85 research outputs found

    Design of optimal equalizers and precoders for MIMO channels

    Get PDF
    Channel equalization has been extensively studied as a method of combating ISI and ICI for high speed MIMO data communication systems. This dissertation focuses on optimal channel equalization in the presence of non-white observation noises with unknown PSD but bounded power-norm. A worst-case approach to optimal design of channel equalizers leads to an equivalent optimal H-infinity filtering problem for the MIMO communication systems. An explicit design algorithm is derived which not only achieves the zero-forcing (ZF) condition, but also minimizes the RMS error between the transmitted symbols and the received symbols. The second part of this dissertation investigates the design of optimal precoders which minimize the bit error rate (BER) subject to a fixed transmit-power constraint for the multiple antennas downlink communication channels under the perfect reconstruction (PR) condition. The closed form solutions are derived and an efficient design algorithm is proposed. The performance evaluations indicate that the optimal precoder design for multiple antennas communication systems proposed herein is an attractive/reasonable alternative to the existing precoder design techniques

    On discrete-time H problem with a strictly proper controller

    Full text link

    Robust adaptive sampled-data control design for MIMO systems: Applications in cyber-physical security

    Get PDF
    This dissertation extends the L1 adaptive control theory to sampled-data (SD) framework. Multi-input multi-output non-square (underactuated) systems are considered with different sampling rates for inputs and outputs. The sampled-data framework allows to address non-minimum phase systems, subject to less restrictive assumptions as compared to continuous time framework. It is shown that the closed-loop system can recover the response of a continuous-time reference system as the sampling time of the SD controller tends to zero. In this thesis, the L1 sampled data adaptive controller is integrated with the Simplex fault-tolerant architecture for resilient control of cyber-physical systems (CPSs). Detection and mitigation of zero-dynamics attacks are addressed and validated in flight tests of a quadrotor in Intelligent Robotics Laboratory of UIUC. The experiments show that the multirate L1 controller can e effectively detect stealthy zero-dynamics attacks and recover the stability of the perturbed system, where the single-rate conventional L1 adaptive controller fails. From the perspective of applications, the dissertation considers navigation and control of autonomous vehicles and proposes a two-loop framework, in which the high-level reference commands are limited by a saturation function, while the low-level controller tracks the reference by compensating for disturbances and uncertainties. A class of nested, uncertain, multi-input multi-output (MIMO) systems subject to reference command saturation, possibly with non-minimum phase zeros, is considered. Robust stability and performance of the overall closed-loop system with command saturation and multirate L1 adaptive controller are analyzed. Finally, a systematic analysis and synthesis method is proposed for the optimal design of filters in the L1 adaptive output-feedback structure, where the lowpass filter is the key to the trade-off between the performance and robustness of the closed-loop system. An optimization problem is formulated using the constraint on the input time-delay margin and a cost-function based on mixed L1/H2-norm performance measure. The optimization problem can be efficiently solved using linear/quadratic programming. We note that the framework of this dissertation and the multi-loop problem formulation of navigation and control of autonomous systems provide suitable synthesis and analysis tools for autonomous cyber-physical systems (CPSs), including self-driving cars, unmanned aerial vehicles (UAVs), and industrial/medical robots, to name just a few. The SD design facilitates the implementation of control laws on digital computers in CPSs, where the input/output signals are available at discrete time instances with different sampling rates

    Aircraft adaptive learning control

    Get PDF
    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    Get PDF
    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented

    Robust stability analysis of an energy-efficient control in a Networked Control System with application to Unmanned Ground Vehicles

    Full text link
    [EN] In this paper, the robust stability and disturbance rejection performance analysis of an energy-efficient control is addressed in the framework of Networked Control System (NCS). The control scheme under study integrates periodic event-triggered control, packet-based control, time-varying Kalman filter, dual-rate control and prediction techniques, whose design is aimed at reducing energy consumption and bandwidth usage. The robust stability against time-varying model uncertainties is analyzed by means of a sufficient condition based on Linear Matrix Inequalities (LMI). Finally, the effectiveness of the proposed approach is experimentally validated in a tracking control for an Unmanned Ground Vehicle (UGV), which is a battery-constrained mobile device with limited computation capacities.This research was funded in part by grant by projects PGC2018-098719-B-I00 (MCIU/AEI/FEDER, UE) , and RTI2018-096590-B-I00 (MCIU/AEI/FEDER, UE) , and by European Commission as part of Project H2020-SEC-2016-2017-Topic: SEC-20-BES-2016-Id: 740736-"C2 Advanced Multi-domain Environment and Live Observation Technologies" (CAMELOT) . Part WP5 supported by Tekever ASDS, Thales Research and Technology, Viasat Antenna Systems, Universitat Politecnica de Valencia, FundacAo da Faculdade de Ciencias da Universidade de Lisboa, Ministerio da Defensa Nacional-Marinha Por-tuguesa, Ministerio da AdministracAo Interna Guarda Nacional Republicana.González Sorribes, A.; Cuenca, Á.; Salt Llobregat, JJ.; Jacobs, J. (2021). Robust stability analysis of an energy-efficient control in a Networked Control System with application to Unmanned Ground Vehicles. Information Sciences. 578:64-84. https://doi.org/10.1016/j.ins.2021.07.016648457

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Limited-Communication Distributed Model Predictive Control for HVAC Systems

    Get PDF
    This dissertation proposes a Limited-Communication Distributed Model Predictive Control algorithm for networks with constrained discrete-time linear processes as local subsystems. The introduced algorithm has an iterative and cooperative framework with neighbor-to-neighbor communication structure. Convergence to a centralized solution is guaranteed by requiring coupled subsystems with local information to cooperate only. During an iteration, a local controller exchanges its predicted effects with local neighbors (which are treated as measured input disturbances in local dynamics) and receives the neighbor sensitivities for these effects at next iteration. Then the controller minimizes a local cost function that counts for the future effects to neighbors weighted by the received sensitivity information. Distributed observers are employed to estimate local states through local input-output signals. Closed-loop stability is proved for sufficiently long horizons. To reduce the computational loads associated with large horizons, local decisions are parametrized by Laguerre functions. A local agent can also reduce the communication burden by parametrizing the communicated data with Laguerre sequences. So far, convergence and closed-loop stability of the algorithm are proven under the assumptions of accessing all subsystem dynamics and cost functions information by a centralized monitor and sufficient number of iterations per sampling. However, these are not mild assumptions for many applications. To design a local convergence condition or a global condition that requires less information, tools from dissipativity theory are used. Although they are conservative conditions, the algorithm convergence can now be ensured either by requiring a distributed subsystem to show dissipativity in the local information dynamic inputs-outputs with gain less than unity or solving a global dissipative inequality with subsystem dissipativity gains and network topology only. Free variables are added to the local problems with the object of having freedom to design such convergence conditions. However, these new variables will result into a suboptimal algorithm that affects the proposed closed-loop stability. To ensure local MPC stability, therefore, a distributed synthesis, which considers the system interactions, of stabilizing terminal costs is introduced. Finally, to illustrate the aspects of the algorithm, coupled tank process and building HVAC system are used as application examples
    corecore