354 research outputs found

    CloudJet4BigData: Streamlining Big Data via an Accelerated Socket Interface

    Get PDF
    Big data needs to feed users with fresh processing results and cloud platforms can be used to speed up big data applications. This paper describes a new data communication protocol (CloudJet) for long distance and large volume big data accessing operations to alleviate the large latencies encountered in sharing big data resources in the clouds. It encapsulates a dynamic multi-stream/multi-path engine at the socket level, which conforms to Portable Operating System Interface (POSIX) and thereby can accelerate any POSIX-compatible applications across IP based networks. It was demonstrated that CloudJet accelerates typical big data applications such as very large database (VLDB), data mining, media streaming and office applications by up to tenfold in real-world tests

    The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms

    Get PDF
    Chaotic maps play an important role in improving evolutionary algorithms (EAs) for avoiding the local optima and speeding up the convergence. However, different chaotic maps in different phases have different effects on EAs. This paper focuses on exploring the effects of chaotic maps and giving comprehensive guidance for improving multiobjective evolutionary algorithms (MOEAs) by series of experiments. NSGA-II algorithm, a representative of MOEAs using the nondominated sorting and elitist strategy, is taken as the framework to study the effect of chaotic maps. Ten chaotic maps are applied in MOEAs in three phases, that is, initial population, crossover, and mutation operator. Multiobjective problems (MOPs) adopted are ZDT series problems to show the generality. Since the scale of some sequences generated by chaotic maps is changed to fit for MOPs, the correctness of scaling transformation of chaotic sequences is proved by measuring the largest Lyapunov exponent. The convergence metric γ and diversity metric Δ are chosen to evaluate the performance of new algorithms with chaos. The results of experiments demonstrate that chaotic maps can improve the performance of MOEAs, especially in solving problems with convex and piecewise Pareto front. In addition, cat map has the best performance in solving problems with local optima

    Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes

    Get PDF
    In this paper, we propose a Fuzzy Cognitive Map (FCM) learning approach with a multi-local search in balanced memetic algorithms for forecasting industrial drying processes. The first contribution of this paper is to propose a FCM model by an Evolutionary Algorithm (EA), but the resulted FCM model is improved by a multi-local and balanced local search algorithm. Memetic algorithms can be tuned with different local search strategies (CMA-ES, SW, SSW and Simplex) and the balance of the effort between global and local search. To do this, we applied the proposed approach to the forecasting of moisture loss in industrial drying process. The thermal drying process is a relevant one used in many industrial processes such as food industry, biofuels production, detergents and dyes in powder production, pharmaceutical industry, reprography applications, textile industries, and others. This research also shows that exploration of the search space is more relevant than finding local optima in the FCM models tested

    A DATA HIDING SCHEME BASED ON CHAOTIC MAP AND PIXEL PAIRS

    Get PDF
    Information security is one of the most common areas of study today. In the literature, there are many algorithms developed in the information security. The Least Significant Bit (LSB) method is the most known of these algorithms. LSB method is easy to apply however it is not effective on providing data privacy and robustness. In spite of all its disadvantages, LSB is the most frequently used algorithm in literature due to providing high visual quality. In this study, an effective data hiding scheme alternative to LSB, 2LSBs, 3LSBs and 4LSBs algorithms (known as xLSBs), is proposed. In this method, random numbers which are to be used as indices of pixels of the cover image are obtained from chaotic maps and data hiding process is applied on the values of these pixels by using modulo function. Calculated values are embedded in cover image as hidden data. Success of the proposed data hiding scheme is assessed by Peak Signal-to-Noise Ratio (PSNR), payload capacity and quality

    Recent Advancements on Symmetric Cryptography Techniques -A Comprehensive Case Study

    Get PDF
    Now a day2019;s Cryptography is one of the broad areas for researchers; because of the conventional block cipher has lost its potency due to the sophistication of modern systems that can break it by brute force. Due to its importance, several cryptography techniques and algorithms are adopted by many authors to secure the data, but still there is a scope to improve the previous approaches. For this necessity, we provide the comprehensive survey which will help the researchers to provide better techniques

    Long Term Predictive Modeling on Big Spatio-Temporal Data

    Get PDF
    In the era of massive data, one of the most promising research fields involves the analysis of large-scale Spatio-temporal databases to discover exciting and previously unknown but potentially useful patterns from data collected over time and space. A modeling process in this domain must take temporal and spatial correlations into account, but with the dimensionality of the time and space measurements increasing, the number of elements potentially contributing to a target sharply grows, making the target\u27s long-term behavior highly complex, chaotic, highly dynamic, and hard to predict. Therefore, two different considerations are taken into account in this work: one is about how to identify the most relevant and meaningful features from the original Spatio-temporal feature space; the other is about how to model complex space-time dynamics with sensitive dependence on initial and boundary conditions. First, identifying strongly related features and removing the irrelevant or less important features with respect to a target feature from large-scale Spatio-temporal data sets is a critical and challenging issue in many fields, including the evolutionary history of crime hot spots, uncovering weather patterns, predicting floodings, earthquakes, and hurricanes, and determining global warming trends. The optimal sub-feature-set that contains all the valuable information is called the Markov Boundary. Unfortunately, the existing feature selection methods often focus on identifying a single Markov Boundary when real-world data could have many feature subsets that are equally good boundaries. In our work, we design a new multiple-Markov-boundary-based predictive model, Galaxy, to identify the precursors to heavy precipitation event clusters and predict heavy rainfall with a long lead time. We applied Galaxy to an extremely high-dimensional meteorological data set and finally determined 15 Markov boundaries related to heavy rainfall events in the Des Moines River Basin in Iowa. Our model identified the cold surges along the coast of Asia as an essential precursor to the surface weather over the United States, a finding which was later corroborated by climate experts. Second, chaotic behavior exists in many nonlinear Spatio-temporal systems, such as climate dynamics, weather prediction, and the space-time dynamics of virus spread. A reliable solution for these systems must handle their complex space-time dynamics and sensitive dependence on initial and boundary conditions. Deep neural networks\u27 hierarchical feature learning capabilities in both spatial and temporal domains are helpful for nonlinear Spatio-temporal dynamics modeling. However, sensitive dependence on initial and boundary conditions is still challenging for theoretical research and many critical applications. This study proposes a new recurrent architecture, error trajectory tracing, and accompanying training regime, Horizon Forcing, for prediction in chaotic systems. These methods have been validated on real-world Spatio-temporal data sets, including one meteorological dataset, three classics, chaotic systems, and four real-world time series prediction tasks with chaotic characteristics. Experiments\u27 results show that each proposed model could outperform the performance of current baseline approaches
    • 

    corecore