

CloudJet4BigData: Streamlining Big Data via an accelerated socket interface

Frank Zhigang Wang Theo Dimitrakos Na Helian Sining Wu Ling Li Rodric Yates
School of Computing

University of Kent
UK

Contact author:
frankwang@ieee.org

British Telecom-
munication

UK

SCS
University of
Hertfordshire

UK

Xyratex
Havant

UK

SoC
University of Kent

UK

Hursley Lab.
IBM
UK

Abstract— Big data needs to feed users with fresh processing
results and cloud platforms can be used to speed up big data
applications. This paper describes a new data communication
protocol (CloudJet) for long distance and large volume big
data accessing operations to alleviate the large latencies
encountered in sharing big data resources in the clouds. It
encapsulates a dynamic multi-stream/multi-path engine at the
socket level, which conforms to Portable Operating System
Interface (POSIX) and thereby can accelerate any POSIX-
compatible applications across IP based networks. It was
demonstrated that CloudJet accelerates typical big data
applications such as very large database (VLDB), data mining,
media streaming and office applications by up to tenfold in
real-world tests.

Keywords-Big Data, Cloud Computing, Cloud Storage, Protocols
for networked storage systems, Portable Operating System
Interface (POSIX)

I. INTRODUCTION
Big data needs to feed users with fresh processing re-

sults. Cloud Computing continues to become more data-
intensive and cloud platforms can be used to speed up big
data applications. Researchers from Berkeley listed top 10
obstacles and opportunities for Cloud Computing, of which
at least four obstacles are storage-related [1]. Obstacle No.4
in their list is Data Transfer Bottlenecks that is also our re-
search focus in this paper.

As an important domain of Cloud Computing, Cloud
Storage is Internet-based storage involving virtual servers
that are generally hosted by third parties. Storing data in this
way offers near unlimited storage and can provide signifi-
cant cost savings as there is no need for the business to buy,
run, upgrade or maintain data storage systems with unused
spare capacity. Internet is the communication channel for
Cloud Storage. However, attempting to share or access data
across the Internet/clouds often proves to be a frustrating
and time-consuming experience. The “chatty” nature is neg-
atively affected by WAN latency (normally ≥2 ms): after the
packets are out on the fiber, the transmitter must stop until it
gets an acknowledgement for those packets; after the round-
trip delay time after starting, the acknowledgement gets
back to the sender and the second burst with the default
buffer size can be transmitted. As a result, applications using
a single socket stream will not fill the communication pipe,
i.e., the traffic load is less than its capacity. When the buffer
size is taken as its default value of 64 kB (Linux/Unix), the
capacity efficiency is about 1% [2]. Computer net-

works/grids/clouds are often characterized with a network
latency of 1-2 ms (Local Area Network, LAN), 2-60 ms
(Metropolitan Area Network, MAN) and 60-1000 ms (Wide
Area Network, WAN), respectively [2].

The gap is widening between the maximum-achievable
network bandwidth and the actually-utilized bandwidth
[3][4]. The network bandwidth is doubling every 9 months,
which even outperforms Moore's law [5]. As reported in
TimesOnline, the Internet could soon be made obsolete [6].
The scientists who pioneered it have now built a fast re-
placement at speeds about 10,000 times faster than a typical
broadband connection. That network, in effect a parallel
internet, runs from CERN to 11 centers in Europe, United
States, Canada, the Far East [7], and around the world. By
contrast, the grids/clouds have been built with dedicated
fiber optic cables and modern routing centers, meaning
there are no outdated components to slow the deluge of data
[6].

The primary cause of the gap is the conservative design
of today’s Internet infrastructure. The internet has evolved
by linking together a large number of cables and routing
equipment, much of which was originally designed for tele-
phone calls and therefore lacks the capacity for high-speed
data transmission. In general, the design of today’s network
infrastructure has been influenced by the need to enforce
fair sharing of precious network resources. For this reason,
today’s Internet behavior is unnecessarily conservative for
data-intensive applications such as Cloud Computing/Big
Data on high bandwidth networks.

Most of today’s network routing protocols select only a
single path between a source and a destination. The multi-
path routing takes advantage of path diversity and achieves
an aggregate bandwidth that is theoretically enormous [7].
This also means there is a huge bandwidth gap to fill.

Under some circumstances, distributing storage is more
sensible than centralizing it. Looking at the present trends in
network and storage technology, McGarrah observes that
network bandwidth has grown at a much slower pace than
disk storage capacity [8]. How to increase the efficiency of
the network bandwidth over the storage capacity is a great
concern.

 There were a lot of efforts in addressing remote storage.
The Internet Backplane Protocol (IBP) provides a C API
and a tool set to automate the finding and usage of remote
storage [9]. In GRID codes [10], strip-based erasure codes
with high fault tolerance was developed for storage systems.

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.93

621

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.93

608

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.93

608

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.93

608

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30709236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

With today’s congestion control policy, parallel Sock-
ets/TCP flows steal bandwidth from competing flows. A
fractional parallel streams was reported to solve this fairness
problem [11]. In [12], it is proposed to reorder aggressive
block for large file transfers via FTP (File Transfer Protocol).
Our developed GOS Filesystem (GOS-FS) integrates a par-
allel stream engine and Grid Security Infrastructure (GSI)
[13][14].

This work investigates how a storage-networking proto-
col can best utilize the increased transfer bandwidth. Cloud
Storage/Big Data appliances need to use a specific storage
networking protocol to provide access to its resident data
with end stations on the computational clouds. Our
CloudJet protocol is designed for such a purpose.

II.CLOUDJET: A PROTOCOL FOR BIG DATA IN CLOUDS
As a variant or successor of NAS (Network-attached

Storage), Cloud Storage appliances need to use a specific
storage networking protocol to provide access to its resident
data with end stations in the clouds. A CloudJet interface is
designed to counterattack the network latencies in a typical
big data environment.

2.1 CloudJet Objectives

Driven by the above identified problem of network la-
tency in the clouds, a Socket-level interface titled “CloudJet”
is specially designed for long-distance, large volume big
data applications in the clouds through the efficient usage of
the existing data communication protocols. CloudJet main-
tains multiple bidirectional process-to-process communica-
tion flows across an IP based network, such as the computa-
tional clouds. Our original contributions in this paper are: 1.
A dynamic multi-stream/multi-path engine; 2. An encapsu-
lating at the Socket level.

In 2001, Fisk et al predicted “Perhaps, parallel DRS
(Dynamic Right-Sizing) streams will combine the best of
both approaches (a single stream with dynamic buffer size
and multi streams)” [15]. In this work, we have implement-
ed this engine, in the form of a Socket protocol, preliminari-
ly and are also extending it to multi-path scenarios. This
Socket protocol is superior to what is used in (multi-
streamed) GridFTP or Bit-Torrent. CloudJet encapsulates
the above dynamic multi-stream/multi-path engine, which
conforms to POSIX and thereby can accelerate any POSIX-
compatible applications across IP based networks. In con-
trast, (multi-streamed) GridFTP or Bit-Torrent cannot be
used to accelerate other applications as they themselves are
applications.

In this CloudJet interface, a third layer of
SocketMultiplier is developed and inserted between tradi-
tional BSD Socket and INET Socket (Fig.1) to form a 3-in-1
CloudJet (Fig.1). As the name implies, this SocketMultiplier
opens multiple INET Sockets and enables simultaneous
communication of multiple TCP streams or UDP datagrams
on the same network channel. Data dividing/assembling has
been integrated in SocketMultiplier. With the accelerated

CloudJet that remains fully compatible with the existing IT
infrastructures (BSD socket within POSIX), computer users
can share remote big data in the clouds without having to
adjust the default configurations or change the way they
work (Fig.2).

Applications access the Network from BSD socket inter-
face layer that is close to user space. INET Socket is an ob-
vious entry points where Kernel handles various system
calls for user space socket operations. There are three INET
socket types: 1. Datagram sockets (connectionless, which
use UDP); 2. Stream sockets (connection-oriented, which
use TCP or SCTP); 3. Raw sockets.

In particular, we are interested in a dynamic model for
end-to-end available bandwidth estimation, which helps us
to design a new 3-in-1 socket with an automatic optimizer to
dynamically adjust the number of sockets/streams or sock-
ets/datagrams to take full advantage of the available band-
width and also track the network bandwidth fluctuation in
the clouds.

From its inception, the proposed CloudJet is designed to
deal with long-distance, large volume, cross-domain big
data operations in the clouds – a capability lacking in the
current versions of the Socket interface that normally opens
one INET socket and thereby enables communication of one
TCP stream or UDP datagram. Applications over CloudJet
will alleviate network latency issues for most big data appli-
cations.

Fig.1 SocketMultiplier will be inserted between the traditional
BSD Socket and INET Socket to form a 3-in-1 CloudJet.

622609609609

Fig.2 Single or multiple TCP socket streams with different
capacity utilizations.

2.2 CloudJet Design & Implementation
As mentioned earlier, the original TCP protocol is ill-

suited to high-bandwidth, high-RTT networks and the actual
network bandwidth utilization is unsatisfactory. In principle,
we could list at least three typical techniques (Fig.2) to fill
the empty pipes, which are (1) Increasing the buffer size; (2)
Utilizing multiple streams with the default buffer size; and
(3) Modifying the current congestion control algorithm.
Fig.2 is just an example for TCP communications and the
principle illustrated is also applicable to UDP communica-
tions. As well known, UDP is an unreliable protocol and
should produce less overhead than TCP, therefore, the sent
UDP throughput should be greater than the TCP throughput.

Option 1: Increasing the buffer size
In Fig.2, the shaded areas represent packet size and the

large empty rectangles represent TCP pipe capacity (band-
width*delay). As shown in Fig.2(a), a short pipe can pack
packets tightly due to the quick return of acknowledgements.
That is why even a single connection can fill the pipe at
RTT=0. In Fig.2(b), a long pipe (with a larger latency) can-
not pack packets tightly, i.e. network latencies result in the
under-utilization of network bandwidth resources. Increas-
ing the effective size of the receive window is necessary to
achieve high throughput for connections across the net-
works. As shown in Fig.2(c), a single socket stream with an
increased buffer size can take advantage of the under-
utilized capacity. Nowadays, both Windows (since Vista)
and Linux (since 2.4) have support for TCP receive window
scaling and autotuning.

Unfortunately, it is not practical to modify the default
size of buffers to a right value. We had better use default
configurations without applying any optimization. This is
the usage condition for most scientists that normally have
neither the needed expertise nor the time to configure the
tools with high levels of optimization.

In order to avoid a tedious process of manually tuning
system buffers, it is possible to set the size automatically at
connection set-up. However, the buffer sizes are only ap-
propriate at the beginning of the connection’s lifetime. To
address this problem, an automated dynamic right-sizing
(DRS) technique throughout the connection’s lifetime was
proposed [15].

Option 2: Utilizing multiple streams with the default
buffer size

Multiple streams with the default buffer size (Fig.2(d))
can also take advantage of the under-utilized capacity alt-
hough each individual connection does not pack packets
tightly. Examples include GridFTP [16] and SCTP (Stream
Control Transmission Protocol) [17]. Our test result sup-
ports the claim that the multi-streamed data transport is an
effective way to fill the TCP pipe and improve the capacity
utilizations [13]. Most importantly, each individual connec-
tion in parallel streams still sticks to classic acknowledge-
ment mechanism.

Option 3: Modifying congestion control algorithm
To overcome the slow-recovery in TCP Saw-Tooth be-

havior, TCP Vegas or Fast TCP uses queuing delay instead
of loss probability as a congestion signal [18]. A Fast TCP
flow seeks to maintain a constant number of packets in
queues throughout the network. A single flow Fast TCP
achieved an average throughput of 925 Mb/s over a 1Gbps
link and utilization of 95% [18]. Scalable TCP [19] has been
designed to ensure resource sharing and stability while
maintaining agility to prevailing network conditions. A
working multipath TCP congestion control algorithm [20]
can seamlessly balance traffic over 3G and WiFi radio links.
Nevertheless, either Fast TCP, Scalable TCP or Multipath
TCP with an optimized congestion control is a solution at
the new network transport layer, which is below our socket
layer solution to be proposed. That is to say, the solutions at
these two different layers may work together to aggregate
the acceleration (Fig.1).

Our Option: A Socket protocol encapsulating a dynamic
multi-stream/multi-path engine

CloudJet opens multiple INET sockets and uses parallel
TCP streams or UDP datagrams to achieve very high trans-
fer rates at a fraction of the memory cost and an overhead of
managing multiple threads for data dividing/assembling.
The application data are partitioned into segments with a
fixed size. The segments are allocated to different streams
or datagrams using Round Robin (or similar). Each thread is
in charge of one or more streams or datagrams. The seg-
ments are transmitted simultaneously and then reassembled
by the receiver. The final data is presented to applications as
if they were transmitted through a single socket. Applica-
tions using CloudJet is believed to obtain near optimal
TCP/UDP performance without having to adjust the default
configuration or change the way they work.

In addition, there are another two advantages with our
solution: 1. Fast Recovery; 2. CloudJet implementation at
the socket level efficiently uses the existing data communi-
cation protocols such as Multipath TCP. The details will be
discussed in Section 3.4 (Fast-Recovery Effect of Multi
Streams) and Section 3.5 (Multi-path Routing increases the
aggregate bandwidth), respectively.

2.3 Multi-stream Bandwidth Model and Dynamic Optimizer

Fisk et al found that, under some circumstances having a

623610610610

single stream with appropriately sized buffers, a similar
performance may be achieved as parallel streams [15]. It is
suggested that parallel DRS streams will combine the best
of both approaches [15]. Bullet proposed an algorithm that
sends data to different points in the overlay targeting high-
bandwidth data distribution for applications include large-
file transfers and real-time multimedia streaming [21]. In
2009, Kosar et al proposed a selection algorithm to balance
buffer size and parallel stream number [4].They found that
tuning buffer size and using parallel streams allow im-
provement of TCP throughput at the application level. Their
preliminary results based on a ns-2 simulation show that
using parallel streams on tuned buffers result in significant
increase in throughput [4]. That is to say, tuning buffer size
first and then the number of streams is better than tuning the
number of streams first and then buffer size. In order to fa-
cilitate the above network setting tunings, it is possible to
set up a service that makes the task of network tuning trivial
for application developers and users [3].

In this work, we have implemented CloudJet and this da-
ta engine is superior to the above application-level work of
tuning (multi-streamed) in terms of universally accelerating
all POSIX-compatible applications.

III. INNOVATIONS & COMPARISON WITH PRIOR WORK
3.1 Socket interface supports a much larger number of cloud
applications

Note that (Socket-based) CloudJet differs from (File-
based) GOS. Although both the VFS interface and the
Socket interface are parts of POSIX, the Socket interface
supports a much larger number of storage-networking appli-
cations than the VFS one in a typical cloud environment.

3.2 Socket level implementation in comparison with
transport level one

In contrast to SCTP [17], Fast TCP [18] and Scalable
TCP [19] and Multipath TCP [20], CloudJet implementa-
tion at the socket level is believed to have following ad-
vantages: (a) CloudJet is a Socket-level interface, rather
than a new protocol, that efficiently uses the existing data
communication protocols; (b) CloudJet remains fully com-
patible with the existing BSD socket, legacy applications
can be simply deployed without having to adjust the default
configurations or change the way they work; (c) Different
from SCTP that provides an extended interface to use multi-
streaming, multi-socketing/streaming in CloudJet is trans-
parent to end applications as if the data was transmitted
through a single socket; (d) CloudJet enabling multi-TCP-
streams is still loss-based, avoiding the complex interactions
between loss-based (traditional TCP) and delay-based pro-
tocols (like Fast TCP) when they share the network. (e)
Socket level implementation facilitates application-specific
optimization in contrast to the transport level implementa-
tion.

3.3 Dynamic Numbering Optimizer on a Lossy Network

As introduced in Section 2.3, Fisk et al suggested that
parallel DRS (Dynamic Right-Sizing) streams will combine
the best of both single stream with DRS and multiple
streams [15]. In 2009, Kosar et al proposed a selection algo-
rithm to balance buffer size and parallel stream number [4].

In a typical cloud environment, the packet loss rate p is a
primary factor in determining aggregate TCP throughput of
a parallel TCP connection session. Experience has shown
that n parallel streams can dramatically improve application
throughput, but random packet losses (<0.001) usually oc-
cur in one stream at a time [13][14]. Packet loss may be due
to random factors other than network congestion, such as
intermittent hardware faults. In theory, their effect on the
aggregate throughput will be reduced by a factor of n due to
the reduced overhead of re-sending the lost packets. When
competing with connections over a congested link, each of
the parallel streams will be less likely to be selected for hav-
ing their packet dropped, and therefore the aggregate
amount of potential bandwidth is reduced. The behavior of
packet loss and its effect on the Multi-stream Bandwidth
Model should be studied.

Fig.3 The statistical differences between the measured and estimated
packet loss rates. An empirical formula with a confidence coefficient R is
obtained in the form of a complete second order polynomial.

Fig.3 shows p and the statistical differences between the
measured and estimated ones. It is observed that in the first
region, as the number of sockets increases, the packet loss
increases only slightly. At some point, however, there is a
knee in the curve where congestion effects begin to signifi-
cantly affect the packet loss rate. TCP interprets packet loss
as an explicit congestion notification from the network that
indicates that the sender should decrease its rate of trans-
mission.

The ability to predict p would provide a mechanism for
big data environments to place an accurate commodity value
on available network bandwidth for purposes of trading
network bandwidth on an open Cloud Computing trading
market. There is a trade-off between the sophistication of
the model and measurements needed to fit it. An empirical
formula with a confidence coefficient, R, for Packet Loss
Rate (the number of retransmitted packets divided by the
total number of packets transmitted), p, is obtained in the
form of a complete 2nd order polynomial:

(1)

624611611611

Here α, β and γ are parameters to be fit based on meas-
urements.

Any application using parallel TCP connections must se-
lect the appropriate number of sockets that will maximize
throughput while avoiding congestion. Over the lifetime of
a connection, bandwidth and delay change (due to transitory
queuing, congestion and route changes, etc) imply that the
bandwidth-delay product (BDP) of the connection also
changes. Our tests of the BDP between Cambridge and Bei-
jing at 10 minute intervals support this claim. nettimer [22]
is used to measure dynamic latency and static bottleneck
bandwidth. The bottleneck bandwidth averages 82.1 Mbps
with a low and a high of 46.2 Kbps and 97.5 Mbps, respec-
tively. The RTT delay also varies between (379, 687) ms
with an average delay of 501 ms. As a result, the BDP for
our connection varies by as much as 35 Mb.

Because the BDP over the lifetime of a connection is
continually changing, a fixed value for n is not ideal. Select-
ing a fixed value forces an implicit decision between (1)
under-allocating memory and under-utilizing the network or
(2) over-allocating memory and wasting system resources.
These fixed values are inappropriate even when the BDP is
determined at the start of a connection since the BDP varies
widely, even over short time scales, in wide area networks.
In principle, the number of TCP flows can be manually
tuned to fully utilize the under-utilized bandwidth, but this
is a tedious process. Clearly, the big data community needs
a solution that dynamically and transparently adapts n to
achieve good performance without wasting network or
memory resources. Dynamic Numbering Optimizer (DNO)
is one such solution.

The optimal number of TCP streams, n, should satisfy
Equation (2) [23]:

 (2)

In this equation, Wmax is the maximum congestion win-

dow size, RTT is the round trip time, b is the number of
packets of transmitted data that is acknowledged by one
acknowledgement (ACK) from the receiver (usually b = 2),
and T0 is the timeout value. The above theoretical model
was validated by a series of experiments [11]. It was shown
that in the absence of congestion, the use of parallel TCP
connections is equivalent to using a large MSS (Maximum
Segment Size) on a single connection, with the added bene-
fit of reducing the negative effects of random packet loss.

However, it is impossible to find out an explicit analyti-
cal formula for n since the order of the polynomial in Equa-
tion (2) is as high as 7th against n. A simple method is
adopted: the knee in the aggregate throughput curve, deter-
mined by an optimal n, can be found by enumerating n from
1 to 128 because n can only take integer values. As shown
in our experiments, the performance was steadily improving

for up to 128 simultaneous streams; over 128 streams, insta-
bilities and lower transfer rates were experienced. The RTT
even varies during the lifetime of a connection. Clearly,
dynamically adapting n can achieve good performance
without wasting network or memory resources.

3.4 Fast-Recovery Effect of Multi-Streams

Slow-start is part of the congestion control strategy used
by many network applications [24]. Slow-start is used to
avoid sending more data than the network is capable of
transmitting, that is, network congestion. When a loss event
occurs every 1/p packets, the congestion window will be
reduced by half. This leads to the classic “saw tooth” pattern.
If we combine the two streams into the aggregate represen-
tation it is clear that the effect of using multiple network
sockets is in essence equivalent to increasing the rate of
recovery from a loss event by a factor of two. As the num-
ber of simultaneous TCP connections increases, the overall
rate of recovery will increase until the aggregate network
load begins to congest the network. At this point the TCP
sender should reduce its congestion window.

Given that the aggregate rate of congestion recovery
across all of the parallel TCP streams is functionally equiva-
lent to an increased recovery rate, there is an interesting
observation that can be made. TCP connections over wide
area networks suffer from the disadvantage of long round
trip times relative to other TCP connections that may have
smaller round trip times. This disadvantage allows TCP
senders with small RTTs to recover faster from congestion
and packet loss events than TCP sessions with longer RTTs.
Since the use of parallel TCP sockets provides a higher re-
covery rate, host with longer RTTs are able to compete on a
fairer basis with small RTT TCP connections for bandwidth
in the presence of congestion in the network bottleneck.

3.5 Multi-path Routing increases the aggregate bandwidth

Parallel streaming data access also enables congestion-
aware multi-path routing by taking advantage of path diver-
sity [7][25][26][20]. Most of today’s network routing proto-
cols select only a single path between the source and the
destination (an end-to-end link), limiting the achievable
throughput. Using minimal congestion feedback signals
from the routers, the flow at the source can be optimally
split between each source-destination pair. The aggregate
bandwidth of such multi-path routing should be theoretical-
ly enormous as long as the bottleneck is not formed at the
two local connections to the Internet/clouds.

Parallel streams over a single path (route) may not be
friendly to other users, allowing a single user to take a dis-
proportionate share of available bandwidth. However, multi-
path routing [7][20] takes advantage of multiple paths
(routes) between the source and the destination, therefore
achieving theoretically unlimited aggregate bandwidth. Us-
ing minimal congestion feedback signals from the routers
[7][20][25][26], the flow at the source can be optimally split
between each source-destination pair. Furthermore, multi-

625612612612

core processors [27] are ideal to fill this enormous band-
width gap because they allow many users to connect to a
site simultaneously through independent threads of execu-
tion. This enables Database servers (MySQL /IBM DB2),
Web servers and application servers to have better through-
put. The work of making the multiple connections go
through different routes is still underway at our lab, includ-
ing the utilization of tools such as traceroute to show actual
routing multiplicity.

IV. EXPERIMENTS & MEASUREMENTS
The following real-world tests demonstrate the perfor-

mance of the CloudJet code (alpha release) over the
EuroAsiaGrid network resources [28], as shown in Fig.4.
The EuroAsiaGrid Project is funded by the European Com-
mission (EC) and six sites (Cambridge, London, Paris, Mur-
cia, Delhi and Beijing) have been participating in the tests.
At each site a Linux/Globus machine with installed
CloudJet client gateway was used as a client to access a
dedicated server with installed CloudJet server gateway at
the Cambridge-Cranfield High Performance Computing
Facility (CCHPCF) in the investigation. The CCHPCF has a
155 Mbps permanent connection to the Internet using 10
Gbps SuperJANET backbone via the EastNet Cambridge
node, while at the time of the investigation Murcia had a 10
Mbps connection, London had a 2 Mbps connection, Beijing
had a 100 Mbps connection. The Cambridge-Beijing
datalink represents the longest network connection (geo-
graphic distance 10,000 km, 27 router hops, average RTT =
539 ms).

Some data transport mechanism was benchmarked
across the emulated WAN, producing user-settable delay
and packet drop probability (Fig.4(a)). The average round-
trip time (RTT) ranged from 0 ms to 120 ms. The amount of
real memory used by each of the machine types was as fol-
lows: Dell: 512 MB (client machines); Compaq: 256 MB
(client machines); GOS as storage servers; IBM eServer 306,
512 MB. The TCP buffer size was 64 kB, the OS default
value.

Fig.4 CloudJet experimental setup.

4.1 Benchmarking CloudJet

Fig.5 measures the CloudJet’s bandwidth as a function
of RTT and the number of sockets (SockJ/#sock)
[29][30][31]. Even in a LAN (Local Area Network) envi-
ronment where RTT=0, and therefore the WAN emulator
does not impose any time delay between the client and the
servers, CloudJet still outperforms conventional TCP/IP.
This is because the CloudJet protocol would perform multi-
ple socket/TCP communication by taking advantage of the
time used solely by the hardware and OS implementation in
processing the received data and clearing the receiver buffer.
When RTT = 40 ms, the maximum bandwidth increases to
69.3 MB/s with 8 sockets; when RTT > 40 ms, increases in
bandwidth with further increased #sock can still be seen
toward the right side of the graph. It seems that the band-
width loss due to remote access can be simply retrieved,
more or less, by increasing the number of sockets. However,
when RTT = 40 ms, the maximum bandwidth decreases
from 69.3 MB/s (8 sockets) to 65.9 MB/s with 16 sockets. It
shows that CloudJet would eventually consume too much
time in managing so many sockets, slowing down such an
improvement.

Fig.5 Storage-networking CloudJet’s bandwidth as a function of RTT and

the number of sockets (SockJ/#sock).

4.2 Accelerating distributed applications over CloudJet

As illustrated in Fig.4, OpenOffice [32], MySQL [33],
IBM DB2 [34], Firefox browser [35], Media Player [36],
Google Earth [37] are deployed on top of CloudJet. The
detailed test parameters are listed in Table 1
[38][39][40][41]. These applications achieve up to tenfold
accelerations, as summarized in Table 1. CloudJet addresses
the challenge of sharing large volume data in the clouds
with "LAN-like" performance, which is a highly beneficial
aspect to the big data community. With the accelerated
CloudJet protocol that remains fully compatible with the
existing IT infrastructures, users can efficiently manipulate
and move remote files and multimedia clips in the computa-
tional cloudss.

Table 1 CloudJet accelerates other distributed applications.

Applications Performance over
TCP/IP

Performance over
CloudJet (#socket)

Speedup
(max)

vi/Emacs
1241 s 119 s (#sock = 16)

10.4
Opening a 16MB document remotely over the

626613613613

EuroAsiaGrid with a 4Mbps link to the Inter-
net

OpenOffice
Writer/Calc/

Impress

189 s 29 s (#sock = 8)

6.5
Saving a 16 MB modified document remotely
over the EuroAsiaGrid with a 2 x 100Mbps
link to the Internet

MySQL
24101 s 4092 s (#sock=16)

5.9 Backing up a 652 MB genome database via
mysqldump over the EuroAsiaGrid

Firefox
177 s 33 s (#sock=16)

5.4 Downloading a 16 MB hyperlinked object
from a remote Website

MPlayer
15.1 frames/s 26.7 frames/s

1.8 Playing a 36.4 MB Bondgirls video clip
online from a remote Website

Google Earth
409 s 54 s (#sock=16)

7.6 Load a 41.8 MB map into a layer of the
Google Earth browser

V. CONCLUSIONS
Big Data results in connectivity needs for clusters of

servers numbering in hundreds of nodes, which is often
characterized by networks with large bandwidth-delay
products. Today’s data communication protocols are con-
servatively designed in terms of using only a small fraction
of available network/disk bandwidth. The gap is widening
between the maximum-achievable network bandwidth and
the actually-utilized bandwidth. CloudJet is specially de-
signed to solve this problem. Conforming to the universal
VFS or BSD Socket interface, CloudJet can be pervasively
used as an underlying platform to accelerate typical big data
applications, including Data Mining, MySQL and other Of-
fice/Web/Media applications.

As shown in Fig.6 (Evolution of storage architecture for

networks), to deploy storage resources on the network, one
can choose to “split” different components in the complete
application/data path. A NAS (Network-attached Storage)
splits its filesystem via the NFS protocol (server/client
mode). A NBD (Network Block Device) splits its device
driver, making a remote disk on a different machine act as
though it were a local disk on the local machine appearing
as /dev/nda via a pair of split device drivers. An iSCSI splits
its SCSI bus, allowing a machine to use an iSCSI initiator to
connect to remote targets such as disks and tape drives on
an IP network for block level I/O. As a variant or successor
of NAS, a Grid-oriented Storage (GOS) appliance splits its
specific GOS-FS protocol. Storage-networking protocol
CloudJet in Cloud Storage conforms to POSIX and thereby
can be pervasively used to accelerate any POSIX-
compatible application in the clouds. Distributed applica-
tions such as distributed data mining can be accelerated by a
factor of 2 - 10 in real-world CloudJet tests.

CloudJet conforms to the POSIX (Portable Operating
System Interface) interface and pervasively speeds up near-
ly all network applications. This technique is featured with
long distance and large volume. That is to say, due to the
overhead of managing multiple threads, it does not show
superiority over traditional protocols for short-distance or
small volume storage-networking. It is a storage-networking
protocol for big data rather than a new communication pro-
tocol in general.

CloudJet is a Socket-level interface that efficiently uses
the existing data communication protocols. A
CloudJet/Multi-path TCP combination can achieve theoreti-
cally unlimited aggregate bandwidth by taking advantage of
multiple routes between the source and the destination. This
is friendly to other users because a single user does not need
to take a disproportionate share of available bandwidth from
a single path.

627614614614

Fig.6 Storage architecture for networks continues to evolve.

ACKNOWLEDGEMENTS
We thank Prof Garth Gibson of Carnegie Mellon University,

Prof Kai Li of Princeton University, Prof Ric Parker of Rolls
Royce, Dr Richard Wright of BBC, Dr. Flavia Donno of CERN,
Dr. Sophie Vandebroek of Xerox, Dr. Paddy Francis of EADS, and
Prof Lionel Ni of HKUST for viewing our demonstrations and
providing us with comments that much improved the CloudJet
work. This work is sponsored by the UK government and Europe-
an Commission (EC) through an EPSRC/DTI grant (£ 1 million)
“Grid-oriented Storage (GOS)”, an EPSRC grant (£470k) "Accel-
erating NFS/CIFS", an EC grant (€1 million) “QuickLinux” and an
EC grant (€400k) “EuroAsiaGrid”.

REFERENCES
[1] M. Armbrust, “Above the Clouds: A Berkeley View of Cloud
Computing”, UC Berkeley Reliable Adaptive Distributed Systems Lab,
2009.
[2] D. Wetherall & A. Tanenbaum, Computer Networks. Upper Saddle
River, NJ: Pearson Prentice Hall. ISBN 0-13-212695-8, 2011.
[3] B. Tleney, L. Tierney, Dan Gunter, Jason Lee, Martin Stoufer & Joseph
B. Evans, “Enabling Network-Aware Applications”, proceedings of the
Tenth IEEE International Symposium on High Performance Distributed
Computing (HPDC), August, 2001, San Francisco, CA, 2001
[4] E. Kosar, “Balancing TCP Buffer Size vs Parallel Streams in
Application-Level Throughput Optimization”, The Second International
Workshop on Data-Aware Distributed Computing, Munich, Germany -

June 9, 2009
[5] B. Pearce, Breaking Moore's law, A brief history of the Grid. London:
GridCafé.
[6] J. Leake, Coming soon: superfast internet. TimesOnline.
[7] H. Han, “Multi-Path TCP.” IEEE/ACM Transactions on Networking
14, no. 6: 1260-1271., 2006
[8] J. Toigo, The holy grail of data storage management. Prentice Hall,
2000
[9] S. Plank, Micah Beck, Wael Elwasif, Terry Moore, Martin Swany, Rich
Wolski, Internet Backplane Protocol: Storage in the Network, 2004
[10] M. Li, J. Shu, W. Zheng, “GRID codes: Strip-based erasure codes with
high fault tolerance for storage systems.” ACM Transactions on Storage 4,
no.4: 15, 2009
[11] T. Hacker, “The Effects of Systemic Packet Loss on Aggregate TCP
Flows.” Proceedings of the international conference on Supercomputing.
ACM, 2002
[12] S. Anastasiadis, R. Wickremesinghe, J. Chase, “Rethinking FTP:
Aggressive block reordering for large file transfers.” ACM Transactions on
Storage 4, no. 4: 13, 2009
[13] F. Wang, S. Wu, N. Helian, Y. Deng, A. Parker, Y. Guo, V. Khare,
“Grid-oriented Storage: A Single-Image, Cross-Domain, High-Bandwidth
Architecture.” IEEE Transaction on Computers 56, no. 4, 2007
[14] F. Wang, et al, “Grid-oriented Storage: Parallel Streaming Data
Access to Accelerate Distributed Bioinformatics Data Mining.”
ACM/IEEE SuperComputing Storage Challenge Finalist, USA, 2007
[15] M. Fisk, “Dynamic Right-Sizing: TCP Flow-Control.” ACM/IEEE
Super Computing, 2001
[16] I. Foster, GridFTP Documentation. Chicago: Global Grid Forum, 2009
[17] M. Jones, etter networking with SCTP--The Stream Control
Transmission Protocol combines advantages from both TCP and UDP.

628615615615

IBM, 2006
[18] D. Wei, IEEE/ACM Trans. on Networking 19, no. 1: 4-11, 2007
[19] T. Kelly, “Scalable TCP: improving performance in highspeed wide
area networks.” ACM SIGCOMM Computer Communication Review 32,
no. 2: 83-91, 2003
[20] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, NSDI '11: 8th
USENIX Symposium on Networked Systems Design and Implementation,
Boston, 30 March 2011.
[21] D. Kostic, Adolfo Rodriguez, Jeannie Albrecht, Amin Vahdat, Bullet:
High Bandwidth Data Dissemination Using an Overlay Mesh,"
Proceedings of the 19th ACM Symposium on Operating System Principles
(SOSP 2003), October 2003.
[22] K. Baker, Nettimer: A Tool for Measuring Bottleneck Link
Bandwidth. Stanford University, 2009
[23] T. Hacker, B. Athey, “The End-to-End Performance Effects of Parallel
TCP Sockets on a Lossy Wide-Area Network”, Proceedings of the 16th
International Parallel and Distributed Processing Symposium, 2001
[24] E. Cohen, “Managing TCP Connections under Persistent HTTP.” The
International Journal of Computer and Telecommunications Networking
31, no. 11-16: 1709-1723, 1999
[25] C. Argos, “Adaptive Multi-Path Routing for OBS Networks.” 9th
International Conference on Transparent Optical Networks, 2007
[26] C. Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley, Improving datacenter performance
and robustness with multipath TCP. In Proceedings of the ACM
SIGCOMM conference (SIGCOMM '11). ACM, New York, 2011
[27] C. Leiserson, How to Survive the Multicore Revolution. Cilk Arts.,
2009
[28] CCHPCF, The EC FP7 EuroAsiaGrid/QuickLinux Project,
Cambridge-Cranfield High Performance Computing Facility (CCHPCF),
www.hpcf.cam.ac.uk, 2010
[29] B. Martin, Using Bonnie++ for filesystem performance benchmarking.
Linux, 2008
[30] F. Guo, “From chaos to QoS: case studies in CMP resource
management.” ACM SIGARCH Computer Architecture News 35, no. 1:
21-30, 2007
[31] INSDC, “The International Nucleotide Sequence Database
Collaboration.” http://insdc.org, 2010
[32] M. Muller-Prove, “Community experience at OpenOffice.org.” ACM
Interactions 14, no. 6: 47-48, 2007
[33] MySQL 2012. “MySQLQuery Analyzer - Improving SQL Query
Performance.” www.mysql.com.
[34] D. Zilio, “Self-managing technology in IBM DB2 universal
database.” Proceedings of the tenth international conference on Information
and knowledge management. ACM, 2001
[35] Firefox web browser: Faster, more secure, & customizable,
www.mozilla.com/firefox, 2012
[36] R. Urunela, “Energy adaptation for multimedia information kiosks.”
Proceedings of the 6th ACM & IEEE International conference on
Embedded software. ACM, 2006
[37] C. Schulze, “Sketch-based annotations in Google Earth.” ACM
SIGGRAPH, 2009
[38] D. Kotz, “Disk-directed I/O for MIMD multiprocessors.” ACM
Transactions on Computer Systems 15, no. 1: 41-74, 1997
[39] M. Zhao, “A user-level secure grid file system” Proceedings of the
2007 ACM/IEEE conference on Supercomputing. ACM, 2007.
[40] D. Ferraiolo, “Proposed NIST standard for role-based access control.”
ACM Transactions on Information and System Security 4, no. 3: 224-274,
2001
[41] J. Liu, “Virtualization polling engine (VPE): using dedicated CPU
cores to accelerate I/O virtualization.” Proceedings of the 23rd international
conference on Supercomputing. ACM, 2009

629616616616

