495 research outputs found

    Aeronautical Engineering: A special bibliography with indexes, supplement 69

    Get PDF
    This bibliography lists 305 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1976

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Aeronautical engineering: A special bibliography with indexes, supplement 42, March 1974

    Get PDF
    This special bibliography lists 338 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1974

    Annual Report 2016 / Institute for Pulsed Power and Microwave Technology / Institut fĂŒr Hochleistungsimpuls- und Mikrowellentechnik. (KIT Scientific Reports ; 7745)

    Get PDF
    Das Institut fĂŒr Hochleistungsimpuls- und Mikrowellentechnik (IHM) arbeitet auf dem Gebiet der Hochleistungsimpuls- und Hochleistungsmikrowellentechnologie. Sowohl die Forschung und Entwicklung von Hochleistungsquellen als auch die damit verbundenen Anwendungen stehen im Fokus

    Analysis of manufacturing operations using knowledge- Enriched aggregate process planning

    Get PDF
    Knowledge-Enriched Aggregate Process Planning is concerned with the problem of supporting agile design and manufacture by making process planning feedback integral to the design function. A novel Digital Enterprise Technology framework (Maropoulos 2003) provides the technical context and is the basis for the integration of the methods with existing technologies for enterprise-wide product development. The work is based upon the assertion that, to assure success when developing new products, the technical and qualitative evaluation of process plans must be carried out as early as possible. An intelligent exploration methodology is presented for the technical evaluation of the many alternative manufacturing options which are feasible during the conceptual and embodiment design phases. 'Data resistant' aggregate product, process and resource models are the foundation of these planning methods. From the low-level attributes of these models, aggregate methods to generate suitable alternative process plans and estimate Quality, Cost and Delivery (QCD) have been created. The reliance on QCD metrics in process planning neglects the importance of tacit knowledge that people use to make everyday decisions and express their professional judgement in design. Hence, the research also advances the core aggregate planning theories by developing knowledge-enrichment methods for measuring and analysing qualitative factors as an additional indicator of manufacturing performance, which can be used to compute the potential of a process plan. The application of these methods allows the designer to make a comparative estimation of manufacturability for design alternatives. Ultimately, this research should translate into significant reductions in both design costs and product development time and create synergy between the product design and the manufacturing system that will be used to make it. The efficacy of the methodology was proved through the development of an experimental computer system (called CAPABLE Space) which used real industrial data, from a leading UK satellite manufacturer to validate the industrial benefits and promote the commercial exploitation of the research

    Robotic Automation of Turning Machines in Fenceless Production: A Planning Toolset for Economic-based Selection Optimization between Collaborative and Classical Industrial Robots

    Get PDF
    UrsprĂŒnglich wurden Industrieroboter hauptsĂ€chlich hinter SchutzzĂ€unen betrieben, um den Sicherheitsanforderungen gerecht zu werden. Mit der Flexibilisierung der Produktion wurden diese scharfen Trennbereiche zunehmend aufgeweicht und externe Sicherheitstechnik, wie Abstandssensoren, genutzt, um Industrieroboter schutzzaunlos zu betreiben. Ausgehend vom Gedanken dieser Koexistenz bzw. Kooperation wurde die Sicherheitssensorik in den Roboter integriert, um eine wirkliche Kollaboration zu ermöglichen. Diese sogenannten kollaborierenden Roboter, oder Cobots, eröffnen neue Applikationsfelder und fĂŒllen somit die bestehenden AutomatisierungslĂŒcken. Doch welche Automatisierungsvariante ist aus wirtschaftlichen Gesichtspunkten die geeignetste? Bisherige Forschung untersucht zum Großteil isoliert eine der beiden Technologien, ohne dabei einen Systemvergleich hinsichtlich technologischer Spezifika und Wirtschaftlichkeit anzustellen. Daher widmet sich diese Dissertation einer Methodik zum wirtschaftlichen Vergleich von kollaborierenden Robotern und Industrierobotern in schutzzaunlosen Maschinenbeladungssystemen. Besonderer Fokus liegt dabei auf dem Herausarbeiten der technischen Faktoren, die die Wirtschaftlichkeit maßgeblich beeinflussen, um ein SystemverstĂ€ndnis der wirtschaftlichen Struktur beider Robotertechnologievarianten zu erhalten. Zur Untersuchung werden die Inhalte eines solchen Planungsvorhabens beschrieben, kategorisiert, systematisiert und modularisiert. Auf wirtschaftlicher Seite wird ein geeignetes Optimierungsmodell vorgestellt, wĂ€hrend auf technischer Seite vor allem die Machbarkeit hinsichtlich Greifbarkeit, Layoutplanung, Robotergeschwindigkeiten und Zykluszeitbestimmung untersucht wird. Mit deduktiven, simulativen, empirischen und statistischen Methoden wird das Systemverhalten fĂŒr die einzelnen Planungsinhalte analysiert, um die Gesamtwirtschaftlichkeit mit einem Minimum an Investment,- Produktions,- und Zykluszeitinformationen a priori vorhersagen zu können. Es wird gezeigt, dass durch einen Reverse Engineering Ansatz die notwendigen Planungsdaten, im Sinne von Layoutkomposition, Robotergeschwindigkeiten und Taktzeiten, mithilfe von Frontloading zu Planungsbeginn zur VerfĂŒgung gestellt werden können. Dabei dient der Kapitalwert als wirtschaftliche Bewertungsgrundlage, dessen AbhĂ€ngigkeit vom Mensch-Roboter-Interaktionsgrad in einem Vorteilhaftigkeitsdiagramm fĂŒr die einzelnen Technologiealternativen dargestellt werden kann. Wirtschaftlich fundierte Entscheidungen können somit auf quantitiativer Basis getroffen werden.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 173Initially, industrial robots were mainly operated behind safety fences to account for the safety requirements. With production flexibilization, these sharp separation areas have been increasingly softened by utilizing external safety devices, such as distance sensors, to operate industrial robots fenceless. Based on this idea of coexistence or cooperation, safety technology has been integrated into the robot to enable true collaboration. These collaborative robots, or cobots, open up new application fields and fill the existing automation gap. But which automation variant is most suitable from an economic perspective? Present research dealt primarily isolated with one technology without comparing these systems regarding technological and economic specifics. Therefore, this doctoral thesis pursues a methodology to economically compare collaborative and industrial robots in fenceless machine tending systems. A particular focus lies on distilling the technical factors that mainly influence the profitability to receive a system understanding of the economic structure of both robot technology variants. For examination, the contents of such a planning scheme are described, categorized, systematized, and modularized. A suitable optimization model is presented on the economic side, while the feasibility regarding gripping, layout planning, robot velocities, and cycle time determination is assessed on the technical side. With deductive, simulative, empirical, and statistical methods, the system behavior of the single planning entities is analyzed to predict the overall profitability a priori with a minimum of investment,- production,- and cycle time information. It is demonstrated that the necessary planning data, in terms of layout composition, robot velocities, and cycle times, can be frontloaded to the project’s beginning with a reverse engineering approach. The net present value serves as the target figure, whose dependency on the human-robot interaction grade can be illustrated in an advantageousness diagram for the individual technical alternatives. Consequently, sound economic decisions can be made on a quantitative basis.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 17

    Transport and Non-Equilibrium Dynamics in Optical Lattices. From Expanding Atomic Clouds to Negative Absolute Temperatures

    Get PDF
    Transport properties and nonequilibrium dynamics in strongly correlated materials are typically difficult to calculate. This holds true even for minimalistic model Hamiltonians of these systems, such as the fermionic Hubbard model. Ultracold atoms in optical lattices enable an alternative realization of the Hubbard model and have the advantage of being free of additional complications such as phonons, lattice defects or impurities. This way, cold atoms can be used as quantum simulators of strongly interacting materials. Being thermally isolated systems, however, we show that cold atoms in optical lattices can also behave very differently from solids and can show a plethora of novel dynamic effects. In this thesis, several out-of equilibrium processes involving interacting fermionic atoms in optical lattices are presented. We first analyze the expansion dynamics of an initially confined atomic cloud in the lowest band of an optical lattice. While non-interacting atoms expand ballistically, the cloud expands with a dramatically reduced velocity in the presence of interactions. Most prominently, the expansion velocity is independent of the attractive or repulsive character of the interactions, highlighting a novel dynamic symmetry of the Hubbard model. In a second project, we discuss the possibility of realizing negative absolute temperatures in optical lattices. Negative absolute temperatures characterize equilibrium states with an inverted occupation of energy levels. Here, we propose a dynamical process to realize equilibrated Fermions at negative temperatures and analyze the time scales of global relaxation to equilibrium, which are associated with a redistribution of energy and particles by slow diffusive processes. We show that energy conservation has a major impact on the dynamics of an interacting cloud in an optical lattice, which is exposed to an additional weak linear (gravitational) potential. Instead of ‘falling downwards‘, the cloud diffuses symmetrically upwards and downwards in the gravitational potential. Furthermore, we show analytically that the radius R grows with the time t according to R ∌ t^1/3, consistent with numerical simulations of the Boltzmann equation. Finally, we analyze the damping of Bloch oscillations by interactions. For a homogeneous system, we discuss the possibility of mapping the dynamics of the particle current to a classical damped harmonic oscillator equation, thereby giving an analytic explanation for the transition from weakly damped to over-damped Bloch oscillations. We show that the dynamics of a strongly Bloch oscillating and weakly interacting atomic cloud can be discribed in terms of a novel effective “stroboscopic” diffusion equation. In this approximation, the cloud’s radius R grows asymptotically in time t according to R ∌ t^1/5

    Mastering Uncertainty in Mechanical Engineering

    Get PDF
    This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering

    Machine learning methods for discriminating natural targets in seabed imagery

    Get PDF
    The research in this thesis concerns feature-based machine learning processes and methods for discriminating qualitative natural targets in seabed imagery. The applications considered, typically involve time-consuming manual processing stages in an industrial setting. An aim of the research is to facilitate a means of assisting human analysts by expediting the tedious interpretative tasks, using machine methods. Some novel approaches are devised and investigated for solving the application problems. These investigations are compartmentalised in four coherent case studies linked by common underlying technical themes and methods. The first study addresses pockmark discrimination in a digital bathymetry model. Manual identification and mapping of even a relatively small number of these landform objects is an expensive process. A novel, supervised machine learning approach to automating the task is presented. The process maps the boundaries of ≈ 2000 pockmarks in seconds - a task that would take days for a human analyst to complete. The second case study investigates different feature creation methods for automatically discriminating sidescan sonar image textures characteristic of Sabellaria spinulosa colonisation. Results from a comparison of several textural feature creation methods on sonar waterfall imagery show that Gabor filter banks yield some of the best results. A further empirical investigation into the filter bank features created on sonar mosaic imagery leads to the identification of a useful configuration and filter parameter ranges for discriminating the target textures in the imagery. Feature saliency estimation is a vital stage in the machine process. Case study three concerns distance measures for the evaluation and ranking of features on sonar imagery. Two novel consensus methods for creating a more robust ranking are proposed. Experimental results show that the consensus methods can improve robustness over a range of feature parameterisations and various seabed texture classification tasks. The final case study is more qualitative in nature and brings together a number of ideas, applied to the classification of target regions in real-world sonar mosaic imagery. A number of technical challenges arose and these were surmounted by devising a novel, hybrid unsupervised method. This fully automated machine approach was compared with a supervised approach in an application to the problem of image-based sediment type discrimination. The hybrid unsupervised method produces a plausible class map in a few minutes of processing time. It is concluded that the versatile, novel process should be generalisable to the discrimination of other subjective natural targets in real-world seabed imagery, such as Sabellaria textures and pockmarks (with appropriate features and feature tuning.) Further, the full automation of pockmark and Sabellaria discrimination is feasible within this framework
    • 

    corecore