The quest for designing new self-propelled colloids is fuelled by the demand
for simple experimental models to study the collective behaviour of their more
complex natural counterparts. Most synthetic self-propelled particles move by
converting the input energy into translational motion. In this work we address
the question if simple self-propelled spheres can assemble into more complex
structures that exhibit rotational motion, possibly coupled with translational
motion as in flagella. We exploit a combination of induced dipolar interactions
and a bonding step to create permanent linear bead chains, composed of
self-propelled Janus spheres, with a well-controlled internal structure. Next,
we study how flexibility between individual swimmers in a chain can affect its
swimming behaviour. Permanent rigid chains showed only active rotational or
spinning motion, whereas longer semi-flexible chains showed both translational
and rotational motion resembling flagella like-motion, in the presence of the
fuel. Moreover, we are able to reproduce our experimental results using
numerical calculations with a minimal model, which includes full hydrodynamic
interactions with the fluid. Our method is general and opens a new way to
design novel self-propelled colloids with complex swimming behaviours, using
different complex starting building blocks in combination with the flexibility
between them.Comment: 27 pages, 10 figure