4,690 research outputs found

    Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella

    Full text link
    The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.Comment: 27 pages, 10 figure

    Self-assembly of colloidal molecules due to self-generated flow

    Full text link
    The emergence of structure through aggregation is a fascinating topic and of both fundamental and practical interest. Here we demonstrate that self-generated solvent flow can be used to generate long-range attractions on the colloidal scale, with sub-pico Newton forces extending into the millimeter-range. We observe a rich dynamic behavior with the formation and fusion of small clusters resembling molecules, the dynamics of which is governed by an effective conservative energy that decays as 1/r1/r. Breaking the flow symmetry, these clusters can be made active

    Tunable Assembly of Gold Nanorods in Polymer Solutions to Generate Controlled Nanostructured Materials

    Full text link
    Gold nanorods grafted with short chain polymers are assembled into controlled open structures using polymer-induced depletion interactions and structurally characterized using small angle x-ray scattering. When the nanorod diameter is smaller than the radius of gyration of the depletant polymer, the depletion interaction depends solely on the correlation length of the polymer solution and not directly on the polymer molecular weight. As the polymer concentration increases, the stronger depletion interactions increasingly compress the grafted chains and push the gold nanorods closer together. By contrast, other structural characteristics such as the number of nearest neighbors and fractal dimension exhibit a non-monotonic dependence on polymer concentration. These parameters are maximal at intermediate concentrations, which are attributed to a crossover from reaction-limited to diffusion-limited aggregation. The control over structural properties of anisotropic nanoscale building blocks demonstrated here will be beneficial to designing and producing materials \emph{in situ} with specific direction-dependent nanoscale properties and provides a crucial route for advances in additive manufacturing

    Activity-controlled annealing of colloidal monolayers.

    Get PDF
    Molecular motors are essential to the living, generating fluctuations that boost transport and assist assembly. Active colloids, that consume energy to move, hold similar potential for man-made materials controlled by forces generated from within. Yet, their use as a powerhouse in materials science lacks. Here we show a massive acceleration of the annealing of a monolayer of passive beads by moderate addition of self-propelled microparticles. We rationalize our observations with a model of collisions that drive active fluctuations and activate the annealing. The experiment is quantitatively compared with Brownian dynamic simulations that further unveil a dynamical transition in the mechanism of annealing. Active dopants travel uniformly in the system or co-localize at the grain boundaries as a result of the persistence of their motion. Our findings uncover the potential of internal activity to control materials and lay the groundwork for the rise of materials science beyond equilibrium

    Active colloids in complex fluids

    Get PDF
    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension properties, emergent collective behavior, and transport of passive tracer particles. Recent exciting theoretical results and current debate on quantifying these complex active fluids highlight the need for conceptually simple experiments to guide our understanding.Comment: 6 figure
    corecore