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Abstract

In this paper, we propose a Fuzzy Cognitive Map (FCM) learning approach with a
multi-local search in balanced memetic algorithms for forecasting industrial drying
processes. The first contribution of this paper is to propose a FCM model by an Evo-
lutionary Algorithm (EA), but the resulted FCM model is improved by a multi-local
and balanced local search algorithm. Memetic algorithms can be tuned with different
local search strategies (CMA-ES, SW, SSW and Simplex) and the balance of the effort
between global and local search. To do this, we applied the proposed approach to the
forecasting of moisture loss in industrial drying process. The thermal drying process is
a relevant one used in many industrial processes such as food industry, biofuels produc-
tion, detergents and dyes in powder production, pharmaceutical industry, reprography
applications, textile industries, and others. This research also shows that exploration of
the search space is more relevant than finding local optima in the FCM models tested.

Keywords: Fuzzy Cognitive Maps, Machine Learning, Industrial drying, Memetic

Algorithm

1. Introduction

Fuzzy Cognitive Maps (FCMs) are soft computing tools with the ability to model
the dynamics of complex systems by incorporating the casual relationships between

the main concepts that model the system.
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In this paper, we propose a FCM learning approach with a multi-local search in
balanced memetic algorithms for forecasting industrial drying processes. The main

contributions of this study are as follows

e We propose a hybrid approach. The FCM model is constructed by an Evolution-
ary Algorithm (EA), but the resulted FCM model is improved by a multi-local

and balanced local search algorithm.

e We propose optimizing the selection of the FCM’s activation function using a
pool of functions. After the function is selected, the parameters and slopes are

optimized.

e We check the balance of the effort between EA and local search for learning

FCMs in memetic algorithms.

To the best of our knowledge, there is no work that considers a multi-local search
and different effort balance between global and local search. Consequently, we check
the influence of local search strategies and the balanced effort.

Our proposal is tested on the industrial drying process. The moisture loss of a dry-
ing process is a complex problem with associated risk and uncertainties because it in-
volves two simultaneous processes, transfer of heat and transfer of mass, with the pos-
sible appearance of physical, chemical and even biological transformation processes.
These processes can change the characteristics of the product to dry and therefore turn
mechanisms of heat and mass transfer. So, experimental testing drying with maintain-
ing the essential external variables (temperature, humidity, rate and direction of airflow,
the physical form of the solid, and so on) are necessary for forecasting moisture loss
and dryers design. The relevance of this proposal is to achieve an improved dryer, fore-
seeing the behaviour from different magnitudes of external variables without having to
try experimental drying tests again.

The remainder of this paper is organized as follows. First, in Section 2 we pro-
vide background knowledge on Fuzzy Cognitive Map technique with a focus on its
structure, reasoning and learning. Section 3 details the methodological proposal. The

experimental evaluation of the proposed approach is described in Section 4. Section 5
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concludes the paper.

2. Fuzzy Cognitive Maps

A Fuzzy Cognitive Map (FCM) combines artificial neural networks and fuzzy
logic, and it is useful to model a kind of dynamical systems call complex adaptive
systems (Salmeron, 2009a). In addition, it is able to process the associated uncertainty.
FCM was proposed by |[Kosko| (1986 [1992) and it has become a technique for knowl-
edge representation (Salmeron| 2012; Miao et al.| 2001). They constitute a way to
represent real-world dynamic systems, in a form that corresponds closely to the way
human beings perceive it (Salmeron, 2009b).

FCMs are digraph with variables or concepts (as nodes in the model) that represent
the components of the system (or problem) to model, and directed edges, which model
the causal relationships between the nodes. The edges are weighted ones with fuzzy
values in the range [0.0,1.0] for unipolar FCM models, or [—1.0, +1.0] for bipolar
ones, that show the influence between the variables (Salmeron, 2016). The adjacency
matrix A collects the influence (with w;; weights) between each pair of nodes, where 7

is the presynaptic node and j the postsynaptic one.

Figure 1: FCM model

The weight of the node ¢ in the time lapse ¢ is represented by the value ¢; (k). In

this sense, the state of all the FCM nodes in time lapse & is modelled by the state
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vector c(k) = [¢;(k), ..., cn(k)]. The state ¢; of the concept i in the time lapse k +1
is computed by the sum of the products of the values c¢; of the cause nodes j.in the
former time lapse £ and the value of the edges from the node j to the ¢ (wy;). If the
nodes have memory, the previous value of ¢; in a previous time lapse k will add to the
former result (Salmeron and Papageorgiou,, [2012).

The updating rule of the FCMs’ nodes can take one the following forms, if the node

has memory (Eq. [Tb) of its former state or not (Eq. [La):

n

C,(]i’—‘rl) :f ZCJ(k)wﬂ (1a)
j=1
ci(k+1) = f | eilk) + > cj(k) - wjs (1b)
j=1

where f(-) is the transformation (activation) function (Tsadiras et al., 2003). The trans-
formation function reduces the unbounded weighted sum to a certain range, which
hinders quantitative analysis, but allows for qualitative comparisons between concepts
(Salmeron and Gutierrez, 2012} Stylios and Groumpos, [2004). The most common
FCM’s transformation functions are the unipolar sigmoid and hyperbolic tangent (Bueno
and Salmeron, [2008). A concept is activated by making its state in the vector different
to 0'or ¢; € {(0,+1.0]} V {[-1.0,0.0), (0.0, +1.0]}. Unipolar sigmoid function gives
values of concepts in the range [0.0, 1.0] and is.computed as follows

fle) = p (@)

T 4 e Awjice

The expression of the hyperbolic tangent is as follows

62-)\~w]i-0j -1

flei) = 3

where X\ > 0 is a real positive number for controlling the slope of the function (Stylios
and Groumpos, [2004; Tsadiras et al., 2003). Moreover, hyperbolic tangent gives values
in the range [—1.0, +1.0].

The dynamic of the whole FCM model with an input vector ¢(0) follows a time
trace within a n-dimensional space ", which can gradually converge into an equilib-

rium point, a limited cycle or a chaotic attractor within a fuzzy hypercube (Salmeron
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Figure 2: Main transformation functions (linear, unipolar sigmoid and hyperbolic tangent)

and Lopez, [2012). To which attractor the system will converge depends on the value of
the input vector ¢(0) and the causalities.

FCM learning is usually based on the automatic learning of the adjacency matrix
(A) from the available historical raw data (Papageorgiou and Froelich, 2012} Salmeron
and Froelich, 2016). The learning approaches could be divided into three categories;
hebbian-based, evolutionary-based and hybrid.

Hebbian-based FCM learning objective is to improve the FCM’s adjacency matrix
built from the experts’ heuristic knowledge that lead the FCM to converge into a desired
area for the modelled system.

Furthermore, evolutionary FCM learning approaches evolve adjacency matrices
from historical raw data that best fit the steady states represented by the historical data
or the sequence of input state vectors (¢(0)). The main reward of this approach is that
humans’ engagement is not required. The main goal is to find the optimal adjacency

matrix for modelling complex systems (Salmeron and Froelich, 2016).



Table 1: Learning algorithms in FCMs

Learning Learning Source
categories technique
Differential Hebbian Learning (DHL) qﬁm |m<—o| FE%P
Active Hebbian Learning (AHL) @
Hebbian Nonlinear Hebbian Learning (NHL) (Papageorgiou and Groumpos} 2005a} [Papageorgiou and)|
[Salmeron) [Salmeron and Papageorgiou}
Petri Nets Konar and Chakraborty’ PTFBP
Evolution Strategies
Tabu search
Genetic Algorithm (Froelich_and_Salmeron|
e ol 2016
Real-coded Genetic Algorithm PTLO?} P_ﬂ} IZLEP
Evolutionary | Particle Swarm Optimization anpageorgiou et al.llSalmeron and Froelich|
Ant Colony
Artificial Bee Colony (Yesil et al.| [Salmeron and Froehch}
Simulated annealing (ATizadeh and” Ghazanfari) 2009} [Salmeron and” Froelich
Differential Evolution m
Inmune Systems algorithm
Game-Based Learning
Big Bang - Big Crunch Learning
Extended Great Deluge Algorithm
Memetic algorithms (Petalas et al'} 2005)
NHL-DE Papageorgiou and Groumpos, |2005b;
Hybrid NHL-RCGA q R— : ”_P

(VanClan and Wi 2005

Lastly, FCMs models can be built with hybrid machine learning methods. The

learning goal is to modify the adjacency matrices from the proposed experts’ ones and

90 evolve them from the historical data at a two-stage learning procedure.

Note that hebbian and hybrid ones need to be applied to data including the whole

sequence, because they head to reproduce the whole FCM dynamics and not just the

steady state.

Table[T]includes a summary of the studies about the machine learning proposal for

s building FCMs divided into the categories mentioned above. The Table T|exhibits that

the evolutionary proposals are the most popular ones.
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3. Proposed methodology

This paper proposes an algorithm mixing Real Coded Genetic Algorithms with lo-
cal search. Genetic Algorithms hybridized with local search techniques are often called
memetic algorithms (Molina et al.}|2011). The proposed memetic algorithm for learn-

ing FCMs is shown in Algorithm [I]

Algorithm 1: Proposed FCM learning approach

Data: Domain’s raw data, Population size, Max iterations, Local search
strategy, Balanced effort
Result: Automatic built FCM
1 Design fitness function;
2 Choose initial FCM population (random);
3 Evaluate each FCM’s fitness;
4 while Termination is false do
5 Select best-ranking FCM to reproduce;
6 Mate pairs at random;
7 Prune FCM population;
8 Crossover operator;
9 Mutation operator;

10 while Local Search is applied do

11 for Each candidate solution do

12 Apply selected local search strategy

13 if New solution improves the RCGA solution then
14 Update the candidate solution

15 end

16 end

17 end

18 Evaluate each FCM’s fitness;

19 end

20 Select best-fitness FCM
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Fitness function must be designed. The fitness function must quantitatively mea-
sure how fit a given candidate solution is. In our proposal, the fitness function measures
the Root Mean Square Error (RMSE) (Eq. Ef[) between the predicted moisture 10ss (C4;)

and the observed (real) moisture loss (c4;).

RMSE — \/2?1(@43‘ — ¢45)? @

n

where cy; is the moisture loss of the j th row of the training dataset.

After, the population of candidate solutions are randomly generated (2000 adja-
cency matrices). Then, the fitness of each candidate solution is computed. Then the
algorithm starts the iterations of the RCGA until one the termination criteria stops it.
We use a couple of stopping criteria. The first one is the maximum number of iterations
(5000) and the other one is RMSE < ¢, where ¢ = 0.0001 is the tolerance. Note that
the moisture loss is just one value and there is no need for including more nodes of
the model in the stopping criteria. Now, the iteration cycle of the RCGA starts with
the selection of the best-ranked FCM to reproduce, mating pairs at random, pruning
population, applying crossover and mutation operators.

The next step in our proposal is the local search. The local search can be embedded
within the RCGA process principally in a couple of ways. The first one is the applica-
tion of the local search to every candidate solution. The second way is the application
of the local search during the solution generation. We select the first one.

The selection of the local search strategy and its harmonization with the RCGA is
critical for the performance of memetic approaches (de Oca et al.l 2012)). We consider

four local search strategies (Molina et al.| 201 1)):

e The Covariance Matrix Adaptation Evolution Strategy (CMA-ES). It is a po-
werful local search strategy. As a drawback, when the problem has a huge num-

ber of parameters to optimize it does not scale well.

e A Solis Wets solver (SW). The SW solver is a randomized hill climber. It is

pretty simple and therewith fast.

e Subgrouping Solis Wets (SSW). The SSW strategy is the modified version of SW
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and it is designed for data with high dimensionality. This local search method

explores, at each step of the algorithm, only a random subset of the variables.
e Simplex. It is the well-known simplex algorithm.

In the last step of the local search, if the local search strategy improves the candidate
solution by the global search algorithm, it will be updated. At the end, the proposed

algorithm settles in the global optimum.

4. Experiments

4.1. Moisture loss

Dehydration prevents the proliferation of microorganisms. The action of the sun
and the wind manages an effective method of food conservation (meats, fish, fruit, veg-
etables and cereals). On the other hand, the use of dry wood as fuel allowed the control
of the fire, which is considered one of the fundamental pillars of the technological
development. Nowadays, the drying processes are widely applied: food industry, bio-
fuels production, detergents and dyes in powder production, pharmaceutical industry,
reprography applications, textile industries and others.

Thermal drying is one of the most ancient and more widely used in many industrial
processes (Mujumdar,|2007; [Pedreno-Molina et al.; 2005)). Thermal drying is the result
of two simultaneous actions: one is the heat transfer, where heat is provided to the prod-
uct to evaporate the liquid, and the other is mass transfer, in which the liquid or vapour
is moved through the product. The fluid movement, by which the vapour leaves the
product surface, depends on the structure, characteristics and moisture content of the
material. The migration of the vapour from the solid is a function of the environment
pressure and temperature, the external solid surface, the value of Reynolds number and
drying agent relative humidity.

A proper design of drying equipment requires the knowledge of the drying be-
haviour of the product. This behaviour can be analyzed experimentally at the labora-
tory, by obtaining the drying curves as starting point. In the case of convective thermal
drying, to determine the Moisture Ratio (MR), the mass of a sample placed in the

airflow must be measured as function of drying time.
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When the temperature, moisture content and velocity of air are constant, drying
takes place under constant drying conditions. Subsequently, and using these experi-
mental results, the mathematical modelling of the process can be accomplished. The
drying curves represent the changes in the moisture ratio with time during the drying
process under the established conditions. The dimension less moisture ratio is com-
puted as follows (Midilli, |2001]))

_ Mt—Me

MR= ———
MO — Me

&)

where MO, Mt and Me indicate moisture content (water / dry solid ) in-grams at time
0, time t and equilibrium, respectively. Moisture content was determined using the

equation:
(W0 — W) —Wd
wd

where WO is initial weight of sample in grams, W is the amount of evaporated water and

M= (6)

Wd is dry matter content of sample. Since the value of equilibrium moisture content is
usually low, it is frequently simplified as (Mt / MO0), provided this simplification does
change the value of MR.

The process modelling provides a set of equations which properly describe the
process, under given conditions. The thin-layer models can be distinguished in three
categories, called the theoretical, the semi-theoretical and the empirical ones (Sharaf-
Eldeen and Hamdy, [1979).

The major difference between these categories is that the semi-theoretical and em-
pirical models consider only the external resistance to moisture transfer between prod-
uct and air; these types of models are valid in the specific ranges of temperature, air
velocity and humidity for which they are developed. While the theoretical models sug-
gest that the moisture transfer is controlled mainly by internal resistance mechanisms.
The semi-theoretical and empirical models are the most widely used. The basic reason
for such choice lies in the fact that those models need no geometric, mass diffusivity
nor conductivity assumptions.

There are a wide variety of bibliographical resources devoted to the mathematical
modeling using techniques based on non-linear regression, which define characteris-

tically drying parameters of diverse products in which the falling rate period is the

10
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most important. The semi-theoretical drying models are derived by simplifying gene-
ral series solution of Fick’s law of diffusion. The empirical models are derived from
statistical relations and they directly correlate moisture content with drying time.

Our proposal has been specifically applied to by-products of tomato industry: sludge
and peels-seeds. Sludge is obtained after the latter operation, decanting from the
wastewater treatment plant, while tomato peels and seeds (organic vegetable solid
residues) are presented as by-products of processing of fresh tomato. These materi-
als show a typical moisture content 60 — 70% by weight (wet basis). Both the products
characteristics and the description of the equipment used, as well as the experimental
procedure have been described in Ruiz-Celma et al.| (2012} 2013).

A convective dryer was used as experimental equipment. Basically it consists of a
fan, a resistance battery and a heating control system, air-duct, trays and measurements
instruments. The dryer was located inside a laboratory room so that it could work
under the appropriate operating conditions: surrounding temperature between 15°C
and 25°C, and 60% maximum relative humidity.

The samples were uniformly arranged on the tray as a thin layer and sample thick-
ness (10 mm) was kept constant for each experiment. Moisture loss was recorder at 5
minutes intervals during the drying process in order to determine the experimental dry-
ing curves. The experiments ended when the content of moisture in the samples was
reduced to approximately 10% by weight (wet basis). All drying experiments were
performed in triplicate, and the arithmetic means of the results obtained in each case

were used in the experimental drying curves.

4.2. Proposed model

The FCM model is shown at Fig[3] The nodes ¢4, ¢; and c3 represent the velocity,
temperature and time. The node c, models the potential moisture loss. The goal of
the experiments is to find the best combination of local search strategy and balance

between global and local search. The proposed algorithm evolves the adjacency matrix

in Eq.{7}

11
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Figure 3: FCM model
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Moreover, the proposed algorithm also evolves the transformation function be-
tween the most common ones (linear, unipolar sigmoid and hyperbolic tangent) as
205 represented in Fig. [2] Furthermore, the slope of each activation function is evolved as

well. As result the genotype (chromosome) to evolve is as detailed in Fig.

FCM
I dynamics |
FCM's structure Transformation
(weights) function Slope

o)

je—— Chromosome ——|

Figure 4: Chromosome and genes

The chromosome has five componentes S = {s;}?_;. It includes three genes rep-

resenting the FCM’s structure and two ones modeling the FCM dynamics. The genes

12



210

215

220

225

235

s1 to s represent the weights in the candidates adjacency matrices. The gene s4 rep-
resents the transformation function and the gene sj its slope.

For our experiments we used the malschains’ function from the ’Rmalschains’
package (Molina et al.,[2011) of R language that implements an algorithm family for
continuous optimization called memetic algorithms with local search chains. The ex-
periments have been run with different local search strategies CMA-ES, SW, SSW and
Simplex.

A higher effort means more evaluations for the evolutionary algorithm. In this
sense, if effort= 0.5, then the memetic algorithm runs the same number of evaluations
for evolutionary algorithm and local search. In addition, we have done experiments
with different balance between evolutionary algorithms and local search. This bal-
ance is represented by a parameter between 0 and 1 which gives the ratio between the
number of evaluations used for the local search and for the evolutionary algorithm,

respectively.

4.3. Experiment 1: Sludge

The samples of fresh sludge were obtained from the wastewater treatment plant
of a local tomato industry located in the province of Badajoz (in the Southwest area of
Spain). They showed an initial moisture content 63% by weight (wet basis). This value
was calculated as indicated by the Norm UNE 32001 (32001:1981} 1981).

Drying experiments were conducted at 30°C, 40°C and 50°C drying air temper-
atures and at 0.9 m/s and 1.3 m/s air velocities and according to the methodology
indicated.

The results of the experiment 1 are detailed in the Table [2] The best results are
achieved with effort 0.8. It means that the evolutionary algorithm was evaluated 4000
iterations and the local search 1000 iterations more. With this effort, all the local search
strategies achieve the best result. It means that the local search strategy is not relevant

for learning the FCM model in sludge experiment.

4.4. Experiment 2: Peels-Seeds
The origin of the peels and seeds is the same tomato industry. They showed an

initial moisture content of 66% by weight (wet basis).

13



Table 2: Experiments’ results

Effort Local Search Strategy ~ Sludge  Peels-Seeds

0.8 CMAES 0.172824  0.129835
0.8 Solis Wet 0.172824  0.128125
0.8 SSW 0.172824  0.123348
0.8 Simplex 0.172824 - 0.129832
0.5 CMAES 0.174856  0.129835
0.5 Solis Wet 0.174897  0.126321
0.5 SSW 0.173943 = 0.129321
0.5 Simplex 0.174882  0.129840
0.2 CMAES 0.174855  0.129835
0.2 Solis Wet 0.174956  0.127602
0.2 SSW 0.177324  0.132205
0.2 Simplex 0.174881  0.129840
0.0 CMAES 0.174855  0.129835
0.0 Solis Wet 0.177324  0.127602
0.0 SSW 0.177324  0.126858
0.0 Simplex 0.174881 0.129840

In this case, drying experiments were conducted respectively at 25°C, 35°C and
45°C drying air temperatures and at 1.0 m/s and 1.3 m/s air velocities and according to
the methodology indicated.

The results of the experiments 1 and 2 are detailed in the Table[2] The best results
are achieved with effort 0.8. It means that the evolutionary algorithm evaluated 4000
iterations and the local search 1000 iterations more. With this effort, the local search
strategy achieving the best result is SSW.

Moreover, the results of the experiments 1 and 2 proof that exploration of the search
space is more important than finding local optima in sludge and peels-seeds FCM mod-

els because better results are achieved with higher effort.

14
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5. Conclusions

In this paper, we proposed a multi-local and balanced memetic algorithms to learn-
ing FCM. This proposal has several improvements in relation to the conventional me-
metic algorithms for FCM learning.

Firstly, the authors compare several local search strategies and the balance between
the local and global search in memetic algorithms. Moreover, several local search
strategies and the balance between local and global search are checked. According to
this, the results of our experiments proof that exploration of the search space is more
important than finding local optima in sludge and peels-seeds FCM models, because
better results are achieved with higher effort. If the data has multiple local optima it
would be necessary to apply more effort to local search.

Secondly, the algorithm evolves the FCM structure and the FCM reasoning. In
addition to the optimization of the adjacency matrix, we proposed to optimize the ac-
tivation function and its slope. In this way, the transformation of each FCM node is
optimized together with the transformation function and its slope.

Moreover, the authors applied the proposal to the thermal industry drying process.
As far as we know, this is a novel application of FCM learning.

For future studies, several drawbacks of the FCM method should be overcome.
During the FCM building stage, the number of degrees of freedom is high. It could
lead to potential inaccurate models. In this sense, improved FCM building methods

could be proposed.
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