the acquiring station. 

Then, using the DenseNet network architecture proposed in the ILSVRC challenge, and after 

several experiments with different modifications in the network architecture in laboratory 

conditions, the following architecture designed for sterile quantification purpose is proposed:  

 A DenseNet121 network was used a backbone 

 Adaptation of the first convolutional layer of the network to support 1040 channel 

inputs instead of the 3 commonly used for RGB images. 

 Last layers adaptation to a regression problem for a single output branch; Removal of 

the dense layer of 1000 neurons and the output Softmax layer and replacement by a 

50 neurons dense layer with a ReLU activation function and a new single neuron layer 

without activation function. 

The results obtained in laboratory conditions can be summarized as follow:  

- The average error made by the proposed Deep model is 0,3% and 0,4% in the 

aggregate / total weight fraction prediction for the test and training dataset 

respectively. These results improve drastically the baseline selected for performance 

assessment based on predicting always the mean value.  

- Considering absolute quantities, the average absolute error corresponds to 3,0 gr for 

aggregates and 18,1 gr for metal scrap for the case of the test data set. 

- With the proposed design, the new sterile estimator based on Hyperspectral imaging is 

generating errors of 2,6% and 1,6% in the estimation of absolute aggregate and scrap 

weights respectively. 

These results proved that the proposed approach can be considered as valid solution for 

solving this problem.  

  



 
New method proposal for sterile quantification in scrap deliveries.  

388 
 

9.5 Sterile estimator development at Industrial scale  
 

In previous sections it was proved that feeding the proper DeepLearning architecture with 

enough visual information of scrap / sterile mixtures, allow estimating the weight ratio 

between them. 

However, this solution has been developed in laboratory conditions and cannot be used 

directly to solve the identified problematic, mainly because   

- In industrial conditions, dozens of daily trucks are delivering scrap to the scrap yard. It 

is not technically feasible to move all the scrap that enters the factory in front of a 

linear sensor for building 2D images, so it is necessary to change the approach to 

image acquisition towards a matrix sensor (spectral resolution 2 orders of smaller 

magnitude than linear sensors)  

- The acquired samples in laboratory conditions were not real; neither the scrap 

material used has same morphology than the real scrap materials, nor the sterile 

compound chemistry are the same. 

- The sterile is not heterogeneously distributed is the scrap delivery; some materials 

present dirt stick to the surface, the material rust varies from one deliver to another, 

in some cases visual appearance of scrap is similar to sterile. Some examples of these 

effects are shown in Fig.  9.61 

 

Fig.  9.61:  Examples of scrap materials delivered to the scrap yard 

Laboratory work was a crucial step to develop a valid solution for industrial conditions, 

however, an intermediate step is needed to master these industrial conditions before 

generalizing the solution.  

In this sense, as described in section 9.1, scrap cleaning machines can be used for checking, 

truck by truck, the quantity of sterile present in each scrap deliver to the scrap yard.  
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By installing the new system developed in laboratory in a scrap cleaning machine, almost all 

required data for adapting the new system to industrial conditions is available (in green in Fig.  

9.62); the total amount of sterile contained in the truck, the total material weight contained in 

the truck and the network architecture proposed in laboratory conditions. 

The only missing information to complete the tuning and the final training of the network (in 

red in Fig.  9.62) is the hyperspectral images data set using the matricial sensor   

 

Fig.  9.62: Proposed approach for industrial implementation of sterile quantity estimator in scrap 

The methodology proposed in Fig.  9.62 will allow creating a new image dataset composed by: 

- Trucks discharging hyperspectral images 

- Scrap amount by truck 

- Sterile amount by truck 

The new dataset can be used for network hyperparameters optimization and for elaborating 

the industrial model valid only for the scrap type feeding the cleaning machine 

Adapt the model to other scrap grades to, later on, generalize this network to other types of 

scrap types will be also required in the solution industrialization phase. 
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9.5.1 Semi-Industrial preliminary tests  
 

Although the final development of an industrial solution for estimating the quantity of sterile 

materials in the scrap deliveries to steelmaking scrap yards is not included in the scope of this 

thesis, this work should pose the general technical requirements of the industrial concept for 

allowing to continue with this work in a sort future  

 

9.5.1.1 Camera selection: 

 

To apply hyperspectral imaging to industrial environment, for extracting useful scene 

information, represents the main challenge of this research work. This makes sensor selection 

one of the critical tasks in the proposed development. On the other hand, the system 

proposed for the final industrial application must be based on a matricial sensor that captures 

the scene of the scrap unloading in a static way. This requirement presents as key 

disadvantage the poor spectral resolution offered by matricial hyperspectral sensors  

Due to this, the research work described in section 9.3.1.1, was devoted to determine whether 

the commercially available hyperspectral matricial sensors, in both spectral range and 

sensibility, were suitable for the proposed application, as well as to select the most convenient 

sensor for the purpose of this investigation. 

Based on the findings reported in section 9.3.1.1, the sensor chosen was Ximea´s model 

MQ022HG‐IM‐SM4X4‐VIS, which offers 16 spectral bands in the 470‐630 nm range  

 

9.5.1.2 System installation: 

 

To move the development phase from laboratory conditions to real industrial conditions, it is 

necessary to adapt the laboratory solution to the new industrial boundary conditions in a very 

controlled manner. In order to do it scrap cleaning machine was identify as the ideal industrial 

facility. Fig.  9.63 proposed a basic Lay‐Out of the ideal semi‐industrial set up. 

According to the proposed Layout, the camera is installed on an elevated platform several 

meters above the trucks discharging hopper. Also, and considering that the spectral images 

require occupy excessive memory resources on the PC, an electrical control panel is installed 

at Hopper level. This panel is composed be 2 buttons (acquisition ON and acquisition OFF) that 

generate the start and end triggers of image capturing. These buttons must be operated by the 

truck driver before starting the download (Start button) and after finishing the operation Stop 

button). 
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Fig.  9.63: Proposed semi-industrial system lay-out 

This layout, together with the start/stop procedure, will ensure that the generated image 

sequence dataset corresponds only to discrete scrap downloads, and therefore, it can be 

linked to the truck ID data (scrap and sterile weights) available in factory databases. 

 

9.5.1.3 Environmental conditions control (lighting and calibration): 

 

In order to evaluate the scene changes in a non‐controlled environment (industrial scrap yard), 

the selected sensor was installed in one cleaning machine at one ArcelorMittal Steelshop in 

Spain. Fig.  9.64 depicts the camera installation location: 

 

Fig.  9.64: Region of Interest (ROI) of camera over the cleaning machine feeding conveyor 

 

In the case of scrap yard, the facility illumination system is based on different type of lamps 

distributed for the whole area, just for ensuring enough light for operating the machinery in 

safe conditions. This causes that the incident radiance over the sample changes along the day 

depending, not only on the day/night periods, but also due to sunny/cloudy days.  
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The lighting changes effects on acquired images are demonstrated in the 24 hours capturing 

campaign shown in Fig.  9.65: 

 

Fig.  9.65: Day light influence on hyperspectral images 

Additionally, a calibration solution based on Spectralon material (apart for the initial 

calibration) is not applicable any more due to the quick degradation of the patterns in such 

aggressive environment. 

The proposed calibration methodologies for the new industrial conditions are:  

- Dark current calibration: same procedure that the one described in section 8.2.6.1 can 

be used. The dark current calibration should be done periodically 

- Reflectance reference: A fixed white painted pattern should be installed in the camera 

ROI (between the camera and the scrap discharging hopper) to be used as reference of 

the image for normalization purposed (as described in section 8.2.6.1)  
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9.5.1.4 Dataset composition: Spectral image capture and processing 

 

The most critical difference between the solution developed in laboratory conditions and the 

solution proposed for industrial conditions is the dataset morphology: 

- Laboratory dataset: the dataset is composed by one 2D hyperspectral image (1040 

spectral bands) per data (scrap + sterile mixture) 

- Industrial dataset: the dataset is composed by a sequence of 2D hyperspectral images 

(16 spectral bands) per data (scrap + sterile mixture) 

Each data in the industrial data set is composed by a sequence of images per each of the 16 

spectral chanes. Fig.  9.66 shows the spectral information of one truck discharging operation 

over the cleaning machine at 638 nm spectral channel: 

Fig.  9.66 :Scrap discharging sequence acquired at 638 nm 

As shown in Fig.  9.66,  the scrap/sterile relation that will be reported by the scrap cleaning 

machine during one dumping has to be related to a great number of images. And all the 

images in one discharge are linked by a temporal chain, that is, there is some sort of 

dependence through time between the inputs and the desired output. One of the possible 

ways of solving this case with Deep Learning is using a Recurrent Neural Network (RNN), which 

is a kind of Neural Net specifically design for working with sequences of data.  

Another additional challenge to be addressed is how the spectral dimension of the captured 

data will be handled and processed. Samples created for the laboratory tests were recorded 

using cameras with high spectral resolution (1024 spectral bands). During analysis, the number 

of channels was reduced to 3 in order to make it faster (load of data and development). The 
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selected camera to be used in the scrap cleaning machine at ArcelorMittal was a XIMEA 

SM4X4‐VIS that has 16 channels. Several spectral processing approaches can be followed: 

- To reduce hyperspectral image to 3 channels by using a classical dimensionality 

reduction (Principal Component Analysis).  

- To make a spectral to RGB conversion of all the spectral data laying in the visible range 

applying colorimetric techniques. This would imply discarding the spectral information, 

but it would be optimal from the data‐efficiency perspective, as the input would be 

readily adapted to be fed to a standard classification network backbone pretrained on 

Imagenet (since the semantics of the 3 channels would be identical for both the 

pretrained and new data).  

- To use a first convolutional layer that reduces the dimensionality to 3 in an optimal 

way, although this would increase the amount of required training data.  

All previous spectral reduction alternatives are posed as potential research lines to be 

developed after the completion of this thesis. 
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9.5.2 Network architecture design for industrial conditions 
 

The spectral nature of the input data and the fact that one sample (i.e. discharge) is defined as 

a sequence of images rather than just with a unic 2D image are the two main factors that drive 

and condition the design the deep Convolutional Neural Net (CNN) architecture being trained 

for the prediction of the scrap/sterile weight relation.  

The handling of the spectral data affects primarily to the design of the first layers of the 

network. Each of the three options mentioned in the previous section requires one particular 

design element, either as part of the network (e.g. to take 16 channels as input and convert 

them, via convolution, to 3 channels so as to use a pretrained net, or to 32/64 so as to train it 

from scratch) or as an out of the network pre‐processing step (e.g. an offline process to 

convert the spectral data to a representation based on the first three eigenvectors given by 

the PCA algorithm). 

As for the temporal dependency, there is no single standard procedure to handle image 

sequences as input, particularly so for the task of multiple real value regression (following the 

approach designed in lab tests; try to predict sterile and scrap weights independently and 

perform a deterministic ratio computation). Most of the existing CNNs working over videos 

focus on activity classification tasks, and, as was done with the laboratory data. Some potential 

ideas to be explored are the following: 

- Single frame‐based predictions have shown to work well for video activity classification 

(217) using a standard classification net as backbone. This option could be considered 

as a potential baseline. 

- Probably the approach that makes more sense is to use a standard single‐image 

classification network (e.g. Resnet18, Resnet50, Densenet121) as backbone for the 

extraction of a compact, 1‐dimensional representation of each frame, and feed these 

into a RNN component, such as a GRU (Gated Recurrent Unit (218)) or LSTM (Long‐

Short Term Memory (219)) layers. The latter would take care of modelling the 

temporal dependencies and its output would be the base for the two prediction 

branches. See Fig.  9.67 for a diagram of the envisioned solution. 

- There have also been advances in RNN‐free architectures for video classification. We 

will consider the appropriateness of purely convolutional variants such as those in 

(220), which propose different ways of incorporating the temporal dimension into 

convolution operations. 



 
New method proposal for sterile quantification in scrap deliveries.  

396 
 

 

Fig.  9.67: Design of the proposed LSTM-based CNN for hyperspectral image sequence-based 

sterile/scrap ratio estimation  
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9.5.3 Next steps for industrial implementation 
 

The research work of this thesis cannot go further without the involvement of Steelshop 

technicians since, for the industrial implementation of the solution developed in laboratory 

conditions, several tasks must be done. 

- From the Data Set Generation point of view:  

o Develop and Test Plant Integration  

o Test camera exposure times and software recording capabilities  

o Find solutions to the white reference procedure  

o Test several illumination possibilities  

o Make an image capture validation campaign to ensure Data Set Capture 

System 

- From the Deep Leaning point of view: 

o Complete the recurrent neural network definition and architectures to be 

tested 

o Start coding the data set loading functions 

- Once the Data Set Capture System is working: 

o Record all possible information 

o When a data set of 400 complete discharging samples are recorded, start Deep 

Leaning parameters fine tuning and architecture adjustment 

o When a data set of 1000 discharging complete sequences are reached use 

them to start the analysis 

o Continue recording as much as possible 
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9.6 Conclusions  
 

Nowadays, it can be usually found that many scrap suppliers do not meet the minimum 

requirements defined in standard scrap specifications (Mixture of materials with different 

qualities, inadequate dimensions, Forbidden elements, contamination with other elements 

such as earth, slag or grease). However, since the complexity of ferrous materials recycling 

processes is clear, that non‐compliance (if they occur within reasonable limits) can be 

assumed. Nevertheless, the presence of sterile materials mixed with scrap penalizes twice to 

steelmakers: 

- Dirt is paid as scrap when in the purchasing process (100% of the material is assumed 

to be Iron) 

- Nonferrous materials contained in scrap negatively affect to the EAF process 

performance due to a worsening in the material Value In Use. 

For steelmakers is crucial to closely control the quantity of nonferrous materials contained in 

each scrap delivery to the scrap yard, in order to do scrap suppliers quality tracking and 

optimize the two above‐mentioned penalties 

For decades, the most extended practice for sterile quantification consists on the visual 

inspection of each scrap delivery. Then a very experienced scrap yard operator, based on 

subjective criteria, estimates the quantity of sterile present as well as other possible non‐

compliance with the scrap quality specifications. Subsequently the scrap yard operator applies 

an economic penalization the supplied. It is clear that this methodology strongly depends on 

the operators skills and so that, it is far from been an optimal procedure.  

In the 21st century, with the explosion of complex artificial intelligence algorithms, coupled 

with the drastic increase in computational capabilities and the democratization of complex 

vision technologies, new methods can be proposed for estimating sterile / scrap ratio in scrap 

deliveries.  

In the case of sterile estimation, and since the scrap quantity assessment is done by visual 

appreciation, it is clear that machine vision techniques should extract some features in scrap 

material to be used for material quality analysis. In this sense, in Machine Learning there are 

many algorithms which helps discover the underlying physical process under the available 

data. However, the choice of an algorithm depends on the characteristics of the data. In order 

to extract as much information as possible, Hyperspectral cameras seems to be the most 

suitable sensor for this purpose.  

The aim of the work presented in this chapter was to propose the necessary laboratory 

experiments that will allow to, firstly demonstrate the applicability of the joint approach of 

hyperspectral imaging and data classification through DeepLearning, and secondly, establish 

the basic requirements of a system that must subsequently be functional in extreme industrial 

conditions 
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One of the critical points to achieve the objectives was to design of a hyperspectral images 

acquisition station under very controlled laboratory conditions. The main criteria used for the 

design of the capture station are listed below: 

- Necessary to extract as much spectral information as possible; High linear spectral 

resolution sensor using linear cameras. The sensor is composed by a spectrometer in 

the VNIR range (Specim V10_04204) combined with a scientific CMOS camera (JAI‐TM‐

1327GE). 

- A 2D image is needed; A close control push broom system for sample displacements in 

front of the camera 

- Well‐known Lighting system; to ensure the right calibration procedures    

- Camera aberrations control; Dark current and White current measuring procedure  

- ROI on Samples clearly defined; drawers for sterile / scrap mixes 

- Dedicated Software for acquiring, pre‐processing, post‐processing and data analysis  

After developing the laboratory set up, around 500 samples were manually prepared, mixing 

E40 with 4 basic sterile compounds (SiO2, Fe oxides, CaO, Al2O3). 

On the other hand, the ILSVRC challenge has opened infinite options for developing 

classification / Regression models for image understanding. Taking the ILSVRC challenge as 

starting point of this research, and after several experiments with different DeepLearning 

network architectures in laboratory conditions, the following architecture designed for sterile 

quantification purpose is proposed:  

 A DenseNet121 network was used a backbone 

 Adaptation of the first convolutional layer of the network to support 1040 channel 

inputs instead of the 3 commonly used for RGB images. 

 Last layers adaptation to a regression problem for a single output branch; Removal of 

the dense layer of 1000 neurons and the output Softmax layer and replacement by a 

50 neurons dense layer with a ReLU activation function and a new single neuron layer 

without activation function. 

The results obtained in laboratory conditions can be summarized as follow:  

- The average error made by the proposed Deep model is 0,3% and 0,4% in the 

aggregate / total weight fraction prediction for the test and training dataset 

respectively. These results improve drastically the baseline selected for performance 

assessment based on predicting always the mean value.  

- Considering absolute quantities, the average absolute error corresponds to 3,0 gr for 

aggregates and 18,1 gr for metal scrap for the case of the test data set. 

- With the proposed design, the new sterile estimator based on Hyperspectral imaging is 

generating errors of 2,6% and 1,6% in the estimation of absolute aggregate and scrap 

weights respectively. 
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These results proved that the proposed approach can be considered as valid solution for 

solving this problem. However, it is worth mentioning that:  

 The reported errors were obtained without performing a thorough network 

hyperparameter optimization, so there may be some room for improvement. 

 The results have been obtained through pre‐trained models and using three unique 

bands of the spectrum (since only 500 samples were available), it is also worth 

mentioning that, when larger volumes of data are available, the whole spectral 

information available in hyperspectral images should be exploited. 

Once the initial analysis with the laboratory data has been concluded, the next step is to 

gather real data. The industrial scenario raises a number of challenges that need been 

addressed; Image sequences as input, Spectral image acquisition and processing in industrial 

conditions and new network (RNN)architectures designs.  

In this chapter, the workflow for industrially implementation the solution developed in 

laboratory has been also proposed. 
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 10 

Conclusions and future 

research lines 
In this concluding chapter the final remarks on the work done are presented. This 

chapter also proposes new potential research lines that could be opened to continue with from 
the findings reached. 
 

10.1 Conclusions 
 

Before presenting the final conclusions drawn from the findings of this research, the study of 

the steelmaking sector and its state‐of‐the‐art processing techniques has raised the following 

general points, which may be noted: 

- Around 85% of the total costs incurred by the EAF plant are associated with the 

Steelshop activities, and the ferrous scrap can represent up to 60% of the total 

production costs.  

- Currently, Europe, NAFTA, Africa and most of the Middle East are heavily dependent 

on scrap and rely on EAF technology for its processing. Additionally, some authors 

have forecast a significant rise in EAF production in the medium and long‐term, linked 

to the fact that the integral steelmaking route is increasing average scrap 

consumption, in response to evident environmental pressures. In consequence, 

steelmakers are investing immense effort in the development of new technologies 

that may be used with great precision to analyze the content of ferrous raw materials. 

Ferrous scrap products are extremely complex materials. In addition to the ferrous matrix of 

iron and other metallic elements, scrap also contains coatings, dirt, sterile, foreign materials 

(plastics, wood, glass) and oxidized layers. If the overall EAF process is to be optimized, 

detailed information will be needed on the quality of the raw material inputs 

In the literature, many research works have studied scrap pre‐processing technologies and 

future availability and access to scrap materials, as feasible improvements to the steelmaking 

processes. However, although non‐quality of scrap strongly influences the variable process 

costs of steelmaking, scientific papers that propose industrial methods for the characterization 

of scrap remain scarce. 
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In this sense, if the material is properly characterized, there are tools (Specifications and 

standard classifications for ferrous metal scrap or Total Cost of Ownership) that the scrap 

recycling center can use for the definition of scrap purchasing and management strategies. 

If those approaches are to be applied, then the most critical point is the need for 

tools/methods that can quickly and efficiently provide information (chemical composition, 

distribution, physical morphology, material degradation, presence of moisture, ...) on the 

ferrous materials whenever they are to be used.  

 In relation to sterile matter: 

Steel treatment techniques within the recycling sector are at present quite efficient. 

However, each of those different technologies was developed and optimized to 

address very specific problems associated with material morphologies. The processing 

of iron scrap is much more complex than merely selecting one of the available 

technologies. 

A potential steel‐scrap treatment scheme may consist of an initial size reduction 

process, followed by several cleansing and separation processes, to upgrade the 

ferrous raw material for use in the steelmaking processes. 

 In relation to sterile characterization:  

The various technologies that are currently used in steelmaking for the 

characterization of ferrous materials can be grouped into four main categories: 

industrial methods, mathematical methods, chemical analyses, and physical analyses. 

The literature review of this thesis was employed as background material for a set of 

discussions with 8 different EAF steelmakers on the weaknesses of current methods, 

based on their actual industrial interest. The topics of most interest to steelmakers 

were;  

- Scrap Cleaning technologies,  

- Automatic scrap control  

- Methodologies for scrap management optimization  

- Sterile characterization. 

As described in the first chapters of the thesis, the presence of sterile in ferrous scrap is the 

most important factor in non‐quality scrap. In view of the current state of the art, the presence 

of these types of materials mixed with scrap cannot be completely eliminated. It is therefore 

necessary to develop technologies, so that scrap recycling plants have the tools for their 

measurement and control. In this doctoral thesis, different approaches have been proposed 

for both the qualitative and the quantitative control of sterile.  

The main pillar for the development of the thesis, as stated in the conclusions, is the 

characterization of sterile. It has three main research lines: a new empirical method for 

estimating VIU loss, due to storage degradation; a new method for the chemical 
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characterization of sterile material in scrap; and, a new method for sterile quantification in 

scrap deliveries. 

This research work is proposing new methods for the characterization of ferrous scraps. As a 

first step, an analytical approach based on Value In Use (VIU) methodology has been proposed 

as a general tool for assessing the real value of non‐quality scrap. By applying the VIU method, 

the general equations in (4.5), (4.6) and (4.7) have been proposed. 

 New empirical method for estimating VIU loss due to storage degradation: 

The atmospheric degradation process of ferrous material has been widely reported in 

the literature, but it is mainly focused on metallic structure integrity analysis. 

Degradation processes affect the material quality of ferrous scrap, the main 

steelmaking raw material, greatly influencing the operative performance of an EAF, 

which can be noted by applying the Value In Use concept. 

Knowledge of the chemical composition of ferrous materials and their reactions over 

time will facilitate estimates of the economic penalty attached to any loss of quality in 

the EAF smelting process for producing steel. However, current methodologies (and 

only in the case of HBI / DRI materials) include spot sampling and subsequent 

laboratory analysis with conventional analytical techniques. There are currently no 

methodologies to conduct these analyses in a quick and easy manner, nor procedures 

to quantify how the loss in quality will, in both economic and ecological terms, affect 

the process. 

The material degradation processes of different ferrous scrap materials have been 

extensively studied in this work, leading to the development of a model for estimating 

the variations of Fe and iron oxide compounds in the materials throughout their 

storage period. By grouping ferrous materials into two categories (HBI and ferrous 

scrap) during the experimental analysis, an analytical procedure for obtaining the VIU 

loss of the ferrous material, due to the degradation produced by the atmospheric 

corrosion, has been developed. The equations upon which the procedure is based have 

been explained in (7.11), (7.12), (7.29) and (7.30)  

The results of the above equations will help to define the purchasing strategies of the 

scrap recycling center, in terms of material purchasing volumes, considering that a 

lengthier storage period will result in worse degradation of ferrous material quality at 

higher processing costs. 

 New method for the chemical characterization of sterile material in scrap: 

The very varied sources of ferrous scrap mean that the non‐ferrous materials 

contained in scrap materials will also vary. Gathering reliable information on the 

chemical distribution of the scrap mixtures is therefore a complex procedure. There 

are moreover other circumstances that increase the dispersion of the sterile and its 

chemical distribution, such as mixtures of scrap classes and contamination during 

manipulation, which should be measured to maximize the efficiency of the subsequent 



 
Conclusions and future research lines  

404 
 

steel manufacturing processes, as well as unscrupulous trading practices where scrap 

labelled from one source is in fact from various sources.  

The standard state‐of‐the‐art procedure for the determination of the chemical 

composition of sterile materials is based on X‐Ray fluorescence spectroscopy. 

However, XRF technology presents certain limitations for mass analysis whenever huge 

piles of scraps are characterized; tests need to be performed under laboratory 

conditions, and tedious sampling and sample preparation is required for spot analyses.  

Several well‐known spectroscopy techniques and their performance when estimating 

the chemical composition of foreign material attached to the ferrous scraps have been 

evaluated in this study under laboratory conditions.  

In the case of Raman spectroscopy, well‐defined spectra for iron oxides and calcite 

compounds have been generated, with reasonable sensor exposure times and laser 

power levels. However, whenever amorphous SiO2 was present in the samples, the 

spectral signatures were saturated by the SiO2 signal.  

Tests with hyperspectral spectroscopy have demonstrated that the SWIR sensor (2300‐

2400 nm) could be used to arrive at rough estimates of iron oxide (Fe2O3) levels within 

sterile samples, while the VIS+NIR sensor offered quantitative information on the 

presence of CaO in the samples. Spectral information on the presence of silica can be 

extracted from both ranges (VIS+NIR and SWIR). 

FTIR spectroscopy has generated very clear and well‐defined spectral absorption 

signals for individual compounds of CaO and SiO2. However, in a similar way to the 

analysis of silica with Raman technology, the iron‐oxide signals were completely 

blocked by the presence of other compounds. 

In this thesis, the architecture of a new matrix sensor has been proposed, as well as a 

methodology for analyzing the nature of the scrap sterile. Having identified the main 

compounds, the spectral signatures from the right‐hand‐side spectrometers could be 

analyzed to identify the spectral signatures.  

 New method for sterile quantification in scrap deliveries: 

Nowadays, the sorting procedures of many scrap metal suppliers fail to meet the 

minimum requirements defined in standard scrap specifications, in terms of impurities 

and properly sorted scrap. However, the complexity of ferrous material recycling 

processes means that non‐compliance (if within reasonable limits) is to some extent 

expected. The presence of sterile materials mixed with scrap penalizes the steelmaker 

in two ways: 

- If 100% of the material is delivered as iron, then the purchasing process applies the 

same rates for both impurities and scrap. 

- Non‐ferrous materials contained in scrap negatively affect EAF process 

performance, due to a worsening of the Total Cost of Ownership (TCO) of the 

material. 
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Tight controls over the quantity of non‐ferrous materials contained in each scrap 

delivery are crucial for steelmakers, in order to track the material quality of scrap from 

suppliers and to mitigate the two above‐mentioned penalties 

For decades, the most extensive practice for sterile quantification has consisted of a 

visual inspection of each scrap delivery, in which an experienced operator at the scrap 

yard arrives at an estimate based on subjective criteria of the quantity of sterile that is 

present, as well as other possible issues of non‐compliance with the scrap quality 

specifications. Subsequently the scrap recycling center will adjust the rate per ton paid 

to the supplier. It is far from the most optimal procedure, as it clearly depends on 

operator expertise alone.  

In the 21st century, the multiplication of complex artificial intelligence algorithms, 

coupled with the drastic increase in computational capabilities, and the development 

of vision‐based analytical chemistry all offer new methods that can be proposed for 

estimating the sterile/scrap ratio in scrap deliveries.  

The aim of this section of the thesis is to set out the necessary laboratory experiments 

that will firstly demonstrate the applicability of the joint approach of hyperspectral 

imaging and data classification through DeepLearning, and secondly, that will establish 

the basic requirements of a system that must subsequently be functional under 

extreme industrial conditions 

The analytical method, mastered in a laboratory set up under controlled conditions, 

has served to analyze ±500 samples composed of a mixture of E40 with 4 basic sterile 

compounds (SiO2, Fe oxides, CaO, Al2O3). 

Taking the ILSVRC challenge as the starting point of this research, a valid processing 

architecture has been designed for sterile quantification, following several 

experiments with different DeepLearning network architectures under laboratory 

conditions. 

The results have shown that the proposed laboratory set up is a valid method for 

automatic estimation of the quantity of sterile materials mixed in with scrap, which 

could be up‐scaled for an industrial application. 

Certain assumptions must nevertheless change, when moving from the laboratory to 

an industrial context (outdoor systems, machine activity levels, dust, temperature 

variations, vibration…): sensors based on linear technology are no longer applicable. 

The system proposed for the final industrial application will be based on a matrix 

sensor that performs static monitoring of the site where the scrap is unloaded (so that 

the Push‐Broom effect, easily generated under laboratory conditions, will not occur). 

The main challenge of the industrial proposal was the spectral resolution, as the matrix 

sensor has a much lower resolution than the linear sensors. Bearing in mind that 

differentiation between steel and sterile will generally be clearer between a spectral 

range 450 and 650 nm, the most suitable spectral range had to be defined for the 

proposed approach. 
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A final proposal is the industrial adaption of the DeepLearning architecture, the validity 

of which has been proven under laboratory conditions. 

The findings reached in the research presented in this thesis have resulted in three innovative 

methodologies for characterizing the sterile that is present in the scrap materials. With the 

detailed information gathered through the proper application of those methodologies, 

strategies will be developed for the optimization of scrap purchasing and the EAF smelting 

process.   

.    
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10.2 Original contributions and future steps 
 

Within the scope of this doctoral thesis, and based on the feedback from 8 steelmaking 

companies, three new methodologies for characterizing sterile present in scrap materials have 

been developed:  

1. None of the companies reported methods for quantifying the degradation of materials 

while in storage. In this thesis, an empirical model for estimating VIU losses due to 

storage degradation has been proposed. The equations from the model can be 

applied, both to analyze the degradation in material quality and to estimate the 

economic penalties. 

The new model is also useful for spot analysis of stocked material at the scrap 

recycling center. Nevertheless, the integration of this model with other models for 

defining scrap purchasing strategies would result in a highly valuable tool for 

optimizing the TCO scrap mix at the recycling center.    

2. Chemical characterization of the sterile content of scrap material has been restricted 

to spot analysis under laboratory conditions. Three spectroscopy technologies for 

facilitating onsite analysis of sterile scrap were investigated: Raman scattering, 

Hyperspectral imaging, and FTIR. In this research work, light has been shed on the 

limitations of these technologies and their efficiency at performing sterile 

characterization. With that knowledge, the architecture of a new sensor has been 

integrated within each of the three new technologies, in addition to the spectra 

analysis methodology workflow. 

The next step in this research activity will be to prepare a portable analytical device 

incorporating the various spectrographs, with which it has been demonstrated that 

relevant chemical information can be extracted from the sample of sterile.  

New processing algorithms for extracting quantitative information from the portable 

analytical device are still under development and will need to be tested.   

3. Last but not least, a new tool for sterile quantification in scrap deliveries has been 

developed. It is relevant, because it moves beyond current practice, which is 

dependent on the subjective expertise of trained operators whose estimates of the 

sterile quantity in each scrap delivery depend on a visual inspection.  

Throughout the laboratory phase of this research, a deep‐learning architecture applied 

to the results of hyperspectral imaging has demonstrated that discrimination between 

ferrous scrap and sterile material in terms of weight fractions is a feasible option.  

However, work on adapting the tool developed in the laboratory and the production of 

a portable analytical device for use in industry has yet to be completed. An industrial 

system will be required to continue with the proposed development, so an 

intermediate step at a theoretical level is proposed in these conclusions. It will involve 

the redesign of the network architecture to adapt the 2D static input data at a high 
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spectral resolution to a multi‐image input. The image sequence will consist of a 

recently discharged scrap pile following delivery that will be processed together with 

data from image recording devices installed within a scrap cleaning system to generate 

the dataset (images, scrap weight and sterile weight) that will be required for training 

the new network architecture.         
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10.3 Published work 
 

The following scientific papers are outcomes of this thesis: 

1) A. Vicente, I. Macaya, J. A. Sainz, M. Linares, A. Picon, J. A. Arteche. New sensor for 

Electric Arc Furnaces arc stability control. 7th international congress on science and 

technology of steelmaking (2018). Venice – Italy.  

2) A. Vicente, I. Macaya, J. A. Sainz, M. Linares, A. Picon, J. A. Arteche. Magnetic field-

based arc stability sensor for electric arc furnaces. Measurement 151 (2020) 107134 

3) A. Vicente, E. Barco, A.Picon. New method for estimating economic penalties on Hot 

Briquetted Iron (HBI) due to material degradation during storing. Steelmaking and 

Ironmaking (2019).  

4) A. Vicente, E. Barco, A.Picon. New method for estimating steelmaking economic penalties 

of Ferrous scraps due to material degradation during storing in scrap yards. Steelmaking and 

Ironmaking (2020).  

5) A. Vicente, I. Macaya, A.Picon, J. A. Arteche.Fast method for slag characterization during 

ladle furnace steelmaking process based on spectral reflectance. 9th European Slag 

Conference (2017) Metz – France. 

6) A. Picon, A. Vicente, S. Rodriguez-Vaamonde, J. Armentia, J. A. Arteche, I. Macaya. Ladle 

Furnace Slag Characterization Through Hyperspectral Reflectance Regression Model for 

Secondary Metallurgy Process Optimization. IEEE Transactions on Industrial Informatics 

(2017) Vol 14 issue 8 (pag. 3506 – 3512)  

7) A. Vicente. Novel tools for scrap yard management in steelmaking facilities. Workshop 

ESTEP – Green Steel by EAF route (2019) Bergamo – Italy. 

8) A. Vicente. New tools for automatic scrap quality assessment in in steelmaking facilities. 

1st Jornadas DeepLearning Tecnalia (2019) Derio – Spain 

For all papers, the first author contributed with the conceptual design of the research, 

performing the necessary literature review, analysing the data as well as interpreting the 

results and drawing the conclusions.  
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