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Abstract— Big data needs to feed users with fresh processing 
results and cloud platforms can be used to speed up big data 
applications. This paper describes a new data communication 
protocol (CloudJet) for long distance and large volume big 
data accessing operations to alleviate the large latencies 
encountered in sharing big data resources in the clouds. It 
encapsulates a dynamic multi-stream/multi-path engine at the 
socket level, which conforms to Portable Operating System 
Interface (POSIX) and thereby can accelerate any POSIX-
compatible applications across IP based networks. It was 
demonstrated that CloudJet accelerates typical big data 
applications such as very large database (VLDB), data mining, 
media streaming and office applications by up to tenfold in 
real-world tests. 
 
Keywords-Big Data, Cloud Computing, Cloud Storage, Protocols 
for networked storage systems, Portable Operating System 
Interface (POSIX) 

I. INTRODUCTION 
Big data needs to feed users with fresh processing re-

sults. Cloud Computing continues to become more data-
intensive and cloud platforms can be used to speed up big 
data applications. Researchers from Berkeley listed top 10 
obstacles and opportunities for Cloud Computing, of which 
at least four obstacles are storage-related [1].  Obstacle No.4 
in their list is Data Transfer Bottlenecks that is also our re-
search focus in this paper. 

As an important domain of Cloud Computing, Cloud 
Storage is Internet-based storage involving virtual servers 
that are generally hosted by third parties. Storing data in this 
way offers near unlimited storage and can provide signifi-
cant cost savings as there is no need for the business to buy, 
run, upgrade or maintain data storage systems with unused 
spare capacity. Internet is the communication channel for 
Cloud Storage. However, attempting to share or access data 
across the Internet/clouds often proves to be a frustrating 
and time-consuming experience. The “chatty” nature is neg-
atively affected by WAN latency (normally ≥2 ms): after the 
packets are out on the fiber, the transmitter must stop until it 
gets an acknowledgement for those packets; after the round-
trip delay time after starting, the acknowledgement gets 
back to the sender and the second burst with the default 
buffer size can be transmitted. As a result, applications using 
a single socket stream will not fill the communication pipe, 
i.e., the traffic load is less than its capacity. When the buffer 
size is taken as its default value of 64 kB (Linux/Unix), the 
capacity efficiency is about 1% [2]. Computer net-

works/grids/clouds are often characterized with a network 
latency of 1-2 ms (Local Area Network, LAN), 2-60 ms 
(Metropolitan Area Network, MAN) and 60-1000 ms (Wide 
Area Network, WAN), respectively [2]. 

The gap is widening between the maximum-achievable 
network bandwidth and the actually-utilized bandwidth 
[3][4]. The network bandwidth is doubling every 9 months, 
which even outperforms Moore's law [5]. As reported in 
TimesOnline, the Internet could soon be made obsolete [6]. 
The scientists who pioneered it have now built a fast re-
placement at speeds about 10,000 times faster than a typical 
broadband connection. That network, in effect a parallel 
internet, runs from CERN to 11 centers in Europe, United 
States, Canada, the Far East [7], and around the world. By 
contrast, the grids/clouds have been built with dedicated 
fiber optic cables and modern routing centers, meaning 
there are no outdated components to slow the deluge of data 
[6].  

The primary cause of the gap is the conservative design 
of today’s Internet infrastructure. The internet has evolved 
by linking together a large number of cables and routing 
equipment, much of which was originally designed for tele-
phone calls and therefore lacks the capacity for high-speed 
data transmission. In general, the design of today’s network 
infrastructure has been influenced by the need to enforce 
fair sharing of precious network resources. For this reason, 
today’s Internet behavior is unnecessarily conservative for 
data-intensive applications such as Cloud Computing/Big 
Data on high bandwidth networks.  

Most of today’s network routing protocols select only a 
single path between a source and a destination. The multi-
path routing takes advantage of path diversity and achieves 
an aggregate bandwidth that is theoretically enormous [7]. 
This also means there is a huge bandwidth gap to fill. 

Under some circumstances, distributing storage is more 
sensible than centralizing it. Looking at the present trends in 
network and storage technology, McGarrah observes that 
network bandwidth has grown at a much slower pace than 
disk storage capacity [8]. How to increase the efficiency of 
the network bandwidth over the storage capacity is a great 
concern. 

 There were a lot of efforts in addressing remote storage. 
The Internet Backplane Protocol (IBP) provides a C API 
and a tool set to automate the finding and usage of remote 
storage [9]. In GRID codes [10], strip-based erasure codes 
with high fault tolerance was developed for storage systems. 
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With today’s congestion control policy, parallel Sock-
ets/TCP flows steal bandwidth from competing flows. A 
fractional parallel streams was reported to solve this fairness 
problem [11]. In [12], it is proposed to reorder aggressive 
block for large file transfers via FTP (File Transfer Protocol). 
Our developed GOS Filesystem (GOS-FS) integrates a par-
allel stream engine and Grid Security Infrastructure (GSI) 
[13][14]. 

This work investigates how a storage-networking proto-
col can best utilize the increased transfer bandwidth. Cloud 
Storage/Big Data appliances need to use a specific storage 
networking protocol to provide access to its resident data 
with end stations on the computational clouds.  Our 
CloudJet protocol is designed for such a purpose.  

II.CLOUDJET: A PROTOCOL FOR BIG DATA IN CLOUDS 
As a variant or successor of NAS (Network-attached 

Storage), Cloud Storage appliances need to use a specific 
storage networking protocol to provide access to its resident 
data with end stations in the clouds.  A CloudJet interface is 
designed to counterattack the network latencies in a typical 
big data environment.  

 
2.1 CloudJet Objectives 

Driven by the above identified problem of network la-
tency in the clouds, a Socket-level interface titled “CloudJet” 
is specially designed for long-distance, large volume big 
data applications in the clouds through the efficient usage of 
the existing data communication protocols. CloudJet main-
tains multiple bidirectional process-to-process communica-
tion flows across an IP based network, such as the computa-
tional clouds. Our original contributions in this paper are: 1. 
A dynamic multi-stream/multi-path engine; 2. An encapsu-
lating at the Socket level.  

In 2001, Fisk et al predicted “Perhaps, parallel DRS 
(Dynamic Right-Sizing) streams will combine the best of 
both approaches (a single stream with dynamic buffer size 
and multi streams)” [15]. In this work, we have implement-
ed this engine, in the form of a Socket protocol, preliminari-
ly and are also extending it to multi-path scenarios. This 
Socket protocol is superior to what is used in (multi-
streamed) GridFTP or Bit-Torrent. CloudJet encapsulates 
the above dynamic multi-stream/multi-path engine, which 
conforms to POSIX and thereby can accelerate any POSIX-
compatible applications across IP based networks. In con-
trast, (multi-streamed) GridFTP or Bit-Torrent cannot be 
used to accelerate other applications as they themselves are 
applications. 

In this CloudJet interface, a third layer of 
SocketMultiplier is developed and inserted between tradi-
tional BSD Socket and INET Socket (Fig.1) to form a 3-in-1 
CloudJet (Fig.1). As the name implies, this SocketMultiplier 
opens multiple INET Sockets and enables simultaneous 
communication of multiple TCP streams or UDP datagrams 
on the same network channel. Data dividing/assembling has 
been integrated in SocketMultiplier. With the accelerated 

CloudJet that remains fully compatible with the existing IT 
infrastructures (BSD socket within POSIX), computer users 
can share remote big data in the clouds without having to 
adjust the default configurations or change the way they 
work (Fig.2). 

Applications access the Network from BSD socket inter-
face layer that is close to user space. INET Socket is an ob-
vious entry points where Kernel handles various system 
calls for user space socket operations. There are three INET 
socket types: 1. Datagram sockets (connectionless, which 
use UDP); 2. Stream sockets (connection-oriented, which 
use TCP or SCTP); 3. Raw sockets. 

In particular, we are interested in a dynamic model for 
end-to-end available bandwidth estimation, which helps us 
to design a new 3-in-1 socket with an automatic optimizer to 
dynamically adjust the number of sockets/streams or sock-
ets/datagrams to take full advantage of the available band-
width and also track the network bandwidth fluctuation in 
the clouds. 

From its inception, the proposed CloudJet is designed to 
deal with long-distance, large volume, cross-domain big 
data operations in the clouds – a capability lacking in the 
current versions of the Socket interface that normally opens 
one INET socket and thereby enables communication of one 
TCP stream or UDP datagram. Applications over CloudJet 
will alleviate network latency issues for most big data appli-
cations.  

 
Fig.1 SocketMultiplier will be inserted between the traditional 
BSD Socket and INET Socket to form a 3-in-1 CloudJet.  

 

 

622609609609



 

 
Fig.2 Single or multiple TCP socket streams with different 
capacity utilizations.  
 

2.2 CloudJet Design & Implementation 
As mentioned earlier, the original TCP protocol is ill-

suited to high-bandwidth, high-RTT networks and the actual 
network bandwidth utilization is unsatisfactory. In principle, 
we could list at least three typical techniques (Fig.2) to fill 
the empty pipes, which are (1) Increasing the buffer size; (2) 
Utilizing multiple streams with the default buffer size; and 
(3) Modifying the current congestion control algorithm. 
Fig.2 is just an example for TCP communications and the 
principle illustrated is also applicable to UDP communica-
tions. As well known, UDP is an unreliable protocol and 
should produce less overhead than TCP, therefore, the sent 
UDP throughput should be greater than the TCP throughput. 

Option 1: Increasing the buffer size 
In Fig.2, the shaded areas represent packet size and the 

large empty rectangles represent TCP pipe capacity (band-
width*delay). As shown in Fig.2(a), a short pipe can pack 
packets tightly due to the quick return of acknowledgements. 
That is why even a single connection can fill the pipe at 
RTT=0. In Fig.2(b), a long pipe (with a larger latency) can-
not pack packets tightly, i.e. network latencies result in the 
under-utilization of network bandwidth resources. Increas-
ing the effective size of the receive window is necessary to 
achieve high throughput for connections across the net-
works. As shown in Fig.2(c), a single socket stream with an 
increased buffer size can take advantage of the under-
utilized capacity. Nowadays, both Windows (since Vista) 
and Linux (since 2.4) have support for TCP receive window 
scaling and autotuning.  

Unfortunately, it is not practical to modify the default 
size of buffers to a right value. We had better use default 
configurations without applying any optimization. This is 
the usage condition for most scientists that normally have 
neither the needed expertise nor the time to configure the 
tools with high levels of optimization. 

In order to avoid a tedious process of manually tuning 
system buffers, it is possible to set the size automatically at 
connection set-up. However, the buffer sizes are only ap-
propriate at the beginning of the connection’s lifetime. To 
address this problem, an automated dynamic right-sizing 
(DRS) technique throughout the connection’s lifetime was 
proposed [15].  

Option 2: Utilizing multiple streams with the default 
buffer size 

Multiple streams with the default buffer size (Fig.2(d)) 
can also take advantage of the under-utilized capacity alt-
hough each individual connection does not pack packets 
tightly. Examples include GridFTP [16] and SCTP (Stream 
Control Transmission Protocol) [17]. Our test result sup-
ports the claim that the multi-streamed data transport is an 
effective way to fill the TCP pipe and improve the capacity 
utilizations [13]. Most importantly, each individual connec-
tion in parallel streams still sticks to classic acknowledge-
ment mechanism.  

Option 3: Modifying congestion control algorithm 
To overcome the slow-recovery in TCP Saw-Tooth be-

havior, TCP Vegas or Fast TCP uses queuing delay instead 
of loss probability as a congestion signal [18]. A Fast TCP 
flow seeks to maintain a constant number of packets in 
queues throughout the network. A single flow Fast TCP 
achieved an average throughput of 925 Mb/s over a 1Gbps 
link and utilization of 95% [18]. Scalable TCP [19] has been 
designed to ensure resource sharing and stability while 
maintaining agility to prevailing network conditions. A 
working multipath TCP congestion control algorithm [20] 
can seamlessly balance traffic over 3G and WiFi radio links. 
Nevertheless, either Fast TCP, Scalable TCP or Multipath 
TCP with an optimized congestion control is a solution at 
the new network transport layer, which is below our socket 
layer solution to be proposed. That is to say, the solutions at 
these two different layers may work together to aggregate 
the acceleration (Fig.1). 

Our Option: A Socket protocol encapsulating a dynamic 
multi-stream/multi-path engine 

CloudJet opens multiple INET sockets and uses parallel 
TCP streams or UDP datagrams to achieve very high trans-
fer rates at a fraction of the memory cost and an overhead of 
managing multiple threads for data dividing/assembling. 
The application data are partitioned into segments with a 
fixed size. The segments are allocated to different streams 
or datagrams using Round Robin (or similar). Each thread is 
in charge of one or more streams or datagrams. The seg-
ments are transmitted simultaneously and then reassembled 
by the receiver. The final data is presented to applications as 
if they were transmitted through a single socket. Applica-
tions using CloudJet is believed to obtain near optimal 
TCP/UDP performance without having to adjust the default 
configuration or change the way they work. 

In addition, there are another two advantages with our 
solution: 1. Fast Recovery; 2. CloudJet implementation at 
the socket level efficiently uses the existing data communi-
cation protocols such as Multipath TCP. The details will be 
discussed in Section 3.4 (Fast-Recovery Effect of Multi 
Streams) and Section 3.5 (Multi-path Routing increases the 
aggregate bandwidth), respectively. 
 
2.3 Multi-stream Bandwidth Model and Dynamic Optimizer  

Fisk et al found that, under some circumstances having a 
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single stream with appropriately sized buffers, a similar 
performance may be achieved as parallel streams [15]. It is 
suggested that parallel DRS streams will combine the best 
of both approaches [15]. Bullet proposed an algorithm that 
sends data to different points in the overlay targeting high-
bandwidth data distribution for applications include large-
file transfers and real-time multimedia streaming [21]. In 
2009, Kosar et al proposed a selection algorithm to balance 
buffer size and parallel stream number [4].They found that 
tuning buffer size and using parallel streams allow im-
provement of TCP throughput at the application level. Their 
preliminary results based on a ns-2 simulation show that 
using parallel streams on tuned buffers result in significant 
increase in throughput [4]. That is to say, tuning buffer size 
first and then the number of streams is better than tuning the 
number of streams first and then buffer size. In order to fa-
cilitate the above network setting tunings, it is possible to 
set up a service that makes the task of network tuning trivial 
for application developers and users [3]. 

In this work, we have implemented CloudJet and this da-
ta engine is superior to the above application-level work of 
tuning (multi-streamed) in terms of universally accelerating 
all POSIX-compatible applications.  

III. INNOVATIONS & COMPARISON WITH PRIOR WORK 
3.1 Socket interface supports a much larger number of cloud 
applications 

Note that (Socket-based) CloudJet differs from (File-
based) GOS. Although both the VFS interface and the 
Socket interface are parts of POSIX, the Socket interface 
supports a much larger number of storage-networking appli-
cations than the VFS one in a typical cloud environment. 

3.2 Socket level implementation in comparison with 
transport level one 

In contrast to SCTP [17], Fast TCP  [18] and Scalable 
TCP  [19] and Multipath TCP [20], CloudJet implementa-
tion at the socket level is believed to have following ad-
vantages: (a) CloudJet is a Socket-level interface, rather 
than a new protocol, that efficiently uses the existing data 
communication protocols; (b) CloudJet remains fully com-
patible with the existing BSD socket, legacy applications 
can be simply deployed without having to adjust the default 
configurations or change the way they work; (c) Different 
from SCTP that provides an extended interface to use multi-
streaming, multi-socketing/streaming in CloudJet is trans-
parent to end applications as if the data was transmitted 
through a single socket; (d) CloudJet enabling multi-TCP-
streams is still loss-based, avoiding the complex interactions 
between loss-based (traditional TCP) and delay-based pro-
tocols (like Fast TCP) when they share the network. (e) 
Socket level implementation facilitates application-specific 
optimization in contrast to the transport level implementa-
tion.  

 
3.3 Dynamic Numbering Optimizer on a Lossy Network 

As introduced in Section 2.3, Fisk et al suggested that 
parallel DRS (Dynamic Right-Sizing) streams will combine 
the best of both single stream with DRS and multiple 
streams [15]. In 2009, Kosar et al proposed a selection algo-
rithm to balance buffer size and parallel stream number [4]. 

In a typical cloud environment, the packet loss rate p is a 
primary factor in determining aggregate TCP throughput of 
a parallel TCP connection session. Experience has shown 
that n parallel streams can dramatically improve application 
throughput, but random packet losses (<0.001) usually oc-
cur in one stream at a time [13][14]. Packet loss may be due 
to random factors other than network congestion, such as 
intermittent hardware faults. In theory, their effect on the 
aggregate throughput will be reduced by a factor of n due to 
the reduced overhead of re-sending the lost packets. When 
competing with connections over a congested link, each of 
the parallel streams will be less likely to be selected for hav-
ing their packet dropped, and therefore the aggregate 
amount of potential bandwidth is reduced. The behavior of 
packet loss and its effect on the Multi-stream Bandwidth 
Model should be studied. 

 
Fig.3 The statistical differences between the measured and estimated 
packet loss rates. An empirical formula with a confidence coefficient R is 
obtained in the form of a complete second order polynomial. 
 

Fig.3 shows p and the statistical differences between the 
measured and estimated ones. It is observed that in the first 
region, as the number of sockets increases, the packet loss 
increases only slightly. At some point, however, there is a 
knee in the curve where congestion effects begin to signifi-
cantly affect the packet loss rate. TCP interprets packet loss 
as an explicit congestion notification from the network that 
indicates that the sender should decrease its rate of trans-
mission. 

The ability to predict p would provide a mechanism for 
big data environments to place an accurate commodity value 
on available network bandwidth for purposes of trading 
network bandwidth on an open Cloud Computing trading 
market. There is a trade-off between the sophistication of 
the model and measurements needed to fit it. An empirical 
formula with a confidence coefficient, R, for Packet Loss 
Rate (the number of retransmitted packets divided by the 
total number of packets transmitted), p, is obtained in the 
form of a complete 2nd order polynomial: 

 
(1) 

 

624611611611



 

Here α, β and γ are parameters to be fit based on meas-
urements. 

Any application using parallel TCP connections must se-
lect the appropriate number of sockets that will maximize 
throughput while avoiding congestion. Over the lifetime of 
a connection, bandwidth and delay change (due to transitory 
queuing, congestion and route changes, etc) imply that the 
bandwidth-delay product (BDP) of the connection also 
changes. Our tests of the BDP between Cambridge and Bei-
jing at 10 minute intervals support this claim. nettimer [22] 
is used to measure dynamic latency and static bottleneck 
bandwidth. The bottleneck bandwidth averages 82.1 Mbps 
with a low and a high of 46.2 Kbps and 97.5 Mbps, respec-
tively. The RTT delay also varies between (379, 687) ms 
with an average delay of 501 ms. As a result, the BDP for 
our connection varies by as much as 35 Mb. 

Because the BDP over the lifetime of a connection is 
continually changing, a fixed value for n is not ideal. Select-
ing a fixed value forces an implicit decision between (1) 
under-allocating memory and under-utilizing the network or 
(2) over-allocating memory and wasting system resources. 
These fixed values are inappropriate even when the BDP is 
determined at the start of a connection since the BDP varies 
widely, even over short time scales, in wide area networks. 
In principle, the number of TCP flows can be manually 
tuned to fully utilize the under-utilized bandwidth, but this 
is a tedious process. Clearly, the big data community needs 
a solution that dynamically and transparently adapts n to 
achieve good performance without wasting network or 
memory resources. Dynamic Numbering Optimizer (DNO) 
is one such solution. 

The optimal number of TCP streams, n, should satisfy 
Equation (2) [23]: 

 
 
 
             (2) 
 
 
In this equation, Wmax is the maximum congestion win-

dow size, RTT is the round trip time, b is the number of 
packets of transmitted data that is acknowledged by one 
acknowledgement (ACK) from the receiver (usually b = 2), 
and T0 is the timeout value. The above theoretical model 
was validated by a series of experiments [11]. It was shown 
that in the absence of congestion, the use of parallel TCP 
connections is equivalent to using a large MSS (Maximum 
Segment Size) on a single connection, with the added bene-
fit of reducing the negative effects of random packet loss. 

However, it is impossible to find out an explicit analyti-
cal formula for n since the order of the polynomial in Equa-
tion (2) is as high as 7th against n. A simple method is 
adopted: the knee in the aggregate throughput curve, deter-
mined by an optimal n, can be found by enumerating n from 
1 to 128 because n can only take integer values. As shown 
in our experiments, the performance was steadily improving 

for up to 128 simultaneous streams; over 128 streams, insta-
bilities and lower transfer rates were experienced. The RTT 
even varies during the lifetime of a connection. Clearly, 
dynamically adapting n can achieve good performance 
without wasting network or memory resources.  

 
3.4 Fast-Recovery Effect of Multi-Streams 

Slow-start is part of the congestion control strategy used 
by many network applications [24]. Slow-start is used to 
avoid sending more data than the network is capable of 
transmitting, that is, network congestion. When a loss event 
occurs every 1/p packets, the congestion window will be 
reduced by half. This leads to the classic “saw tooth” pattern. 
If we combine the two streams into the aggregate represen-
tation it is clear that the effect of using multiple network 
sockets is in essence equivalent to increasing the rate of 
recovery from a loss event by a factor of two. As the num-
ber of simultaneous TCP connections increases, the overall 
rate of recovery will increase until the aggregate network 
load begins to congest the network. At this point the TCP 
sender should reduce its congestion window. 

Given that the aggregate rate of congestion recovery 
across all of the parallel TCP streams is functionally equiva-
lent to an increased recovery rate, there is an interesting 
observation that can be made. TCP connections over wide 
area networks suffer from the disadvantage of long round 
trip times relative to other TCP connections that may have 
smaller round trip times. This disadvantage allows TCP 
senders with small RTTs to recover faster from congestion 
and packet loss events than TCP sessions with longer RTTs. 
Since the use of parallel TCP sockets provides a higher re-
covery rate, host with longer RTTs are able to compete on a 
fairer basis with small RTT TCP connections for bandwidth 
in the presence of congestion in the network bottleneck. 

 
3.5 Multi-path Routing increases the aggregate bandwidth 

Parallel streaming data access also enables congestion-
aware multi-path routing by taking advantage of path diver-
sity [7][25][26][20]. Most of today’s network routing proto-
cols select only a single path between the source and the 
destination (an end-to-end link), limiting the achievable 
throughput. Using minimal congestion feedback signals 
from the routers, the flow at the source can be optimally 
split between each source-destination pair. The aggregate 
bandwidth of such multi-path routing should be theoretical-
ly enormous as long as the bottleneck is not formed at the 
two local connections to the Internet/clouds. 

Parallel streams over a single path (route) may not be 
friendly to other users, allowing a single user to take a dis-
proportionate share of available bandwidth. However, multi-
path routing [7][20] takes advantage of multiple paths 
(routes) between the source and the destination, therefore 
achieving theoretically unlimited aggregate bandwidth. Us-
ing minimal congestion feedback signals from the routers 
[7][20][25][26], the flow at the source can be optimally split 
between each source-destination pair. Furthermore, multi-
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core processors [27] are ideal to fill this enormous band-
width gap because they allow many users to connect to a 
site simultaneously through independent threads of execu-
tion. This enables Database servers (MySQL /IBM DB2), 
Web servers and application servers to have better through-
put. The work of making the multiple connections go 
through different routes is still underway at our lab, includ-
ing the utilization of tools such as traceroute to show actual 
routing multiplicity.  

IV. EXPERIMENTS & MEASUREMENTS 
The following real-world tests demonstrate the perfor-

mance of the CloudJet code (alpha release) over the 
EuroAsiaGrid network resources [28], as shown in Fig.4. 
The EuroAsiaGrid Project is funded by the European Com-
mission (EC) and six sites (Cambridge, London, Paris, Mur-
cia, Delhi and Beijing) have been participating in the tests. 
At each site a Linux/Globus machine with installed 
CloudJet client gateway was used as a client to access a 
dedicated server with installed CloudJet server gateway at 
the Cambridge-Cranfield High Performance Computing 
Facility (CCHPCF) in the investigation. The CCHPCF has a 
155 Mbps permanent connection to the Internet using 10 
Gbps SuperJANET backbone via the EastNet Cambridge 
node, while at the time of the investigation Murcia had a 10 
Mbps connection, London had a 2 Mbps connection, Beijing 
had a 100 Mbps connection. The Cambridge-Beijing 
datalink represents the longest network connection (geo-
graphic distance 10,000 km, 27 router hops, average RTT = 
539 ms). 

Some data transport mechanism was benchmarked 
across the emulated WAN, producing user-settable delay 
and packet drop probability (Fig.4(a)). The average round-
trip time (RTT) ranged from 0 ms to 120 ms. The amount of 
real memory used by each of the machine types was as fol-
lows: Dell: 512 MB (client machines); Compaq: 256 MB 
(client machines); GOS as storage servers; IBM eServer 306, 
512 MB. The TCP buffer size was 64 kB, the OS default 
value. 

 

 
Fig.4 CloudJet experimental setup.  

 
4.1 Benchmarking CloudJet 

Fig.5 measures the CloudJet’s bandwidth as a function 
of RTT and the number of sockets (SockJ/#sock) 
[29][30][31]. Even in a LAN (Local Area Network) envi-
ronment where RTT=0, and therefore the WAN emulator 
does not impose any time delay between the client and the 
servers, CloudJet still outperforms conventional TCP/IP. 
This is because the CloudJet protocol would perform multi-
ple socket/TCP communication by taking advantage of the 
time used solely by the hardware and OS implementation in 
processing the received data and clearing the receiver buffer. 
When RTT = 40 ms, the maximum bandwidth increases to 
69.3 MB/s with 8 sockets; when RTT > 40 ms, increases in 
bandwidth with further increased #sock can still be seen 
toward the right side of the graph. It seems that the band-
width loss due to remote access can be simply retrieved, 
more or less, by increasing the number of sockets. However, 
when RTT = 40 ms, the maximum bandwidth decreases 
from 69.3 MB/s (8 sockets) to 65.9 MB/s with 16 sockets. It 
shows that CloudJet would eventually consume too much 
time in managing so many sockets, slowing down such an 
improvement. 

 
Fig.5 Storage-networking CloudJet’s bandwidth as a function of RTT and 

the number of sockets (SockJ/#sock). 
 
4.2 Accelerating distributed applications over CloudJet 

As illustrated in Fig.4, OpenOffice [32], MySQL [33], 
IBM DB2 [34], Firefox browser [35], Media Player [36], 
Google Earth [37] are deployed on top of CloudJet. The 
detailed test parameters are listed in Table 1 
[38][39][40][41]. These applications achieve up to tenfold 
accelerations, as summarized in Table 1. CloudJet addresses 
the challenge of sharing large volume data in the clouds 
with "LAN-like" performance, which is a highly beneficial 
aspect to the big data community. With the accelerated 
CloudJet protocol that remains fully compatible with the 
existing IT infrastructures, users can efficiently manipulate 
and move remote files and multimedia clips in the computa-
tional cloudss. 

 
Table 1 CloudJet accelerates other distributed applications. 

Applications Performance over 
TCP/IP 

Performance over 
CloudJet (#socket) 

Speedup 
(max) 

vi/Emacs 
1241 s 119 s (#sock = 16) 

10.4 
Opening a 16MB document remotely over the 
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EuroAsiaGrid with a 4Mbps link to the Inter-
net 

OpenOffice 
Writer/Calc/ 

Impress 

189 s 29 s (#sock = 8) 

6.5 
Saving a 16 MB modified document remotely
over the EuroAsiaGrid with a 2 x 100Mbps
link to the Internet 

MySQL 
24101 s 4092 s (#sock=16) 

5.9 Backing up a 652 MB genome database via
mysqldump over the EuroAsiaGrid 

Firefox 
177 s 33 s (#sock=16) 

5.4 Downloading a 16 MB hyperlinked object
from a remote Website 

MPlayer 
15.1 frames/s 26.7 frames/s 

1.8 Playing a 36.4 MB Bondgirls video clip
online from a remote Website 

Google Earth 
409 s 54 s (#sock=16) 

7.6 Load a 41.8 MB map into a layer of the
Google Earth browser 

 
 
 

V. CONCLUSIONS 
Big Data results in connectivity needs for clusters of 

servers numbering in hundreds of nodes, which is often 
characterized by networks with large bandwidth-delay 
products. Today’s data communication protocols are con-
servatively designed in terms of using only a small fraction 
of available network/disk bandwidth. The gap is widening 
between the maximum-achievable network bandwidth and 
the actually-utilized bandwidth. CloudJet is specially de-
signed to solve this problem. Conforming to the universal 
VFS or BSD Socket interface, CloudJet can be pervasively 
used as an underlying platform to accelerate typical big data 
applications, including Data Mining, MySQL and other Of-
fice/Web/Media applications.  

As shown in Fig.6 (Evolution of storage architecture for 

networks), to deploy storage resources on the network, one 
can choose to “split” different components in the complete 
application/data path. A NAS (Network-attached Storage) 
splits its filesystem via the NFS protocol (server/client 
mode). A NBD (Network Block Device) splits its device 
driver, making a remote disk on a different machine act as 
though it were a local disk on the local machine appearing 
as /dev/nda via a pair of split device drivers. An iSCSI splits 
its SCSI bus, allowing a machine to use an iSCSI initiator to 
connect to remote targets such as disks and tape drives on 
an IP network for block level I/O. As a variant or successor 
of NAS, a Grid-oriented Storage (GOS) appliance splits its 
specific GOS-FS protocol. Storage-networking protocol 
CloudJet in Cloud Storage conforms to POSIX and thereby 
can be pervasively used to accelerate any POSIX-
compatible application in the clouds. Distributed applica-
tions such as distributed data mining can be accelerated by a 
factor of 2 - 10 in real-world CloudJet tests.  

CloudJet conforms to the POSIX (Portable Operating 
System Interface) interface and pervasively speeds up near-
ly all network applications. This technique is featured with 
long distance and large volume. That is to say, due to the 
overhead of managing multiple threads, it does not show 
superiority over traditional protocols for short-distance or 
small volume storage-networking. It is a storage-networking 
protocol for big data rather than a new communication pro-
tocol in general. 

CloudJet is a Socket-level interface that efficiently uses 
the existing data communication protocols. A 
CloudJet/Multi-path TCP combination can achieve theoreti-
cally unlimited aggregate bandwidth by taking advantage of 
multiple routes between the source and the destination. This 
is friendly to other users because a single user does not need 
to take a disproportionate share of available bandwidth from 
a single path. 
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Fig.6 Storage architecture for networks continues to evolve. 
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