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ABSTRACT

LONG TERM PREDICTIVE MODELING ON BIG
SPATIO-TEMPORAL DATA

December 2021

YONG ZHUANG

B.Eng., HARBIN ENGINEERING UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS BOSTON

Ph.D., UNIVERSITY OF MASSACHUSETTS BOSTON

Directed by: Professor Wei Ding, Professor

In the era of massive data, one of the most promising research fields involves the

analysis of large-scale Spatio-temporal databases to discover exciting and previously

unknown but potentially useful patterns from data collected over time and space.

A modeling process in this domain must take temporal and spatial correlations into

account. However, with the dimensionality of the time and space measurements

increasing, the number of elements potentially contributing to a target sharply grows,

making the target’s long-term behavior highly complex, chaotic, highly dynamic, and

hard to predict. Therefore, two different considerations are taken into account in this

work: identifying the most relevant and meaningful features from the original Spatio-

temporal feature space; and modeling complex space-time dynamics with sensitive

dependence on initial conditions.

First, identifying strongly related features and removing the irrelevant or less im-

portant features to a target feature from large-scale Spatio-temporal data sets is a
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critical and challenging issue in many fields. The optimal sub-feature-set contain-

ing all the valuable information is called the Markov Boundary. Unfortunately, the

existing feature selection methods often focus on identifying a single Markov Bound-

ary when real-world data could have many feature subsets that are equally good

boundaries. In our work, we design a new multiple-Markov-boundary-based predic-

tive model, Galaxy, to identify the precursors to heavy precipitation event clusters

and predict heavy rainfall with a long lead time. Our model identified the cold surges

along the coast of Asia as an essential precursor to the surface weather over the United

States, a finding which climate experts later corroborated.

Second, chaotic behavior exists in many nonlinear Spatio-temporal systems. A

reliable solution for these systems must handle their complex space-time dynamics and

sensitive dependence on initial and boundary conditions. We propose a new recurrent

architecture(error trajectory tracking) and an accompanying training regime(Horizon

Forcing) for prediction in chaotic systems. By better evaluating the consequences of

local errors when modeling nonlinear systems, the proposed model can push the time

horizon of reliable predictions further into the future.

v



ACKNOWLEDGMENTS

This journey would not have been possible without the dedicated support and

encouragement from friends, family, and colleagues.

I would like to first deliver my sincere gratitude to my adviser, Professor Wei

Ding. She first saw my potential to make this journey, guiding me along the way and

constantly pushing me to enhance my quality for discovering and solving research

problems. She has always inspired me to believe that, even in difficult times, all

things are possible. I would also express my appreciation to Professor Ping Chen for

his guidance during the long process from idea to experiment to paper. My great

thanks to Professor and Dissertation Committee member Shafiqul Islam of Tufts

University for providing the real-world data and expertise on which all our theories

and models depend. I must also thank Professor and Committee member Nurit

Haspel for her clear and precise explanations in the course Analysis of Algorithms.

Her suggestions and comments influenced me a lot. Great thanks to Professor and

Committee member Dan Simovici for his expertise and guidance and all the other

Computer Science Professors who shared their knowledge and insights during my

coursework.

I want to express my great thankfulness to the rest of the Artificial Intelligence

and Knowledge Discovery Labs members. Especially to Dr. Matthew Almeida. The

experience of cooperating on Horizon Forcing papers and countless discussions in

research and personal aspects is one of my invaluable assets. Also, great thanks

for helping me with the proofreading. To Dr. Tong Wang, Dr. Kaixun Hua, The

positive learning experience from our machine learning study group has become one

of my precious memory. I also want to thank Dr. Dawei Wang, Dr. Yang Mu, Dr.

vi



Joseph Paul Cohen, Dr. Henry Lo, and Dr. Yahui Di for sharing their research

experience. Many thanks to Dr. Shaohua Jia, Dr. Jipeng Qiang, Dr. Tingting Lu,

Hefei Qiu, Olga Andreeva, Tianyu Kang, Zihan Li, Chengjie Zheng, Dr. Yi Ren,

Dr. Siyuan Gong, Patrick Flynn, and many others. I appreciate their support and

friendship during my Ph.D. study.

My special thanks go to my parents (Shengcheng Zhuang, Cailian Zhang) and my

wife’s family for their long-standing support, patience, comprehension, and encour-

agement throughout the entire journey of my Ph.D. study.

Finally, I express my most significant appreciation to my wife, Rui Lu, for her

persistent understanding and consideration. I thank her for accompanying me on

this journey through both the good and the tough times.

vii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Long-Term Prediction Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Feature Selection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Basic Properties of Probability Distributions . . . . . . . . . . . . . . . . . 8
2.4.2 Markov Boundary Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Learning Temporal Dynamics via Deep Neural Networks . . . . . . . . . . . 11

3. IDENTIFICATION OF MULTIPLE INTERPRETABLE PREDICTOR
SETS FOR ENSEMBLE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Galaxy Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Galaxy Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Partial Minimal Target Explanation (PMTE) Detection . . . . . . 17
3.3.3 Galaxy Space Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Synthetic data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.3 Q1. Effectiveness on highly correlated data . . . . . . . . . . . . . . . . . 26
3.4.4 The Precipitation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.5 Q2. Interpretation of target explanations . . . . . . . . . . . . . . . . . . . 28

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



CHAPTER Page

4. WIDENING THE TIME HORIZON: PREDICTING THE
LONG-TERM BEHAVIOR OF CHAOTIC SYSTEMS . . . . . . . . . . . . . . . . . 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Recurrent Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Reservoir Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Teacher Forcing in Deep Recurrent Neural Networks . . . . . . . . . 35
4.2.4 Transformer Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.5 The Broad Learning System and Extreme Learning

Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Methods: Error Trajectory Tracing and Horizon Forcing . . . . . . . . . . . . 38

4.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Lyapunov horizon loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Model architecture: Error Trajectory Tracing . . . . . . . . . . . . . . . 43
4.3.4 A novel training procedure: Horizon Forcing . . . . . . . . . . . . . . . . 46

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Known Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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CHAPTER 1

INTRODUCTION

1.1 Research Questions

Space and time are omnipresent in measurements in many fields, including climate

science, social science, epidemiology, transportation, criminology, and earth science.

Many data collection methods are designed to record each measurement’s spatial and

temporal information in the data because of the Spatio-temporal nature of real-world

processes studied in these fields. Massive Spatio-temporal data provides more possi-

bilities for research in these fields. Forecasting the long-term future is one of the most

urgent needs in Spatio-temporal data analysis. Many practical applications, such as

disaster prevention, dynamic traffic management, and resource pre-allocation, require

longer to prepare and provide emergency support. High-dimensional Spatio-temporal

phenomena are more challenging than traditional prediction problems because they

deal with nonlinear time correlations and dynamic and complex spatial correlations.

The challenge becomes extremely arduous in the long-term prediction since tiny errors

can traverse complex correlations and lead to the butterfly effect of error propagation

which makes the predictive ability at each upcoming space-time position rapidly lost.

At present, achieving effective long-term prediction of Spatio-temporal phenomena is

still challenging in data mining and machine learning.

This thesis focuses on two considerations that affect the performance of long-term

prediction on Spatio-temporal data sets. The first is high predictability and inter-

pretability feature subsets from the original high dimensional Spatio-temporal feature

space. Long term predictions always need to consider a deluge of features over space
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and time. However, it is almost impossible that all these features are necessary for

model building. Redundant and irrelevant features may reduce the model’s general-

ization ability, Interpretability, and accuracy and increase its complexity. Therefore,

searching for the most meaningful sub-feature-set becomes very important. In causal

analysis, the optimal sub-feature-set that contains all the target feature information

is called the Markov Boundary. However, the existing feature selection methods of-

ten focus on identifying a single Markov Boundary when real-world data could have

many feature subsets that are equally good boundaries. A single Markov Bound-

ary may not cover all the information of the target feature. We expect to identify

multiple Markov boundaries containing all the target feature’s predictability and in-

terpretability information for constructing forecasting model to simplify models for

more straightforward interpretation and enhanced generalization by reducing over-

fitting. The detail is presented in Chapter 3.

The second is handling the complex space-time dynamics and sensitive dependence

on initial conditions in Spatio-temporal data. Spatio-temporal correlations are highly

complex, chaotic, dynamic, and sensitive dependent on initial conditions. Especially

in the long-term prediction, tiny errors in the initial conditions will soon lead to

exponential differently, which means the predictive ability is rapidly lost. We expect

to push the time horizon at which reliable predictions can be made further into the

future by modeling the evolution of the initial errors.. This work is presented in

Chapter 4.

1.2 Contributions of this thesis

This thesis focuses on two considerations for long-term forecasting on big Spatio-

temporal data, specifically a technique for identifying the most relevant and meaning-

ful features from the original Spatio-temporal feature space and a method for model-

ing complex space-time dynamics with sensitive dependence on initial and boundary

2



conditions. I provide a summary of the contributions here, with a more thorough

description is given in the Conclusions chapter. In Chapter 3:

• We define the notion of Partial Minimal Target Explanation to represent the

most relevant and meaningful features to the target instances derived from

the same subpopulation. We also design an algorithm to detect PMTE using

equivalent feature detection.

• We define the notion of Galaxy space to represent the most meaningful feature

sets with global faithfulness of the overall population of the target feature. We

also design and implement the Galaxy algorithm to discover the Galaxy space

from the mixed distribution and then do forecasts by its ensemble predictive

power. In our empirical experiments, our algorithm outperforms state-of-the-art

ensemble methods under dimensional feature space.

• We apply Galaxy to study historical precipitation data in the Des Moines river

basin. Our empirical study includes 5,313,600 features over 67 years of data.

Our model identified the cold surges along the coast of Asia as an essential

precursor to the surface weather over the United States, a finding which climate

experts later corroborated.

In Chapter 4:

• We design a new recurrent architecture for error trajectory tracing (ETT) to

simulate temporal dynamics. It allows the model to optimize its parameters

based on the true, longer-term consequences of minor initial prediction errors

and how the trajectories beginning at the predicted states evolve forward to the

time horizon.

• We present Horizon Forcing, a new training regime for optimizing our ETT

models. It begins with a short-term error evaluation and then focuses on the

3



long term as training progresses. By doing this with shared weights, we fur-

ther improve the single-step error (a proxy for the system’s transition function)

because minimizing long-term error necessitates controlling short-term error in

chaotic systems.

• We extensively validate our method on three well-studied chaotic systems with

known dynamics and a set of real-world time series prediction tasks.

In summary, this thesis presents two major concerns for long-term prediction

problems on Spatio-temporal data and offers a novel approach to use in each case.

Methods are validated with experiments on real-world data sets, including one me-

teorological dataset, three classics, chaotic systems, and four real-world time series

prediction tasks with chaotic characteristics.

4



CHAPTER 2

BACKGROUND

2.1 Notation

• an italic lowercase letter to denote an instance (e.g. x)

• an italic capital Greek letter to denote a feature (e.g. X)

• a boldface, capital Greek letter to denote a feature set

(e.g. X = (X1, ..., Xk) ∈ Rk)

• a backslash to denote difference between feature sets

(e.g. X\{Xi} = {X1, ..., Xi−1, Xi+1, ..., Xk}).

• D to denote a data set.

• Y to denote the target feature.

• P to denote a probability distribution.

• G to denote a graph of the Bayesian network

2.2 Long-Term Prediction Problem

Definition 2.2.1. Long-term Prediction: A long-term prediction problem can

be specified as a function that learns to map inputs, given historical observations over

space and time, to corresponding outputs for multiple future time steps.

5



Figure 2.1: Example feature selection methods

2.3 Feature Selection Algorithms

Features are measurable attributes or characteristics of a phenomenon, usually

appearing as columns in a data table. Large-scale data sets always contain a large

number of features. However, it is almost rare that all the features in the data set

are necessary for model building. Feature selection has always been a superior tech-

nique to interweave the feature generation process with the feature testing process to

avoid generating features that are unlikely to be helpful. It continuously updates the

subset of predicted features through correlation analysis of newly emerging features,

target features, and selected features to remove irrelevant and redundant features and

select the most relevant features. There are three general classes of feature selection

algorithms are introduced as follows, some example feature selection methods can be

found in Figure2.1:

• Wrapper methods: Wrapping methods select features by iterating and trying

a different subset of features until the optimal subset is reached.

Advantages:

– Simple.

6



– Interacts with the predictive model.

Disadvantages:

– Large calculation time for high-dimensional data.

– Increasing overfitting risk when there are not many data points.

– Model dependent selection.

• Embedded methods: Embedded methods embed feature selection as part of

the model creation process. This usually results in the selection process being

completed together with the model adjustment process.

Advantages:

– Interacts with the predictive model.

– Lower computational complexity than wrapper methods.

– Models feature dependencies.

Disadvantages:

– Model dependent selection.

• Filter methods: Filter methods select features based on correlations with the

target feature. These methods are particularly effective in computation time

and robust to overfitting.

Advantages:

– Fast and Scalable.

– Independent of the predictive model.

– Robust to overfitting.

Disadvantages:

– Ignores interaction with the predictive model.

7



2.4 Causal Inference

Causal inference is the field of artificial intelligence, which aims to reveal the

causal relationship between features from observational data[61]. Combining causal

discovery in feature selection can well identify meaningful feature subsets. In this

section, we introduce causal reasoning and Markov boundary theory.

2.4.1 Basic Properties of Probability Distributions

The following theorem can be used for the theoretical analysis of probability dis-

tribution and the proof of the correctness of the Markov boundary algorithm. . It

was proposed by [63] and Its proof is given in the book[54].

Theorem 1. Let A, B, C, and D be any four subsets of features from X.The fol-

lowing five properties hold in any joint probability distribution P over features X.

1. Symmetry: A ⊥ B | C⇔ B ⊥ A | C

2. Decomposition: A ⊥ (B ∪D) | C⇒ A ⊥ B | C and A ⊥ D | C

3. Weak union: A ⊥ (B ∪D) | C⇒ A ⊥ B | (C ∪D)

4. Contraction: A ⊥ B | C and A ⊥ D | (C ∪B)⇒ A ⊥ (B ∪D) | C

5. Self-conditioning: A ⊥ C | C

If P is faithful to G, then P satisfies the above five properties and following two

properties:

1. Intersection: A ⊥ B | (C ∪D) and A ⊥ D | (C ∪B)⇒ A ⊥ (B ∪D) | C

2. Composition: A ⊥ B | C and A ⊥ D | C⇒ A ⊥ (B ∪D) | C
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2.4.2 Markov Boundary Theory

In this subsection we begin by revisiting the concepts of Markov blanket and

Markov boundary and theoretically characterize distributions with multiple Markov

boundaries of the same target feature.

Definition 2.4.1. Markov Blanket: A Markov blanket M of the target feature

Y ∈ X in the joint probability distribution P over feature set X is a set of features

conditioned on which all other features are independent of Y , that is,

∀A ∈ (X \M \ {Y }), Y ⊥ A |M (2.1)

According to definition of Markov Blanket, the set of all features X excluding Y

is one of Y ’s Markov blankets. But it may have redundant or unrelated variables.

Therefore, the smallest Markov blanket may be more critical.

Definition 2.4.2. Markov Boundary: A sub feature set M is called a Markov

boundary of Y iff it is the smallest Markov blanket of Y .

Theorem 2. If a joint probability distribution P over features X is faithful to G, that

is, it satisfies the seven properties in theorem1, then for each Y ∈ X , there exists a

unique Markov boundary of Y .

According to theorem 2, if a joint probability distribution P that is faithful to

G, there is a unique Markov boundary in this distribution. However, the faithfulness

condition is hard to hold due to the common response issue and confounding issue

caused by lurking feature, which makes the Markov boundary of the target feature

not unique in common situations.

• Common response occurs when changes in both feature A and feature B

are caused by a lurking feature H. As shown in Figure2.2 (b), the effect of H

produces the association between A and B.
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Figure 2.2: Some explanations of an observed association. The dashed lines show an
association. The solid arrows show a cause-and-effect link. a: Causation: Changes
in A cause change in B; b: Common response: Changes in both A and B are caused
by a lurking feature H; c: Confounding: The effect of A on B is confounded by a
lurking feature H.

• Confounding occurs when the a explanatory feature A and a lurking feature

H, have collective causation effect on feature B, but the difference between the

contribution of these two features cannot be distinguished, Figure2.2 (c).

Definition 2.4.3. Equivalent information: Two subsets of features B ⊆ X and

C ⊆ X, and B ̸= C, They contain equivalent information about target feature Y iff

the following conditions hold:

Y ̸⊥ B, Y ̸⊥ C, Y ⊥ B | C, and Y ⊥ C | B (2.2)

Lemma 1. If M is a Markov boundary of target feature Y , B ⊂ M, and there is

a subset of features C, B ̸= C, such that B and C contain equivalent information

about Y , then (M \B) ∪C is also a Markov boundary of Y .

Consider a Bayesian network shown in Figure 2.3. If feature A and B have hidden

common response feature H, A and B may have equivalent information of target

feature Y .
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Figure 2.3: An example of equivalent information caused by common response, where
H is a lurking feature, and two features connected by a bi-directed path have equiv-
alent information of target feature.

2.5 Learning Temporal Dynamics via Deep Neural Networks

Due to the flexible structure, deep learning models are increasingly used in learning

temporal dynamics. Precisely, Recurrent Neural Network(RNN)[23], one of the deep

learning models, models the temporal dynamics of time-lapse sequences by recurrent

neural connections. However, standard RNN has an issue where the model’s ability

to remember important information about a previous time step decays as the model

looks at more and more inputs. Long Short-Term Memory (LSTM)[30], a variation

on the traditional RNN, addresses this by introducing the input and forget “gates,”

neurons with weights that allow the network the learn how much it should remember

or forget about the history, relative to its input at the current step. Gated Recurrent

Unit (GRU)[16] is a further modification of the LSTM architecture, which combines

the forget and input gates of an LSTM network into a single update gate. Often, this

leads to a simpler recurrent network with performance very close to that of the more

complex LSTM architecture.
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CHAPTER 3

IDENTIFICATION OF MULTIPLE INTERPRETABLE
PREDICTOR SETS FOR ENSEMBLE LEARNING

3.1 Introduction

With a rapid increase in the availability of spatio-temporal climate data and grow-

ing popularity of data mining techniques [72], qualitative understanding between the

meteorological variables and the climate phenomena has become a major objective

of current meteorology. This makes interpretability has a great need in the design of

predictive models.

However, the climate data is always high-dimensional and spatio-temporal corre-

lated, and so the relationships among the meteorological variables are very compli-

cated - especially in spatial-temporal studies of numerous variables simultaneously

[38, 31]. With time and space increasing, the number of elements potentially con-

tributing to a meteorological event grows sharply. This makes identifying the causes

of climate phenomena from large spatial-temporal scale meteorological features ex-

tremely difficult. For example, explaining phenomena five days ahead is typically less

reliable than explaining phenomena for the next day. This occurs since small changes

may likely influence observed weather events as time advances (butterfly effect), but

such small changes can be easily overlooked due to the high degree of spatial and

temporal correlations among the features as their magnitude decreases, so it is diffi-

cult to analyze how a multitude of tiny events will impact observed weather as time

moves forward.

On the other hand, climate phenomena are the result of the interactions and

operations of atmospheric physical effects on multiple spatial-temporal scales. This
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means the climate events occurred in different regions or different times may have

different explanatory patterns. For example, compared with precipitation during the

cold season, warm season precipitation generally occurs on smaller spatial-temporal

scales with large gradients in precipitation amounts. We cannot use the same me-

teorological features’ influence to explain all precipitation events. Thus identifying

explanatory patterns in all perspective are of significant interest for understanding

the causes of climate phenomena.

Figure 3.1: An example of Galaxy for precipitation forecasting. Galaxy detects the
Galaxy space, the explanations for overall target population, by sequentially detect-
ing minimal target explanation of every individual subpopulation within the overall
population, and then forecasting target by their ensemble predictive power.

In this paper, we propose a new interpretable predictive model Galaxy (Figure3.1)

which can detect explanatory patterns in all perspective of target climate phenomena

from large spatial-temporal scale meteorological features and forecast by their ensem-
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ble predictive power. Our work is not only able to give interpretable explanations

on high-dimensional spatio-temporal climate data, but also provide the preconditions

for scientists for further studies. Thus, our main contributions are as follows:

• Minimal Target Explanation: We define the notion of minimal target expla-

nation to represent the explanation that locally faithful to the target instances

derived from the same subpopulation.

• Galaxy Space: We define the notion of Galaxy space to represent the expla-

nation with global faithfulness of the overall population of the target feature.

• Galaxy: We design and implement the Galaxy algorithm, to discover the

Galaxy space from mixture distributed feature data, and then forecast by its

ensemble predictive power. In our empirical experiments, our algorithm out-

performs state-of-the-art ensemble methods under dimensional feature space.

• Interpretable on Real-world scenario: We apply Galaxy to study historical

precipitation data in the Des Moines river basin. Our empirical study includes

5,313,600 features over 67 years of data. We are able to understand precipitation

forecasting in the area.

The rest of this paper is organized as follows. Section 3.2 reviews related work.

Section 3.3 presents the Galaxy space, Galaxy detection algorithms, and as theoretical

analysis of Galaxy. Section 3.4 discusses our empirical studies on synthetic data

and a real-world precipitation data set, and showcase the explanatory patterns. We

conclude the paper in section 3.5.

3.2 Related Work

To provide high-quality explanations for observed weather events, we need to

look for the features which are most likely to influence them. However, the high-

dimensionality and high degree of spatio-temporal correlations are serious challenges
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of climate data. Although the existing dimension reduction methods are able to

address the high dimensionality by reporting a subset of features which are strongly

contribute on prediction, detecting the features most influent on observed weather

events is still facing the following challenges.

• Scale amplification: Weather systems are very sensitive to changes in initial

conditions. So many small perturbations in air motion could compound to

result in large changes over longer time frames.

• Error magnification and analysis: Because the system is so sensitive, measure-

ment error in monitoring devices can lead to errors in analysis.

Markov boundary based feature selection is the state-of-the-art dimension reduc-

tion technology using causal inference[77, 75, 10, 74], and a Markov boundary of the

target feature can be tread as the knowledge needed to predict the behavior of the

target. However, a unique Markov boundary ideally exists for targets in datasets un-

der a strong faithfulness assumption[54, 3, 50], which is often violated in real-world

data because of the occurrence of hidden variables, hypothesis test errors and some

fake relevance of pure chances, so multiple Markov boundaries exist almost in all

situations[63]. Which one can best explain observed weather events remains an open

research problem.

On the other hand, the climate phenomena are the result of the interactions and

operations of atmospheric physical effects on multiple spatial-temporal scales, the

observed climate events are likely derived from mixture populations, which the climate

events occurred in different regions or different times may derived from different

subpopulations[60]. This makes one pattern may not be interpretable to all observed

climate events. We are interested in how to detect the explanations for climate events

of the mixture populations.
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In this paper, we discuss a new predictive model with high interpretability to

facilitate climate scientists to better understand causes of climate events.

3.3 Galaxy Space

3.3.1 Galaxy Space

The Galaxy space is designed for global faithfulness and efficient interpretability.

Formally, suppose we have a dataset D that includes n instances. Each of the instance

is in the form of (X, Y ), where X = (X1, ..., Xk) ∈ Rk and Y ∈ R, and the n instances

of Y are derived from m subpopulations. Then the overall conditional distribution of

Y can be represented as the mixture of subpopulation conditional distributions:

P (Y | X) =
m∑
i=1

ϕiPi(Y | X), (3.1)

where ϕ is the mixture component weight, Pi(Y | X) presents the conditional prob-

ability distribution of Y of the ith subpopulation, and P (Y | X) is the overall condi-

tional population distribution of Y .

Definition 3.3.1. Target Explanation (TE): A feature set M ⊆ X is said to be

a target explanation of P (Y | X) if and only if:

P (Y | X) = P (Y |M) (3.2)

By Definition 3.3.1, a non-minimal target explanation can be trivially produced

by adding redundant or irrelevant features into itself. Only minimal target explana-

tions are of interest in this paper. If a feature subset M ⊆ X is a minimal target

explanation, it is more efficiently than X to interpret the instances derived from

P (Y | X).
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Definition 3.3.2. Minimal Target Explanation (MTE): A target explanation

M is said to be a minimal target explanation if and only if no proper subset of M

satisfies the definition of target explanation.

Since a MTE of P (Y | X) is the minimal explanation of P (Y | X), it does

not have any redundant or irrelevant feature. Then back to the mixture conditional

distributions representation, we define partial target explanation as follows.

Definition 3.3.3. Partial Target Explanation (PTE): If P (Y | X) can be

represented as mixture of subpopulation conditional distributions
∑m

i=1 ϕiPi(Y | X),

then we say a target explanation of Pi(Y | X) is a partial target explanation of P (Y |

X).

We also define a MTE of Pi(Y | X) as a partial minimal target explanation

(PMTE) of P (Y | X). Then, we say PMTE is locally faithful, i.e. it is efficiently

interpretable to the instances derived from a subpopulation of Y . Thus, for the overall

population of Y , we define the Galaxy space of Y as follows.

Definition 3.3.4. Galaxy Space G: If P (Y | X) can be represented as mixture of

subpopulation conditional distributions
∑m

i=1 ϕiPi(Y | X), then we say
∏m

i Mi is a

Galaxy space G of Y if and only if every Mi corresponds a MTE of Pi(Y | X).

Based on the Definition 3.3.4, a Galaxy space G of Y is a set of PMTEs of

P (Y | X). Each PMTE provides a local partical minimal target explanation, and

the complete set of PMTE is able to interpret the entire instances of Y , i.e. globally

faithful. In order to look for a Galaxy space, we need to first detect PMTE.

3.3.2 Partial Minimal Target Explanation (PMTE) Detection

Detecting a PMTE of P (Y | X) is to look for the “smallest” explanation that is

locally faithful to a subpopulation of Y . Here we can further decompose it into two
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problems: (1) Detecting the “smallest” explanation MTE of a subpopulation of Y

and (2) Identifying the instances from D which belong to this subpopulation.

To address the first problem, we utilize the approaches in causal inference. In the

domain of causal discovery, a Bayesian network[54] is a standard tool for modeling the

conditional dependencies of the features, and a Markov boundary of a target feature

corresponds to a local causal neighborhood of it and consists of all its direct causes,

effects, and causes of the direct effects. This means that knowledge of the values of the

Markov boundary features should render all other features superfluous for predicting

Y [4]. In faithful joint distributions of (X, Y ), there exists a unique Markov boundary

of Y [65]. However, in real-world data, the faithfulness condition may be violated by

hidden variables, hypothesis test errors and some fake relevance of pure chances. This

makes the Markov boundaries of the target variable not unique[63]. In order to define

a unique minimal target explanation, we first state the definition of optimal predictor

and link it with the concept of target explanation, then we detect the minimal target

explanation using optimal predictor on the Markov boundaries of the target feature.

Definition 3.3.5. Optimal Predictor[63]: Given a data set D, a learning algorithm

hY , and a performance metric T to assess the learner’s model, a feature subset M ⊆ X

is an optimal predictor of Y if it maximizes the performance metric T for predicting

Y using learner hY in the data set D.

The following theorem states the link between the optimal predictor and the target

explanation.

Theorem 3. If a conditional probability distribution P (Y | X) can be estimated

accurately by maximizing a performance metric T on a learning algorithm hY , then

M ⊆ X is a target explanation of P (Y | X) if and only if it is an optimal predictor

of P (Y | X).

Proof of Theorem 3
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• Prove a TE of P (Y | X) is an optimal predictor of P (Y | X): If M ⊆ X is a

target explanation of P (Y | X), then P (Y | X) = P (Y | M) and this implies

that T will be maximized on learning algorithm hY , therefore, M is an optimal

predictor of P (Y | X).

• Prove an optimal predictor of P (Y | X) is a TE of P (Y | X): Suppose M ⊆ X

is an optimal predictor of P (Y | X) but it is not a target explanation, so

P (Y | X) ̸= P (Y | M), and this implies ThY (M) > ThY (X). By Definition

3.3.1, X is always a target explanation, thus it is also an optimal predictor of

P (Y | X). Therefore, the following should hold: ThY (M) = ThY (X). This is

contradiction. Therefore, M is a target explanation.

By the Definition 3.3.1 and Theorem 3, we get Corollary 3.7 to address the second

problem of Identifying the instances from D which belong to this subpopulation.

Corollary 1. If conditional probability distribution can be estimated accurately by

maximizing a performance metric T on a learning algorithm hY , then the instances

predicted correctly by hY are derived from the same distribution.

Now we can use Theorem 3 as the criterion for detecting the MTE of Pi(Y | X).

Mi = argmax
M′∈fY (X)

ThY (M′)

s.t. Pi(Y | X) = hY (Mi)

(3.3)

Here fY : Rk → Rd is a Markov boundaries detection algorithm, d ≤ k, hY :

Rd → R is a learning algorithm for predicting Y , and T is a performance metric

to assess hY (the bigger the value, the better the performance). For fY , we utilize

the idea mentioned in [63], which firstly detects a Markov boundary M from X,

and then tries to replace part of M by its equivalent feature sets explored from the

residual features. Finally a PMTE of P (Y | M), which is the MTE of Pi(Y | M),

can be detected by choosing the optimal Markov boundary Mi which maximizes the
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Figure 3.2: Multiple Markov boundaries detection via equivalent information explo-
ration. A, B, C, D are Markov boundaries of Y in a Bayesian network. A is the
Markov boundary detected from the original feature space. B, C, D are Markov
boundaries generated by replacing part of features in A by equivalent features ex-
plored from the residuals.

performance metric T for predicting Y using learner hY . The detail is illustrated in

Fig 3.2 and Algorithm 1.

3.3.3 Galaxy Space Detection

The probability distribution of Y in the overall population is represented as a

mixture distribution, then detecting the Galaxy space of Y is actually looking for

the explanations which globally faithful to the mixture distribution of Y . It can be

implemented by detecting every subpopulation’s MTE in the mixture distribution

of Y via Theorem 3. Since every PMTE in the Galaxy space is locally faithful to a

subpopulation of Y , the overall explanation of Y can be represented as the ensemble

of the Galaxy space. Thus, we give the definition of Galaxy predictor and then link

it with the concept of Galaxy space.

Definition 3.3.6. Galaxy Predictor: Given a data set D, we say a family of

feature subsets
∏m

i Mi, where Mi ⊆ X, is a Galaxy predictor of Y if it maximizes

the performance metric T for predicting Y using an ensemble learning algorithm HY .
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Algorithm 1: Partial Minimal Target Explanation (PMTE) Detection.

Input:

• data set D for features X; target feature Y ; Markov boundary detection

algorithm fY ; learning algorithm hY ; performance metric T;

Output:

• M, a partial minimal target explanation of Y .

• hY (M), a trained learning algorithm on M.

begin

M′
init = empty /* Initialize new Markov boundary with an empty

set */

M′, R = fY (M′
init,X) /* Detect 1st Markov boundary M’ and

residual features R from X on D */

M = M′

Performance = ThY (M′)

for ∀S ⊂M′ do

Rnew = R

M′
init = M′\S /* Initialize new Markov boundary as M′\S */

repeat

M′
new, Rnew = fY (M′

init, Rnew) /* Replacing S by exploring

its equivalent features from Rnew */

if ThY (M′
new) > Performance then

M = M′
new

Performance = ThY (M′
new)

until Rnew is empty

Return M, hY (M)
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We call the ensemble learning algorithm HY on Galaxy predictor as Galaxy. The

following theorem provides the link between the Galaxy predictor and the Galaxy

space.

Theorem 4. A family of feature subsets
∏m

i Mi, where Mi ⊆ X, is a Galaxy space

of Y if and only if it is an Galaxy predictor of Y .

Proof of Theorem 4

• Prove a Galaxy space of Y is a Galaxy predictor of Y :

If a family of feature subsets
∏m

i Mi, where Mi ⊆ X, is a Galaxy space of

Y , then by Definition 3.3.4, every Mi corresponds a PMTE of Pi(Y | X) in∑m
i=1 ϕiPi(Y | X). This implies that Mi is an optimal predictor of Pi(Y | X) by

maximizing the performance metric T on a learning algorithm hY . Therefore,∏m
i Mi is a Galaxy predictor and Galaxy is presented as HY =

∑m
i=1 ϕihY (Mi).

• Prove a Galaxy predictor of Y is a Galaxy space of Y :

Suppose
∏m

i Mi is a Galaxy predictor of Y , but it is not a Galaxy space of

Y and Galaxy is presented as HY =
∑m

i=1 ϕihY (Mi), so there is at least one

Mj ∈
∏m

i Mi is not a PMTE. This implies that Mj is not an optimal predictor.

so there exist an optimal predictor to make the performance of Galaxy better.

This is contradict to that
∏m

i Mi is a Galaxy predictor. Therefore
∏m

i Mi is a

Galaxy space of Y .

Based on Theorem 4 and Definition 3.3.6, we can detect a Galaxy space of Y via

an ensemble learning algorithm, Galaxy, as follows.

1. Detect a PMTE via Theorem 3 on weighted instances in D and then calculate

the misclassification rate ϵ.
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Figure 3.3: The Framework of the Galaxy Model.

2. Compute mixture component weight.

ϕi = log

(
1− ϵ

ϵ

)
. (3.4)

3. Strengthen the misclassified instances by re-weighting the misclassified instances.

wj = wje
ϵI(hY (xj),yj). (3.5)

where wj is the weight of the instance (xj, yj), I is the predicting error of (xj, yj),

where I = 0 if the prediction is correct, otherwise 1.

4. Repeat steps 1 - 3 until the misclassification rate ϵ lower than a threshold δ.

The Galaxy algorithm, to discover the Galaxy space from mixture distributed

feature data, is explained in Algorithm 2 and Fig 3.3.
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Algorithm 2: The Galaxy algorithm, to discover the Galaxy space from
mixture distributed feature data and forecast via its ensemble predictive
power.

Input:

• data set D includes n instances; target feature Y ; Markov boundary detection

algorithm fY ; learning algorithm hY ; performance metric T;

Output:

• Galaxy space G.

• Galaxy HY , an trained ensemble algorithm.

begin

G = empty /* Initialize G with an empty set */

/* Initialize the instances’ weights W */

W =
∏n

j=1wj, where wj = 1
n

I(hY (xj), yj) /* Predicting error of the instance (xj, yj), where

I = 0 if the prediction is correct, otherwise 1 */

i = 1

repeat

Mi, hY (Mi) = PMTE Detection(D, Y , fY , hY , T )

/* calculate the weighted misclassification rate ϵ. */

ϵ =

∑n
j=1wjI(hY (xj), yj)∑n

j=1 wj

ϕi = log
(
1−ϵ
ϵ

)
/* calculate mixture

weight ϕ. */

for wj ∈W do

wj = wj exp(ϵI(hY (xj), yj))

i = i + 1

until ϵ < δ

Return G =
∏

i Mi, HY =
∑

i ϕihY (Mi)
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3.4 Experimental Evaluation

In this section, we present experiments to evaluate the effectiveness and utility

of explanations of Galaxy on synthetic data with different dimensionalities and a

real-world precipitation data set. In particular, we address the following questions:

• Q1. Effectiveness on highly correlated data: How effective can Galaxy

work on highly correlated data?

• Q2. Interpretation of target explanations: Are the target explanations

detected by Galaxy on real-world data interpretable?

We implemented Galaxy in Python; all experiments were carried out on a 3.0 GHz

Intel(R) Xeon(R) E5-2687 Linux server, 1007 GB RAM, running Ubuntu 16.04.2 LTS.

3.4.1 Synthetic data generation

In order to simulate highly correlated data that represent data collected in real-

world climate applications, we generate a d-dimensional synthetic data set using clas-

sification data generator in Python package scikit-learn[9] with high redundancy and

noise.

Table 3.1: Average F-measure on different dimensional synthetic datasets.

Dimensionality
Random
Forest

AdaBoost
Gradient
Boosting

Multilayer
Perceptron

Galaxy
(ours)

450 0.812 0.794 0.791 0.819 0.82
550 0.777 0.786 0.842 0.845 0.847
650 0.761 0.755 0.792 0.832 0.841
750 0.671 0.643 0.716 0.703 0.714
850 0.707 0.701 0.691 0.706 0.723
950 0.672 0.587 0.612 0.711 0.803
1050 0.776 0.773 0.781 0.726 0.772
1150 0.753 0.733 0.744 0.742 0.804
1250 0.662 0.591 0.652 0.643 0.683
1350 0.764 0.734 0.758 0.802 0.824
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3.4.2 Experiment settings

We demonstrate the effectiveness of Galaxy by comparing its F-measure(2×precision×recall
precision+recall

)

against a bench of candidate methods: Random Forest, AdaBoost, Gradient Boost-

ing, and multilayer perceptron. Simulated data were generated with feature counts

d ranging from 450 to 1,350 in increments of 100 features. Each of the compari-

son methods was run against each of the subsets of the overall dataset after feature

reduction. All computations were performed on the same hardware and datasets.

3.4.3 Q1. Effectiveness on highly correlated data

We report the F-measure for each classifier on the different-dimensional datasets,

averaged by 10-fold cross-validation, in Table 3.1. We can see that Galaxy outper-

forms others most often (8 wins, 2 losses). These results indicate that Galaxy achieve

the satisfying predictive power while detecting the Galaxy space.

3.4.4 The Precipitation Data Set

Table 3.2: Meteorological variables for precipitation forecasting.

Name Level(hPa)

Zonal Wind 200, 500, 850

Meridional Wind 200, 500, 850

Geopotential Height 200, 500, 850

Temperature 200, 500, 850

Relative Humidity 700, 925

Specific Humidity 850

Pressure Vertical Velocity 700

Sea Level Pressure -

Precipitable Water -

The real-world dataset we used for the experiments is a subset of the NCEP/NCAR

Reanalysis dataset[37] and includes 9 meteorological variables collected at different
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vertical levels in the atmosphere (Table 3.2). All the variables are chosen by our

domain scientists collaborators based on their physical relevance for precipitation

analysis. By convention, atmospheric pressure (in units of hectopascals or hPa) is

used as the vertical coordinate with the 1000hPa surface located near the surface and

200hPa near the top of the troposphere. According to the theory of quasi-geostrophic

and baroclinic[28], we specially choose 200hPa, 500hPa, and 850hPa zonal winds(i.e.

east-west) because they are a proxy for the location and strength of the jet stream

which requires wind shear (strong change in wind speed with height) to develop.

And the information of the location of the jet stream exhibits persistence on scales

much longer than individual storm events. Moreover, 200hPa, 500hPa, and 850hPa

meridional (i.e. North-South) winds are chosen because they are extremely important

for the transport of heat and moisture from the tropics into the mid-latitudes. The

geopotential height at 200hPa, 500hPa, and 850hPa are chosen because the 500hPa

field will contain information about Rossby wave propagation, which is a natural phe-

nomenon in the atmosphere and oceans of planets that largely owe their properties to

rotation, and the comparison with 200hPa and 850hPa fields allows us to infer where

large-scale rising motion (and therefore precipitation) is likely to take place. On the

other hand, the temperature at 200hPa, 500hPa, and 850hPa are chosen because

the moisture transport is needed to maintain the precipitation while the advection

of temperature is crucial for strengthening (weakening) temperature gradients and

the production (destruction) of fronts, which are important in producing vertical (i.e.

rising) motion. And specific humidity at 850hPa, relative humidity at 700hPa and

925hPa are chosen because the amount of water in the upper troposphere was thought

to be negligible. The pressure vertical velocity at 700hPa, precipitable water (total

water vapor integrated from the surface to the top of the atmosphere) and sea level

pressure (atmospheric pressure at surface corrected to sea level) are also important

in producing precipitation.
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The total number of variables in all levels is 18. All these meteorological variables

are sampled at the spatial domain of 0◦E to 375.5◦E and 90◦N to 20◦S with a

resolution of 2.5◦× 2.5◦ (totally 5,904 locations) and a daily temporal resolution. We

pick the samples collected during the rainy season (March to November) during the

years 1951-2017. The target feature is the historical spatial average precipitation (the

mean of daily precipitation totals from 23 stations) of the Des Moines River basin in

Iowa from the same time period.

In the experiments, We set the lead time as 5 days, “look ahead” period as 10

days. For example, to explain rainfall situations at today (Day0) in the study area,

we will look for the explanatory features in the time period from Day−14(14 days ago)

to Day−5(five day ago). The precipitation data set presents two particularly difficult

characteristics:

• Extremely high dimensionality: Each sample has 5, 313, 600 features (18

variables × 5,904 locations × 10 days)

• High intra-dataset correlation: Meteorological variables presented at dif-

ferent levels, locations, and days are highly correlated. Different meteorological

variables may also correlated.

3.4.5 Q2. Interpretation of target explanations

We run Galaxy on this extremely high dimensionality data set and finally got

15 PMTEs, which the minimum size is 4, the maximum size is 13. The top four

weighted PMTEs are illustrated in Figure 3.4.

The PMTEs in Figure 3.4 (A) and Figure 3.4 (D) identifies a geopotential height

anomaly over Eastern Europe at 11 days before. This is consistent with a deepening

trough over Ural Mountains. Troughs deepening over the Urals are often triggers

of wave trains across Asia (the so-called Silk Road pattern) that eventually end up

propagating across the Pacific.
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Figure 3.4: Four PMTEs of the precipitation at Des Moines river basin detected by
Galaxy.

The PMTE in Figure 3.4 (B) includes meridional wind, specific humidity, and

upper level (200hPa) geopotential height fields near the east coast of Asia. Many

studies have identified cold surges along the Asian coast as important precursors to

surface weather over the United States[18, 19]. The surge of cold air and deepen-

ing trough typically result in a strengthened jet stream and generate a Rossby wave

that propagates across the North Pacific and breaks along the west coast of North

America. The mechanism implied by the PMTE is that the North-South winds

are transporting dry (and presumably cold) air from the north into the middle lati-

tudes around Japan. This pattern results in the deepening of an upper-level trough

(negative anomaly in the 200hPa Geopotential Height field) and strengthening of the

mid-latitude jet stream. The strengthening of the jet stream in the PMTE (i.e. an

upper level zonal (u) wind field being chose) was not observed, but it is implied. The

upper-level geopotential height anomalies along the west coast of North America on

day -5 imply a large, pre-existing upper-level ridge along the west coast of North

America[25, 59] that is also very consistent with expectations of strong precipitation
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over the central U.S. This pattern suggests a “forcing” for a wave train setting up

along the east coast and a pre-existing ridge along the west coast.

3.5 Conclusions

This study proposes a new interpretable model, Galaxy, to identify efficient expla-

nations of subpopulations(PMTE) within an overall population of the target feature.

We provide the atheoretical framework and implementation details of Galaxy. Fur-

thermore, we use the predictive ensemble power of all PMTEs to make long-term

forecasting on the target feature. Finally, our empirical study on the synthetic and

real data demonstrates Galaxy’s superb performance on prediction and interpreta-

tion.
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CHAPTER 4

WIDENING THE TIME HORIZON: PREDICTING THE
LONG-TERM BEHAVIOR OF CHAOTIC SYSTEMS

4.1 Introduction

In many physical, biological, and human systems the governing equations are

known with high confidence, but the analytic solutions may not exist and reliable nu-

merical solutions are often prohibitively expensive because of nonlinearity, feedback,

and sensitive dependence on initial and boundary conditions [48, 7, 64, 76, 70]. Devel-

oping reliable numerical solutions that can integrate short length scales and fast time

scales is a long-standing problem. Examples include weather forecasting, space-time

prediction of virus, and forecasting of the stock market. As this class of governing

equations arise in so many varied applications, means to improve the ability to make

meaningful predictions of their states at future times are of great practical impor-

tance; even a small increase in model performance with respect to applications like

long-lead weather prediction for flooding [76, 70] would have wide-ranging societal

benefit.

Moreover, many of these highly complex dynamic systems exhibit chaotic behav-

iors that are highly sensitive to initial and boundary conditions. A small observational

error—even truncation error caused by binary representation of values tens of digits

past the decimal—can grow exponentially in time. As Lorenz [49] aptly noted, for

this class of nonlinear systems, approximately close present states do not necessarily

map to approximately close states in the future. More importantly, a small predictive

error (from a point in a system’s phase space, ut0 , to ut0 +e, where e is a small error

vector) at a time step t0 may result in exponentially larger future error than that
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resulting from a larger initial error (in magnitude) in another direction (from ut0 to

ut0 − 2e, for example) at the same time step.

Many methods from both statistics and machine learning have been proposed in

last few decades [12, 33, 67, 32]. However, under these conditions, reliable prediction

of state past a certain time horizon remains extremely challenging, depending on the

parameterization of the system and the lead time of the prediction. Our research

goal is to push out the time horizon at which reliable predictions can be made as

far as possible with new developments from machine learning, and our study has

obtained promising results as shown in figure 4.1. More specifically, while there can

be theoretical bounds for the accuracy of future prediction given an initial discrepancy

of some size for certain systems (e.g. [64] gives an analysis for the Lorenz ’63 system),

important performance gain is possible to achieve by training a model to avoid local

mistakes that result in dramatic changes to future phase space trajectories. In doing

so, we avoid the greatest sources of error, and keep the predicted trajectories as close

to the ground truth as possible and the predictions relevant in practice. Any such

progress could represent a significant step forward in real-world problem domains.

In this work, we present a new deep learning method for prediction in chaotic

systems: it takes the form of a recurrent architecture set up for error trajectory

tracing and an accompanying training regime, Horizon Forcing, which allows a neural

network to both model the system’s state transition function and use it to trace

the evolution of its mistakes. By using both in tandem a model is able to properly

evaluate the consequences of local mistakes as the underlying system evolves toward

the time horizon. We make the following contributions:

• We introduce a new recurrent architecture for error trajectory tracing (ETT)

in chaotic systems. It is designed to improve the prediction of such systems by

allowing the model to optimize its parameters based on the true, longer-term
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(a) Lorenz ’63 system, a classic
example of chaotic systems

(b) Ground-truth and predicted trajectories

Figure 4.1: The time horizon at which reliable predictions on the Lorenz system can be
made is pushed further into the future by Horizon forcing. (a) The Lorenz attractor,
a representative chaotic system, with an example test trajectory pictured in orange.
Trajectories move quickly from their initial (randomly generated; see §4.4.1.2) state
to the attractor and follow a chaotic orbit around the two butterfly wings. (b) A test
set example ground-truth (blue) and predicted (orange) trajectories for our Horizon-
Forced model (top) and a baseline Teacher Forcing model (bottom). We show only
the state X coordinate (y axis) for readability. The x axis (time) is in lyapunov
times. It is clear that predictions from the baseline model begin to have significant
divergence from truth just before 12 lyapunov times and completely lose the correct
trajectory around 13.5. Our model shows good agreement out to 15 lyapunov times
(defined to be the inverse of the largest lyapunov exponent, the amount of time to
accrue error e. In the Lorenz system, this is ≈ 1

0.906
, or 1.103).

consequences of small initial prediction errors, how the trajectories beginning

at the predicted states evolve forward to the time horizon.

• We present Horizon Forcing, a new training regime for optimizing our ETT

models. We optimize our cost function based on short-term predictions first,

then shift focus to the long term as training progresses. By doing this with

shared weights we further improve the single-step error (a proxy for the system’s

transition function) because minimizing long-term error necessitates controlling

short-term error in chaotic systems.
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• We extensively validate our method on three well-studied chaotic systems with

known dynamics and a set of real-world time series prediction tasks.

4.2 Related Work

Enormous effort has gone into the understanding and modeling of chaotic non-

linear dynamical systems using observed data [6]. Examples of system identification

techniques based on input-output pairs go back decades: in the 1960s, efforts based

on Wiener kernels and Kalman filters [41, 29], in the 1980s, nonlinear autoregressive

(NARMAX) methods [6, 42, 14], in the 1990s, neural network approaches [13, 22].

Earlier this century, [8] and [58] used evolutionary methods with symbolic regres-

sion to attempt to match up derivatives estimated from data with known derivative

functions.

With the explosion of interest in deep learning and proliferation of powerful com-

puting hardware, focus has shifted to the use of powerful models to recreate complex

chaotic dynamics. Some recent works [57, 68] directly model the derivatives of the

system such that the model learns the vector field over the phase space; other works

(including this one) attempt to model trajectories through phase space in a sequence-

to-sequence formulation [53, 71]. Below we examine current deep neural methods for

chaotic system prediction:

4.2.1 Recurrent Approaches

In [68], the authors use a series of LSTM architectures to estimate the value of

the vector field at a given point in phase space and integrate it forward to generate

the next sequence prediction. [51] uses iterative prediction of points with a feed-

forward network trained with Jacobian regularization. [55] build a recurrent network

out of residual network cells [26], which have been shown to have similar properties

to PDEs [44]. In [71], a new architecture is presented that features a stacked LSTM
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encoder-decoder architecture with an“inhibitor” layer that sits above it and relates

the next-step state prediction um+1 to each previous state u0...um via a vector of

weights a0...am, in a manner analogous to an attention layer over previous time-steps.

4.2.2 Reservoir Computing

In reservoir computing and echo state networks [36], a recurrent neural network

is randomly wired (and called the reservoir) and not updated during training [46].

Instead, the chaotic system is modeled as a linear combination of the static nonlinear

components of the reservoir [20, 11]. In echo state networks, the reservoir is carefully

initialized such that the echo state property is ensured, which states that the influence

of a past state ui on future states uj should approach 0 as j →∞. In [53], the authors

use a combined knowledge-based and reservoir computing method to predict future

state evolution of chaotic systems. They show that future predictive performance can

be improved by including knowledge of the equations of the system in the model as an

additional component, and simulate varying the confidence with which the equations

are known by modifying the value of the chaotic parameter ρ of the Lorenz system

(see §4.4.1.2 for details) in the knowledge-based component of the model by up to

10% (while holding the true value to be the same), and demonstrate that performance

depends on a very accurate estimation of the system parameters.

4.2.3 Teacher Forcing in Deep Recurrent Neural Networks

Recurrent deep neural network architectures are typically trained with teacher

forcing, which replaces the network’s own predictions of the value of the input se-

quence at time step t, (ŷt) with the ground-truth sequence values (yt) when pre-

dicting the value of the next time step (ŷt+1); this prevents errors that compound

over time from harming network convergence while training. However, at inference

ground-truth values are not available, so the predictions ŷt must be used, reintroduc-

ing the danger of error accumulating over time. Scheduled Sampling [5] proposes to
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fix this method by replacing the teacher-forced ground truth inputs with the model’s

predicted values with a certain probability (ϵi, where i indexes the epoch) that is

annealed 1→ 0 over the course of training via some choice of an annealing function,

effectively weaning the model off of the ground-truth inputs. However, [35] show that

this sampling method yields a biased estimator - the loss function induced by Sched-

uled Sampling is not minimized at the true input distribution. In [40], the authors

introduce Professor Forcing, which uses an adversarial discriminator to minimize the

difference between a model being run in teacher-forced mode and free-running (or

inference) mode, by using the outputs of each mode and a function of some of the

internal states of the model. This method is difficult to train in practice, requiring

the optimization of several hyperparameters [47]. Other methods include Zoneout

[39], which is a dropout-like training procedure that instead of setting activations to

0, randomly sets a set of activations to be identical to those at the previous time

step. This is meant to regularize the transition dynamics; we do not find this to be

an appropriate method for a chaotic system because sensitivity is necessary to fit the

system’s ground truth.

4.2.4 Transformer Architectures

Transformer architectures [67] have revolutionized language modeling in recent

years [17] and are now being applied to other domains with success as well (e.g.,

[52]). [32]’s music transformer applies this architecture to a music generation task,

motivated by transformers’ ability to continue to generate coherent predictions over

long sequences. They introduce an efficient method for encoding relative position

information in the model and apply a mask to the sequence, eliminating the model’s

ability to attend to future time-steps. This formulation is well-suited for applica-

tion to chaotic sequence prediction, so we use their architecture as our baseline for

transformer models in our experiments.
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4.2.5 The Broad Learning System and Extreme Learning Machines

In [24], the authors use a manifold constraint to make a Broad Learning System

(BLS) [12] model better suited for learning manifolds and reconstructing attractors

in chaotic systems. The BLS model is a single-layer architecture designed to learn

on a series of “wide” concatenated feature maps over the data, which are themselves

mapped to additional enhancement nodes via a second mapping function to provide

nonlinearity. The enhancement nodes and the feature nodes are concatenated and the

final output weights are determined by a ridge or lasso regression to the ground-truth

labels. The structured manifold iteration of their method, SM-BLS, uses feature

maps that are sparse linear approximations of the transformation matrix that maps

the time series to a coordinate system determined by taking the graph Laplacian of

a nearest-neighbor graph created from the time series using a Gaussian Radial Basis

Function.

The SM-BLS method [24] authors additionally find that extreme learning ma-

chines [33] are competitive with their method. ELMs [33] are single-layer feedforward

models where the first weight matrix (which multiplies the input) and biases are ini-

tialized randomly and untrained; the post-activation weights are analytically solved

by calculating the pseudoinverse of the output matrix.

Comparing with these existing methods, our approach has two major advantages:

(1) it assumes no prior knowledge of the equations describing the underlying system,

and (2) it models how its mistakes evolve through the system’s dynamics and accu-

mulate over time. To the best of our knowledge, no other work has attempted (2)

without assuming prior knowledge of system dynamics.
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(a) Calculation of Lyapunov Exponent (b) Error to time horizon

Figure 4.2: Motivation for Lyapunov Horizon Loss. ùt indicates that a point is due to
a perturbation of ut; ût is a prediction of ut (separation represents modeling error).
The superscript at each node is the number of steps taken to reach it on its trajectory,
and the subscript is the index of the time step in the original ground-truth series at
which the error trajectory began. For example, a label of û3

t means that the labeled
point is a prediction of the location of ut+3, and that the point’s trajectory evolved
starting from a prediction of ut (ût). (a) The lyapunov exponent is estimated from
an orbit through phase space by creating an initial perturbation (red arrow) from
a starting point (ut), yielding a new point (ùt) and then computing the logarithm
of the ratio of the distance between the t + 1 terms (ù1

t and ut+1) and the initial
perturbation. At the next iteration, a new point is generated a distance dt+1 along
the line between the t + 1 terms and the process is repeated. (b) The inspiration for
the proposed error trajectory tracing (ETT) architecture. When a small mistake is
made at ut (ut is estimated to be ût, red arrow), the cost of that error after three
steps of evolution is ∥û3

t − ut+3∥: the orbit from ût evolves along the blue path to û3
t

at the time horizon, while the true state at that time should be the state the same
number of time steps ahead, but on the true orbit: ut+3. Similarly, the cost of a small
error at ut+1 (predicting its value to be ût+1) is ∥û3

t+1 − ut+4∥, as the system evolves
along the green orbit from ût+1 to û3

t+1 at the time horizon. We do the same analysis
for errors at each time step up to the horizon.

4.3 Methods: Error Trajectory Tracing and Horizon Forcing

Because reducing local errors at individual time-steps doesn’t necessarily optimize

the model toward correct long(er)-term predictions of the state sequence, a better way

to evaluate local predictive error is needed. See fig. 4.2(b), and refer to Table 4.1

for a description of the notation used. Typically, the model parameters would be
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Table 4.1: Notations used in Lyapunov Horizon Loss Derivation

Notation Meaning

ut Ground-truth state vector at time t.

ùt
State vector resulting from
a small perturbation of ut.

ût Model’s predicted value of ut.

uk
t

State vector resulting from k
applications of F to ut;

i.e., uk
t = F (k)(ut)

u
(i),k
j

State vector resulting from k
applications of F to uj on

the ith sequence in the dataset.

updated solely based on, for example, the mean squared error between ut and ût

(the norm of the red arrow between them). We propose to add an additional penalty

to the cost of that initial error, by further observing the evolution of that mistake

at a time horizon, defined to be a number of time steps in the future chosen as a

hyperparameter before modeling (in the figure, this is three steps). This allows us

to not only observe the initial error ∥ut − ût∥, but the degree to which that initial

deviation results in increased error at the time horizon, ∥ut+3− û3
t∥. We refer to the

objective function incorporating this penalty as the lyapunov horizon loss, and our

architecture as performing error trajectory tracing (ETT).

4.3.1 Problem formulation

In this work, we study nonlinear systems defined by a set of differential equations

that evolve deterministically. We use x or x(t) to denote a function relating states and

time and ẋ notation for derivatives when using continuous time; we use ut, ut+1 for

discrete-time systems and continuous systems that have been discretized for modeling

(e.g. the Lorenz system).

In the most general form, we have:
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ẋ = f(x(t), θ). (4.1)

where f is a function that determines the system as a function of the state vector

x(t), and is parameterized by a vector θ. Each possible state of the system x0 is

represented as a point in the phase space of the system. From each x0, the system

evolves deterministically along a trajectory in phase space. We can define a transition

function, F , to discretize the system to a time-step (∆t) as

F (xi) = xi +

∫ t+∆t

t

f (x(τ)) dτ

ut+1 = F (ut)

(4.2)

[57] Given a sequence of states in a discretized system u0,u1, ...,um, where each

successive state is a repeated application of F , our goal is to predict the evolution

of the system, represented by the sequence of future states um+1,um+2, ..., where

um+1 = F (um),um+2 = F (F (um)), um = F (m)(u0) and so on. We assume a training

dataset, D, of N trajectories of length T :

D =
{(

u
(i)
0 , F (1)(u

(i)
0 ), ..., F (j)(u

(i)
0 ), ..., F (T )(u

(i)
0 )
)}

i ∈ 1...N, j ∈ 1...T . We assume no prior knowledge of the system’s dynamics apart

from the fact it is determined by transition function F . In the next section, we discuss

how to use this formulation to develop a loss that can penalize error growth over a

time horizon using the lyapunov exponent.

4.3.2 Lyapunov horizon loss

In chaos theory, the maximal lyapunov exponent is a measure of the chaotic nature

of a system [64, 62]. It can be understood as the expected logarithm of the growth
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rate of unit errors near a strange attractor (specific to the attractor, which depends

on the basin of attraction of initial condition u0): a negative value of the lyapunov

exponent indicates stability (as the growth rate is not exponential), while a positive

exponent indicates exponential increase in small deviations over time.

λmax = E
[
log

(
∥ù1

t − ut+1∥
∥ùt − ut∥

)]
(4.3)

where ut and ùt are two nearby points in the phase space of the system (see figure

4.2(a)) and ut+1 and ù1
t are the points they transition into after one iteration. In

practice, an attractor’s λmax is estimated numerically by computing a huge number

of terms (109 or more, in some cases [62]).

Rather than estimating the degree of chaotic expansion of an entire attractor, as

λmax does, our models improve predictive performance by using local estimations of

the error growth: by selecting a time horizon in the near future (by a number of time

steps, k) and tracking how errors at each time step on the trajectory evolve from

intermediate states (uti) to the time horizon (uti+k)(fig. 4.2(b)). By modeling how

trajectories starting at a predicted state evolve, we can penalize errors that grow into

large deviations at the time horizon more harshly than errors of the same magnitude

that stay close to the true trajectory by adding a lyapunov horizon penalty into the

training loss:

λti = log
∥ûk

ti
− uti+k∥

∥ûti − uti∥

= log

∥∥dkti∥∥
∥dti∥

(4.4)

where k is the number of time steps to the horizon, and we define dk := ∥ûk
ti
−uti+k∥

as the distance from the predicted state to the true state, k steps in the future from
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a given t, which we will specify explicitly when not clear from context. The network

parameters θ will be optimized incorporating this lyapunov horizon loss as follows:

θ∗ = argmin
θ
L

= argmin
θ

N∑
i=1

[
T∑

j=1

(û
(i)
j − u

(i)
j )2 +

T−k∑
j=1

λ
(i)
j

]

= argmin
θ

N∑
i=1

[
T∑

j=1

(û
(i)
j − u

(i)
j )2 +

T−k∑
j=1

log
∥û(i),k

j − u
(i)
j+k∥

∥û(i)
j − u

(i)
j ∥

]

= argmin
θ

N∑
i=1

 T∑
j=1

(d
(i)
j )2 +

T−k∑
j=1

log

∥∥∥d(i),kj

∥∥∥∥∥∥d(i)j

∥∥∥


= argmin
θ

N∑
i=1

[
T∑

j=1

(d
(i)
j )2 +

T−k∑
j=1

(
log
∥∥∥d(i),kj

∥∥∥− log
∥∥∥d(i)j

∥∥∥)]

(4.5)

In the last line of (4.5), the first term is the squared error at time step j on

data sequence i. The second summation is the local estimation of the error growth

rate: the logarithm of the k-step error divided by the current-step error. In (4.6), we

modify this objective, removing the − log
∥∥∥d(i)j

∥∥∥ term (as its square is already being

optimized to 0 by the first term, leaving log
∥∥∥d(i),kj

∥∥∥) as the dominating factor) and

the logarithm of
∥∥∥d(i),kj

∥∥∥ (as the logarithm makes the magnitude of that term small

and difficult to optimize and its removal will not change the value of θ∗ ), defining

the new set of optimal parameters to be:

θ∗ ≡ argmin
θ

N∑
i=1

[
T∑

j=1

(d
(i)
j )2 +

T−k∑
j=1

∥∥∥d(i),kj

∥∥∥] (4.6)

where i indexes the N trajectories in the training set, j indexes the T time steps,

and k represents the number of time steps from the start step to the horizon step.

In the next section we will present a novel deep neural network model called Error

Trajectory Tracing for optimal lyapunov horizon loss minimization.
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4.3.3 Model architecture: Error Trajectory Tracing

We implement the structure of the system in fig. 4.2 (b) as a deep recurrent model

using Gated Recurrent Unit (GRU, [15]) cells as building blocks, in such a way that

we can calculate and backpropagate the lyapunov horizon loss. We empirically find

GRU to be superior to LSTM and feedforward units across hyperparameter settings,

so consider only those models here.

Training. Recurrent neural networks are usually trained using Teacher Forcing,

whereby during training the model receives the ground truth ut as input at time t

instead of the prediction made by the previous cell, ût. This Teacher Forcing process

can help to minimize the one-step prediction error and reduce the vanishing gradient

effects that arise when predictions from one state are used as input for the next over

many time steps [5].

A GRU cell can be formulated as:

zt = σ(Wzut + Uzht−1 + bz)

rt = σ(Wrut + Urht−1 + br)

st = ϕh(Whut + Uh(rt ⊙ ht−1) + bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ st

ût+1 = Wuht + bu

(4.7)

where zt is the update gate, rt is the reset gate, and ht is the hidden state. Our

output prediction per cell, ût+1, is the output of a linear layer on top of the hidden

state and Wu is a weight matrix with rows corresponding to the number of variables

in the chaotic system and columns corresponding to the dimensionality of the hidden

state.

Parameters {Wz,Wr,Wh,Wu, Uz, Ur, Uh, bz, br, bh, bu} are updated using backprop-

agation. Taking Wz as an example (the process is similar for the others), the updates

can be computed as follows:
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∂Lt

∂Wz

=
∂Lt

∂ht

∂ht

∂Wz

=
∂Lt

∂ht

t∑
i=1

(
∂ht

∂hi

∂hi

∂Wz

)

=
∂Lt

∂ht

t∑
i=1

((
t−1∏
j=i

∂hj+1

∂hj

)
∂hi

∂Wz

) (4.8)

where ∂hj/∂Wz is the gradient of ∂hj with respect to Wz while taking ∂hj−1 as a

constant [43]. And ∂ht/∂ht−1 is,

∂ht

∂ht−1

=
∂ht

∂st

∂st
∂ht−1

+
∂ht

∂zt

∂zt
∂ht−1

+
∂ht

∂ht−1

=
∂ht

∂st

(
∂st
∂rt

∂rt
∂ht−1

+
∂st

∂ht−1

)
+

∂ht

∂zt

∂zt
∂ht−1

+
∂ht

∂ht−1

(4.9)

This use of the chain rule to propagate gradients through previous time steps is

called backpropagation through time.

Inference. The goal of the trained GRU is to generate predictions of the future

time steps (after m steps), and since ut is no longer available (having not occurred

yet), the model must use its own prediction, ût, from the previous time steps in order

to produce ût+1. At inference, equation 4.5 then becomes,

zt = σ(Wzût + Uzht−1 + bz)

rt = σ(Wrût + Urht−1 + br)

st = ϕh(Whût + Uh(rt ⊙ ht−1) + bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ st

ût+1 = Wuht + bu

(4.10)

This process must repeat T −m+1 times; this can lead to small prediction deviations

in the early inference steps sharply increasing as the number of inference steps grows
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further into the future.

Error Trajectory Tracing. To force the GRU cells to learn how the error

evolves over time and reduce prediction deviations at later steps, we build the Error

Trajectory Tracing architecture as follows (See figure 4.3): first, we build a bottom

(zero) layer in the form of a standard GRU RNN. But at each step in this layer,

we transfer the hidden state and output to two other cells: the next cell in the zero

layer (represent hidden state (ht) and another cell (the next level up on the diagram)

representing the next state in the trajectory starting at the prediction (the first step

on the error trajectory, ût). We then extend each of these towers of GRU cells until we

reach the kth (horizon) layer. Each of these GRU “towers” traces the evolution of the

trajectory starting with the initial 1-step predictive error from the original trajectory.

Each successive GRU cell in the tower represents an additional application of the

transition function F . Using backpropagation through each GRU “tower”, ∂ht/∂ht−1

can be updated according to eq. 4.11 (terms differing from standard backpropagation

through time are indicated from below with brackets):
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(4.11)

All of the GRU cells in this architecture share weights. These shared weights in

the GRU cells are our model’s parameterization of F ; by tuning them with both the

horizontal GRU and the forward evolutions of the error from each step, we are able

to use this forward-looking training method to tune our representation to have strong
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Figure 4.3: Our error trajectory tracing architecture for time-horizon prediction. Each
rounded rectangle represents a GRU cell, all of which share weights. The trajectories
on the left represent modeled trajectories (blue) against the ground-truth (black),
illustrating the improvement resulting from training on a model’s own predictions
from teacher forcing to horizon forcing. Each tower models the future evolution of the
chaotic system from the prediction made after a single step (lower orange-shaded box).
Our first-stage training minimizes dti (from the longer red arrow at the bottom of the
figure to the arrow immediately above it). The upper orange-shaded box represents
optimization at the time horizon (k + 1 steps); the later training stage minimizes dkti
(from the longer red arrow at the top of the figure to the arrow immediately above
it), the time horizon loss.

short-and-long-term performance. In next section we will present a novel training

procedure for optimal training of our ETT architecture.

4.3.4 A novel training procedure: Horizon Forcing

We apply a novel training approach to our ETT architecture. See Figure 3 and

Algorithm 3.

1. First, we train the 0th layer (the bottom orange-shaded box in Fig. 3) using

standard teacher forcing to reach a strong one-step-ahead baseline. When this

layer is well trained, the divergence d
(i)
j (in eq. 4.5) will decrease and the

prediction trajectory will be tightened in to the ground truth trajectory. This

will reduce one-step prediction error, the difference ∥û(i)
j − u

(i)
j ∥ in eq. 4.5.
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Algorithm 3: Horizon Forcing.

Input:

• number of steps n;

• step size k;

Output:

• trained predictive modelhf .

begin
D ← Data() /* Load D as def. in §4.3.1 */

bsl← BaseModel() /* Initialize Baseline */

bsl.fit(D) /* Train Baseline */

hf ← HFModel(bsl, k) /* Add ETT architecture */

hf .fit(D) /* Train model for Horizon k */

for i = 2 to n do
/* Initialize hfi∗k using hf(i−1)∗k as a baseline */

hf ← HFModel(hf, i ∗ k)
hf .fit(D) /* Train model for horizon k ∗ i */

Return hf /* Return model for horizon n ∗ k */

2. After the d
(i)
j training task converges, we start to train the horizon (kth) layer

(the top orange-shaded box in Fig. 3). This further reduces the (k + 1) step

prediction error d
(i),k
j during inference, optimizing out the large future errors

that result from the small errors made by the converged one-step model.

3. Optionally, step 2 can be repeated to further extend the horizon by using the

resulting model from step 2 as a new baseline. As outlined in algorithm 3, this

process yields a model with a horizon of n ∗ k, where n is the number of times

step 2 has been completed (e.g., in our experiments, we train HF10 with n = 2

and k = 5).

A benefit of our Horizon Forcing approach is that when we train the horizon (kth)

layer, all of the GRU cells will be updated because their weights are shared. All

outputs and states in the ETT architecture are updated during each training session,
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so minimizing the (k + 1) step prediction error will continue minimizing the one step

prediction error, which is difficult to achieve when training a standalone GRU.

4.4 Experiments

Models. We validate the utility of the Horizon Forcing method on a deep recur-

rent network architecture by using k = 5 and n ∈ [1, 2, 3, 4], yielding a teacher-forcing

model (1-step ahead), and Horizon-Forced models with horizons at 5, 10, 15, and 20

time-steps ahead for all experiments. The RNN architecture is a single-layer GRU

with 256 latent units. We compare our Horizon Forcing training regime with Teacher

Forcing and Scheduled Sampling [5] regimes optimizing a standard GRU network

with the same cell dimensionality. We run Scheduled sampling under two experimen-

tal settings: 1) where we generate a full prediction vector and sample from it at each

time step with probability 1− ϵi (which leaves each sampled prediction independent)

and where we allow for early stopping identically to other methods (called Sched-

uled Sampling - Early Stopping or SSES in our results table) and 2) where errors

are computed sequentially (and thus are dependent) and we enforce that the entire

schedule of sampling probabilities must be completed at training (and which we call

Scheduled Sampling - Full Schedule or SSFS). We run all SSFS models with an in-

verse sigmoid decay schedule, which dramatically outperformed linear or exponential

schedules during validation. We also benchmark against BLS (§4.2.5), ELM (§4.2.5),

and a Music Transformer (§4.2.4). Our BLS model has 100 latent units (5 windows

and 20 latent units per window) and 31 enhanced units; ELM has 500 latent units;

the music transformer has four stacked encoders, each with four attention heads (64

latent units per head). To avoid the influence of training hyperparameters, we use

100 sequence time steps as input across all experiments and only tune the learning

rate, r.
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All experiments were performed on a private Linux GPU server with 48 CPU cores,

1TB RAM, and 8 Nvidia 1080ti GPUs (each with ∼11GB memory). Each model was

trained using a single GPU, and was implemented in Tensorflow 2.0. We use a batch

size of 30 trajectories throughout all experiments. The maximum epochs are set to

200 but early stopping is employed to stop training if no improvement is made after

15 epochs. We also reduce the learning rate by 10% after 5 epochs of no improvement.

Datasets. We study datasets corresponding to several chaotic systems and real-

world time series: the well-known Rössler (§4.4.1.1) and Lorenz (§4.4.1.2) systems, as

well as a Lotka-Volterra Ecosystem and a suite of real-world time series compiled in

[21] to evaluate attractor reconstruction (§4.4.2).

Evaluation and metrics. Because input data is not available during inference

and the models need to use the prediction from the previous time step as the input

of the next step in order to continue making predictions, small deviations from the

ground-truth in the early inference steps tend to increase sharply as the predicted

horizon extends. Furthermore, we observe that in some problem domains the error

can accumulate to such a degree that past a certain time step, any resemblance a

predicted sequence has with the true sequence (as quantified by an evaluation metric)

is simply coincidence or luck and no longer the result of having a useful long-term

representation of the system’s dynamics.

For this reason, in this study we employ a set of commonly-used evaluation metrics

that compare a single predicted step with a single ground-truth step (see table 4.2),

and monitor their change over time. Because we value a model’s ability to make

useful predictions for as long as possible, we evaluate the competing methods by the

expected amount of predictions (number of time steps into the future) that can be

made before an error of a certain magnitude (as measured by metric M) occurs. We
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Table 4.2: Table of metrics for forecasting analysis

Metric Expression
Symbols:

Expectation &
Effective Range

RMSE γ
(
u
(i)
j , û

(i)
j

)
=

√
1
D

∑D
d=1

∥∥∥û(i)
j,d − u

(i)
j,d

∥∥∥2 Eγ ;Pγ

MNE ζ
(
u
(i)
j , û

(i)
j

)
= 1

D

∑D
d=1

∥∥∥û(i)
j,d−u

(i)
j,d

∥∥∥∥∥∥u(i)
j,d

∥∥∥ Eζ ;Pζ

SMAPE µ
(
u
(i)
j , û

(i)
j

)
= 1

D

∑D
d=1

∥∥∥û(i)
j,d−u

(i)
j,d

∥∥∥∥∥∥û(i)
j,d

∥∥∥+∥∥∥u(i)
j,d

∥∥∥ Eµ;Pµ

refer to this as the model’s effective range. This is computed as follows: we take a

(possibly multidimensional) input sequence and predict the future trajectory for a

set number of time steps. We compute the per time-step error (using M) for each

step on the predicted trajectory, and then compute an average error per time-step

over all test set sequences (see figure 4.4 for examples). We take the first (minimum

j) step where the error (or percent error, depending on choice of M) is greater than

a given threshold—that step is considered the length of time for which the average

error trajectory is valid, and we report that value as the effective range:

PM = min
j

{
j
∣∣∣ 1

N

N∑
i=1

M
(
u
(i)
j , û

(i)
j

)
> δM

}
(4.12)

Here PM is the effective range as measured by metric M for the model making

predictions û
(i)
t .

δM denotes the threshold being used. A balance must be struck with respect to

this value: if δM is chosen to be too low, the predicted ranges will be short and noisy

and fail to differentiate between methods that perform well and those that perform
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poorly. If δM ’s value is taken to be too large, then predicted ranges will be long and

also fail to differentiate strong from weak methods: in some cases, it’s possible that

a high δM could result in the threshold never being reached for a given sequence, in

which case that sequence’s contribution to the predicted range would be its length,

greatly increasing the range value in a manner that is not meaningful for evaluation.

Therefore, we seek a low threshold that isn’t immediately crossed in practice. We

find that among the datasets we use and methods we compare, setting δM to be

the average performance of the best and second-best methods meets our criteria and

allows us to avoid the use of arbitrarily selected thresholds. We report the δM values

used for each dataset in table 4.3, along with the number of variables and inference

steps used.

We compute effective range with respect to three metrics: Root Mean Squared

Error (RMSE), Mean Normalized Error (MNE), and Symmetric Mean Absolute Per-

cent Error (SMAPE), the computation of which we detail in Table 4.2; j is the time

step at which the metric is being calculated and D is the number of dimensions at

time step j, indexed by d.

We also report the expectation with respect to each metric, computed as follows:

EM =
1

N × T

N∑
i=1

T∑
j=1

M
(
u
(i)
j , û

(i)
j

)
(4.13)

4.4.1 Known Chaotic Systems

4.4.1.1 Rössler System

In 1976, O.E. Rössler presented a system related to the Lorenz ’63 system, that ex-

hibited chaotic dynamics with only a single nonlinearity (zx) in the defining equations

[56]:

51



Table 4.3: Table of experimental settings for chaotic systems forecasting

Data set Vars
Inference
steps

δγ δζ δµ

Rössler 3 1300 1.863 0.1705 0.082
Lorenz 3 200 3.1065 0.228 0.1105
L-V Ecosystem 10 150 1.243 0.066 0.0305
Accelerometer 3 300 0.2935 0.3635 0.182
Roaming Worm 5 160 2.265 0.8575 0.4615
Gait Force 1 300 158.6875 0.501 0.2565
Electricity 1 300 121.54 0.219 0.0595

ẋ =− y − z

ẏ =x + ay

ż =b + z(x− c)

(4.14)

Unlike the Lorenz attractor (figure 4.1(a)), the Rössler system has only a single

spiral, which, as trajectories cycle around it, stretches out (into the Z dimension) and

folds over onto itself, creating a Cantor set of layered surfaces [64]. For certain pa-

rameterizations, the flow is stable and non-periodic but all trajectories are unstable.

[56].

Data Generation. We use the parameters a = 0.1, b = 0.1, and c = 18, which

is dense and chaotic. We generate X, Y , and Z using SciPy’s ODE solver with a

step size of ∆t = 0.05, and divide the sequence into individual training sequences

by striding the original sequence with an offset of five time steps. This yields 6,400

training sequences and 1,001 testing sequences. During training, we further split the

train set into 80% train and 20% validation.
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4.4.1.2 Lorenz ’63 system

The Lorenz ’63 system is a dynamical system presented by Edward Lorenz in

[45] as a means to study some of the chaotic aspects of the atmosphere in tractable

equations. The system represents a simplified model of convection in a fluid layer

between two surfaces held at a constant temperature differential, and offers some

desirable characteristics [69]:

• The system is fully deterministic. However, errors accumulate exponentially

with time, making perfect predictions possible only for short time windows.

• For certain parameterizations (see below), there is no periodicity, and solutions

never resolve to a single stationary state.

The system is parameterized by three values, σ, ρ, and β; σ is the Prandtl number,

the ratio of kinematic diffusivity to thermodynamic conductivity; ρ is proportional to

the Rayleigh number of the fluid, indicative of the degree of turbulence in the system

and dependent on the magnitude of temperature differential; β is representative of

the dimensions of the system, in that it is a function of the ratio of the distance

between the surfaces and the (assumed) period of the field function and temperature

variation (see [73] for details).

The system has three variables, X, Y, and Z, which are related by the following

system of differential equations (dots denote the derivative of a variable with respect

to time):

ẋ =σ(y − x)

ẏ =x(ρ− z)− y

ż =xy − βz

(4.15)

When generating data, we set σ, ρ, and β to 10, 28, and 8
3
. These values were

presented in the original ’63 paper as settings that yield chaotic dynamics, and are
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commonly used in literature. The most common modification of these parameters is

changing the value of ρ, which governs the degree to which the system is chaotic [1].

Data Generation. We employ SciPy’s ODE solver using the fourth-order Runge-

Kutta method and the system in equation 4.15 to generate X, Y and Z using a ∆t of

0.05 for each step. We use a stride of five to divide the sequence into 8,500 training

examples and 1,201 testing examples, with a further 80%-20% train-validation split.

4.4.1.3 Lotka-Volterra Ecosystem

We also benchmark against a 10-variable (five competing species, five resources)

Generalized Lotka-Volterra Ecosystem simulated by [21] using a community matrix

with parameters provided in [34], where the authors argue that chaotic dynamics that

arise from the system could be an explanation for the observed diversity in oceanic

phytoplankton being higher than theory predicts possible. We split the available data

into 5,200 training sequences and 1,001 testing sequences using a stride of three, and

again use an 80%-20% train-validation split. The horizon-forced models outperform

the other methods in both expectation and effective range, and have the strongest

prediction performance as shown by the average error sequences in Figure 4.5 until

approximately 100 time steps in the future, when all models become similar.

4.4.2 Real-World Datasets

[21] compiles a suite of real-world data time series for evaluation of chaotic attrac-

tor reconstruction. While they study a problem formulation different from our own

(determining the chaotic attractor of a system from one of its components, e.g., the

sequence of X values in the Lorenz system), the collection of datasets they provide

offer a valuable framework on which to benchmark our approach. We use the fol-
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lowing data sets, with each training sequence being 100 time steps, split on sequence

identifier (entire sequences are assigned to be in exactly one of train or test):

• Roaming Worm. [2] provides a time series that tracks the evolution of the

curvature of worm C. Elegans ; the dimensionality of each step has been reduced

to five with PCA. We use a stride of four to section the dataset into 5,000

training sequences (of which 20% are reserved for validation) and 1,649 testing

sequences.

• Accelerometer. [66] contains accelerometer readings from a gait database

for a study participant (id 3, following [21]) walking with a smartphone. This

dataset contains three variables, which record acceleration with respect to X-,

Y -, and Z-axes. We use 5,500 train samples and 801 test samples, generated

with a stride of two.

• Gait Force. Dataset includes gait force measurements for a walking subject

(id 2), collected from [27]. Univariate. We use 5,600 train samples and 1,023

test samples, with a stride of nine.

• Electricity. Time series of the mean power usage (in kilowatts) by 321 clients

of a Portuguese power company from 2011 to 2014, sampled every 15 minutes.

Part of the UCI Machine Learning Repository 1, preprocessed by [21]. We used

a stride of 23 time steps to generate 5,000 train samples and 1,081 test samples.

4.4.3 Ablation Study: Horizon-Forced Models and Baseline GRU

We first present evidence of Horizon Forcing’s efficacy over the baseline, a GRU

model trained with Teacher Forcing. Its results across all datasets as measured by

1download available at
http://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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RMSE (other metrics available in Table 4.5) are provided in Table 4.4. As we expect,

each Horizon-Forced model outperforms the baseline model across all datasets.

Table 4.4: Performance comparison results between Horizon Forcing Models and
Baseline

Data sets Metrics Baseline HF5 HF10 HF15 HF20

Lorenz Eγ 3.944 3.206 3.007 2.975 3.053

Pγ 107 121 128 129 127

Rössler Eγ 9.679 1.790 1.936 1.904 1.903

Pγ 107 757 752 751 756

L-V Ecosystem Eγ 1.915 1.318 1.168 1.120 1.103

Pγ 48 73 81 83 85

Roaming Worm Eγ 3.215 2.333 2.302 2.239 2.212

Pγ 29 53 55 58 60

Accelerometer Eγ 0.333 0.294 0.293 0.281 0.260

Pγ 92 123 124 138 208

Gait Force Eγ 202.483 162.578 154.797 155.979 157.724

Pγ 93 136 144 143 140

Electricity Eγ 159.618 123.850 119.230 112.004 98.447

Pγ 111 121 123 163 207

4.4.4 Ablation Study: Choice of Horizon

Here, we present a comparison of our model over choices of time horizon with k

and n in Algorithm 3 set to k=5 and n ∈ [1, 2, 3, 4], resulting in models trained with

respect to horizons at 5, 10, 15, and 20 time steps. Results can be found in Table 4.4.
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Figure 4.4: Average value of each error metric (y axis) by time step (x axis) and model
for each of our evaluation systems. Curves that stay closer to the bottom right of
each plot (high time step, low error) are best. We see that the Horizon-Forced models
outperform the GRU baseline, and improve with longer horizon in most cases.

We can see that HF models are robust to the choice of training metric (not so

with all methods; see §4.4.5)—with few exceptions, when an HF model is best in one

metric it is best in all metrics.

In Figure(4.4), generally, training out to a longer time horizon improves perfor-

mance; on 4 of 7 datasets, HF20 is the best model. When it is not, we see that

the results are fairly close across horizons (effective ranges within 1-2% of the other

models) but on those datasets where there are large differences the longer horizon

dramatically outperforms the others.

4.4.5 Benchmarking

Expected values of metrics and their effective ranges are presented in Table 4.5,

and full error sequences (average error over all test sequences at each time step) are

shown in Figure 4.5. Lower is better for all expected values and higher is better for all

predicted ranges. Horizon-Forced models are consistently better than the alternative

methods, and the average error sequences (Fig. 4.5) show that in some cases (the

BLS model on gait force, notably) strong performance in Table 4.5 from another
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Figure 4.5: Error curves illustrating benchmark error accumulation over time for each
dataset, model type, and metric. Curves that stay closer to the bottom right of each
plot (high time step, low error) are best. We see that the Horizon-Forced models
consistently have lower error over a longer time than alternative methods (HF curves
are beneath others). Note that some combinations of method and dataset are favored
by some metrics; we report a set of metrics to get a complete picture. For example,
BLS sees a sharp increase in loss at 200 time-steps when predicting the Gait Force
dataset, which is smoothed out by µ (SMAPE). We do not observe this behavior in
the RNN-based models, highlighting the need for multiple evaluation metrics. On the
Electricity dataset, BLS has good baseline performamce but makes occasional very
large mistakes that result in a spike of the average in the unbounded error measures;
as SMAPE has an upper bound at 1, the importance of these mistakes are limited
and the error remains low.

model is actually indicative of a tradeoff with HF. The BLS model on gait force has

very strong initial predictive performance but has a sharp increase in average error

around 200 time-steps in the future (this is smoothed out by SMAPE, which has

BLS as the clear best performer); if predictions beyond that horizon were necessary

in practice, Horizon-Forced models would still be preferred. We can also see SMAPE

strongly favoring another method (again BLS) on the electricity dataset—BLS has

very low expected SMAPE and the clear lowest SMAPE average error sequence in

Figure 4.5 (bottom row, far right plot), but this is actually the result of a small

number of predicted values with very large error magnitude. The inclusion of the

predicted value in the denominator of SMAPE upper bounds its value at 1, which
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limits the impact of the occasional error spikes on the expected SMAPE, resulting in

improved performance by that metric. With its strong performance by SMAPE and

weak performance when measured with RMSE or Normalized Error, the value of the

model in such a situation would depend on the details of the task and may be cause

for concern in practice.

We additionally find that Scheduled Sampling run to its full schedule (SSFS)

performs worse than the version that we allow to stop when validation loss stops

decreasing (SSES) on four of the seven datasets. SSFS outperforms SSES on the

Roaming Worm dataset (remaining lower than the HF models) and on the Gait Force

dataset, where its results are excellent (only BLS is better) and HF underperforms.

SSFS also fails to properly converge on the Electricity dataset, which we believe is

due to the that dataset being a stable time series with the presence of “spikes” in

usage that can lead to high predictive error (or not) at random based on sampling

chance.

Table 4.5: Performance comparison results between Horizon Forcing and Benchmarks

Data set Models Metrics

Eγ Pγ Eζ Pζ Eµ Pµ

Lorenz

BLS 7.201 2 0.519 2 0.295 2

ELM – 0 – 0 0.38 0

Transformer 8.206 17 0.610 16 0.294 17

SSES 3.806 110 0.279 109 0.135 110

SSFS 5.619 73 0.409 71 0.201 73

Baseline 3.944 107 0.289 105 0.141 106

HF5 3.206 121 0.235 121 0.114 123

Continued on next page
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Table 4.5 – Continued from previous page

Data set Models Metrics

Eγ Pγ Eζ Pζ Eµ Pµ

HF10 3.007 128 0.221 127 0.107 127

HF15 2.975 129 0.219 128 0.106 128

HF20 3.053 127 0.224 126 0.108 126

Rössler

BLS – 30 – 29 0.777 26

ELM 16.917 3 1.545 3 0.758 2

Transformer 12.828 13 1.147 13 0.742 14

SSES 2.201 624 0.201 620 0.096 635

SSFS 17.043 15 1.556 15 0.798 15

Baseline 9.679 107 0.880 124 0.437 120

HF5 1.790 757 0.163 768 0.079 766

HF10 1.936 752 0.178 755 0.085 754

HF15 1.904 751 0.174 758 0.084 752

HF20 1.903 756 0.175 764 0.084 757

L-V Ecosystem

BLS 2.147 11 0.113 11 0.054 11

ELM – 0 – 0 0.159 0

Transformer 3.548 9 0.187 9 0.088 9

SSES 1.747 50 0.092 50 0.043 50

SSFS 2.475 22 0.131 22 0.061 22

Baseline 1.915 48 0.101 48 0.047 48

HF5 1.318 73 0.070 73 0.032 73

HF10 1.168 81 0.062 81 0.029 81

HF15 1.120 83 0.059 84 0.028 83

Continued on next page
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Table 4.5 – Continued from previous page

Data set Models Metrics

Eγ Pγ Eζ Pζ Eµ Pµ

HF20 1.103 85 0.058 85 0.027 85

Roaming Worm

BLS 2.228 52 0.843 52 0.565 42

ELM 4.283 14 1.745 12 0.648 18

Transformer 4.164 22 1.687 22 0.651 23

SSES 3.449 32 1.383 31 0.591 33

SSFS 2.240 53 0.838 56 0.462 55

Baseline 3.215 29 1.280 27 0.576 32

HF5 2.333 53 0.885 54 0.465 57

HF10 2.302 55 0.872 56 0.458 59

HF15 2.239 58 0.843 59 0.449 61

HF20 2.212 60 0.831 61 0.448 61

Accelerometer

BLS 43.834 80 59.822 66 0.312 64

ELM 0.353 65 0.457 45 0.231 45

Transformer 0.592 4 0.769 3 0.399 3

SSES 0.312 113 0.388 111 0.196 91

SSFS 0.362 80 0.439 88 0.222 79

Baseline 0.333 92 0.413 92 0.207 89

HF5 0.294 123 0.366 123 0.184 123

HF10 0.293 124 0.361 125 0.180 124

HF15 0.281 138 0.345 138 0.173 140

HF20 0.260 208 0.320 214 0.162 209

Gait Force

BLS 996.947 189 3.159 186 0.199 195

Continued on next page
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Table 4.5 – Continued from previous page

Data set Models Metrics

Eγ Pγ Eζ Pζ Eµ Pµ

ELM – 18 – 18 0.497 93

Transformer 180.482 109 0.576 112 0.364 80

SSES 188.083 105 0.602 107 0.381 77

SSFS 149.072 159 0.466 167 0.310 126

Baseline 202.483 93 0.651 90 0.410 58

HF5 162.578 136 0.514 139 0.328 115

HF10 154.797 144 0.488 147 0.314 120

HF15 155.979 143 0.495 145 0.314 122

HF20 157.724 140 0.500 143 0.318 120

Electricity

BLS – 41 27.871 39 0.026 300

ELM 497.149 6 0.818 9 0.425 1

Transformer 330.938 9 0.652 10 0.229 5

SSES 184.876 73 0.338 41 0.139 23

SSFS 208.360 0 0.403 0 0.165 0

Baseline 159.618 111 0.292 114 0.122 29

HF5 123.850 121 0.223 123 0.096 61

HF10 119.230 123 0.215 124 0.093 63

HF15 112.004 163 0.201 166 0.088 65

HF20 98.447 207 0.177 209 0.078 100
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4.4.6 Discussion

We have shown our method effective for use in a number of simulated chaotic sys-

tems and real-world datasets. Here, we discuss the situations in which our approach

is most valuable.

HF/ETT is designed to iteratively optimize over error trajectories every k steps

in the future (i.e., optimizing 1-step, k-step, 2k-step error, etc), which is ideal for

systems with exponential error growth and where trajectories starting at initially

close points (say, a ground-truth state in a phase space and a good model prediction

of that state) could diverge dramatically (or not) in response to small changes in their

positions.

In such cases, creating an initial model of the dynamics (1-step error), then using

that model to sample the error at increasingly distant horizons to enable the learning

of the compounding effect (that is known to be present in chaotic systems) is an

effective approach. However, systems could exist (especially non-chaotic systems)

where the monotonic nature of the exponential divergence we picture in Figure 4.3

does not hold, and either 1) 1-step error is strongly correlated with future error and

HF/ETT is not necessary or 2) the error evolves in such a way that sampling 1-

and k-step errors are not able to capture the behavior of, say, k+1
2

-step errors due to

periodicity or other correlations within the data. We do expect this effect to be small

in practice (especially for small values of k).

4.5 Conclusion

Chaotic systems are found across many fields of study, including climatology,

biology, virology, and many others. Improved methods to model the dynamics of

such systems have the potential to offer broad utility in a number of applications.

Here, we have introduced a new recurrent architecture, error trajectory tracing, and

accompanying training regime, Horizon Forcing, for prediction of chaotic systems;
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instead of merely minimizing local error at each time-step, we monitor how those

errors evolve at a time horizon so the model can optimize its parameters based on an

estimation of the future cost of a small present error. By comparing with state-of-

the-art machine learning methods, we validate our method on three widely studied

simulated systems and show it to be highly effective in making predictions on chaotic

systems with sensitive dependence on initial conditions, and further validate against

time series data from a number of real-world problem domains.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

Because of the high complexity, chaos, and uncertainty that come along with

data distributed in space and time, long-term predictive modeling on big Spatio-

temporal data is a major challenge across many fields of scientific study. In this

thesis, we have targeted two different considerations for this challenge: a technique

for identifying the most relevant and meaningful features from the original Spatio-

temporal feature space, and a method for modeling complex space-time dynamics

with sensitive dependence on initial and boundary conditions.

5.1 Conclusions

In Chapter 3, We first talked about predictability and interpretability under single

distribution, and defined the notion of Partial Minimal Target Explanation(PMTE)

to represent the most relevant and meaningful features to the target instances de-

rived from the same population. We proposed a Multiple Markov Boundaries based

algorithm to detect PMTE. Moreover, we further discussed the predictability and

interpretability on mixed distribution, and defined the notion of Galaxy space to

represent the most meaningful feature sets with global faithfulness of the overall pop-

ulation of the target feature. We proposed the Galaxy algorithm to discover the

Galaxy space from the mixed distribution by a boosting process, and then do fore-

casts by its ensemble predictive power. In our empirical experiments, our algorithm

outperforms state-of-the-art ensemble methods on high-dimensional feature spaces.

In Chapter 4, we discussed the challenges of forecasting long-term dynamics in

nonlinear dynamical systems, including sensitive dependencies on initial conditions
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and exponential error divergence. We design a new recurrent architecture for error

trajectory tracing (ETT) to simulate temporal dynamics. It allows the model to

optimize its parameters based on the true, longer-term consequences of minor initial

prediction errors and how the trajectories beginning at the predicted states evolve

forward to the time horizon. Moreover, We present Horizon Forcing, a new training

regime for optimizing our ETT models. It begins with a short-term error evaluation

and then focuses on the long term as training progresses. By doing this with shared

weights, we can decrease the error divergence on long-term steps and further reduce

the error from the initial condition. Finally, we extensively validate our method on

three well-studied chaotic systems with known dynamics and a set of real-world time

series prediction tasks.

5.2 Future Work

In this thesis, we have provided novel approaches for handling two major problems

in long-term forecasting tasks on big Spatio-temporal data. But there are still several

interesting areas for future work.

5.2.1 Distributed Galaxy

The main challenge of the Galaxy is the efficiency when dealing with larger and

larger data sets, because the complexity of the combined problem increases exponen-

tially, which will affect the time required to solve the problem and adversely affect

the quality of the solution. It may be interesting to employ a distributed solution to

solve this challenge.

5.2.2 Physics-informed Horizon Forcing

While Horizon Forcing is designed to improve model training for long-term pre-

diction in high-dimensional Spatio-temporal data sets, it could be susceptible to over-

fitting when large amounts of high-quality, labeled training data are not available.
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Therefore, the method could benefit from regularization based on physical informa-

tion about the system to help the model training find an optimal solution on small-size

observations.
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[46] Lukoševičius, Mantas, and Jaeger, Herbert. Reservoir computing approaches to
recurrent neural network training. Computer Science Review 3, 3 (2009), 127–
149.

[47] Martinez, Julieta, Black, Michael J, and Romero, Javier. On human motion pre-
diction using recurrent neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2017), pp. 2891–2900.

71



[48] May, Robert M. Simple mathematical models with very complicated dynamics.
Nature 261, 5560 (1976), 459–467.

[49] Mitchell, Melanie. Complexity: A Guided Tour. Oxford University Press, Inc.,
USA, 2009.
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