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ABSTRACT 

 

        This dissertation proposes a Limited-Communication Distributed Model Predictive 

Control algorithm for networks with constrained discrete-time linear processes as local 

subsystems. The introduced algorithm has an iterative and cooperative framework with 

neighbor-to-neighbor communication structure. Convergence to a centralized solution is 

guaranteed by requiring coupled subsystems with local information to cooperate only. 

During an iteration, a local controller exchanges its predicted effects with local 

neighbors (which are treated as measured input disturbances in local dynamics) and 

receives the neighbor sensitivities for these effects at next iteration.  Then the controller 

minimizes a local cost function that counts for the future effects to neighbors weighted 

by the received sensitivity information. Distributed observers are employed to estimate 

local states through local input-output signals.  Closed-loop stability is proved for 

sufficiently long horizons. To reduce the computational loads associated with large 

horizons, local decisions are parametrized by Laguerre functions. A local agent can also 

reduce the communication burden by parametrizing the communicated data with 

Laguerre sequences.  

So far, convergence and closed-loop stability of the algorithm are proven under the 

assumptions of accessing all subsystem dynamics and cost functions information by a 

centralized monitor and sufficient number of iterations per sampling. However, these are 

not mild assumptions for many applications. To design a local convergence condition or 

a global condition that requires less information, tools from dissipativity theory are used. 
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Although they are conservative conditions, the algorithm convergence can now be 

ensured either by requiring a distributed subsystem to show dissipativity in the local 

information dynamic inputs-outputs with gain less than unity or solving a global 

dissipative inequality with subsystem dissipativity gains and network topology only. 

Free variables are added to the local problems with the object of having freedom to 

design such convergence conditions. However, these new variables will result into a 

suboptimal algorithm that affects the proposed closed-loop stability. To ensure local 

MPC stability, therefore, a distributed synthesis, which considers the system interactions, 

of stabilizing terminal costs is introduced. Finally, to illustrate the aspects of the 

algorithm, coupled tank process and building HVAC system are used as application 

examples.                   
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NOMENCLATURE 

 

𝛼𝑖 Local design variable for the suboptimal LC-DMPC algorithm   

𝛂 Block diagonal matrix of 𝛼𝑖 for all subsystems in the network 

𝛽 Convex combination scalar constant for all subsystems in the network 

γ𝑖 cost sensitivities w.r.t. V𝑖 for subsystem Σ𝑖 

𝛄 Stacked vector of γ𝑖for all subsystems in the network 

𝚪 Interconnecting matrix  with values of 0 or 1 

Γ1 Interconnecting matrix for 𝑁𝑝 = 1 

𝛿 Flow parameters used in the six-tank process 

𝛿𝑓𝑎𝑛   Variable for the AHU optimizer economic cost function to produce        

                         optimum 𝑃𝐸𝐷𝑆 set-point 

𝛿𝑇𝐴𝐻𝑈
  Variable for the AHU optimizer economic cost function to produce  

                         optimum discharge air temperature set-point 

휀𝑖 Measurement noise for subsystem Σ𝑖 

ℇ Solution of the stabilizing Lyapunov function – suboptimal LC-DMPC 

algorithm 

𝜚𝑖 Damper position for zone 𝑖 (%) 

휁𝑖 Local mapping matrix for terminal stabilizing cost with values of 0 and 1 

ℓ𝑖 Lagrange multiplier of the local defined optimization problem 

𝓵 Lagrange multiplier of the systemwide defined optimization problem 

𝜆 Flow parameters used in the six-tank process 

𝜇𝑖 Local design variable for the suboptimal LC-DMPC algorithm   

𝛍 Block diagonal matrix of 𝜇𝑖 for all subsystems in the network 

ℵ, 𝑖 Includes subsystem Σ𝑖 and coupled downstream neighbors, state, weight, 

stabilizing terminal weight, … 

𝜌 Flow parameters used in the six-tank process 

𝜎𝑖(𝑡) Inlet flow rate for tank 𝑖 for the six-tank process (𝑐𝑚3 𝑠𝑒𝑐⁄ ) 
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ℴ Flow parameters used in the six-tank process 

Σ𝑖 A subsystem in the network 

𝜏 Flow parameters used in the six-tank process 

𝜓𝑖 Downstream neighbor cost sensitivities as seen by subsystem Σ𝑖 

Ψ𝑖 Predicted values of 𝜓𝑖 along 𝑁𝑝 

𝚿 Stacked vector of Ψ𝑖 for all subsystems in the network 

�̅� Steady-state point per sampling for 𝚿 according to the LC-DMPC 

algorithm  

℧𝑖 Local mapping matrix for terminal stabilizing cost with values of 0 and 1 

ℌ𝑖𝑘|𝑘
 Covariance for �̃�𝑖𝑘|𝑘

 for subsystem Σ𝑖 

𝑎𝑗 Pole location of discrete Laguerre functions 

𝐴𝑖 State matrix for subsystem Σ𝑖 

𝐴 Block diagonal matrix of 𝐴𝑖 for all subsystems in the network 

Å𝑖 Cross sectional area of the tanks (𝑐𝑚2) in the six-tank process 

�̂�𝑖 State matrix for a local information dynamics 

𝑏𝑖 Tank cross section of the outlet hole (𝑐𝑚2) in the six-tank process 

𝐵𝑢,𝑖 Input control matrix for subsystem Σ𝑖 

𝐵𝑣,𝑖 Input measured disturbance matrix for subsystem Σ𝑖 

𝐵𝑑,𝑖 Input unmeasured disturbance matrix for subsystem Σ𝑖 

𝐵𝑢 Block diagonal matrix of 𝐵𝑢,𝑖 for all subsystems in the network 

𝐵𝑑 Block diagonal matrix of 𝐵𝑑,𝑖 for all subsystems in the network 

�̂�𝑖 Input control matrix for a local information dynamics 

ℬ Flow parameters used in the six-tank process 

𝑐𝑗 Coefficients of discrete Laguerre functions 

𝑐𝑓𝑚𝑖 Damper inlet flow rate for zone 𝑖 (𝑓𝑡3 𝑚𝑖𝑛⁄ ) 

𝑐𝑓𝑚𝑡𝑜𝑡𝑎𝑙 Total flow rate across all zones (𝑓𝑡3 𝑚𝑖𝑛⁄ ) 

𝐶𝑦,𝑖 Regulated output matrix for subsystem Σ𝑖 

𝐶𝑧,𝑖 Downstream output matrix for subsystem Σ𝑖 
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𝐶 Block diagonal matrix of 𝐶𝑦,𝑖 for all subsystems in the network 

�̂�𝑖 Output matrix for a local information dynamics 

𝐷𝑦,𝑖 Carry through matrix of the regulated output for subsystem Σ𝑖 

𝐷𝑧,𝑖 Carry through matrix of the downstream output for subsystem Σ𝑖 

𝑑𝑖 Unmeasured disturbances for subsystem Σ𝑖 

D𝑖 Predicted values of 𝑑𝑖 along 𝑁𝑝 

𝐃 Stacked vector of D𝑖 for all subsystems in the network 

𝑒𝑖 𝑟𝑖 − 𝑦𝑖 for subsystem Σ𝑖 at 𝑘 

e𝑖 r𝑖 − Y𝑖 along 𝑁𝑝 for subsystem Σ𝑖 

𝑒 Stacked vector of 𝑒𝑖 for all subsystems in the network 

𝐞 Stacked vector of e𝑖 for all subsystems in the network 

𝐹𝑦,𝑖 Matrix for predicted regulated outputs with 𝑥0,𝑖  for subsystem Σ𝑖 

𝐹𝑧,𝑖 Matrix for predicted downstream outputs with 𝑥0,𝑖  for subsystem Σ𝑖 

𝐅𝐲 Block diagonal matrix of 𝐹𝑦,𝑖 for all subsystems in the network 

𝐅𝐳 Block diagonal matrix of 𝐹𝑧,𝑖 for all subsystems in the network 

𝑔 Gravity constant (𝑐𝑚/𝑠𝑒𝑐2) in the six-tank process 

ℎ𝑖(𝑡) Water height for tank 𝑖 for the six-tank process (𝑐𝑚) 

𝐻 Network topology  

𝐼𝑐𝑙,𝑖 Clothing insulation for zone 𝑖 (𝑚2K W⁄ ) 

𝐼𝑛 Identity matrix with dimension 𝑛 

𝑘 Current discrete time step 

𝑘𝑐 Tank level sensor accuracy (V 𝑐𝑚⁄ ) in the six-tank process 

𝑘𝑖 Voltage constant for pumps (𝑐𝑚3 V ∙ 𝑠𝑒𝑐⁄ ) in the six-tank process 

𝑀𝑖 Metabolic rate for zone 𝑖 (W 𝑚2⁄ ) 

𝑀𝑦,𝑖 Matrix for predicted regulated outputs with U𝑖  for subsystem Σ𝑖 

𝑀𝑧,𝑖 Matrix for predicted downstream outputs with U𝑖  for subsystem Σ𝑖 

𝐌𝐲 Block diagonal matrix of 𝑀𝑦,𝑖 for all subsystems in the network 

𝐌𝐳 Block diagonal matrix of 𝑀𝑧,𝑖 for all subsystems in the network 
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𝑁𝑐,𝑖 Constraint horizon of the optimization problem with Laguerre functions 

𝑛𝑖 Number of states for subsystem Σ𝑖 

𝑁𝑖 Number of discrete Laguerre functions 

𝑁𝑝 Length of the state prediction horizon 

𝑁𝑦,𝑖 Matrix for predicted regulated outputs with V𝑖 for subsystem Σ𝑖 

𝑁𝑧,𝑖 Matrix for predicted downstream outputs with V𝑖  for subsystem Σ𝑖 

𝐍𝐲 Block diagonal matrix of 𝑁𝑦,𝑖 for all subsystems in the network 

𝐍𝐳 Block diagonal matrix of 𝑁𝑧,𝑖 for all subsystems in the network 

ℕ𝑖 Number of iterations 

𝑝 Total number of subsystems in the network 

𝑃𝐸𝐷𝑆 End static pressure (𝑖𝑛. 𝑤𝑎𝑡𝑒𝑟) 

𝑝𝑦,𝑖 Number of regulated outputs for subsystem Σ𝑖 

𝑝𝑧,𝑖 Number of outputs for downstream neighbors for subsystem Σ𝑖 

𝑝𝑦 Total number of regulated outputs for the network 

𝑝𝑧 Total number of outputs for downstream neighbors for the network 

𝑃𝑦,𝑖 Matrix for predicted regulated outputs with D𝑖  for subsystem Σ𝑖 

𝑃𝑧,𝑖 Matrix for predicted downstream outputs with D𝑖  for subsystem Σ𝑖 

𝐏𝐲 Block diagonal matrix of 𝑃𝑦,𝑖 for all subsystems in the network 

𝐏𝐳 Block diagonal matrix of 𝑃𝑧,𝑖 for all subsystems in the network 

�̂�𝑖  Weighting matrix used in the Lyapunov function for a local dissipativity   

                         inequality 

𝑝𝑦𝑒𝑎𝑟 Yearly payment for zone 𝑖 ($) 

𝑞𝑖 Positive definite weighting matrix for errors for subsystem Σ𝑖 

Q𝑖 Block diagonal matrix of 𝑞𝑖 along 𝑁𝑝 for subsystem Σ𝑖 

𝑄 Block diagonal matrix of 𝑞𝑖 for all subsystems in the network 

𝐐 Block diagonal matrix of Q𝑖 for all subsystems in the network 

𝑄𝑑,𝑖 Output weighting matrix for a local supply rate function 

𝑄𝑟,𝑖 Weighting matrix for computing reachable references  
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𝑄𝑣,𝑖 Covariance for 휀𝑖 

𝑄𝑤,𝑖 Covariance for 𝑤𝑖 

𝑟𝑖 Desired tracking reference at 𝑘 for subsystem Σ𝑖 

r𝑖 Desired tracking reference along 𝑁𝑝 for subsystem Σ𝑖 

𝐫 Stacked vector of r𝑖 for all subsystems in the network 

𝑟𝑑,𝑖 Number of unmeasured input disturbances for subsystem Σ𝑖 

𝑅𝑑,𝑖 Input weighting matrix for a local supply rate function 

𝑟𝑢,𝑖 Number of controlled inputs for subsystem Σ𝑖 

𝑟𝑣,𝑖 Number of measured inputs from upstream neighbors for subsystem Σ𝑖 

𝑟𝑣 Total number of measured input disturbances for the network 

𝑠𝑖 Positive definite weighting matrix for control actions 𝑢𝑖 for subsystem Σ𝑖 

s𝑖 Local supply rate function 

S𝑖 Block diagonal matrix of 𝑠𝑖 along 𝑁𝑝 for subsystem Σ𝑖 

𝑆 Block diagonal matrix of 𝑠𝑖 for all subsystems in the network 

𝐒 Block diagonal matrix of S𝑖 for all subsystems in the network 

𝑆𝑑,𝑖 Output-input weighting matrix for a local supply rate function 

𝑇𝐴𝐻𝑈 AHU discharge air temperature (℉) 

TCD AHU total cooling demand  

𝑇𝑜𝑢𝑡 Outside temperature (℉)   

�̅�𝑟 Mean radiant temperature (℃) 

𝑢 Stacked vector of 𝑢𝑖 for all subsystems in the network 

𝑢𝑖 Input control vector for subsystem Σ𝑖 

U𝑖 Predicted values of 𝑢𝑖 along 𝑁𝑝 

𝐔 Stacked vector of U𝑖 for all subsystems in the network 

�̅�  Steady-state point per sampling for 𝐔 according to the LC-DMPC    

                         algorithm  

U𝑖
𝑄𝑃 Solution of the local QP control optimization problem 

𝐔𝐐𝐏 Stacked vector of U𝑖
𝑄𝑃 for all subsystems in the network 
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𝑢𝑚𝑖𝑛,𝑖 Minimum limit of the local control action 𝑢𝑖 

𝑢𝑚𝑎𝑥,𝑖 Maximum limit of the local control action 𝑢𝑖 

𝑢𝑚𝑖𝑛 Stacked vector of 𝑢𝑚𝑖𝑛,𝑖 for all subsystems in the network 

𝑢𝑚𝑎𝑥 Stacked vector of 𝑢𝑚𝑎𝑥,𝑖 for all subsystems in the network 

𝑢𝑟,𝑖 Reachable control vector for subsystem Σ𝑖 

𝑈𝑟,𝑖 Stacked vector of 𝑢𝑟,𝑖 along 𝑁𝑝 for subsystem Σ𝑖 

𝑉𝑎𝑟,𝑖 Relative air velocity for zone 𝑖 (𝑚2 𝑠𝑒𝑐⁄ ) 

𝑣𝑖 Measured input disturbances from upstream neighbors for subsystem Σ𝑖 

V𝑖 Predicted values of 𝑣𝑖 along 𝑁𝑝 

𝑉𝑖 Lyapunov function for a local dissipativity inequality 

𝐕 Stacked vector of V𝑖 for all subsystems in the network 

�̅�  Steady-state point per sampling for 𝐕 according to the LC-DMPC   

                         algorithm  

𝑤𝑖 Process noise for subsystem Σ𝑖 

𝑊𝑖 Effective mechanical power for zone 𝑖 (W 𝑚2⁄ ) 

𝑥𝑖 State vector for subsystem Σ𝑖 

𝑥0,𝑖 Initial condition of the state vector for subsystem Σ𝑖 

𝐗𝟎 Stacked vector of 𝑥0,𝑖 for all subsystems in the network 

𝑥𝑟,𝑖 Reachable state vector for subsystem Σ𝑖 

𝑋𝑟,𝑖 Stacked vector of 𝑥𝑟,𝑖 along 𝑁𝑝 for subsystem Σ𝑖 

�̃�𝑖𝑘|𝑗
  Estimation of 𝑥𝑖 at time 𝑘 based on the information in time 𝑗, 𝑘 ≥ 𝑗 

𝑦𝑖 Regulated output vector for subsystem Σ𝑖 

Y𝑖 Predicted values of 𝑦𝑖 along 𝑁𝑝 

𝐘 Stacked vector of Y𝑖 for all subsystems in the network 

𝑧𝑖 Output disturbances for downstream neighbors for subsystem Σ𝑖 

Z𝑖 Predicted values of 𝑧𝑖 along 𝑁𝑝 

𝐙 Stacked vector of Z𝑖 for all subsystems in the network 

ℤ𝑖 Local productivity for the economic zone cost function   
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Building operations account for approximately 23% of the total energy consumption 

in the European Union [1] and 41% of US energy usage and carbon emissions [2], [3]. 

Moreover, the competitive economic and energy costs are additional motives to develop 

practical approaches for improving the energy efficiency in commercial buildings as 

well as industrial facilities.  

Heating, Ventilation and Air-Conditioning (HVAC) systems consume about 50% of 

the energy in buildings and approximately 20% of the total energy consumption in 

Europe [4]. On the other hand, according to systematic building management 

estimations, HVAC systems are consuming more energy than expected and there are 

potential energy savings between 5% to 30% [5], [6]. This justifies the different efforts 

and methods to increase the efficiency of the HVAC systems around the world. Many 

advanced control strategies have been suggested for controlling HVAC systems with the 

goal of minimizing the energy consumptions and keeping the indoor comfort.   

HVAC systems introduce one of the most challenging problems to deal with from a 

control point of view. Energy demands that fluctuate from season to season or even from 

day to day, together with a complex combination of human requirements, contribute to a 

highly non-stable environment for control systems to be designed.  

In commercial buildings, the HVAC system is a set of interconnected devices, and 

actuators that are devoted to the conditioning of the air inside these buildings, i.e. to 
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control the levels of temperature, humidity, and CO2. Usually these different 

components are managed through a centralized monitoring supervisor with widely 

distributed sensors and independent controllers. Figure 1.1 illustrates a typical HVAC 

system in buildings. Mainly there are two parts in such systems: the water cooling and 

heating system which involves boilers, chillers, and cooling towers and the air 

conditioning and ventilation system which includes Air Handling Units (AHU), Variable 

Air Volume (VAV) boxes, and ducts. In addition, there is a network of pumps to 

circulate the water. The cooling and heating systems are utilized to cool or heat the water 

and to reject the waste heat that the water carries from condensers. The cold or hot water 

is then pumped into the conditioning and ventilation system. Here, the AHU condition 

the air through heat exchangers and a network of fans and ducts carry the conditioned air 

to the desired locations. The VAV boxes control the amount of air that enters the rooms 

based on the desired temperature setpoints. The chillers are themselves interconnected 

subsystems consisting of multiple compressors, heat exchangers, and expansion valves.                     

Low level controllers, particularly proportional-integral controllers, are commonly 

used in buildings in a completely decentralized fashion. The lack of coordination of such 

controllers and the nature of the complex interconnected components of HVAC systems 

may result in inefficient operation. On the other hand, applying a centralized control is 

impractical to be implemented for large buildings due to the large number of variables 

and widely distributed units. The centralized controller requires one dynamical model 

that reveals the behavior of the all HVAC systems components with all state and 

decision variables. The realization of such a model is challenging and solving one large 
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problem per sampling is time consuming. Furthermore, the controller needs to 

communicate all  

 

 

 

 

 

 

 

 

 

 

 

decision variables and collect the feedbacks for the all subsystems which may result in a 

high demand of communication at each sampling.   These challenges could impede the 

controller to provide real-time decisions within allowed limit or sampling. In addition to 

the possibility of control failure in case of communication absence, the redesign of the 

entire controller is required if one of the components is changed or updated. Based on 

these difficulties, any feasible alternative plantwide control approach is required to have 

a certain level of modularity and data communication bandwidth. The new control 

structure needs to have a decentralized design flexibility where only local information is 

Figure 1.1: A typical HVAC system in commercial buildings        

 



 

4 

 

used by the local agents. At the same time, it has some coordination to approach the 

centralized control optimum solution and robustness in term of communications.       

The problem of the optimal HVAC control can be approached from the perspective of 

a distributed control. In this structure, the centralized optimization is divided into 

distributed and cooperative control structures where local decisions are taken based on 

solving local optimal control problems in coordination toward the centralized optimum 

point. The network is dealt with as a collection of individual subsystems and each 

subsystem has a local independent controller that needs some knowledge about the other 

direct coupling subsystems. This gives an advantage over the decentralized controllers in 

that it can approach the systemwide optimum through sharing or communicating 

information.  

This dissertation studies the design of a distributed control approach that can reduce 

the communication load and computational time that a centralized controller may have. 

The proposed control architecture has a high level of modularity where any change or 

update in a subsystem does not require changes in its coupled neighbors which meets the 

control requirement of any HVAC systems. The main approach with convergence and 

closed-loop stability theories is presented in Chapter II. The design methodology of the 

local matrices and definition of the local variables for the approach is demonstrated 

through simulation of coupling tanks process in Chapter III. Chapter IV introduces the 

suboptimal version of the proposed algorithm where no centralized monitor is needed. 

With dissipativity theory, the global convergence is ensured locally. New conditions for 

convergence as well as closed-loop stability are derived. As a real demonstration of the 
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approach presented in Chapter II, an HVAC system in a real building is simulated and 

controlled with the application of the algorithm and Chapter V shows the application 

results. 

The remaining sections in this chapter are outlined as follows. First, an overview of 

Model Predictive Control (MPC) is provided as it is the main control structure used 

throughout this work. The architecture of MPC is then introduced followed up with 

various techniques used for guaranteeing the closed-loop stability. In the following 

sections, several methods are discussed for reparametrizing the optimization problem 

involved in the MPC along with state observers and dissipativity theory for distributed 

MPC. The chapter ends with an introduction to the limited-communication distributed 

model predictive control algorithm. All sections are provided with literature.   

       

1.2 Literature Review 

1.2.1 Model Predictive Control (MPC) 

Throughout this work, the main control structure used is Model Predictive Control 

(MPC). MPC has a well-known history and witnessed many successful applications as 

one of the fundamental methods of optimal control theory. During the last two decades 

the application of MPC has received a growing interest for HVAC systems. The 

popularity of MPC stems in part from its ability to handle physical constraints and multi-

variable processes explicitly. At the heart of the MPC is the controlled system model and 

concept of open-loop optimal feedback. The model is used to predict the future 

behaviors of the system and compute the optimum control actions along some horizons. 
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Using current state information, an optimization problem (associated with the future 

states and manipulated variables combined in a cost function) is solved at each sampling. 

Because of this optimization problem, a desired cost function with constraints on 

actuator actions and/or preferred output behaviors can easily be imposed. The first value 

of the computed optimal control action sequence is injected into the system, and the 

procedure is repeated for new states in what is called Receding Horizon (RH) control 

mode. Figure 1.2 shows the MPC controller with the RH structure. MPC has two 

horizons that are expressed in terms of sampling instants. State or output prediction 

horizon which defines the plant states or outputs over a span of time and control horizon 

that gives the number of future control actions that are calculated in the state or output 

prediction horizon. Usually both are considered to be equal, but for different horizons, 

the control horizon is always smaller. The size of the prediction horizon determines the 

size of the online optimization problem which is normally limited by the available 

computational speed. The control horizon has to be chosen such that the dynamics in the 

system settle out [7]. Morari and Lee provided a useful survey of the MPC in [8] while 

Qin and Badgwell gave a technique overview in [7]. There are many works about 

stability, constraints handling and feasibility, and robustness of MPC as by Kothare [9], 

Mayne [10], and Kerrigan [11].  

A typical MPC problem has a quadratic cost function that is subjected to the 

constraints of the controlled process dynamics, actuator saturations, and/or state or 

output limitations along some finite horizons. The following optimization illustrates a 

tracking MPC problem along the prediction 𝑁𝑝 and control 𝑁𝑐 horizons: 
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min𝑢𝑡,𝑢𝑡+1,⋯,𝑢𝑡+𝑁𝑐−1 {∑ ‖𝑦𝑡+𝑘 − 𝑟𝑡+𝑘‖𝑞
2 + ∑ ‖𝑢𝑡+𝑘‖𝑠

2𝑁𝑐−1
𝑘=0 + ‖𝑦𝑡+𝑁𝑝 − 𝑟𝑡+𝑁𝑝‖𝑞𝑁𝑝

2𝑁𝑝
𝑘=1 }     

subject to: 

𝑥𝑡+𝑘+1 = 𝑓(𝑥𝑡+𝑘, 𝑢𝑡+𝑘) 

𝑦𝑡+𝑘 = ℎ(𝑥𝑡+𝑘, 𝑢𝑡+𝑘) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑡+𝑘 ≤ 𝑢𝑚𝑎𝑥 , 𝑘 = 0,1,⋯𝑁𝑐 − 1 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑡+𝑘 ≤ 𝑦𝑚𝑎𝑥, 𝑘 = 1,2,⋯𝑁𝑝 

𝑥𝑡 = 𝑥(𝑡) 

where 𝑟𝑡+𝑘 is the desired tracking reference. The matrices 𝑞 and 𝑠 are the weighting 

matrices that are used for tuning the optimization problem. They could have constant 

values or values that change along the horizons. The matrix 𝑞𝑁𝑝is also a weighting 

matrix that is used for the terminal cost. This is a discrete MPC problem subjected to the 

process dynamics that can be linear or nonlinear. A similar problem could also be 

written for continuous problems but with continues costs and constraints. Usually the 

constraints on the control actions are hard constraints, however, the output constraints 

are generally soften by slack variables so that they can be violated whenever the 

feasibility of the problem is not satisfied. MPC feasibility means that the final answer of 

the MPC problem is satisfying the imposed constraints.  

The finite MPC problem minimizes the future cumulative cost over the horizons 

which can be implemented online. However, this could result in undesirable response or 

behavior of the process because of the limited horizons. On the other hand, an infinite 

horizon MPC problem minimizes the average cost over the infinite horizon. This can 
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give stable solutions for problems that have well defined terminal states but it is hard to 

be executed online as the computational time is expensive for problems with infinite 

variables. In order to have a finite online MPC problem that conducts an infinite 

behavior, the terminal weighting matrix 𝑞𝑁𝑝 is designed such as the final cost function 

acts as an infinite cost. By this way, the MPC problem gives stable solutions and costs 

that are close to the average cost along an infinite horizon.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) The Model Predictive Control (MPC) 

 

b)  The receding horizon mode 

 Figure 1.2: The MPC problem with receding horizon mode from [12]       
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1.3 Architectures of MPC 

1.3.1 Centralized and Decentralized MPC 

Figure 1.3 shows a network of coupled subsystems which are controlled by one 

model-based predictive controller.  This centralized MPC has one central model of all 

subsystems with couplings and one online optimization problem. In many cases the  

 

 

 

 

 

 

 

 

 

 

centralized MPC control has been implemented successfully. However, in general, 

industrial plants tend to be highly complex and nonlinear and applying one centralized 

controller to regulate these plants is often unrealistic due to computational complexities 

and communication bandwidth [13]. Moreover, unstable closed-loop operation is 

expected if unfeasible output constraints are included in the online optimization even 

though the unconstrained algorithm is stable [14]. Usually large-scale plants consist of 

several subsystems that have different control tasks and they are connected through 

Figure 1.3: Centralized MPC with network of subsystems       
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material, energy, or information streams which affect the stability performance of the 

closed-loop system. For instance, typical heating, ventilation, and air conditioning 

(HVAC) applications in commercial buildings are structures of many interconnected 

subsystems. There are multiple chillers, heat exchangers, and a network of fans and 

dampers which are independently controlled and widely distributed. In addition, many of 

these components have dynamics that are constantly changing, with varying objectives, 

and are subject to failure, updates, or replacement. These couplings and different control 

objectives require any plantwide control approach to have a certain level of modularity 

and communication bandwidth so that the update of the whole network is not required 

for any local changes and any communication failure does not affect the control 

algorithm.    

As an early solution for the centralized approach, completely decentralized control 

designs have been suggested since the 1970s. In these control architectures, the local 

controller attempts to adjust each plant in an interconnected system with no awareness of 

the dynamic couplings between the plants. The local plants are predefined by 

decomposing the large-scale system into softly coupled subsystems. As the actions of 

one agent will affect other coupled agents, design of such architecture is not easy. As an 

example of the design complexity is the change of plant zeros from minimum to non-

minimum phase [15] and non-convex optimization problem [16]. Current research 

directions in decentralized control can be found in [17]. For networks with weak 

interacting subsystems, decentralized controllers may able to overcome the coupling if 
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tuned deliberately. However, if the interactions are strong, these controllers can lead to 

loss in performance and stability [18]. 

In decentralized MPC, shown in figure 1.4, a local model collectively with a local cost 

function is selected that does not consider the interactions or couplings between the 

subsystems. Although disturbances can be accounted for in any MPC controller, but if 

the coupling between the subsystems are significant, decentralized MPC can suffer same 

interaction problems. Besides interactions, stability of the closed-loop is another non-

easy point to be guaranteed. Magni and Scattolini [19] added a stability constraint into 

the optimization problem that can ensure the stability of the local MPCs for nonlinear 

systems. This can solve the stability problem, but it can easily lead to feasibility issues. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.4: A network of subsystems with decentralized MPC controllers  
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1.3.2 Distributed MPC (DMPC) 

    A feasible alternative control approach is to divide the centralized optimization 

problem into distributed and cooperative control structures where local decisions are 

taken based on solving local optimal control problems in a coordinated fashion toward 

the centralized optimum point. In the distributed optimization approach, or more 

specifically the Distributed Model Predictive Control (DMPC) approach, the large-scale 

plant is decomposed into a number of subsystems where each has a local controller and 

the interaction between the subsystems are considered in the local dynamics and/or 

costs. Seeking the centralized performance, these local controllers exchange or share 

some information. Figure 1.5 shows a fully connected DMPC structure. Various DMPC 

algorithms have been proposed in the literature and widely referenced overviews of 

these algorithms can be found in [20] and [21]. 

 

 

 

 

 

 

 

 

 

 
Figure 1.5: A network of subsystems with fully connected distributed MPC 

controllers 
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In literature, generally two different schemes are observed in dealing with DMPC 

approaches. The first suggested approach is referred to as the coordination-based 

approach [22] where local controllers try to improve the solution from a centralized 

perspective. Each local controller has an explicit centralized cost and aims to improve 

the systemwide solution by informing other controllers about its actions on the desired 

centralized performance. Decomposition optimization offers a powerful tool for solving 

the global optimization problems in a distributed method by informing local controllers 

of the impact of their actions on the global objective. Giselsson and Rantzer [23] 

introduced this idea in their proposed DMPC theory through dual decomposition 

method. Additional works with decomposition methods include Wakasa. et al. [24] and 

Conte et al. [25] with dual decomposition and Keviczky  & Johansson [26] and 

Johansson et al. [27] with primal decomposition.    

The second proposed methodology is based on game theory where cooperation 

between agents is allowed. This approach is identified as communication based or 

independent DMPC structures [28]. In this concept, the local agents are permitted to 

exchange information without having any knowledge of others cost or dynamics and the 

interactions between the subsystems are modeled. Scattolini [20] classified the 

communication based DMPC techniques according to the information exchange 

procedure required (iterative and non-iterative algorithms), the topology of the 

information sharing in the network (fully and partially connected set-up), and the 

modification of the local cost function (cooperative and non-cooperative local costs). 

Figure 1.6 shows a partially connected DMPC architecture.  
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Jia and Krogh [29] presented a communication-based DMPC algorithm in which the 

local controllers view the coupling influences as measured disturbances into the local 

dynamics and exchange bounds of their state trajectories. A min-max local optimization 

problem is solved by each controller per iteration considering the worst disturbance case.  

An iterative framework DMPC structure was introduced by Venkat et al. [30] to 

automate generation control. In this context the local MPC agents work toward 

satisfying the global control objective in a fully connected and cooperative fashion. 

Farina and Scattolini [31] proposed a non-iterative, non-cooperative partially connected 

DMPC algorithm where a neighbor-to-neighbor communication is required for linear 

discrete 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: A network of subsystems with partially connected 

distributed MPC controllers 
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time systems and the local agents have no information about the local coupling 

dynamics. In this scheme the closed-loop convergence is proved under a number of 

assumptions that include solving a centralized stabilizing matrix and distributing the 

result through the local agents, in addition to some restrictions on the local costs.   

Convergence to Nash equilibrium (the global Pareto optimum is not achieved) and 

poor control performance or even instability have been noted in communication-based 

DPMC approaches [32], [33], and [23]. This restricted the application of the 

communication-based DMPC for networks with weak coupled subsystems only. And as 

a solution, local cost functions are replaced with global objective measures or modified 

local cost functions [13]. The feasible cooperation-based MPC suggested by Venkat et 

al. [34] is a fully connected set-up at which the controllers are solving the same cost 

function (a strong convex combination of the local objective indices), iterating, and 

converging to the centralized optimum. 

Sharing data with all subsystems in a network (fully connected networks) or solving a 

centralized problem (for example stabilizing terminal costs) as a condition for 

convergence to the global solution would make the DPMC algorithm impractical for 

many industrial applications. Communication load issues and changes in subsystem 

dynamics or set-points are common problems in real time applications and can easily 

complicate the applications of such algorithms.    

   Different numbers of subsystems with different scales or sizes have been used to 

demonstrate the aspects of many proposed DMPC theories. Alvarado et al. [35] used an 

experimental 4-tank process to validate the design and implementation of several 
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distributed control algorithms. The global system is divided into two subsystems with 

two states per each and they are coupled through the control actions and objective 

functions. For the purpose of illustration, Putta et al. [36] used a simplified state-space 

model of thermal zone and the accompanying AHU. A two identical-zone building is 

suggested in which the zones are coupled in their output temperature in addition to 

coupling in controls. Each zone has a state space dimension of 10 and 16 exogenous 

inputs. Morosan et al. [28] suggested using a virtual building composed of three coupled 

rooms for testing the introduced DMPC algorithm. The centralized model has 50 states 

which is subdivided into three coupled subsystems. For testing an accelerated gradient 

based distributed MPC framework, Giselsson et al. [37] generated 100 random 

optimization problems as a network of 100 different subsystems. The local problems are 

stable and controllable and have different structures and initial conditions.  

 

1.4 Stability of MPC 

    Solving a finite optimization problem in MPC does not guarantee closed-loop stability 

as finite horizons do not deliver an asymptotic property [38]. Several methods can be 

found in literature for closed-loop stability of MPC. Terminal state inequality [39] or 

equality [40] constraints with a terminal cost is typically added to the MPC optimization 

problem to ensure the closed-loop stability. Different techniques for terminal costs and 

constraints can be found in [38]. Recently, global Control Lyapunov Function (CLF) 

was suggested by Primbs et al. [41] to develop a stabilizing RH structure with better cost 

objective. Because a global CLF is often not possible, this motivated Jadbabaie and 
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Hauser [42] to introduce the exponentially stability for input constrained RH concept 

using a general terminal cost that is nonnegative for a sufficiently long horizon.  

    Stability of MPC can also be achieved by imposing constraints on the first predicted 

value where it is required the two-norm of the first state to contract. Xie and Fierro [43] 

suggested the first-sate contractive MPC algorithm while Cheng and Jia in [44] and [45] 

presented the quadratic robust first-sate contractive MPC. The constrained first-state 

technique earns guaranteed stability but with considerable performance loss making it 

suitable for nonlinear MPC where stability is more important than performance [46]. 

Conte et al. [47] proposed a distributed synthesis for the local terminal costs and sets 

for a network of coupled discrete-time linear systems that can satisfy the invariance 

conditions in a distributed way. A structural constraint is imposed where the summation 

of the local stage and terminal costs must equal the global stage and terminal costs. In 

addition, a local agent needs to know the dynamics of the couplings with its neighbors. 

As an alternative method, Venkat [48] recommended solving a centralized linear 

quadratic regulating problem and distributing the resulted costs and sets through the 

subsystems. This problem is recomputed whenever a setpoint changes or a subsystem 

model or constraint is updated. A decentralized solution is proposed by Hermans et al 

[49] for stabilizing a network of nonlinear coupled discrete-time systems. For local 

stability, a set of structured CLF is used to decentralize the closed-loop stability 

conditions for which the maximum over all the functions in the set is a CLF of the global 

network of systems. Jia and Krogh [50] suggested adding a stability-constraint on the 

next predicted state in the local problems to have a stable closed-loop DMPC approach. 
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This approach works for full state feedback network that is controllable and satisfies a 

structural matching condition. 

The closed-loop stability of an MPC can also be achieved by assuming sufficiently 

long horizons with some characteristics of the controlled system. The problems of 

stability and feasibility of finite receding horizon control formulation was studied by 

Primbs and Nevistic in [51] and [52]. For linear systems with constraints on state and 

control, it has been proved that for any feasible and compact initial condition set there 

exist a finite horizon length above which an MPC controller will deliver both stability 

and feasibility properties without adding any terminal costs or constraints. A similar 

result was also found by Boccia et al. [53] but for constrained nonlinear RH scheme with 

the assumptions of local controllability around the stabilized equilibrium point and 

sufficiently large horizon. The asymptotically stabilization and an estimated horizon 

length have been shown. Worthmann [54] also studied the estimation of the horizon 

length without imposing terminal cost or constraint at which stability or a desired degree 

of suboptimality is ensured. With Dini’s theorem, Jadbabaie and Hauser [42] showed 

that a finite horizon always exists at which the RH structure is stabilizing without adding 

terminal costs or constraints.  

 

1.5 The Online MPC Problem Size Reduction 

    As the length of the prediction horizon mostly determines the numerical effort needed 

to solve the given optimal problem in MPC, this result inevitably leads to the question of 
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how to reduce the computational time or the size of the online optimization problem. A 

number of techniques have been suggested in literature.   

    An explicit solution for the MPC problem can be derived as a function of the initial 

state that replaces the repeated online solutions. The inputs are treated as 

multiparametric variables and implemented online from a lookup table [55]. Hovland et 

al. [56] proposed using an explicit MPC structure conjugated with model reduction for 

real-time control application for systems with fast dynamics. An explicit MPC algorithm 

was also suggested by Tondel et al. [57]. The main drawback of the explicit MPC 

solution is that the size of the lookup table grows exponentially with the horizon and 

number of states and controls which makes it reliable for small problems [58].      

    Singular Value Decomposition (SVD) was suggested to reduce the size of variables 

involved in the problem as well. In SVD, the new manipulated variables are selected 

based on the maximum energy they can contribute to the problem in addition to 

constraints satisfaction. For bounded input disturbance constrained linear systems, Ong 

and Wang [59] proposed the SVD approach to reduce the control variables in the MPC 

problem. They also ensure the recursive feasibility by an auxiliary state. For DMPC, Cai 

et al. [60] developed an SVD framework at which the structure of the SVD is 

decomposed into a number of independent subproblems that can reduce the number of 

communications between the subsystems and ensure the convergence to the global 

solution for a fully connected structure.   

Laguerre functions can be used to diminish the number of the online variables as well. 

These functions are used for parameterization because of their orthogonality and 
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simplicity. Wang [61] designed an MPC with Laguerre functions which was equivalent 

to the typical MPC but with less manipulated variables by relaxing the constraint on the 

exponential rate of change. Laguerre functions conjugated with multi-parametric 

Quadratic Programming (mp-QP) were used by Palomo and Rossiter [62] to improve the 

efficiency of the (mp-QP) and to largely decrease the online computations of the MPC 

and increase the feasibility region.  

For DMPC, using sufficiently long horizons for closed-loop stability increases the size 

of the local problems (which can be reduced by Laguerre functions) but gives a higher 

modularity and more design flexibility for the local cost function structures.  

 

1.6 Dissipativity Theory for Network Systems 

The control of large scale networked systems can also be approached through tools 

from the theory of dissipative systems. Dissipativity (or passivity as a special case) is a 

property of an input-output dynamical system. In dissipativity, the idea is that some 

energy dissipates as it is transformed from point to point. The theory of dissipativity is 

an effective tool for analyzing network performance where the stability or stabilizability 

of a large-scale problem basically can be dealt with as the dissipativity analysis of the 

connected individual processes and coupling structure [63]. For nonlinear systems, 

Isidori et al. [64] developed some approaches to define storage and supply functions 

using the dynamic model of the system. However, these functions can also be driven 

based on the physics of the system such as energy [65]. Rojas et al [66] addressed the 

stability of a network of nonlinear processes based on the dissipativity properties of 
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individual subsystems and topology of the network. Storage functions that derived from 

the subsystem’s energy (the 𝑄, 𝑅, 𝑆 storage functions) are used as the base for designing 

the local control structures. Through the process chemistry and conservation laws, Hioe 

et al [67] extended the idea in [66] within 𝑄, 𝑅, 𝑆 dissipation structure. The dissipativity 

of the local processes was extended to dissipativity-based conditions that are applicable 

for network analysis. A distributed dissipative-based MPC approach was proposed by 

Zheng et al [68] for networks with low communication rates. The controllers in this 

concept are exchanging information at a rate slower than the sampling rate of individual 

subsystems to reduce the communication burden. A dissipative analysis was designed to 

study the effects of such low communication rate. The analysis was formulated in terms 

of the plantwide dissipativity properties where supply rates in the form of Quadratic 

difference Forms (QdFs) were used. These supply rates are dynamic functions that 

change with respect to a polynomial matrix and can overcome the conservation bounds 

that 𝑄, 𝑅, 𝑆 functions have. This leads at the end to have a dissipative trajectory 

conditions for the local controllers. For cascades of physically interconnected systems, a 

decentralized dissipativity-based nonlinear MPC approach was proposed by Varutti et al 

[69]. The approach can prove the systemwide stability through the independent stability 

of the local subsystems. An additional stability condition, which is based on 

dissipativity, had to be stratified by the local nonlinear MPC with the intention of 

staffing the global dissipativity and consequently the stability. For MPC stability, many 

works have been conducted based on the dissipativity inequality. For more information 

see [70], [71] and [72].  
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1.7 DMPC Structures with State Observer/Estimator 

MPC is a state feedback controller and if an online state observer/estimator is 

combined with, this improves the prediction accuracy of the MPC and extends it for 

output feedback systems with process input and measurement noises. The state estimator 

unit in MPC provides the optimal estimation of the process state and disturbance based 

on the measurements of the outputs and control inputs in addition to an accurate 

knowledge of the actual noise statistics. The structure of a state estimator or observer 

includes the dynamical model of the plant that is used to simulate the real system with 

same initial conditions and inputs as the actual plant. The difference between the real 

and simulated measurements is used as a correction or feedback part into the simulated 

plant. This simulation error will be important if the process or plant is exposed to 

disturbances such as noise or has some uncertainties in its models. Therefore, the state 

observer has two phases. The first phase is the time update or prediction where the 

model is used to predict the current state using past information. The second phase of the 

observer is the measurement update where the current measurement is refined. The 

results from both phases are added in order to have more accurate state estimation.          

For a single MPC, numerous methods have been suggested to combine the function of 

the MPC with state observers or Kalman filters (KF). Wang et al. [73] used KF with 

MPC for a class of plants with random disturbances. Luenberger state estimator was 

used by Mayne et al. [74] with tube-based MPC to develop a robust output feedback 

controller for constrained linear systems with input and output disturbances. Yan and 

Bitmead [75] studied the interaction between the state estimation error and constraints 
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for a stochastic MPC. With a Gaussian assumption, the original stochastic problem was 

approximated by a standard deterministically constrained MPC for the conditional mean 

process of the state. The idea was verified with an application of a network congestion 

control.  Further works in this area include Geetha et al. [76], Hong and Cheng [77], and 

Ruscio [78].         

Recently, considerable attentions have been given to distributed estimation problems 

in large-scale systems. Distributed state estimators can be employed to approximate 

states of local subsystems that are usually difficult to measure, by accessing to local and 

partial measurements.  

Several decentralized and distributed estimation approaches have been introduced for 

networked large-scale systems. A decentralized and scalable form of Kalman filter for 

multirate sampled-data subsystems was introduced by Vadigepalli and Doyle [79]. The 

multi-rate design was formulated by differing the sampling for distributed agent 

computations and the availability of the measurements. The decomposed multivariable 

dynamics result in communication overhead for the estimation where heuristic 

guidelines were introduced to balance the computation and communication loads. Farina 

and Scattolini [80] used decoupled Luenberger estimators to extend the DMPC 

algorithm presented in [31] for output feedback case. The state estimator error was 

considered as an additional disturbance for local controllers. Extended Kalman filters 

were used by Zhenget et al. [81] to estimate the temperature for local MPCs in a DMPC 

schema that was used to control a hot-rolled strip laminar cooling process. For multi-rate 

local systems, Yamchi et al. [82] proposed a cooperative distributed Kalman filter 



 

24 

 

algorithm along with a DMPC scheme. The local subsystems were defined to be multi-

rate systems as the input updates or output measurement is not available at a particular 

sampling. Each distributed agent (KF+MPC) considers other agent actions into local 

dynamics through communication. A networked control structure based on distributed 

Kalman filters for unconstrained systems was also presented by Menighed et al. [83]. 

The proposed architecture is suitable for fault tolerant control of distributed subsystems 

under actuator faults. The local state estimators are Kalman filters which are the key 

components for the realistic DMPC algorithm.         

 

1.8 Introduction to the LC-DMPC Algorithm 

In this work, a novel Limited-Communication Distributed Model Predictive Control 

(LC-DMPC) scheme for coupled and constrained linear discrete-time systems is 

introduced. The LC-DMPC approach is an iterative, cooperative, partially connected 

algorithm. This algorithm has been analyzed under two different cases. 

 In the first case, the local dynamics and cost function information for all subsystems 

are known at a central monitor for checking the convergence of the algorithm. Here, the 

systemwide optimum performance can be achieved where convergence requires only 

coupled subsystems with local structural information to cooperate for sufficient number 

of iterations. In order to have an element of modularity, the closed-loop stability of local 

agents is ensured by assuming appropriately long horizons. To overcome the 

computational efforts associated with large numbers of manipulated variables, local 

control actions are parametrized by Laguerre functions which leads to smaller local 
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optimization problems. Laguerre functions are also used to parametrize the exchanged 

signals in a different event.  

In the second case, the suboptimal performance of the LC-DMPC algorithm is 

analyzed through the dissipativity theory. There is no need for a centralized supervisor 

and the network convergence is guaranteed through the dissipativity of the local 

communication signals in the iteration domain. As convergence to the global 

performance is lost, a new method is introduced to prove the local closed-loop stability. 

A distributed method for designing stabilizable terminal costs is developed which 

requires the local agents to share the interaction dynamics only.  

In both cases, the LC-DMPC involves neighbor-to-neighbor communication structure.  

During a sampling time, each distributed agent shares its predicted future effects with its 

neighbors and receives the sensitivity that the neighbors’ cost functions have for these 

effects at the next iteration. Then the controller solves an updated problem by 

minimizing the summations of a deviation from a local reachable reference, local control 

efforts, and the future effects for neighbors weighted by the received sensitivity 

information. Constraints on state and control actions can be handled by local controllers. 

 The proposed algorithm in the first case has the following highlighted characteristics: 

(i) any physical changes or model updates in a subsystem do not require any updates for 

its neighbors. Only the central monitor needs to be updated; (ii) solution of the 

distributed controllers converges to the global optimum point through: parietal 

commination (neighbor-to-neighbor), solving a modified cost function, and local 

knowledge of dynamics and costs; (iii) the central supervisor only checks the 
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convergence condition which does not involve solutions of any centralized problem and 

distribute the results..   

On the other hand, the suboptimal LC-DMPC framework characterizes most of the 

above highlights except changes in the coupling dynamics need to be exchanged and the 

stabilizing terminal costs have to be recomputed. However, this is accomplished in a 

distributed fashion. In addition, the algorithm will be suboptimal with respect to the 

centralized performance.    

The high level of modularity of the LC-DMPC algorithm makes it an appropriate 

plantwide control approach for many industrial plants such as HVAC systems in 

commercial buildings where components’ setpoints or models change frequently.   
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2. THEORY OF LIMITED-COMMUNICATION DISTRIBUTED MODEL 

PREDICTIVE CONTROL (LC-DMPC)

 

 

    In this dissertation, the Limited-Communication DMPC (LC-DMPC) algorithm is 

introduced for coordinating constrained and coupled linear distributed subsystems that 

can be found in any large-scale plants such as HVAC systems. The centralized problem 

is subdivided into cooperative local subproblems using the structure of upstream and 

downstream subsystems. The distributed agents in the LC-DMPC algorithm function as 

supervisor controllers by computing the optimum set-points for lower level controllers 

(usually PI or PID) based on solving the local optimization problems.  The presented 

algorithm in this chapter can converge to the centralized solution by only requiring an 

iterative neighbor-to-neighbor communication architecture. Using local dynamics and 

costs information, each local agent solves the distributed cost function with local 

constraints and shares some predicted data with its immediate local neighbors (not with 

all agents). Assuming equal prediction and control horizons and all subsystems have 

same prediction length; stability of the closed-loop subsystems under the action of the 

LC-DMPC algorithm is proved with constraints only on control actions. The stability is 

ensured by assuming sufficiently long horizons. To overcome the problems associated 

with long horizons, Laguerre functions are used to parameterize the local control actions 

and reduce the number of the optimized variables. In a different case, Laguerre functions 

                                                 
 Parts of this section are reprinted with permission from R. Jalal and B. Rasmussen, “Limited-communication distributed model 

predictive control for coupled and constrained linear systems,” IEEE Transaction on Control System Technology, accepted, 2016.   
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are used by the local agent to parametrize the exchanged signals as well to reduce the 

communication burden.    

This chapter is organized as follows: First, the mathematical preliminaries which 

include the structure of upstream and downstream, local and global dynamics and cost 

functions, and local Kalman filters are introduced. The main algorithm, convergence, 

and closed-loop stability are then detailed. The last section presents the Laguerre 

functions for parametrization of the local control actions and exchanged vectors.    

  

2.1 Preliminaries 

2.1.1 Topology 

The definitions, structures and equations used to describe the LC-DPMC approach are 

presented in this section. For 𝑝 dynamically coupled subsystems in a network, the 

dynamics of subsystem Σ𝑖 can be realized as a set of discrete-time difference equations 

as follows:  

                                         

𝑥𝑖(𝑘 + 1) = 𝑓𝑖{𝑥𝑖(𝑘), 𝑢𝑖(𝑘), 𝑣𝑖(𝑘), 𝑑𝑖(𝑘)}

        𝑦𝑖(𝑘) = ℎ𝑖(𝑥𝑖(𝑘), 𝑢𝑖(𝑘))

        𝑧𝑖(𝑘) = 𝑞𝑖(𝑥𝑖(𝑘), 𝑢𝑖(𝑘))

                          (2.1) 

where 𝑥𝑖 ∈ ℜ
𝑛𝑖 is the state vector, 𝑢𝑖 ∈ ℜ

𝑟𝑢,𝑖 is the input control vector that affects 

subsystem Σ𝑖 locally, 𝑦𝑖 ∈ ℜ
𝑝𝑦,𝑖 is the regulated output vector, and let 𝑥0,𝑖(𝑘) be the 

initial condition of the state vector where 𝑘 is the current discrete time step. The vector 

𝑣𝑖 ∈ ℜ
𝑟𝑣,𝑖 represents the measured input disturbances from upstream neighboring 

dynamic subsystems. On the other hand, if subsystem Σ𝑖 has outputs that act as 

disturbances for some downstream subsystems in the network, then these outputs are 
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referred to as the vector 𝑧𝑖 ∈ ℜ
𝑝𝑧,𝑖. Unmeasured disturbances enters as 𝑑𝑖 ∈ ℜ

𝑟𝑑,𝑖. This 

partition of a subsystem is referred to as upstream and downstream architecture in this 

work. Figure 2.1 illustrates such structure. 

To predict the future values of vectors 𝑦𝑖 and 𝑧𝑖, let 𝑁𝑝,𝑖 be the prediction horizon 

(assume equal state and control prediction horizons). Stacking all predicted values of 

both vectors along 𝑁𝑝,𝑖, one can write: 

                               Y𝑖 = [𝑦𝑖
𝑇(𝑘 + 1)   𝑦𝑖

𝑇(𝑘 + 2)  ⋯   𝑦𝑖
𝑇(𝑘 + 𝑁𝑝,𝑖)]

𝑇
                        (2.2) 

                              Z𝑖 = [𝑧𝑖
𝑇(𝑘)   𝑧𝑖

𝑇(𝑘 + 1)  ⋯   𝑧𝑖
𝑇(𝑘 + 𝑁𝑝,𝑖 − 1)]

𝑇
                          (2.3) 

Similarly define:  

                           V𝑖 = [𝑣𝑖
𝑇(𝑘)   𝑣𝑖

𝑇(𝑘 + 1) ⋯   𝑣𝑖
𝑇(𝑘 + 𝑁𝑝,𝑖 − 1)]

𝑇
                             (2.4) 

 

 

 

 

 

 

 

 

    For simplicity let all of the subsystems in the network have same prediction horizons 

equal to 𝑁𝑝, then the network (systemwide) disturbance inputs and outputs can be 

formulated as: 

Figure 2.1: A schematic diagram of an LC-DMPC subsystem 
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                                                 𝐕𝑟𝑣×1 = [V1
𝑇  V2

𝑇⋯  V𝑝
𝑇]
𝑇
                                              (2.5) 

                                                 𝐙𝑝𝑧×1 = [Z1
𝑇  Z2

𝑇⋯  Z𝑝
𝑇]
𝑇
                                              (2.6) 

with 𝑟𝑣 = 𝑁𝑝 ∙ ∑ 𝑟𝑣,𝑖
𝑝
𝑖=1   and  𝑝𝑧 = 𝑁𝑝 ∙ ∑ 𝑝𝑧,𝑖

𝑝
𝑖=1 . 

For theoretical analysis only, an interconnecting matrix 𝚪 ∈ {0,1} with dimension of 

𝑟𝑣 × 𝑝𝑧 is defined to manage the communication of the predicted data (2.5) and (2.6) 

between the local agents. This matrix relates the network inputs and outputs as: 

                                                                   𝐕 = 𝚪𝐙                                                       (2.7) 

The structure of the interconnecting matrix must reveal the actual coupling between 

the subsystems. That is for each subsystem disturbance output Z𝑖, there is a 

corresponding subsystem input vector(s) V𝑖 (i.e. 𝑟𝑣 = 𝑝𝑧). As an example, figure 2.2 

shows five coupled plants in a network with different couplings. Plant 2 affects plants 3, 

4, and 5, however it has only one disturbance input coming from plant 1. Plants 3 and 4 

affect each other and both disturb plant 5. Finally, plant 1 has two disturbance outputs 

for plants 2 and 5 and it has only one disturbance from plant 5.  

 

 

 

 

 

 

 

 

 
Figure 2.2: An example of five coupled subsystems in a 

network       
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Assuming Np = 1, then the network outputs of these plants could be expressed as: 

                                                  𝐙 =

[
 
 
 
 
Z1
Z2
Z3
Z4
Z5]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 [
Z1,2
Z1,5

]

[

Z2,3
Z2,4
Z2,5

]

[
Z3,4
Z3,5

]

[
Z4,3
Z4,5

]

Z5 ]
 
 
 
 
 
 
 
 
 
 

                                                    (2.8) 

The network disturbance inputs are related to 𝐙 through the interconnecting matrix 𝚪 as: 

          𝐕 =

[
 
 
 
 
V1
V2
V3
V4
V5]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
V1
V2

[
V3,2
V3,4

]

[
V4,2
V4,3

]

[
 
 
 
V5,1
V5,2
V5,3
V5,4]

 
 
 

]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
0 0 0
1 0 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 1

0 1 0 0
0 0 0 0
0 0 0 0

0 1 0
0 0 0
0
0

0
0

0
0

0 0 0
0 1 0
0
0

0
0

0
0

0 0 0 0
0 0 0 0
1
0

0
0

0 0
1 0]

 
 
 
 
 
 
 
 
 

⏟                        
𝚪 [

 
 
 
 
 
 
 
 
 
 [
Z1,2
Z1,5

]

[

Z2,3
Z2,4
Z2,5

]

[
Z3,4
Z3,5

]

[
Z4,3
Z4,5

]

Z5 ]
 
 
 
 
 
 
 
 
 
 

              (2.9) 

This concept can be extended for any value of 𝑁𝑝 (see appendix I). 

    Through the structure of 𝚪 one can get the desired type of coupling for simulation. 

This example also shows that two coupled plants can simultaneously be upstream and 

downstream neighbors where the neighbors are defined based on the flow of the 

coupling signals. 
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2.1.2 Local Dynamic Models 

    For linear discrete-time systems, the equations given in (2.1) can be expressed as:  

                            

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘) + 𝐵𝑣,𝑖𝑣𝑖(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘)

        𝑦𝑖(𝑘) = 𝐶𝑦,𝑖𝑥𝑖(𝑘) + 𝐷𝑦,𝑖𝑢𝑖(𝑘)

        𝑧𝑖(𝑘) = 𝐶𝑧,𝑖𝑥𝑖(𝑘) + 𝐷𝑧,𝑖𝑢𝑖(𝑘)

           (2.10) 

where the exogenous disturbance 𝑑𝑖 is assumed to measurable. The predicted future 

values of the vectors 𝑦𝑖 and 𝑧𝑖 at the sampling time m can be computed by the repeated 

application of (2.10) as: 

                            𝑦𝑖(𝑘 + 𝑚) = 𝐶𝑦,𝑖𝐴𝑖
𝑚𝑥0,𝑖(𝑘) + 𝐷𝑦𝑢,𝑖𝑈𝑖 + 𝐷𝑦𝑣,𝑖𝑉𝑖 + 𝐷𝑦𝑑,𝑖𝐷𝑖         (2.11) 

                            𝑧𝑖(𝑘 + 𝑚) = 𝐶𝑧,𝑖𝐴𝑖
𝑚𝑥0,𝑖(𝑘) + 𝐷𝑧𝑢,𝑖𝑈𝑖 + 𝐷𝑧𝑣,𝑖𝑉𝑖 + 𝐷𝑧𝑑,𝑖𝐷𝑖           (2.12)     

where: 

𝐷𝑦𝑢,𝑖 = [𝐶𝑦,𝑖𝐴𝑖
𝑚−1𝐵𝑢,𝑖  𝐶𝑦,𝑖𝐴𝑖

𝑚−2𝐵𝑢,𝑖  ⋯  𝐶𝑦,𝑖𝐵𝑢,𝑖  𝐷𝑦,𝑖] 

𝐷𝑦𝑣,𝑖 = [𝐶𝑦,𝑖𝐴𝑖
𝑚−1𝐵𝑣,𝑖  𝐶𝑦,𝑖𝐴𝑖

𝑚−2𝐵𝑣,𝑖  ⋯  𝐶𝑦,𝑖𝐵𝑣,𝑖] 

𝐷𝑦𝑑,𝑖 = [𝐶𝑦,𝑖𝐴𝑖
𝑚−1𝐵𝑑,𝑖  𝐶𝑦,𝑖𝐴𝑖

𝑚−2𝐵𝑑,𝑖  ⋯  𝐶𝑦,𝑖𝐵𝑑,𝑖] 

𝐷𝑧𝑢,𝑖 = [𝐶𝑧,𝑖𝐴𝑖
𝑚−1𝐵𝑢,𝑖  𝐶𝑧,𝑖𝐴𝑖

𝑚−2𝐵𝑢,𝑖  ⋯  𝐶𝑧,𝑖𝐵𝑢,𝑖  𝐷𝑧,𝑖] 

𝐷𝑧𝑣,𝑖 = [𝐶𝑧,𝑖𝐴𝑖
𝑚−1𝐵𝑣,𝑖  𝐶𝑧,𝑖𝐴𝑖

𝑚−2𝐵𝑣,𝑖  ⋯  𝐶𝑧,𝑖𝐵𝑣,𝑖] 

𝐷𝑧𝑣,𝑖 = [𝐶𝑧,𝑖𝐴𝑖
𝑚−1𝐵𝑣,𝑖  𝐶𝑧,𝑖𝐴𝑖

𝑚−2𝐵𝑣,𝑖  ⋯  𝐶𝑧,𝑖𝐵𝑣,𝑖] 

 

𝑈𝑖 = [𝑢𝑖
𝑇(𝑘)   𝑢𝑖

𝑇(𝑘 + 1) ⋯  𝑢𝑖
𝑇(𝑘 + 𝑚)]𝑇 

𝑉𝑖 = [𝑣𝑖
𝑇(𝑘)   𝑣𝑖

𝑇(𝑘 + 1) ⋯  𝑣𝑖
𝑇(𝑘 + 𝑚 − 1)]𝑇 

𝐷𝑖 = [𝑑𝑖
𝑇(𝑘)   𝑑𝑖

𝑇(𝑘 + 1) ⋯  𝑑𝑖
𝑇(𝑘 + 𝑚 − 1)]𝑇 

Referring to equations (2.2) and (2.3), all predicted values of Y𝑖 and Z𝑖 along 𝑁𝑝 can be 

written in matrix and vector formats as: 
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                                        Y𝑖 = 𝐹𝑦,𝑖𝑥0,𝑖(𝑘) +𝑀𝑦,𝑖U𝑖 + 𝑁𝑦,𝑖V𝑖 + 𝑃𝑦,𝑖D𝑖                        (2.13) 

 

                                       Z𝑖 = 𝐹𝑧,𝑖𝑥0,𝑖(𝑘) + 𝑀𝑧,𝑖U𝑖 + 𝑁𝑧,𝑖V𝑖 + 𝑃𝑧,𝑖D𝑖                         (2.14) 

where  

𝐹𝑦,𝑖 =

[
 
 
 
 
 
𝐶𝑦,𝑖𝐴𝑖

𝐶𝑦,𝑖𝐴𝑖
2

𝐶𝑦,𝑖𝐴𝑖
3

⋮
𝐶𝑦,𝑖𝐴𝑖

𝑁𝑝]
 
 
 
 
 

  ,     𝐹𝑧,𝑖 =

[
 
 
 
 
 

𝐶𝑧,𝑖
𝐶𝑧,𝑖𝐴𝑖

𝐶𝑧,𝑖𝐴𝑖
2

⋮
𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−1]
 
 
 
 
 

 

and  𝑀𝑦,𝑖, 𝑁𝑦,𝑖, 𝑀𝑧,𝑖, 𝑁𝑧,𝑖, 𝑃𝑦,𝑖, & 𝑃𝑧,𝑖  are the lifted representations of the Markov 

parameters computed from 𝐷𝑦𝑢,𝑖, 𝐷𝑦𝑣,𝑖, 𝐷𝑧𝑢,𝑖, 𝐷𝑧𝑣,𝑖, 𝐷𝑦𝑑,𝑖, & 𝐷𝑧𝑑,𝑖 along 𝑁𝑝, given as: 

𝑀𝑦,𝑖 =

[
 
 
 
 
 

𝐶𝑦,𝑖𝐵𝑢,𝑖 𝐷𝑦,𝑖 0 ⋯ 0 0

𝐶𝑦,𝑖𝐴𝑖𝐵𝑢,𝑖 𝐶𝑦,𝑖𝐵𝑢,𝑖 𝐷𝑦,𝑖 ⋯ 0 0

𝐶𝑦,𝑖𝐴𝑖
2𝐵𝑢,𝑖 𝐶𝑦,𝑖𝐴𝑖𝐵𝑢,𝑖 𝐶𝑦,𝑖𝐵𝑢,𝑖 ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ 0 0
𝐶𝑦,𝑖𝐴𝑖

𝑁𝑝−1𝐵𝑢,𝑖 𝐶𝑦,𝑖𝐴𝑖
𝑁𝑝−2𝐵𝑢,𝑖 𝐶𝑦,𝑖𝐴𝑖

𝑁𝑝−3𝐵𝑢,𝑖 ⋯ 𝐶𝑦,𝑖𝐵𝑢,𝑖 𝐷𝑦,𝑖]
 
 
 
 
 

 

𝑁𝑦,𝑖 =

[
 
 
 
 
 

𝐶𝑦,𝑖𝐵𝑣,𝑖 0 0 ⋯ 0 0

𝐶𝑦,𝑖𝐴𝑖𝐵𝑣,𝑖 𝐶𝑦,𝑖𝐵𝑣,𝑖 0 ⋯ 0 0

𝐶𝑦,𝑖𝐴𝑖
2𝐵𝑣,𝑖 𝐶𝑦,𝑖𝐴𝑖𝐵𝑣,𝑖 𝐶𝑦,𝑖𝐵𝑣,𝑖 ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ 0 0
𝐶𝑦,𝑖𝐴𝑖

𝑁𝑝−1𝐵𝑣,𝑖 𝐶𝑦,𝑖𝐴𝑖
𝑁𝑝−2𝐵𝑣,𝑖 𝐶𝑦,𝑖𝐴𝑖

𝑁𝑝−3𝐵𝑣,𝑖 ⋯ 𝐶𝑦,𝑖𝐴𝑖𝐵𝑣,𝑖 𝐶𝑦,𝑖𝐵𝑣,𝑖]
 
 
 
 
 

 

𝑃𝑦,𝑖 =

[
 
 
 
 
 

𝐶𝑦,𝑖𝐵𝑑,𝑖 0 0 ⋯ 0 0

𝐶𝑦,𝑖𝐴𝑖𝐵𝑑,𝑖 𝐶𝑦,𝑖𝐵𝑑,𝑖 0 ⋯ 0 0

𝐶𝑦,𝑖𝐴𝑖
2𝐵𝑑,𝑖 𝐶𝑦,𝑖𝐴𝑖𝐵𝑑,𝑖 𝐶𝑦,𝑖𝐵𝑑,𝑖 ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ 0 0
𝐶𝑦,𝑖𝐴𝑖

𝑁𝑝−1𝐵𝑑,𝑖 𝐶𝑦,𝑖𝐴𝑖
𝑁𝑝−2𝐵𝑑,𝑖 𝐶𝑦,𝑖𝐴𝑖

𝑁𝑝−3𝐵𝑑,𝑖 ⋯ 𝐶𝑦,𝑖𝐴𝑖𝐵𝑑,𝑖 𝐶𝑦,𝑖𝐵𝑑,𝑖]
 
 
 
 
 

 

𝑀𝑧,𝑖 =

[
 
 
 
 
 

𝐷𝑧,𝑖 0 0 ⋯ 0 0

𝐶𝑧,𝑖𝐵𝑢,𝑖 𝐷𝑧,𝑖 0 ⋯ 0 0

𝐶𝑧,𝑖𝐴𝑖𝐵𝑢,𝑖 𝐶𝑧,𝑖𝐵𝑢,𝑖 𝐷𝑦,𝑖 ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ 0 0
𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−2𝐵𝑢,𝑖 𝐶𝑧,𝑖𝐴𝑖
𝑁𝑝−3𝐵𝑢,𝑖 𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−4𝐵𝑢,𝑖 ⋯ 𝐶𝑧,𝑖𝐵𝑢,𝑖 𝐷𝑧,𝑖]
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𝑁𝑧,𝑖 =

[
 
 
 
 

0 0 0 ⋯ 0 0
𝐶𝑧,𝑖𝐵𝑣,𝑖 0 0 ⋯ 0 0

𝐶𝑧,𝑖𝐴𝑖𝐵𝑣,𝑖 𝐶𝑧,𝑖𝐵𝑣,𝑖 0 ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ 0 0
𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−2𝐵𝑣,𝑖 𝐶𝑧,𝑖𝐴𝑖
𝑁𝑝−3𝐵𝑣,𝑖 𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−4𝐵𝑣,𝑖 ⋯ 𝐶𝑧,𝑖𝐵𝑣,𝑖 0]
 
 
 
 

 

𝑃𝑧,𝑖 =

[
 
 
 
 

0 0 0 ⋯ 0 0
𝐶𝑧,𝑖𝐵𝑑,𝑖 0 0 ⋯ 0 0

𝐶𝑧,𝑖𝐴𝑖𝐵𝑑,𝑖 𝐶𝑧,𝑖𝐵𝑣,𝑖 0 ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ 0 0
𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−2𝐵𝑑,𝑖 𝐶𝑧,𝑖𝐴𝑖
𝑁𝑝−3𝐵𝑑,𝑖 𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−4𝐵𝑑,𝑖 ⋯ 𝐶𝑧,𝑖𝐵𝑑,𝑖 0]
 
 
 
 

 

and also 

U𝑖 = [𝑢𝑖
𝑇(𝑘)   𝑢𝑖

𝑇(𝑘 + 1) ⋯  𝑢𝑖
𝑇(𝑘 + 𝑁𝑝)]

𝑇
 

   V𝑖 = [𝑣𝑖
𝑇(𝑘)   𝑣𝑖

𝑇(𝑘 + 1) ⋯  𝑣𝑖
𝑇(𝑘 + 𝑁𝑝 − 1)]

𝑇
 

D𝑖 = [𝑑𝑖
𝑇(𝑘)   𝑑𝑖

𝑇(𝑘 + 1) ⋯  𝑑𝑖
𝑇(𝑘 + 𝑁𝑝 − 1)]

𝑇
 

 

2.1.3 The Global and Local Cost Functions 

    The main objective of the LC-DMPC algorithm presented in this chapter is to solve a 

distributed optimum control problem and ensure that the solution converges to the 

solution of the systemwide optimum per sampling. In this work, the centralized 

controller is solving a typical linear quadratic MPC problem that is a linearly constrained 

quadratic cost function which penalizes the sum of the square of the tracking error 

(deviation form a desired reference) and the square of the manipulated control inputs 

along 𝑁𝑝. On the other hand, each distributed local agent is required to solve a modified 

cost function with three terms. The first two terms comprise the centralized cost terms 

but defined locally, while the last term is the sensitivity of the local downstream 
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neighbor cost functions to the change in the local network inputs (i.e. 𝑉𝑖). That is, agent i 

is solving a cost function with penalties on its effects for the downstream subsystems. 

These effects are updated frequently by downstream agents.  

For both systemwide and local cost functions, let the  constant matrices 𝑞𝑖 ∈

ℜ𝑝𝑦,𝑖×𝑝𝑦,𝑖 > 0 and 𝑠𝑖 ∈ ℜ
𝑟𝑢,𝑖×𝑟𝑢,𝑖 > 0 be two matrices that serve as weights on the 

predicted errors and future control actions, respectively. 

 

2.1.3.1 The Centralized Optimization Problem 

    Before introducing more variables it is important to note that any defined variable 

with an italicized lower case letter signifies a local scalar variable at the indicated time. 

On the other hand, a variable that is defined with a non-italicized and lower case letter 

refers to a vector variable along the horizon. Moreover, variables defined with a non-

italicized and bold lower case letters represent variables at the network level and along 

the horizon.         

Define the local error signal along 𝑁𝑝 as: 

                                                           e𝑖 = (r𝑖(𝑘) − Y𝑖)                                             (2.15) 

where 

r𝑖(𝑘) = [𝑟𝑖
𝑇(𝑘 + 1)   𝑟𝑖

𝑇(𝑘 + 2) ⋯  𝑟𝑖
𝑇(𝑘 + 𝑁𝑝)]

𝑇
 

and 𝑟𝑖  is the desired local reference that must be reachable by the local controller with 

the local constraints.  

To state the centralized objective function and prove the convergence of the LC-

DMPC algorithm, the following vectors and block diagonal matrices need to be defined: 
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Stacked vectors: 

Network reference signals:  

𝐫𝑝𝑦×1 = [r1
𝑇  r2

𝑇⋯  r𝑝
𝑇]
𝑇
 

Regulated outputs: 

𝐘𝑝𝑦×1 = [Y1
𝑇  Y2

𝑇⋯  Y𝑝
𝑇]
𝑇
 

Network error signals:  

𝐞𝑝𝑦×1 = [e1
𝑇  e2

𝑇⋯  e𝑝
𝑇]
𝑇
 

Control inputs: 

𝐔𝑟𝑢×1 = [U1
𝑇  U2

𝑇⋯  U𝑝
𝑇]
𝑇
 

Network initial conditions: 

𝐗𝟎(𝑘)𝑛×1 = [𝑥0,1(𝑘)
𝑇   𝑥0,2(𝑘)

𝑇⋯  𝑥0,𝑝(𝑘)
𝑇]
𝑇
 

Measured exogenous disturbance: 

𝐃𝑟𝑑×1 = [D1
𝑇  D2

𝑇⋯  D𝑝
𝑇]
𝑇
 

Block diagonal matrices: 

𝐐 = 𝑑𝑖𝑎𝑔(𝑄1, 𝑄2, ⋯ , 𝑄𝑝), 𝐒 = 𝑑𝑖𝑎𝑔(𝑆1, 𝑆2, ⋯ , 𝑆𝑝) 

where Q𝑖 and S𝑖 are given by: 

Q𝑖 = 𝑑𝑖𝑎𝑔(𝑞𝑖(𝑘 + 1),  𝑞𝑖(𝑘 + 2),⋯ ,  𝑞𝑖(𝑘 + 𝑁𝑝)) 

 

 S𝑖 = 𝑑𝑖𝑎𝑔(𝑠𝑖(𝑘 + 1), 𝑠𝑖(𝑘 + 2),⋯ ,  𝑠𝑖(𝑘 + 𝑁𝑝)) 

𝐅𝐲 = 𝑑𝑖𝑎𝑔(𝐹𝑦,1, 𝐹𝑦,2, ⋯ , 𝐹𝑦,𝑝),   𝐅𝐳 = 𝑑𝑖𝑎𝑔(𝐹𝑧,1, 𝐹𝑧,2, ⋯ , 𝐹𝑧,𝑝) 

𝐌𝐲 = 𝑑𝑖𝑎𝑔(𝑀𝑦,1, 𝑀𝑦,2, ⋯ ,𝑀𝑦,𝑝),   𝐌𝐳 = 𝑑𝑖𝑎𝑔(𝑀𝑧,1, 𝑀𝑧,2, ⋯ ,𝑀𝑧,𝑝) 
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𝐍𝐲 = 𝑑𝑖𝑎𝑔(𝑁𝑦,1, 𝑁𝑦,2, ⋯ , 𝑁𝑦,𝑝),   𝐍𝐳 = 𝑑𝑖𝑎𝑔(𝑁𝑧,1, 𝑁𝑧,2, ⋯ , 𝑁𝑧,𝑝) 

𝐏𝐲 = 𝑑𝑖𝑎𝑔(𝑁𝑦,1, 𝑁𝑦,2,⋯ , 𝑁𝑦,𝑝),   𝐏𝐳 = 𝑑𝑖𝑎𝑔(𝑁𝑧,1, 𝑁𝑧,2, ⋯ , 𝑁𝑧,𝑝) 

Therefore, the network regulated output Y and disturbance output Z for the entire system 

are given by: 

 

                                             𝐘 = 𝐅𝐲𝐗𝟎(𝑘) + 𝐌𝐲𝐔 + 𝐍𝐲𝐕 + 𝐏𝐲𝐃                              (2.16) 

                                             𝐙 = 𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔 + 𝐍𝐳𝐕 + 𝐏𝐳𝐃                               (2.17) 

    The network disturbance input 𝐕 can be written as a function of the initial conditions 

and manipulated inputs using equation (2.17) as shown below: 

 𝐕 = 𝚪𝐙 = (𝐼 − 𝚪𝐍𝐳)
−1𝚪(𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔 + 𝐏𝐳𝐃) = 𝐖(𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔 + 𝐏𝐳𝐃) (2.18) 

where 𝐖 = (𝐼 − 𝚪𝐍𝐳)
−1𝚪. 

The global cost function is a typical squared ℓ2 norm cost with constraints imposed 

only on the control actions: 

min 𝑢(𝑘+𝑚)
𝑚=0,1,⋯,𝑁𝑝−1

𝐽 = ∑ ‖𝑒(𝑘 +𝑚)‖𝑄
2𝑁𝑝

𝑚=1 + ∑ ‖𝑢(𝑘 +𝑚)‖𝑆
2𝑁𝑝−1

𝑚=0   

subject to: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + 𝐵𝑑𝑑(𝑘)

        𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)
 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑚) ≤ 𝑢𝑚𝑎𝑥           𝑚 = 0,1,⋯ , 𝑁𝑝 − 1 

where 

𝑒 = [𝑒1
𝑇  𝑒2

𝑇   ⋯  𝑒𝑝
𝑇], 𝑒𝑖 = 𝑟𝑖 − 𝑦𝑖 , 𝑖 = 1,2,⋯ , 𝑝 

𝑢 = [𝑢1
𝑇  𝑢2

𝑇   ⋯  𝑢𝑝
𝑇], 𝑑 = [𝑑1

𝑇  𝑑2
𝑇   ⋯  𝑑𝑝

𝑇] 

𝑄 = 𝑑𝑖𝑎𝑔(𝑞1, 𝑞2, ⋯ , 𝑞𝑝),  𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, ⋯ , 𝑠𝑝) 
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𝐴 = 𝑑𝑖𝑎𝑔(𝐴1, 𝐴2, ⋯ , 𝐴2) + 𝑑𝑖𝑎𝑔(𝐵𝑣,1, 𝐵𝑣,2, ⋯ , 𝐵𝑣,𝑝)Γ1𝑑𝑖𝑎𝑔(𝐶𝑧,1, 𝐶𝑧,2,⋯ , 𝐶𝑧,𝑝) 

𝐵𝑢 = 𝑑𝑖𝑎𝑔(𝐵𝑢,1, 𝐵𝑢,2, ⋯ , 𝐵𝑢,𝑝) + 𝑑𝑖𝑎𝑔(𝐵𝑣,1, 𝐵𝑣,2, ⋯ , 𝐵𝑣,𝑝)Γ1𝑑𝑖𝑎𝑔(𝐷𝑧,1, 𝐷𝑧,2, ⋯ , 𝐷𝑧,𝑝) 

𝐵𝑑 = 𝑑𝑖𝑎𝑔(𝐵𝑑,1, 𝐵𝑑,2, ⋯ , 𝐵𝑑,𝑝) 

𝐶 = 𝑑𝑖𝑎𝑔(𝐶𝑦,1, 𝐶𝑦,2, ⋯ , 𝐶𝑦,𝑝), 𝐷 = 𝑑𝑖𝑎𝑔(𝐷𝑦,1, 𝐷𝑦,2, ⋯ , 𝐷𝑦,𝑝) 

𝑢𝑚𝑖𝑛 = [𝑢𝑚𝑖𝑛,1
𝑇   𝑢𝑚𝑖𝑛,2

𝑇   ⋯  𝑢𝑚𝑖𝑛,𝑝
𝑇 ]

𝑇
,  𝑢𝑚𝑎𝑥 = [𝑢𝑚𝑎𝑥,1

𝑇   𝑢𝑚𝑎𝑥,2
𝑇   ⋯  𝑢𝑚𝑎𝑥,𝑝

𝑇 ]
𝑇
 

Γ1 ≡ the interconnecting matrix for horizon equal to one (𝑁𝑝 = 1) 

and the norm ‖𝑥‖𝑃 is given as √𝑥𝑇𝑃𝑥
2

. 

In terms of the defined column vectors and block diagonal matrices, however, the 

above centralized problem can be expressed as following: 

min
𝐔
𝐽 =  𝐞𝑇𝐐𝐞 + 𝐔𝑇𝐒𝐔 

subject to:     

𝐘 = 𝐅𝐲𝐗𝟎(𝑘) + 𝐌𝐲𝐔 + 𝐍𝐲𝐖(𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔 + 𝐏𝐳𝐃) + 𝐏𝐲𝐃 

𝐔𝑚𝑖𝑛 ≤ 𝐔 ≤ 𝐔𝑚𝑎𝑥  

which can also be reformulated as: 

subject to:                                       

𝐦𝐢𝐧𝐔 𝐽 = 𝐔
𝐓𝐇𝐔+ 2𝐔𝐓𝐅

  
𝐀𝐢𝐪𝐔 ≤ 𝐁𝐢𝐪

}                                 (2.19) 

 

 

where:  

𝐇 = 𝐒 + (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳) 

 

𝐅 = (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐((𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)𝐗𝟎(𝑘) + (𝐏𝐲 + 𝐍𝐲𝐖𝐏𝐳)𝐃) − 

(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇𝐐𝐫(𝑘) 
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𝐀𝐢𝐪 = 𝑑𝑖𝑎𝑔 (
𝐼𝑟𝑢,𝑖∗𝑁𝑝
−𝐼𝑟𝑢,𝑖∗𝑁𝑝

,⋯ ,
𝐼𝑟𝑢,𝑝∗𝑁𝑝
−𝐼𝑟𝑢,𝑝∗𝑁𝑝

)  

𝐁𝐢𝐪 = [(U𝑖
𝑇
𝑚𝑎𝑥

U𝑖
𝑇
𝑚𝑖𝑛) ⋯ (U𝑝

𝑇
𝑚𝑎𝑥

U𝑝
𝑇
𝑚𝑖𝑛
)]
𝑇
 

U𝑖𝑚𝑖𝑛 = [𝑢𝑚𝑖𝑛,𝑖
𝑇 (𝑘) ⋯   𝑢𝑚𝑖𝑛,𝑖

𝑇 (𝑘 + 𝑁𝑝 − 1)]
𝑇
 

U𝑖𝑚𝑎𝑥 = [𝑢𝑚𝑎𝑥,𝑖
𝑇 (𝑘) ⋯   𝑢𝑚𝑎𝑥,𝑖

𝑇 (𝑘 + 𝑁𝑝 − 1)]
𝑇
 

and 𝐼𝑛 is the square identity matrix with dimension 𝑛.  

 

 

2.1.3.2 The LC-DMPC Local Optimization Problem 

For the distributed LC-DMPC optimization problems, each local controller is assigned 

to solve the following local problem:  

min 𝑢𝑖(𝑘+𝑚)
𝑚=0,1,⋯,𝑁𝑝−1

𝐽𝑖 = ∑ ‖𝑒𝑖(𝑘 + 𝑚)‖𝑞𝑖
2 + ∑ ‖𝑢𝑖(𝑘 + 𝑚)‖𝑠𝑖

2𝑁𝑝−1

𝑚=0 +
𝑁𝑝
𝑚=1   

∑ 𝜓𝑖(𝑘 + 𝑚)
𝑇𝑧𝑖(𝑘 + 𝑚)

𝑁𝑝−1
𝑚=0   

subject to:     

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘) + 𝐵𝑣,𝑖𝑣𝑖(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘)

        𝑦𝑖(𝑘) = 𝐶𝑦,𝑖𝑥𝑖(𝑘) + 𝐷𝑦,𝑖𝑢𝑖(𝑘)

        𝑧𝑖(𝑘) = 𝐶𝑧,𝑖𝑥𝑖(𝑘) + 𝐷𝑧,𝑖𝑢𝑖(𝑘)

 

𝑢𝑚𝑖𝑛,𝑖 ≤ 𝑢𝑖(𝑘 + 𝑚) ≤ 𝑢𝑚𝑎𝑥,𝑖          𝑚 = 0,1,⋯ ,𝑁𝑝 − 1 

With the defined local vectors and matrices along 𝑁𝑝, the cost function in the above 

optimization problem can be written as:    

                                           𝐽𝑖 = e𝑖
𝑇Q𝑖e𝑖 + U𝑖

𝑇S𝑖U𝑖 +Ψ𝑖
𝑇Z𝑖                                    (2.20) 

where 
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Ψ𝑖 = [𝜓𝑖
𝑇(𝑘)   𝜓𝑖

𝑇(𝑘 + 1)  ⋯  𝜓𝑖
𝑇(𝑘 + 𝑁𝑝 − 1)]

𝑇
 

The vector Ψ𝑖 represents the sensitivity of downstream neighbors’ cost functions to the 

disturbance coming from the i
th

 plant.  This optimization problem can be reformulated 

as: 

subject to                   

min𝑈𝑖 𝐽𝑖 = U𝑖
𝑇𝐻𝑖U𝑖 + 2U𝑖

𝑇𝐹𝑖 + V𝑖
𝑇𝐸𝑖V𝑖 + 2V𝑖

𝑇𝑇𝑖

𝐴𝑖𝑖𝑞U𝑖 ≤ 𝐵𝑖𝑖𝑞

}                  (2.21) 

where:  

𝐻𝑖 = 𝑀𝑦,𝑖
𝑇 Q𝑖𝑀𝑦,𝑖 + S𝑖 

𝐹𝑖 = 𝑀𝑦,𝑖
𝑇 Q𝑖[𝐹𝑦,𝑖𝑥0,𝑖(𝑘) +𝑁𝑦,𝑖V𝑖 + 𝑃𝑦,𝑖D𝑖 − r𝑖(𝑘)] + 0.5𝑀𝑧,𝑖

𝑇 Ψ𝑖 

𝐸𝑖 = 𝑁𝑦,𝑖
𝑇 Q𝑖𝑁𝑦,𝑖 

𝑇𝑖 = 𝑁𝑦,𝑖
𝑇 Q𝑖[𝐹𝑦,𝑖𝑥0,𝑖(𝑘) + 𝑃𝑦,𝑖D𝑖  −r𝑖(𝑘)] + 0.5𝑁𝑧,𝑖

𝑇 Ψ𝑖 

𝐴𝑖𝑖𝑞 = 𝑑𝑖𝑎𝑔 (
𝐼𝑟𝑢,𝑖∗𝑁𝑝
−𝐼𝑟𝑢,𝑖∗𝑁𝑝

) 

𝐵𝑖𝑖𝑞 = [U𝑖
𝑇
𝑚𝑎𝑥

U𝑖
𝑇
𝑚𝑖𝑛 ]

𝑇
 

The value of Ψ𝑖  is computed and communicated by downstream agents. More 

specifically, denote the current subsystem as Σ𝑖 and downstream subsystem as Σ𝑖+1. If 

Σ𝑖+1 receives the disturbance V𝑖+1 from Σ𝑖 (V𝑖+1 = Z𝑖), it computes the sensitivity of its 

cost w.r.t. to V𝑖+1 as: 

γ𝑖+1 =
𝜕𝐽𝑖+1
𝜕V𝑖+1

= 2[𝐸𝑖V𝑖+1 + 𝑇𝑖+1 + 𝑁𝑦,𝑖+1
𝑇 Q𝑖+1𝑀𝑦,𝑖+1U𝑖+1] 
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⇒ 𝛾𝑖+1 = 2𝑁𝑦,𝑖+1
𝑇 Q𝑖+1𝑁𝑦,𝑖+1V𝑖+1 − 2𝑁𝑦,𝑖+1

𝑇 Q𝑖+1r𝑖+1 + 2𝑁𝑦,𝑖+1
𝑇 Q𝑖+1𝐹𝑦,𝑖+1𝑥0,𝑖+1(𝑘) + 

                        𝑁𝑧,𝑖+1
𝑇 Ψ𝑖+1 + 2𝑁𝑦,𝑖+1

𝑇 Q𝑖+1𝑀𝑦,𝑖+1U𝑖+1 + 2𝑁𝑦,𝑖+1
𝑇 Q𝑖+1𝑃𝑦,𝑖+1D𝑖+1         (2.22) 

and shares the values of 𝛾𝑖+1 with Σ𝑖, i.e. Ψ𝑖 = 𝛾𝑖+1. 

    At the level of the network, this is accomplished using the defined interconnecting 

matrix 𝚪 as: 

𝚿 = [Ψ1
𝑇 , Ψ2

𝑇 , ⋯ ,Ψ𝑝
𝑇]
𝑇
= 𝚪𝑇[γ1

𝑇 , γ2
𝑇 , ⋯ , γ𝑝

𝑇]
𝑇
= 𝚪𝑇𝛄 

where 

𝛄 =  [𝛾1
𝑇 , 𝛾2

𝑇 , ⋯ , 𝛾𝑝
𝑇]
𝑇
 

The next section will show that both optimal control problems given by (2.19) and (2.21) 

share the same optimum point by application of the LC-DMPC algorithm. The 

convergence and closed-loop stability will be stated as well.  

 

2.1.4 Distributed Kalman Filter 

To extend the application of the NC-DMPC algorithm for output-feedback 

subsystems, Kalman filter is used to estimate the local states in a noisy environment for 

each distributed subsystem. Process (exogenous input 𝑤𝑖) and measurement noises 

(sensor 𝜀𝑖) are added to local plants. Both 𝑤𝑖 and 𝜀𝑖 are assumed to be white noise and 

normally distributed with zero mean and covariance 𝑄𝑤,𝑖 and 𝑄𝑣,𝑖 respectively.  

𝑤𝑖~𝑁(0, 𝑄𝑤,𝑖), 𝜀𝑖~𝑁(0, 𝑄𝑣,𝑖) 

Then an estimate of 𝑥𝑖 is given by: 
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�̃�𝑖𝑘+1|𝑘 = 𝐸{𝑥𝑖𝑘+1|𝑦𝑖𝑘, 𝑦𝑖𝑘−1, ⋯ , 𝑦0}

              = 𝐸{𝑥𝑖𝑘+1|𝓎𝑖}

              = 𝐸 {𝐴𝑖𝑥𝑖𝑘 + 𝐵𝑢,𝑖𝑢𝑖𝑘 + 𝐵𝑣,𝑖𝑣𝑖𝑘 + 𝐵𝑑,𝑖𝑑𝑖𝑘 + 𝑤𝑖𝑘| 𝓎𝑖}

              = 𝐴𝑖𝐸{𝑥𝑖𝑘|𝓎} + 𝐵𝑢,𝑖𝑢𝑖𝑘 + 𝐵𝑣,𝑖𝑣𝑖𝑘 + 𝐵𝑑,𝑖𝑑𝑖𝑘 + 𝐸{𝑤𝑖𝑘|𝓎𝑖}

              = 𝐴𝑖�̃�𝑖𝑘|𝑘 + 𝐵𝑢,𝑖𝑢𝑖𝑘 + 𝐵𝑣,𝑖𝑣𝑖𝑘 + 𝐵𝑑,𝑖𝑑𝑖𝑘 + �̃�𝑖𝑘|𝑘

 

where the notation �̃�𝑖𝑘|𝑗 means the estimation of the state 𝑥𝑖 at time 𝑘 based on the 

information in time 𝑗, 𝑘 ≥ 𝑗.  

Since the mean value of 𝑤𝑖 is zero, then the noisy state estimate becomes:  

�̃�𝑖𝑘+1|𝑘 = 𝐴𝑖�̃�𝑖𝑘 + 𝐵𝑢,𝑖𝑢𝑖𝑘 + 𝐵𝑣,𝑖𝑣𝑖𝑘 + 𝐵𝑑,𝑖𝑑𝑖𝑘 

 This means that 𝑥𝑖𝑘|𝑘 is normal distributed with mean �̃�𝑖𝑘|𝑘 and error covariance ℌ𝑖𝑘|𝑘: 

𝑥𝑖𝑘|𝑘~𝑁(�̃�𝑖𝑘|𝑘, ℌ𝑖𝑘|𝑘) 

Then the local Kalman filter estimates �̃�𝑖𝑘+1|𝑘 through: 

�̃�𝑖𝑘|𝑘 = 𝐴𝑖�̃�𝑘−1|𝑘−1 + 𝐵𝑢,𝑖𝑢𝑖𝑘 + 𝐵𝑣,𝑖𝑣𝑖𝑘 + 𝐵𝑑,𝑖𝑑𝑖𝑘 + 

𝐴𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖
𝑇(𝐶𝑦,𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖

𝑇 + 𝑄𝑣,𝑖)
−1(𝑦𝑖𝑘 − 𝐶𝑦,𝑖�̃�𝑖𝑘|𝑘−1) 

and 

ℌ𝑖𝑘|𝑘 = 𝐴𝑖ℌ𝑖𝑘|𝑘−1𝐴𝑖
𝑇 + 𝐺𝑖𝑄𝑤,𝑖𝐺𝑖

𝑇 − 

𝐴𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖
𝑇(𝐶𝑦,𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖

𝑇 + 𝑄𝑣,𝑖)
−1𝐶𝑦,𝑖ℌ𝑖𝑘|𝑘−1𝐴𝑖 

Figure (2.3) illustrates the local dynamics and MPC with Kalman filter according to the 

LC-DMPC algorithm.  
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2.2 The LC-DMPC Main Approach 

In the LC-DMPC architecture, each local controller shares two vectors per iteration 

with its neighbors: the vector Z𝑖 which becomes V𝑖+1 for downstream subsystems and 

vector γ𝑖 that appears as Ψ𝑖−1 in upstream costs. At same time, the controller will 

receive vectors V𝑖 and Ψ𝑖, which were Z𝑖−1 and γ𝑖+1 from upstream and downstream 

neighbors respectively. Figure 2.4 shows the communication structure. The index i is 

used to show the directions of the information flow. For a sufficient number of 

iterations, the local controllers will end up solving the centralized problem as they will 

consider the influences of the local controlled plants on the network as a whole. 

 

 

 

 

�̃�𝑖(𝒌) 

𝒚𝒊(𝒌) 

Local Process  

Measurement 

𝒘𝒊(𝒌) 
Process Disturbance 

Local Kalman Filter 
 

KF i 

Local  

MPC i 

𝒗𝒊(𝒌) 
Up-stream Disturbance 

𝒙𝒊
+ = 𝒇𝒊(𝒙𝒊, 𝒖𝒊, 𝒗𝒊, 𝒅𝒊, 𝒘𝒊) 

 

Local Process 
 

𝒛𝒊(𝒌) 

Down-stream 

Disturbance  

𝒖𝒊(𝒌) 

Setpoint 

𝒚𝒊 = 𝒉𝒊(𝒙𝒊, 𝒖𝒊) + 𝜺𝒊 
Local Sensors 

 

𝜺𝒊(𝒌) 
Sensor Noise 

𝒛𝒊 = 𝒒𝒊(𝒙𝒊, 𝒖𝒊) 
 

Figure 2.3: A distributed subsystem Σ𝑖 with a local Kalman filter 

Figure 2.4: Data communication structure of an LC-DMPC local controller 
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2.2.1 The LC-DMPC Algorithm 

The LC-DMPC approach divides the global optimization given in (2.19) into a number 

of local subproblems where each controller solves the local optimum problem given in 

(2.21). As a coordination to the centralized optimum solution, the local controllers need 

to solve an updated optimization problem frequently, and therefore an iterative approach 

is required. Algorithm 2.1 shows the actual implementation of the LC-DMPC approach. 

The algorithm starts with the initializations of some of the variables and the actual 

iteration begins with exchanging information between the local controllers. With 

updated information, the local controllers begin to solve the distributed optimization 

problems separately. Then the upstream and downstream neighbor vectors are updated. 

The algorithm continues to iterate for the specified number of iterations, and then control 

actions are performed on local plants. The index j is used for counting the iterations.  

 

Algorithm 2.1: The LC-DMPC Algorithm 

Input: Number of iterations ℕ𝑖 and initial values for states 𝑥0,𝑖 and error covariance ℌ𝑖. 

Set: initial values for 𝑉𝑖 = 0, 𝑈𝑖 = 0, 𝛹𝑖 = 0 or take previous values from last time 

step. 

At each time step 𝑘 do:  

Start of Iteration: For j = 1 to ℕ𝑖 Do:  

Step 1: Exchange current information with local agents: 

𝚿(𝑗 + 1) = [Ψ1(𝑗 + 1),⋯ ,Ψ𝑝(𝑗 + 1)]
𝑇
= 𝚪𝑇[γ1(𝑗),⋯ , γ𝑝(𝑗)]

𝑇
= 𝚪𝑇𝛄(𝑗) 

                 𝐕(𝑗 + 1) = [V1(𝑗 + 1),⋯ , V𝑝(𝑗 + 1)]
𝑇
= 𝚪[Z1(𝑗),⋯ , Z𝑝(𝑗)]

𝑻
= 𝚪𝐙(𝑗) 
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Step 2: Solve the optimization problem given in (2.21): 

U𝑖
𝑄𝑃(𝑗) ← argmin Problem(2.21) 

Step 3: For 𝛽 ∈ [0,1), set: 

U𝑖(𝑗 + 1) ← 𝛽𝑈𝑖(𝑗) + (1 − 𝛽)U𝑖
𝑄𝑃(𝑗) 

Step 4: Update local output disturbance: 

Z𝑖(𝑗 + 1) ← 𝐹𝑧,𝑖𝑥0,𝑖(𝑘) + 𝑀𝑧,𝑖U𝑖(𝑗 + 1) + 𝑁𝑧,𝑖V𝑖(𝑗) + 𝑃𝑧,𝑖D𝑖(𝑘) 

Step 5: Update sensitivity to input disturbance. Set: 

𝛾𝑖(𝑗 + 1) ← −2𝑁𝑦,𝑖
𝑇 𝑄𝑖r𝑖(𝑘) + 2𝑁𝑦,𝑖

𝑇 𝑄𝑖𝑀𝑦,𝑖U𝑖(𝑗 + 1) + 2𝑁𝑦,𝑖
𝑇 𝑄𝑖𝑁𝑦,𝑖V𝑖(𝑗) 

+𝑁𝑧,𝑖
𝑇 Ψ𝑖(𝑗) + 2𝑁𝑦,𝑖

𝑇 𝑄𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘) + 2𝑁𝑦,𝑖
𝑇 𝑄𝑖𝑃𝑦,𝑖D𝑖(𝑘) 

Next j  

End of Iteration 

Output: First value of the computed control action U𝑖. (Inject this value into the local 

subsystem). 

Get: new measurements for 𝑦𝑖, 𝑢𝑖, and 𝑣𝑖 then set: 

𝑥0,𝑖 ← 𝐴𝑖�̃�𝑘−1|𝑘−1 + 𝐵𝑢,𝑖𝑢𝑖𝑘 + 𝐵𝑣,𝑖𝑣𝑖𝑘 + 𝐵𝑑,𝑖𝑑𝑖𝑘 + 

𝐴𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖
𝑇(𝐶𝑦,𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖

𝑇 + 𝑄𝑣,𝑖)
−1(𝑦𝑖𝑘 − 𝐶𝑦,𝑖�̃�𝑖𝑘|𝑘−1) 

and 

ℌ𝑖 ← 𝐴𝑖ℌ𝑖𝑘|𝑘−1𝐴𝑖
𝑇 + 𝐺𝑖𝑄𝑤,𝑖𝐺𝑖

𝑇 − 

𝐴𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖
𝑇(𝐶𝑦,𝑖ℌ𝑖𝑘|𝑘−1𝐶𝑦,𝑖

𝑇 + 𝑄𝑣,𝑖)
−1𝐶𝑦,𝑖ℌ𝑖𝑘|𝑘−1𝐴𝑖 

Go to: Start of Iteration.  

End of Algorithm 2.1 
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2.2.2 Convergence of the LC-DMPC Algorithm 

In order to show the convergence conditions for the LC-DMPC algorithm, the set of 

the vectors U, V, and Ψ in the iteration domain in Algorithm 2.1 is treated as a set of 

states of a dynamical model with index 𝑗. As the local controllers exchange data, the set 

changes and propagates in the same way as a set of states in any dynamical system. 

Based on this, the evolution of U, V, and Ψ under the LC-DMPC algorithm is 

characterized as a linear discrete-time dynamic system in the iteration domain.  

Theorem 1: For unconstrained local MPCs, Algorithm 2.1 converges, if the all 

eigenvalues of the state matrix in (2.27a) are inside the unit circle.    

Proof: The proof begins by writing the vectors U, V, and Ψ for the entire network based 

on how they evolve in Algorithm 2.1. From step 3 in Algorithm 2.1, the network control 

actions are: 

                                            𝐔(𝑗 + 1) = 𝛽𝐔(𝑗) + (1 − 𝛽)𝐔𝐐𝐏(𝑗)                              (2.23)   

where 

𝐔𝐐𝐏 = [U1
𝑄𝑃𝑇  U2

𝑄𝑃𝑇⋯   U𝑝
𝑄𝑃𝑇]

𝑇

 

The disturbance network input can be formulated from step 1 and (2.17) as: 

                 𝐕(𝑗 + 1) = 𝚪𝐙(𝑗) = 𝚪[𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔(𝑗 + 1) + 𝐍𝐳𝐕(𝑗) + 𝐏𝐳𝐃(𝑘)]     (2.24) 

Finally, from step 5 and (2.22), the sensitivity of all local cost functions are: 

𝚿(𝑗 + 1) = 𝚪𝑇𝛄(𝑗) 

𝚿(𝑗 + 1) = 𝚪𝑇[−2𝐍𝐲
𝑇𝐐𝐫(𝑘) + 2𝐍𝐲

𝑇𝐐𝐌𝐲𝐔(𝑗 + 1) + 2𝐍𝐲
𝑇𝐐𝐍𝐲𝐕(𝑗) + 𝐍𝐳

𝑇𝚿(𝑗) +                                                                           

                                                    2𝐍𝐲
𝑇𝐐𝐅𝐲𝐗0(𝑘) + 2𝐍𝐲

𝑇𝐐𝐏𝐲𝐃(𝑘)]                                     (2.25) 
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Now, by substituting (2.23) into (2.24) and (2.25), the resulted equations with (2.23) can 

be written in the following linear discrete dynamic state-space format: 

[

𝐔(𝑗 + 1)
𝐕(𝑗 + 1)
𝚿(𝑗 + 1)

] = [

𝛽𝐼 0 0
𝛽𝚪𝐌𝐳 𝚪𝐍𝐳 0

2𝛽𝚪𝑇𝐍𝐲
𝑇𝐐𝐌𝐲 2𝚪𝑇𝐍𝐲

𝑇𝐐𝐍𝐲 𝚪𝑇𝐍𝐳
𝑇
] [

𝐔(𝑗)
𝐕(𝑗)
𝚿(𝑗)

] +       

     [

(1 − 𝛽)𝐼
(1 − 𝛽)𝚪𝐌𝐳

2(1 − 𝛽)𝚪𝑇𝐍𝒚
𝑇𝐐𝐌𝐲

]𝐔𝐐𝐏(𝑗) + [

0 0 0
𝚪𝐅𝐳 𝚪𝐏𝐳 0

2𝚪𝑇𝐍𝒚
𝑇𝐐𝐅𝐲 2𝚪𝑇𝐍𝐲

𝑇𝐐𝐏𝐲 −2𝚪𝑇𝐍𝒚
𝑇𝐐
] [

𝐗0(𝑘)

𝐃(𝑘)
𝐫(𝑘)

] 

(2.26) 

    For the unconstrained case, the local optimal control action at iteration 𝑗 is given by: 

U𝑖
𝑄𝑃(𝑗) = [S𝑖 +𝑀𝑦,𝑖

𝑇 Q𝑖𝑀𝑦,𝑖]
−1
[𝑀𝑦,𝑖

𝑇 Q𝑖r𝑖(𝑘) − 0.5𝑀𝑧,𝑖
𝑇 Ψ𝑖(𝑗) − 𝑀𝑦,𝑖

𝑇 Q𝑖𝑁𝑦,𝑖V𝑖(𝑗) − 

𝑀𝑦,𝑖
𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘)−𝑀𝑦,𝑖

𝑇 Q𝑖𝑃𝑦,𝑖𝐷𝑖(𝑘)] 

By stacking all local solutions, the network optimum solution is: 

𝐔𝐐𝐏(𝑗) = [𝐒 + 𝐌𝐲
𝑇𝐐𝐌𝐲]

−1
[𝐌𝒚

𝑇𝐐𝐫(𝑘) − 0.5𝐌𝒛
𝑇𝚿(𝑗) − 𝐌𝒚

𝑇𝐐𝐍𝐲𝐕(𝑗) − 𝐌𝒚
𝑇𝐐𝐅𝐲𝐗0(𝑘) −  

𝐌𝒚
𝑇𝐐𝐏𝐲𝐃(𝑘)] 

and by substituting for 𝐔𝐐𝐏(j)  in (2.26) with above equation, the new state space 

representation would be: 

[

𝐔(𝑗 + 1)
𝐕(𝑗 + 1)
𝚿(𝑗 + 1)

] = [

𝛽𝐼 −(1 − 𝛽)𝚲𝐌𝐲
𝑇𝐐𝐍𝐲

𝚪𝐌𝐳𝛽 𝚪(𝐍𝐳 − (1 − 𝛽)𝐌𝐳𝚲𝐌𝐲
𝑇𝐐𝐍𝐲)

2𝚪𝑇𝐍𝐲
𝑇𝐐𝐌𝐲𝛽 2𝚪𝑇𝐍𝐲

𝑇𝐐(𝐼 − (1 − 𝛽)𝐌𝐲𝚲𝐌𝐲
𝑇𝐐)𝐍𝐲

 

−0.5(1 − 𝛽)𝚲𝐌𝐳
𝑇

−0.5(1 − 𝛽)𝚪𝐌𝐳𝚲𝐌𝐳
𝑇

𝚪𝑇(𝐍𝐳
𝑇 − (1 − 𝛽)𝐍𝐲

𝑇𝐐𝐌𝐲𝚲𝐌𝐳
𝑇)

] [

𝐔(𝑗)
𝐕(𝑗)
𝚿(𝑗)

] + 
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[

−(1 − 𝛽)𝚲𝐌𝒚
𝑇𝐐𝐅𝐲 −(1 − 𝛽)𝚲𝐌𝒚

𝑇𝐐𝐏𝐲

𝚪𝐅𝐳 − (1 − 𝛽)𝚪𝐌𝐳𝚲𝐌𝒚
𝑇𝐐𝐅𝐲 𝚪𝐏𝐳 − (1 − 𝛽)𝚪𝐌𝐳𝚲𝐌𝒚

𝑇𝐐𝐏𝐲

2𝚪𝑇𝐍𝒚
𝑇(𝐼 − (1 − 𝛽)𝐐𝐌𝐲𝚲𝐌𝒚

𝑇)𝐐𝐅𝐲 2𝚪𝑇𝐍𝐲
𝑇(𝐼 − (1 − 𝛽)𝐐𝐌𝐲𝚲𝐌𝒚

𝑇)𝐐𝐏𝐲

         

(1 − 𝛽)𝚲𝐌𝒚
𝑇𝐐

(1 − 𝛽)𝚪𝐌𝐳𝚲𝐌𝒚
𝑇𝐐

2𝚪𝑇𝐍𝒚
𝑇 ((1 − 𝛽)𝐐𝐌𝐲𝚲𝐌𝒚

𝑇 − 𝐼)𝐐

] [

𝐗0(𝑘)

𝐃(𝑘)
𝐫(𝑘)

] 

(2.27a) 

with 𝚲 = [𝐒 +𝐌𝐲
𝑇𝐐𝐌𝐲]

−1
. 

    Eigenvalues of (2.27a) determines the convergence of Algorithm 2.1. To converge, 

the eigenvalues of (2.27a) have to be inside the unit circle. The vectors 𝐗0, 𝐃 and 𝐫 

appear as disturbance signals in both (2.26) and the new state space form. For 

constrained local MPCs, the convergence of Algorithm 2.1 is also ensured through 

stability of matrix (2.27a) where the free (design) variables are 𝛽,𝐐 and 𝐒. It is sufficient 

only to check the eigenvalues of (2.27) without solving any additional systemwide 

problems for convergence of Algorithm 2.1. 

Remark: With the scalar convex combination 𝛽 (same value used for all subsystems), 

(2.27a) can be expressed as:  

[

0 −𝐗𝐌𝐲
𝑇𝐐𝐍𝐲 −0.5𝐗𝐌𝐳

𝑇

0 𝚪(𝐍𝐳 −𝐌𝐳𝐗𝐌𝐲
𝑇𝐐𝐍𝐲) −0.5𝚪𝐌𝐳𝐗𝐌𝐳

𝑇

0 2𝚪𝑇𝐍𝐲
𝑇𝐐𝐍𝐲 − 2𝚪

𝑇𝐍𝐲
𝑇𝐐𝐌𝐲𝐗𝐌𝐲

𝑇𝐐𝐍𝐲 𝚪𝑇𝐍𝐳
𝑇
− 𝚪𝑇𝐍𝐲

𝑇
𝐐𝐌𝐲𝐗𝐌𝐳

𝑇

] + 

                                 𝛽 [

𝐼 𝐗𝐌𝐲
𝑇𝐐𝐍𝐲 0.5𝐗𝐌𝐳

𝑇

𝚪𝐌𝐳 𝚪𝐌𝐳𝐗𝐌𝐲
𝑇𝐐𝐍𝐲 0.5𝚪𝐌𝐳𝐗𝐌𝐳

𝑇

2𝚪𝑇𝐍𝐲
𝑇𝐐𝐌𝐲 2𝚪𝑇𝐍𝐲

𝑇𝐐𝐌𝐲𝐗𝐌𝐲
𝑇𝐐𝐍𝐲 𝚪𝑇𝐍𝐲

𝑇𝐐𝐌𝐲𝐗𝐌𝐳
𝑇

]   (2.27b) 
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where 𝛽 can be used to adjust the eigenvalues of the state matrix (pole-placement). 

However, as 0 ≤ 𝛽 < 1 one should not expect to place the eigenvalues anywhere.  

Therefore both equations (2.27a) and (2.27b) can be used to tune the values of the 

weighted matrices 𝐐 and 𝐒 and the convex combination variable 𝛽.    

Checking the convergence for Algorithm 2.1 with (2.27a) requires a centralized 

monitoring and all subsystems’ dynamics and cost function information which is 

impractical for real large-scale applications. In chapter IV, we present three different 

convergence conditions that require few or no global information. These conditions 

depend on the dissipativity of the local information sharing dynamics.   

 

2.2.3 Closed-Loop Stability of the LC-DMPC Algorithm 

    The closed-loop stability of the local subsystems with Algorithm 2.1 is presented in 

Theorem 2. But before stating the theorem, some assumptions are introduced as follows: 

Assumption I: Algorithm 2.1 converges, i.e. |𝜆(state matrix in 2.27a)| < 1. 

Assumption II: Algorithm 2.1 has sufficient iterations at each sampling index 𝑘 which 

means that (2.27a) is allowed to converge to the optimum point at that sampling index. 

Assumption III: Each pair [𝐴𝑖, 𝐵𝑢,𝑖] is controllable ∀ Σ𝑖 ∈ 𝑝.  

Theorem 2: Under assumptions I through III, and for a feasible initial condition 𝑥0,𝑖(𝑘), 

the local closed-loop subsystem Σ𝑖 with Algorithm 2.1 is stable with a sufficiently long 

horizon. 

Proof:  The proof is divided into two parts. The first part shows that the LC-DMPC 

algorithm convergences to the same optimal point of the centralized solution. While the 
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second part displays the stabilization property of this optimal point for sufficiently long 

horizons.  

 

Part one: Approaching the centralized optimum point: 

The Karush-kuhn-Tucker (KKT) conditions are the first-order necessary optimality 

conditions; thus, if ℓ is the Lagrange multiplier for (2.19), then the Lagrangian is given 

as: 

𝓛(𝐔, 𝓵) = 𝐔𝑇𝐇𝐔+ 2𝐔𝑇𝐅 − 𝓵𝑇(𝐀𝐢𝐪𝐔− 𝐁𝐢𝐪) 

then first order KKT conditions are: 

                                                2𝐇𝐔𝐐𝐏 + 2𝐅 − 𝓵∗𝑇𝐀𝐢𝐪 = 0                                     (2.28a) 

                                                       𝐀𝐢𝐪𝐔
𝐐𝐏 − 𝐁𝐢𝐪 ≤ 0                                             (2.28b) 

                                                                 𝓵∗ ≥ 0                                                      (2.28c) 

                                               𝓵𝒋(𝐀𝐢𝐪,𝒋
𝑻 𝐔𝐐𝐏 − 𝐁𝐢𝐪,𝒋) = 0                                           (2.28d) 

where the subscript j denotes the j
th

 row (active constraints).   

Condition (2.28a) with the systemwide dynamics can be written as: 

2[𝐒 + (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)]𝐔

𝐐𝐏 + 

2 [(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐((𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)𝐗𝟎(𝑘) + (𝐏𝐲 + 𝐍𝐲𝐖𝐏𝐳)𝐃) − 

                                          (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐𝐫(𝑘)] − 𝓵∗𝑇𝐀𝐢𝐪 = 0                        (2.28e)                                                               

Also let ℓ𝑖 be the Lagrange multiplier for (2.21) then:  

ℒ𝑖(𝑈𝑖, ℓ𝑖) = U𝑖
𝑇𝐻𝑖𝑈𝑖 + 2U𝑖

𝑇𝐹𝑖 + V𝑖
𝑇𝐸𝑖𝑉𝑖 + 2V𝑖

𝑇𝑇𝑖 − ℓ𝑖
𝑇(𝐴𝑖𝑖𝑞𝑈𝑖 − 𝐵𝑖𝑖𝑞) 

Then the first order KKT conditions are: 
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                                                2𝐻𝑖𝑈𝑖
𝑄𝑃 + 2𝐹𝑖 − ℓ𝑖

∗𝑇𝐴𝑖𝑖𝑞 = 0                                  (2.29a) 

                                                      𝐴𝑖𝑖𝑞𝑈𝑖
𝑄𝑃 − 𝐵𝑖𝑖𝑞 ≤ 0                                           (2.29b) 

                                                               ℓ𝑖
∗ ≥ 0                                                         (2.29c) 

                                                ℓ𝑗 (𝐴𝑖𝑖𝑞,𝑗
𝑇 U𝑖

𝑄𝑃 − 𝐵𝑖𝑖𝑞,𝑗) = 0                                     (2.29d) 

Once again condition (2.29a) with local Σ𝑖 dynamics can be written as: 

2[𝑆𝑖 +𝑀𝑦,𝑖
𝑇 Q𝑖𝑀𝑦,𝑖]U𝑖

𝑄𝑃 + 2[𝑀𝑦,𝑖
𝑇 𝑄𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘) + 0.5𝑀𝑧,𝑖𝛹𝑖 + 𝑀𝑦,𝑖

𝑇 𝑄𝑖𝑁𝑦,𝑖𝑉𝑖 +                    

                                             𝑀𝑦,𝑖
𝑇 𝑄𝑖𝑃𝑦,𝑖D𝑖(𝑘)−𝑀𝑦,𝑖

𝑇 𝑄𝑖𝑟𝑖] − ℓ𝑖
∗𝑇𝐴𝑖𝑖𝑞 = 0                 (2.29e) 

Stacking condition (2.29e) for all subsystems:        

2[𝐒 + 𝐌𝐲
𝑇𝐐𝐌𝐲]𝐔

𝐐𝐏 + 2[𝐌𝐲
𝑇𝐐𝐅𝐲𝐗𝟎(𝑘) + 0.5𝐌𝐳𝚿+𝐌𝐲

𝑇𝐐𝐍𝐲𝐕 +𝐌𝐲
𝑇𝐐𝐏𝐲𝐃 − 

                                                      𝐌𝐲
𝑇𝐐𝐫(𝑘)] − 𝓵∗𝑇𝐀𝐢𝐪 = 0                                    (2.29f) 

And similarly for conditions (2.29b) through (2.29d): 

                                                       𝐀𝐢𝐪𝐔
𝐐𝐏 − 𝐁𝐢𝐪 ≤ 0                                               (2.30) 

                                                               𝓵∗ ≥ 0                                                          (2.31) 

                                                  𝓵𝒋(𝐀𝐢𝐪,𝒋
𝑻𝐔𝐐𝐏 − 𝐁𝐢𝐪,𝒋) = 0                                        (2.32) 

 

Equations (2.30), (2.31) and (2.32) are the same as conditions (2.28b), (2.28c), and 

(2.28d). The left task now is to show that condition (2.29f) approaches (2.28e) by 

Algorithm 2.1.    

Under assumptions I and II, the dynamic states of (2.26) converge to the following 

steady-state point: 
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�̅� → 𝐔𝐐𝐏      

�̅� → 𝐖(𝐅𝐳𝐗(𝑘) + 𝐌𝐳𝐔
𝐐𝐏)                                                                                         (2.33) 

�̅� → 2[𝐼 − 𝚪𝑇𝐍𝐳
𝑇]−1𝚪𝑇𝐍𝐲

𝑇𝐐[𝐌𝐲𝐔
𝐐𝐏 + 𝐍𝐲𝐖(𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔

𝐐𝐏) + 𝐅𝐲𝐗𝟎(𝑘) + 

𝐏𝐲𝐃(𝑘) − 𝐫(𝑘)] 

By substituting (2.33) into (2.29f), the result is written be: 

2[𝐒 + 𝐌𝐲
𝑇𝐐𝐌𝐲]𝐔

𝐐𝐏 + 2[𝐌𝐲
𝑇𝐐𝐅𝐲𝐗𝟎(𝑘) − 𝐌𝐲

𝑇𝐐𝐫(𝑘) + 𝐌𝐲
𝑇𝐐𝐍𝐲𝐖(𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔

𝐐𝐏) 

+𝐌𝐲
𝑇𝐐𝐏𝐲𝐃 

+𝐌𝐳
𝑇[𝐼 − 𝚪𝑇𝐍𝐳

𝑇]−1𝚪𝑇𝐍𝐲
𝑇𝐐[𝐌𝐲𝐔

𝐐𝐏 + 𝐍𝐲𝐖(𝐅𝐳𝐗𝟎(𝑘) + 𝐌𝐳𝐔
𝐐𝐏) + 𝐅𝐲𝐗𝟎(𝑘) 

                                               +𝐏𝐲𝐃(𝑘) − 𝐫(𝑘)] − 𝓵
∗𝑇𝐀𝐢𝐪 = 0                                 (2.34) 

Note: With the following matrix identity: 

(𝐼 + 𝐴𝐵)−1𝐴 = 𝐴(𝐼 + 𝐵𝐴)−1 

The matrix 𝐖 can be written as following: 

𝐖 = (𝐼 − 𝚪𝐍𝐳)
−1𝚪 = 𝚪(𝐼 − 𝐍𝐳𝚪)

−1 

Then the transform of the matrix 𝐖 can be expressed as:  

𝐖𝑇 = [𝚪(𝐼 − 𝐍𝐳𝚪)
−1]𝑇 = (𝐼 − 𝚪𝑇𝐍𝐳

𝑇)−1𝚪𝑇 

Using the above matrix identity and rearranging some terms in (2.34), the final result 

would be: 

2[𝐒 + (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)]𝐔

𝐐𝐏 + 

2 [(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐((𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)𝐗𝟎(𝑘) + (𝐏𝐲 + 𝐍𝐲𝐖𝐏𝐳)𝐃) − 

                                          (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐𝐫(𝑘)] − 𝓵∗𝑇𝐀𝐢𝐪 = 0                          (2.35)   
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Equation (2.35) is same as (2.28e), i.e. the solution of Algorithm 2.1 converges to the 

centralized optimum solution. 

Part two: Stabilizing property of the optimum point:  

    In the second part of the proof, two theorems stated in [56] will be restated briefly. 

Theorems 5.2 and 5.3 in [56] imply that for sufficiently large horizons, the solution 

applied by the centralized solution in a receding horizon fashion is stabilizing. The main 

idea of this receding horizon stabilization property is to serve the cost function in (2.19) 

as a Lyapunov function. To accomplish this property, assumption III must be satisfied in 

addition to observability of [𝑞𝑖
1 2⁄ , 𝐴𝑖] ∀ Σ𝑖 ∈ 𝑝  which is already satisfied through the 

assumptions of 𝑞𝑖 > 0 and 𝑠𝑖 > 0. 

As the LC-DMPC Algorithm under assumptions I and II converges to the same 

centralized MPC optimum, then it also stabilizes the network for sufficiently large 

horizons. 

Remark: The matrix [𝐼 − 𝚪𝑇𝐍𝐳
𝑇] is invertible and the proof is shown below: 

If the rank of an 𝑛 × 𝑛 square matrix is less than 𝑛, the matrix does not have an 

inverse, i.e. for a matrix to have an inverse, it has to be a full-rank matrix.  

Since the locally defined 𝑁𝑧,𝑖 matrix given by:  

𝑁𝑧,𝑖 = [

0 0 ⋯ 0 0
𝐶𝑧,𝑖𝐵𝑣,𝑖 0 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮
𝐶𝑧,𝑖𝐴𝑖

𝑁𝑝−2𝐵𝑣,𝑖 𝐶𝑧,𝑖𝐴𝑖
𝑁𝑝−3𝐵𝑣,𝑖 ⋯ 𝐶𝑧,𝑖𝐵𝑣,𝑖 0

] 

is not a full rank matrix (has a zero-row), then global defined matrix: 𝐍𝐳 =

𝑑𝑖𝑎𝑔(𝑁𝑧,1, ⋯𝑁𝑧,𝑝) is not a full rank matrix either. According to the definition of the 
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interconnecting matrix 𝚪, it is a full rank matrix (each row or column has an element 

with a value  of 1 and the rest elements are zeros). Thus the combined matrix 𝚪𝑇𝐍𝐳
𝑇 is 

not a full rank matrix as well. Therefore the matrix [𝐼 − 𝚪𝑇𝐍𝐳
𝑇] is full rank (the identity 

matrix I realizes the full rank property) which has a determinant, therefore it is 

invertible.     

 

2.2.4 Difference between the Centralized and Distributed Costs 

    In order to converge to the global minimum, the LC-DMPC approach assigns each 

local controller to solve a local optimization problem with a cost function that is 

different than the centralized defined cost. Therefore, the summation of the local costs is 

not equal to the systemwide objective cost. In the proof of theorem 2, it is shown that the 

centralized and all local distributed optimization problems are sharing the same optimum 

point under some assumptions. Thus, both solutions are sharing same optimum but with 

different optimum cost values and this was the motivation to write this section. For 

simplicity, in this subsection we assumed that all subsystem dynamics are not subjected 

to the disturbance 𝑑𝑖(𝑘).       

Recall that the centralized cost function is given as:  

𝐽𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐞
𝑇𝐐𝐞 + 𝐔𝑇𝐒𝐔  

which can be written as: 

                               𝐽𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐫
𝑇𝐐𝐫 + 𝐘𝑇𝐐𝐘 − 𝟐𝐘𝑇𝐐𝐫 + 𝐔𝑇𝐐𝐔                       (2.36) 

and by substituting the network regulated output (2.16):   
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𝐽𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐔
𝑇[𝐒 + (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)

𝑇𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)]𝐔 + 

 

2𝐔𝑇 [(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐((𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)𝐗𝟎(𝑘)) − (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)

𝑇𝐐𝐫(𝑘)] + 

𝐗0
𝑇(𝑘)[(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)

𝑇𝐐(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)]𝐗𝟎(𝑘) −               

                                      2𝐫𝑇(𝑘)𝐐[𝐅𝐲𝐗𝟎(𝑘) + 𝐍𝐲𝐖𝐅𝐳𝐗𝟎(𝑘) − 0.5𝐫(𝑘)]                   (2.37) 

Also recall that the local cost for subsystem Σ𝑖 is given by: 

                               𝐽𝑖 = r𝑖
𝑇Q𝑖r𝑖 + Y𝑖

𝑇Q𝑖Y𝑖 − 2Y𝑖
𝑇Q𝑖r𝑖 + U𝑖

𝑇Q𝑖U𝑖 + Ψ𝑖
𝑇Z𝑖                  (2.38) 

Stacking (2.38) for all local costs: 

                 𝐽𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = ∑ 𝐽𝑖
𝒑
𝒊=𝟏 = 𝐫𝑇𝐐𝐫 + 𝐘𝑇𝐐𝐘 − 𝟐𝐘𝑇𝐐𝐫 + 𝐔𝑇𝐐𝐔 +𝚿𝑇𝐙         (2.39) 

By introducing the network dynamics (2.16) and (2.17) into (2.39), the result is written 

as: 

𝐉𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 𝐫
𝑇(𝑘)𝐐𝐫(𝑘) + 𝐔𝑇[𝐒 + 𝐌𝐲

𝑇𝐐𝐌𝐲]𝐔

+ 2𝐔𝑇[𝐌𝐲
𝑇𝐐𝐅𝐲𝐗𝟎(𝑘) + 𝐌𝐲

𝑇𝐐𝐍𝐲𝐕 + 𝟎. 𝟓𝐌𝐳
𝑇𝚿−𝐌𝐲

𝑇𝐐𝐫(𝑘)] + 

𝐕𝑇𝐍𝐲
𝑇𝐐𝐍𝐲𝐕 + 2𝐕

𝑇[𝐍𝐲
𝑇𝐐𝐅𝐲𝐗𝟎(𝑘) + 𝟎. 𝟓𝐍𝐳

𝑇𝚿−𝐍𝐲
𝑇𝐐𝐫(𝑘)] + 

                             𝐗0
𝑇(𝑘)𝐅𝐲

𝑇𝐐𝐅𝐲𝐗𝟎(𝑘) + 2𝐗0
𝑇(𝑘)[𝟎. 𝟓𝐅𝐳

𝑇𝚿− 𝐅𝐲
𝑇𝐐𝐫(𝑘)]                   (2.40) 

Equation (2.40) is a function of 𝐔, 𝐕, 𝚿, and 𝐗𝟎(𝑘). The network initial condition 𝐗𝟎(𝑘) 

will be constant during the iterations while (2.33) gives the steady-state values of the 

other variables. Thus, when Algorithm 2.1 converges equation (2.40) becomes: 

𝐽𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 𝐔
𝑇 [𝐒 + (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)

𝑇
𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳) + 2𝐌𝐳

𝑇𝐋𝐌𝐲 + 

2𝐌𝐳
𝑇𝐋𝐍𝐲𝐖𝐌𝐲]𝐔+ 

2𝐔𝑇 [(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐((𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)𝐗𝟎(𝑘)) − (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)

𝑇
𝐐𝐫(𝑘) − 
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𝐌𝐳
𝑇𝐋𝐫(𝑘) + (𝐌𝐳

𝑇𝐋𝐍𝐲𝐖𝐅𝐳 +𝐌𝐳
𝑇𝐋𝐅𝐲 +𝐌𝐲

𝑇𝐋𝑇𝐅𝐳 +𝐌𝐳
𝑇𝐖𝑇𝐍𝐲

𝑻𝐋𝑇𝐅𝐲)𝐗𝟎(𝑘)] + 

2𝐗0
𝑇(𝑘) [(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)

𝑇
𝐐(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳) + 𝐅𝐳

𝑇𝐋𝐍𝐲𝐖𝐅𝐳 + 𝐅𝐳
𝑇𝐋𝐅𝐲] 𝐗𝟎(𝑘) − 

                   2𝐗0
𝑇(𝑘)𝐅𝐳

𝑇𝐋𝐫(𝑘) − 2𝐫𝑇(𝑘)𝐐[𝐅𝐲𝐗𝟎(𝑘) + 𝐍𝐲𝐖𝐅𝐳𝐗𝟎(𝑘) − 0.5𝐫(𝑘)]      (2.41) 

where 𝐋 = 𝐖𝑇[𝐼 − 𝐍𝐳
𝑇𝚪𝑇]−𝟏𝐍𝐲

𝑇𝐐 

Then with (2.37) and (2.41) the distributed cost can be written as: 

                                              𝐽𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 𝐽𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 + ∆𝐽                                     (2.42)                                                     

where 

∆𝐽 = 2𝐔𝑇[𝐌𝐳
𝑇𝐋𝐌𝐲 +𝐌𝐳

𝑇𝐋𝐍𝐲𝐖𝐌𝐲]𝐔+2𝐔
𝑇[(𝐌𝐳

𝑇𝐋𝐍𝐲𝐖𝐅𝐳 +𝐌𝐳
𝑇𝐋𝐅𝐲 + 

𝐌𝐲
𝑇𝐋𝑇𝐅𝐳 +𝐌𝐳

𝑇𝐖𝑇𝐍𝐲
𝑇𝐋𝑇𝐅𝐲)𝐗𝟎(𝑘)−𝐌𝐳

𝑇𝐋𝐫(𝑘)] + 

2𝐗0
𝑇(𝑘) [(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)

𝑇
𝐐(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳) + 𝐅𝐳

𝑇𝐋𝐍𝐲𝐖𝐅𝐳 + 𝐅𝐳
𝑇𝐋𝐅𝐲] 𝐗𝟎(𝑘) − 

2𝐗0
𝑇(𝑘)𝐅𝐳

𝑇𝐋𝐫(𝑘) 

 

2.3 Laguerre Functions for Local Problems and Vectors 

In Theorem 2, the closed-loop stability is proven assuming appropriately long horizons 

for the centralized problem. This assumption is distributed for the local problems as 

well. With long horizons, the local online optimization problem given in (2.21) will have 

a large number of variables to be optimized which may need additional computational 

time. In addition, the agents will exchange vectors with large lengths resulting in larger 

communication requirements. In order to achieve real-time control, and to apply the 

algorithm for faster systems, the local controllers should provide control inputs faster 

than the sampling rate of the local plants and share data in a more efficient way. In this 
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work, Laguerre functions are used to approximate and reduce the size of the distributed 

optimization problems and to diminish the length of the exchanged vectors.   

 

2.3.1 Laguerre Functions for Local Control Actions 

In this subsection, the Laguerre functions are used to approximate and reduce the size 

of the LC-DMPC distributed problems by parameterizing the local control actions via 

orthogonal Laguerre networks with the variable a as a pole for the discrete Laguerre 

sequences. Many of the following equations are taken from [64]. The control actions are 

expressed using 𝑁𝑖 discrete Laguerre functions as:  

                                                    𝑢𝑖(𝑘 + 𝑚) = ∑ 𝑐𝑗(𝑘)𝑙𝑗(𝑚)
𝑁𝑖
𝑗=1                                 (2.43) 

where 𝑚 = 0,1,⋯ ,𝑁𝑝 and 𝑐𝑗 and   𝑗 = 1,2,⋯ ,𝑁𝑖 are coefficients to be computed and 

the set of Laguerre functions in discrete format, respectively. The z-transform of these 

functions is given as:      

                                   𝐿𝑁𝑖(𝑧, 𝑎𝑖) =
√(1−𝑎𝑖

2)

(1−𝑎𝑖𝑧
−1)
(
𝑧−1−𝑎𝑖

1−𝑎𝑖𝑧
−1)

𝑁𝑖−1

        0 ≤ 𝑎𝑖 < 1                (2.44) 

The state-space model of the Laguerre sequences are computed from (2.44) as: 

                                                         𝐿𝑖(𝑘 + 1) = 𝐴𝐿𝑖𝐿𝑖                                             (2.45) 

where: 

  𝐴𝐿𝑖 =

[
 
 
 

𝑎𝑖 0 0 ⋯ 0
𝜚𝑖 𝑎𝑖 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ 0

(−1)𝑁𝑖−2𝑎𝑖
𝑁𝑖−2𝜚𝑖 (−1)𝑁𝑖−3𝑎𝑖

𝑁𝑖−3𝜚𝑖 ⋯ 𝜚𝑖 𝑎𝑖]
 
 
 
  

𝐿𝑖(𝑘) = [𝑙1(𝑘)  𝑙2(𝑘) ⋯ 𝑙𝑁𝑖(𝑘)]
𝑇 
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𝜚𝑖 = 1 − 𝑎𝑖
2

 

and initial condition 𝐿𝑖(0)
𝑇 = √𝜚𝑖[1, −𝑎𝑖, 𝑎𝑖

2, −𝑎𝑖
3, ⋯ (−1)𝑁𝑖−1𝑎𝑖

𝑁𝑖−1]. 

Using this state-space representation, equation (2.43) can be written as: 

                                                      𝑢𝑖(𝑘 + 𝑗) = 𝐿𝑖(𝑗)
𝑇𝜂𝑖                                            (2.46) 

where 𝜂𝑖
𝑇 = [𝑐1 𝑐2  ⋯ 𝑐𝑁𝑖].  

For multi-input system, each control action can be represented by a different set of 

Laguerre functions with different numbers 𝑁𝑖 and poles 𝑎𝑖, i.e.: 

𝑢𝑖(𝑘) = [

𝐿1𝑖(𝑘)
𝑇 0 0

0 ⋱ 0
0 0 𝐿𝑟𝑢,𝑖(𝑘)

𝑇
] [

𝜂1𝑖
⋮
𝜂
𝑟𝑢,𝑖

] = 𝐿𝑝,𝑖(𝑘)
𝑇𝜂𝑝,𝑖 

The orthogonally property of the Laguerre functions in discrete time domain can be 

written as: 

                                               

∑ 𝑙𝑖(𝑘)𝑙𝑗(𝑘)
∞
𝑘=0 = 0𝑓𝑜𝑟 𝑖 ≠ 𝑗

∑ 𝑙𝑖(𝑘)𝑙𝑖(𝑘)
∞
𝑘=0 = 1𝑓𝑜𝑟 𝑖 = 𝑗

                                      (2.47) 

With Laguerre parametrizations for local dynamics, equations in (2.11) and (2.12) 

become:   

                           

𝑦𝑖(𝑘 + 𝑚) = 𝐶𝑦,𝑖𝐴𝑖
𝑚𝑥0,𝑖(𝑘) + Φ𝑦,𝑖𝜂𝑚,𝑖 + n𝑦,𝑖𝒱𝑖(𝑚)

𝑧𝑖(𝑘 + 𝑚) = 𝐶𝑧,𝑖𝐴𝑖
𝑚−1𝑥0,𝑖(𝑘) + Φ𝑧,𝑖𝜂𝑖 + n𝑧,𝑖𝒱𝑖(𝑚) + 𝑡𝑖

              (2.48) 

where 

Φ𝑦,𝑖 = ∑ 𝐶𝑦,𝑖𝐴𝑖
𝑚−𝑖−1𝑚−1

𝑖=0 𝐵𝑢,𝑖𝐿𝑝,𝑖(𝑖)
𝑇  

n𝑦,𝑖 = ∑ 𝐶𝑦,𝑖𝐴𝑖
𝑚−𝑖−1𝑚−1

𝑖=0 𝐵𝑣,𝑖  

𝒱𝑖(𝑚) = [𝑣(0)  𝑣(1) ⋯  𝑣(𝑚 − 1)]
𝑇 
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𝑡𝑖 = 𝐷𝑧,𝑖𝐿𝑖(𝑚 − 1)
𝑇𝜂𝑖 

and Φ𝑧,𝑖 and n𝑧,𝑖 are defined in a similar way with 𝐶𝑧,𝑖 replacing 𝐶𝑦,𝑖 with one step late. 

By introducing (2.48) into the local optimization problem defined in (2.21) and taking 

the advantage of the orthogonality properties (2.47), the new local optimization problem 

with reduced manipulated variables and 𝑁𝑝 as an upper summation limit is given as:                      

𝐽𝑖 = 𝜂𝑝,𝑖
𝑇 {∑ (Φ𝑦,𝑖

𝑇 𝑞𝑖Φ𝑦,𝑖) + 𝑠𝑖
𝑁𝑝
𝑚=1 } 𝜂𝑝,𝑖 + 2𝜂𝑝,𝑖

𝑇 {∑ (Φ𝑦,𝑖
𝑇 𝑞𝑖𝐶𝑦,𝑖𝐴𝑖

𝑚𝑥0,𝑖(𝑘) +
𝑁𝑝
𝑚=1

          Φ𝑦,𝑖
𝑇 𝑞𝑖n𝑦,𝑖𝒱𝑖(𝑚) + 0.5Φ𝑧,𝑖

𝑇 𝜓(𝑚) − Φ𝑦,𝑖
𝑇 𝑞𝑖r𝑖(𝑘))} + 𝑐0,𝑖

      (2.49)
Subjected to:                                                                                                                               

[
𝐿𝑝,𝑖(𝑚)

𝑇

−𝐿𝑝,𝑖(𝑚)
𝑇] 𝜂𝑝,𝑖 ≤ [

𝑢𝑖𝑚𝑎𝑥
−𝑢𝑖𝑚𝑖𝑛

] , 𝑚 = 0,1,⋯ ,𝑁𝑐,𝑖

  

where 𝑁𝑐,𝑖 is the horizon length at which the control actions are saturated, 𝜓(𝑚) is the 

shared sensitivity value at time m, and 𝑐0,𝑖 is a constant.  

   Because of the exponential decay properties of Laguerre functions, the control actions 

will be faster in the beginning of the horizon and avoid any peaks at the end of the 

horizon [64]. This further reduces the number of constraints for the online optimization 

problem of the local agents. The new optimization problem given in (2.49) will replace 

the one given in step 2 in Algorithm 2.1 with 𝜂𝑝,𝑖 as new variables. This new 

optimization problem has smaller decision variables where simply the number of terms 

used to parameterize the control actions is going to be the new optimization variable. 
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2.3.2 Laguerre Functions for Local Shared Vectors 

In the previous subsection, Laguerre polynomials is proposed to reparametrize the 

local control actions which resulted in a smaller local optimization size that can help 

increasing the number of iterations per sampling in Algorithm 2.1. In this section, 

Laguerre functions are used to parametrize the signals that are being exchanged between 

the local agents. This can reduce the communication loads in the Algorithm 2.1 as well. 

If a signal 𝑓(𝑘)  is parameterized by Laguerre sequences, independently of the value 

of 0 ≤ 𝑎 < 1, the approximation of the signal improves as the number of Laguerre terms 

N increasers [64].  To accomplish the parameterization objective for a signal 𝑓(𝑘), 

Algorithm 2.2 is proposed using the given definitions and equations in the previous 

section.  

    The orthonormal property of Laguerre functions given in (2.47) enables the 

coefficients of Laguerre polynomials to be defined as: 

                                           𝑐𝑖 = ∑ 𝑓(𝑘)𝑙𝑖(𝑘),   𝑖 = 1, 2,⋯ , 𝑁
∞
𝑘=0                               (2.50) 

In Algorithm 2.2 the following L2 error norm is used to compute the Laguerre 

coefficients as well as the pole 0 ≤ 𝑎 < 1: 

‖𝑓𝑝𝑎𝑟𝑎𝑚(𝑘) − 𝑓(𝑘)‖2 ‖𝑓𝑝𝑎𝑟𝑎𝑚
(𝑘)‖

2
⁄ ≤ 𝜖 

where 𝑓𝑝𝑎𝑟𝑎𝑚(𝑘) is the resulted parametrized signal and 𝜖 is a desired accuracy for the 

parameterized signal.  

 

Algorithm 2.2: Laguerre Approximations 

Input: the signal 𝑓(𝑘), the desired accuracy 𝜖. 
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Set: initial values for ai = 0.001, Ni = 1.   

Initial Computations: Find: 

   Initial Laguerre functions from ai & Ni (Eq. 2.45):  

       Set: 𝐿𝑖 ← Laguerre functions 

   Initial Laguerre coefficients from𝑓(𝑘) & 𝐿𝑖 (Eq. 2.50):  

       Set: 𝑐𝑖 ← Laguerre coefficients 

   Initial parametrized signal form 𝑐𝑖 & 𝐿𝑖:  

       Set: 𝑓𝑝𝑎𝑟𝑎𝑚𝑖 ← 𝑐𝑖 ∗ 𝐿𝑖 

   Initial error norm:  

       Set: 𝑒𝑟_𝑛𝑜 ← ‖𝑓𝑝𝑎𝑟𝑎𝑚𝑖 − 𝑓‖2
‖𝑓𝑝𝑎𝑟𝑎𝑚𝑖‖2
⁄   

While (𝑒𝑟_𝑛𝑜 ≥ 𝜖 ) do: 

   Set: 𝑁 ← 𝑁 + 1;  𝐿 ← 0;  𝑎 ← 0. 

  While (𝑒𝑟_𝑛𝑜 ≥ 𝜖) do: 

  Set: 𝑎 ← 𝑎 + 0.01. 

  Find: 

           Laguerre functions from a & N (Eq. 2.45). 

      Set: 𝐿 ← Laguerre functions. 

  Laguerre coefficients from𝑓(𝑘) & 𝐿 (Eq. 2.50).  

     Set: 𝑐 ← Laguerre coefficients. 

  parametrized signal form 𝑐 & 𝐿.  

              Set: 𝑓𝑝𝑎𝑟𝑎𝑚 ← 𝑐 ∗ 𝐿. 
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           Compute error norm: 

     Set: 𝑒𝑟_𝑛𝑜 ← ‖𝑓𝑝𝑎𝑟𝑎𝑚 − 𝑓‖2 ‖𝑓𝑝𝑎𝑟𝑎𝑚‖2⁄  . 

  If (a > 1) Break. 

End 

End 

Output: Time constant a, Laguerre coefficients 𝑐.   

End of Algorithm 2.2 

 

Figure 2.5 gives the flowchart of Algorithm 2.2. When  𝑎 ≈ 0, the Laguerre sequences 

become a set of pulses, i.e. the signal is not parametrized. In Algorithm 2.2, for each new 

added N, the search begins with a very small value of a and goes over all values of  

0 ≤ 𝑎 < 1. This ensures that the algorithm is not over parametrizing, i.e. length of 

parametrized signal is less than or equal to original signal length. 

Each controller parametrizes the shared vectors (Z𝑖 & γ𝑖) and receives the 

parameterized vectors (V𝑖  & Ψ𝑖). Each communicated data contains only the time 

constant a and Laguerre coefficients 𝑐. Once the Laguerre information of a signal is 

received, a local controller recovers the original, the controller recovers the original 

signal along the horizon using (2.45) and 𝑓(𝑘) = ∑ 𝑐𝑗(𝑘)𝑙𝑗(𝑚)
𝑁
𝑗=1 , where 𝑐𝑗, 𝑎, and 𝑁 

are contained in the received signal. 
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Figure 2.5: Algorithm 2.2 flowchart diagram  
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3. LC-DMPC SIMULATION USING COUPLED SIX-TANK PROCESS

 

 

    In chapter II the theory of the LC-DMPC approach is presented where two algorithms 

are proposed to control a network of coupled subsystems and reduce the computation 

and communication loads. In this chapter these algorithms are applied to a six-tank 

process, and the steps of designing the local interaction matrices and demonstration of 

the LC-DMPC approach application are discussed. 

    The chapter is structured as follows. First, the nonlinear differential equations that 

approximate the six-tank process are derived. Then the designing procedure of the local 

discrete subsystem models and controllers from the linearized central dynamic are 

detailed. Finally, using both algorithms, the six-tank process is controlled and simulated 

in two different cases: Full state feedback subsystems with noise-free inputs as the first 

case and subsystems with output feedback that work in a noisy environment as the 

second case.       

 

3.1 Application and Implementation of the LC-DMPC Algorithm 

In this section, a demonstration of the LC-DMPC approach is given by applying the 

approach to a coupled tank process. The section begins with description, model 

derivation of the six-tank plant, and application of the LC-DMPC algorithm. Section 3.2 

section presents the simulation results. This part of the work mainly focuses on how to 

apply the proposed algorithm. 

                                                 
 Parts of this section are reprinted with permission from R. Jalal and B. Rasmussen, “Limited-communication distributed model 

predictive control for coupled and constrained linear systems,” IEEE Transaction on Control System Technology, accepted, 2016.   



65 

3.1.1 The Six-Tank Process and Controller Design 

The six-tank process is a square Multi-Input, Multi-Output (MIMO) process that 

consists of six interconnected water tanks arranged in three parallel interacting systems; 

each system has two coupled tanks in series. A schematic diagram of the process is 

shown in Figure 3.1. The target is to control the water levels in the lower tanks with 

three pumps. Pump 1 extracts water from the main basin below and pours it to tanks 1 

and 5, while pump 2 pours water to tanks 2, 4, and 6. Finally tanks 3 and 5 get water 

from pump 3.  In addition to the coupling in control actions, the outputs from upper 

tanks likewise disturb the states of lower ones. The output of tank 4 affects both tanks 1 

and 2. Tanks 1, 2, and 3 are also being affected by the discharge of tank 5. Output of 

tank 6 impacts the states of tank 2 and 3, respectively. The amount of water flows from 

the pumps to the tanks and from upper to lower tanks can be controlled throughout the 

valves Vi, i = 1, 2, … 7. This MIMO system has three manipulated inputs, the input 

voltages to pumps 1, 2 and 3, and three outputs, the water levels in tanks 1, 2, and 3. Due 

to the strong coupling between the tanks, states as well as control actions, the task of 

controlling water levels in the lower tanks is rather difficult to fulfill. Upper tanks are 

subjected to unmeasured disturbances and there are measurement noises as well. The 

pump flow rates along with the levels of the tanks are constrained physically. However, 

in this work only hard constraints on control actions are considered. 

In literature, the used tank process usually has four interacting tanks that are coupled 

in the control actions only. As shown in the Figure 3.2, the upper tanks disturb the direct 
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lower tanks thorough the outputs, however, they do not affect the cross tanks, i.e. there is 

no coupling in states. The pumps, on the other hand, control the water level in the 

corresponding lower tanks and disturb the upper crossing tanks at the same time. To 

demonstrate the aspects of the proposed LC-DMPC algorithm, we added a third set of 

tanks to the process and increased the couplings between the tanks by allowing the 

outputs of the upper tanks to distract not only the corresponding lower row of tanks but 

also the crossing tanks. For instant, output of the tank 5 affects tanks 1, 2, and 3. 

Through the valves 4, 5, and 6 we can increase or cancel the couplings in the states. 

 

 

 

 

 

 

  

 

 

   

 

 

 

 

 Figure 3.1: The six-tank process diagram used in chapter III      

 Figure 3.2: The four-tank process diagram used in literature      
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3.1.2 The Centralized Mathematical Model 

   The process inputs are 𝜐1, 𝜐2, and 𝜐3 (input voltages to the pumps) and the outputs are 

𝑦1, 𝑦2 and 𝑦3 (voltages from level measurement devices at lower tanks). From mass 

balances and Bernoulli’s law the following differential equations approximate the 

dynamical model of the process:     

                                

𝑑ℎ1

𝑑𝑡
= −

𝜎1(𝑡)

𝐴1
+ 𝛼1

𝜎4(𝑡)

𝐴1
+ 𝜆1

𝜎5(𝑡)

𝐴1
+ 𝜏1

𝐹1

𝐴1
𝑑ℎ2

𝑑𝑡
= −

𝜎2(𝑡)

𝐴2
+ 𝛼2

𝜎4(𝑡)

𝐴2
+ 𝜆2

𝜎5(𝑡)

𝐴2
+ 𝜌1

𝜎6(𝑡)

𝐴2
+ 𝜇1

𝐹2

𝐴2
𝑑ℎ3

𝑑𝑡
= −

𝜎3(𝑡)

𝐴3
+ 𝜆3

𝜎5(𝑡)

𝐴3
+ 𝜌2

𝜎6(𝑡)

𝐴3
+ 𝛿1

𝐹3

𝐴3
𝑑ℎ4

𝑑𝑡
= −

𝜎4(𝑡)

𝐴4
+ 𝜇2

𝐹2

𝐴4
+ 𝑤1(𝑡)

𝑑ℎ5

𝑑𝑡
= −

𝜎5(𝑡)

𝐴5
+ 𝜏2

𝐹1

𝐴5
+ 𝛿2

𝐹3

𝐴5
+ 𝑤2(𝑡)

𝑑ℎ6

𝑑𝑡
= −

𝜎6(𝑡)

𝐴6
+ 𝜇3

𝐹2

𝐴6
+ 𝑤3(𝑡) }

 
 
 
 
 

 
 
 
 
 

                  (3.1) 

where 𝜎𝑖(𝑡) = 𝑏𝑖√2𝑔ℎ𝑖(𝑡) , i = 1, 2, … , 6 are the inlet and outlet flow rates and 

𝐹𝑗 = 𝑘𝑗𝑣𝑗 , j = 1, 2, 3 are the controlled inlet flow rates form the pumps. ℎ𝑖(𝑡),

𝑏𝑖, and Å𝑖  refer to the water level, cross-section of the outlet hole, and cross-sectional 

area of tank i, respectively. 𝑤𝑖(𝑡), 𝑖 = 1,2,3 are the unmeasured disturbances. The flow 

parameters ℬ, 𝜆, 𝜏, 𝛿, 𝜌, and ℴ  determine how much water flows to the corresponding 

tank, therefore,  ∑ 𝑥𝑖 = 1
2
𝑖=1  for 𝑥𝑖 = ℬ𝑖, 𝜌𝑖, 𝜏𝑖 , and 𝛿𝑖 and ∑ 𝑦𝑗 = 1

3
𝑗=1  for 𝑦𝑗 = 𝜆𝑗 ,

and ℴ𝑗. Most of the parameter values used in (3.1) are taken from [102]. The values of 

the voltage constants 𝑘1, 𝑘2, and 𝑘3 for the pumps and flow parameters depend on the 

operating points.  
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For the LC-DMPC algorithm to be tested on the described six-tank process, a linear 

model has to be derived based on equation (3.1). The nonlinear dynamic model (3.1) is 

linearized around the operating point given in Table 3.1. 

Table 3.1: Physical Parameter Values for the Six-tank Process  

Description  Symbol and value 

Cross sectional area of the tanks 

(cm
2
) 

Å𝑖 = 28, i = 1, 3,5 

Å𝑖 = 32, j = 2, 4, 6 

Cross section of the outlet hole (cm
2
) 

bi = 0.071,  i = 1, 3, 5 

bj = 0.057,  j = 2, 4, 6 

Level sensor accuracy (V/cm) kc = 0.5 

Gravity constant (cm/sec
2
) 981 

The Operating Point 

Flow parameters 

ℬ1 =  ℬ2 = 0.5 

𝜆1 = 𝜆2 = 𝜆3 = 0.333 

𝜌1 = 𝜌2 = 0.5 

𝜏1 = 0.7, 𝜏2 = 0.3 

ℴ1 = 0.7, ℴ2 = ℴ3 = 0.15 

𝛿1 = 0.7, 𝛿2 = 0.3 

Voltage constant for pumps  

(cm
3
/V. sec) 

k1 = 3.33, k2 = 3.35, k3 = 3.34 

Linearization level of tank i (cm) 

(i = 1, 2, …, 6) 

ℎ1
0 = 12.4, ℎ2

0 = 12.7 

ℎ3
0 = 12.5, ℎ4

0 = 1.8 

ℎ5
0 = 1.4, ℎ6

0 = 1.6 

Linearization of control effort 𝑢𝑗  (V) 

(j = 1, 2, 3) 
𝑣𝑗
0 = 3.00 

 

By defining the deviation variables as: 

𝑥𝑖 = ℎ𝑖 − ℎ𝑖
0, 𝑖 = 1, 2,⋯ , 6 

𝑢𝑖 = 𝑣𝑗 − 𝑣𝑗
0, 𝑗 = 1, 2, 3 

the following centralized continuous-time linear dynamic model can be obtained: 
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𝑑𝑥

𝑑𝑡
= 𝐴𝑐𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤

 𝑦 = 𝐶𝑐𝑥
}                                     (3.2) 

where: 

𝑥 = [𝑥1  𝑥2 𝑥3  𝑥4  𝑥5  𝑥6]
𝑇 

𝑢 = [𝑢1  𝑢2 𝑢3]
𝑇 

𝑤 = [𝑤1  𝑤2 𝑤3]
𝑇 

𝑦 = [𝑦1  𝑦2 𝑦3]
𝑇 

𝐴𝑐 =

[
 
 
 
 
 
 
−1 𝑇1⁄ 0 0 𝛼1𝐴4 𝐴1𝑇4⁄ 𝜆1𝐴5 𝐴1𝑇5⁄ 0

0 −1 𝑇2⁄ 0 𝛼2𝐴4 𝐴2𝑇4⁄ 𝜆2𝐴5 𝐴2𝑇5⁄ 𝜌1𝐴6 𝐴2𝑇6⁄

0 0 −1 𝑇3⁄ 0 𝜆3𝐴5 𝐴3𝑇5⁄ 𝜌2𝐴6 𝐴3𝑇6⁄

0 0 0 −1 𝑇4⁄ 0 0

0 0 0 0 −1 𝑇5⁄ 0

0 0 0 0 0 −1 𝑇6⁄ ]
 
 
 
 
 
 

 

𝐵𝑢 =

[
 
 
 
 
 
 
𝜏1 𝐴1⁄ 0 0

0 𝜇1 𝐴2⁄ 0

0 0 𝛿1 𝐴3⁄

0 𝜇2 𝐴4⁄ 0

𝜏2 𝐴5⁄ 0 𝛿2 𝐴5⁄

0 𝜇3 𝐴6⁄ 0 ]
 
 
 
 
 
 

 

𝐵𝑤 = [
03×3
𝐼3×3

] 

𝐶𝑐 = [𝑘𝑐𝐼3×3 03×3] 

 

where 𝑇𝑖 =
𝐴𝑖

𝑏𝑖
√
2ℎ𝑖

0

𝑔
, 𝑖 = 1, 2,⋯ , 6. 

This new linearized model is used to implement the centralized predictive controller 

as well as the distributed controllers. The next section details the constructions of the 

LC-DMPC matrices and vectors for the local subsystems. 
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3.1.3 Proposed Subsystem Definitions 

    In this section the derivation of the local subsystems is detailed for the six-tank 

process in order to illuminate the application of the LC-DMPC algorithms. To 

implement the proposed algorithm, the centralized model is divided into three coupled 

plants. Subsystem Σ𝑖 consists of tanks 𝑖 and 𝑖 + 3, for 𝑖 = 1,2,3. According to the 

upstream and downstream definition, the input and out disturbance vectors as well as the 

interaction matrices are derived as following. 

The LC-DMPC subsystem Σ1 is defined as: 

                 

[
𝑥1̇(𝑡)

𝑥4̇(𝑡)
] = 𝐴𝑐1 [

𝑥1(𝑡)

𝑥4(𝑡)
] + 𝐵𝑐𝑢,1𝑢1(𝑡) + 𝐵𝑐𝑣,1 [

𝑥5(𝑡)

𝑢2(𝑡)
] + 𝐵𝑤𝑤1

   𝑦1(𝑡) = 𝐶𝑐𝑦,1 [
𝑥1(𝑡)

𝑥4(𝑡)
]

        (3.3) 

where 𝐴𝑐1, 𝐵𝑐𝑢,1, 𝐵𝑐𝑣,1 and 𝐶𝑐𝑦,1 are easily derived from equation (3.2) while the 

regulated output is 𝑥1(𝑡).  

    The vector that disturbs this subsystem is [𝑥5(𝑡)  𝑢2(𝑡)]
𝑇, which is coming from the 

upstream neighbor subsystem Σ2, therefore: 

𝑣1(𝑡) = 𝑧2,1(𝑡) = [
𝑥5(𝑡)

𝑢2(𝑡)
] 

Also, this subsystem affects the downstream neighbor subsystem Σ2 throughout state 

𝑥4(𝑡) and control action 𝑢1(𝑡), therefore, the disturbance output for subsystem Σ2 is 

𝑧1(𝑡) = [𝑥4(𝑡)  𝑢1(𝑡)]
𝑇 and this can be realized as: 

𝑧1(𝑘) = 𝐶𝑧,1 [
𝑥1(𝑡)

𝑥4(𝑡)
] + 𝐷𝑧,1𝑢1(𝑡) = 𝑣2,1(𝑡) 

where: 𝐶𝑧,1 = [
0 1
0 0

] , 𝐷𝑧,1 = [
0
1
]. 
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The LC-DMPC definition of subsystem Σ2 is: 

                

[
𝑥2̇(𝑡)

𝑥5̇(𝑡)
] = 𝐴𝑐2 [

𝑥2(𝑡)

𝑥5(𝑡)
] + 𝐵𝑐𝑢,2𝑢2(𝑡) + 𝐵𝑐𝑣,2

[
 
 
 
𝑥4(𝑡)

𝑢1(𝑡)

𝑥6(𝑡)

𝑢3(𝑡)]
 
 
 

+ 𝐵𝑤𝑤2

   𝑦2(𝑡) = 𝐶𝑐𝑦,2 [
𝑥2(𝑡)

𝑥5(𝑡)
]

      (3.4) 

Once again 𝐴𝑐2, 𝐵𝑐𝑢,2, 𝐵𝑐𝑣,2 and 𝐶𝑐𝑦,2 are derived from the centralized model and here 

the regulated output is 𝑥2(𝑡). There are two vectors that work as measured disturbances 

for Σ2 from the upstream neighbors. These vectors are [𝑥4(𝑡)  𝑢1(𝑡)]
𝑇 from subsystem 

Σ1 and [𝑥6(𝑡)  𝑢3(𝑡)]
𝑇 from subsystem Σ3. Therefore:     

𝑣2(𝑡) = [
𝑣2,1(𝑡)

𝑣2,3(𝑡)
] =

[
 
 
 
𝑥4(𝑡)

𝑢1(𝑡)

𝑥6(𝑡)

𝑢3(𝑡)]
 
 
 

 

This subsystem affects its downstream neighbor subsystems Σ1 and Σ3 throughout state 

𝑥5(𝑡) and control action 𝑢2(𝑡), hence, the disturbance output is given by: 

𝑧2(𝑘) = [𝑧2,1(𝑘)  𝑧2,3(𝑘)]
𝑇
= [𝑥5(𝑘)  𝑢2(𝑘)  𝑥5(𝑘)  𝑢2(𝑘)]

𝑇 and the realization can be 

written as:       

𝑧2(𝑡) = [
𝑧2,1(𝑡)

𝑧2,3(𝑡)
] = 𝐶𝑧,2 [

𝑥2(𝑡)

𝑥5(𝑡)
] + 𝐷𝑧,2𝑢1(𝑡) = [

𝑣1(𝑡)

𝑣3(𝑡)
] 

where: 𝐶𝑧,2 = [

0 1
0 0
0 1
0 0

] , 𝐷𝑧,1 = [

0
1
0
1

]. 

Finally, the LC-DMPC subsystem Σ3 is defined in a similar way as for subsystem Σ1: 
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[
𝑥3̇(𝑡)

𝑥6̇(𝑡)
] = 𝐴𝑐3 [

𝑥3(𝑡)

𝑥6(𝑡)
] + 𝐵𝑐𝑢,3𝑢3(𝑘) + 𝐵𝑐𝑣,3 [

𝑥5(𝑡)

𝑢2(𝑡)
] + 𝐵𝑤𝑤3

   𝑦3(𝑡) = 𝐶𝑐𝑦,3 [
𝑥3(𝑡)

𝑥6(𝑡)
]

                (3.5) 

and as with subsystems Σ1 and Σ2, 𝐴𝑐3, 𝐵𝑐𝑢,3, 𝐵𝑐𝑣,3 and 𝐶𝑐𝑦,3 are derived from (3.2).  

Subsystem Σ2 acts as an upstream neighbor for subsystem Σ3 through the disturbed 

vector [𝑥5(𝑡)  𝑢4(𝑡)]
𝑇 which gives the input disturbance as: 

𝑣3(𝑡) = 𝑧2,3(𝑡) = [
𝑥5(𝑡)

𝑢2(𝑡)
] 

The regulated output of this subsystem is 𝑥3(𝑡). The state 𝑥6(𝑡) and control action 𝑢3(𝑡) 

disturb subsystem Σ2, therefore, the output of  Σ3 for Σ2 is given by 

𝑧3(𝑡) = [𝑥6(𝑡)  𝑢2(𝑡)]
𝑇 which is realized as: 

𝑧3(𝑡) = 𝐶𝑧,3 [
𝑥3(𝑡)

𝑥6(𝑡)
] + 𝐷𝑧,3𝑢3(𝑡) = 𝑣2,3(𝑡) 

where: 𝐶𝑧,3 = [
0 1
0 0

] , 𝐷𝑧,3 = [
0
1
]. 

In all equations (3.3) through (3.5), 𝐷𝑢,𝑖 = 0 for  𝑖 = 1, 2, 3 and: 

𝐵𝑤 = [0 1]𝑇 

In this partition of subsystems, there are direct coupling between subsystems Σ1 & Σ2, 

and between Σ2 & Σ3, but no direct coupling between subsystems 1 and 3 exists. 

Therefore, according to LC-DMPC architecture, only subsystems Σ1 & Σ2 and 

subsystems Σ2 & Σ3 exchange data. Figure 3.3 illustrates the LC-DMPC 

communications and upstream and downstream structures for the defined subsystems.  
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The input and out disturbance vectors and the coupling matrices for the six-tank 

process subsystems are given in Table 3.2.  Now for Np = 1, the network output 

disturbance could be realized as: 

𝐙 = [Z1
𝑇 Z2

𝑇 Z3
𝑇]𝑇 = [Z1

𝑇 (Z2,1
𝑇   Z2,3

𝑇 ) Z3
𝑇]
𝑇

 

and the network input disturbance is related to 𝐙 through the interconnecting matrix 𝚪 as:  

 

𝐕 = [

v1
v2
v3
] = [

v1

[
v2,1
v2,3

]

v3

] = [

0 𝐼2×2 0 0
𝐼2×2 0 0 0
0 0 0 𝐼2×2
0 0 𝐼2×2 0

]

⏟                
𝚪

[

z1

[
z2,1
z2,3

]

z3

] 

 

a) Data communications between the subsystems         

Subsystem 2 Subsystem 2 Subsystem 1 

𝑣1 = [
𝑥5
𝑢2
] 

 

𝑧1 = [
𝑥4
𝑢1
] 

 

Subsystem 2 Subsystem 2 Subsystem 3 

𝑣3 = [
𝑥5
𝑢2
] 

 

𝑧3 = [
𝑥3
𝑢6
] 

 

Subsystem 1 Subsystem 1 

Subsystem 2 

Subsystem 3 

𝑣2,1 = [
𝑥4
𝑢1
] 

 

𝑣2,3 = [
𝑥6
𝑢3
] 

 

𝑧2,1 = [
𝑥5
𝑢2
] 

 

𝑧2,3 = [
𝑥5
𝑢2
] 

 

Subsystem 3 

b) Upstream and downstream subsystems for the six-tank process  

Figure 3.3: Data exchange and subsystem structures for the six-tank process 
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Table 3.2: LC-DMPC Matrices and Vectors Defined for the Six-tank 

Process  
 

Subsystem Σ𝑖  Input Disturbance 𝑣𝑖 Output Disturbance 𝑧𝑖 𝐶𝑧,𝑖 𝐷𝑧,𝑖 

1, 3 𝑣1 = 𝑣3 = [
𝑥5
𝑢2
] 𝑧1 = [

𝑥4
𝑢1
] , 𝑧3 = [

𝑥4
𝑢1
] [

0 1
0 0

] [
0
1
] 

2 [

𝑥4
𝑢1
𝑥6
𝑢3

] [

𝑥5
𝑢2
𝑥5
𝑢2

] [

0 1
0 0
0 1
0 0

] [

0
1
0
1

] 

   

    This six-tank process can also be coupled through the control actions only and the 

interconnecting matrix 𝚪 can be manipulated to handle this type of coupling. Through 

the modification of 𝚪 one can get the desired type of coupling.   This concept can be 

extended for any 𝑛 number of coupled tanks with any value of 𝑁𝑝 (see appendix A). 

 

3.1.4 Continuous to Discrete Time Conversion of the Local Subsystem Models 

    The defined subsystem dynamics (3.3 through 3.5) are continuous, and as a step 

forward, we need to discretize the continuous local models. For a subsystem dynamic 

free of process and measurement noises, a practical way to find the local discrete version 

model is to solve the following equation [84]: 

 

[
𝐴𝑖 𝐵𝑢,𝑖 𝐵𝑣,𝑖
0 𝐼 𝐼

] = 𝑒
[
𝐴𝑐𝑖 𝐵𝑐𝑢,𝑖 𝐵𝑐𝑣,𝑖
0 0 0

].𝑡𝑠
 

where 𝑡𝑠 is the sampling time (5 sec is used for simulation in this work).    

The final discretized local linear model, with discrete Gaussian distributed process 𝑤𝑖 

noise and measurement noise 휀𝑖 disturbances, is written as:  
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𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘) + 𝐵𝑣,𝑖𝑣𝑖(𝑘) + 𝐵𝑤𝑤𝑖(𝑘)

        𝑦𝑖(𝑘) = 𝐶𝑦,𝑖𝑥𝑖(𝑘) + 휀𝑖(𝑘)

         𝑧𝑖(𝑘) = 𝐶𝑧,𝑖𝑥𝑖(𝑘) + 𝐷𝑧,𝑖𝑢𝑖(𝑘)

                (3.6) 

 

3.2 Simulation Results 

    The six-tank process is simulated using algorithms 1 and 2 presented in chapter II. In 

the first group of simulations, Algorithm 2.1 is only applied assuming full state-feedback 

and noise free case. The second group of simulations considers the application of both 

algorithms for output feedback subsystems with disturbance and measurement noises. 

      

3.2.1 Application of Algorithm 2.1 with State-Feedback and Noise Free Process 

In this subsection, for the six-tank process, the LC-DMPC algorithm is simulated 

considering two types of coupling: couplings in controls and states, and in controls only. 

For both cases, full state-feedback is assumed and Laguerre sequences are used to 

parametrize the local control actions only. The distributed controllers are sharing the full 

size of vectors and Algorithm 2.1 is compared to a centralized MPC using the same 

values for weights, actuator saturations, and prediction horizons. Table 3.3 gives the 

values of the parameters used in simulations.  Two different numbers of iterations are 

used. The local controllers are allowed to communicate for four iterations per sampling 

in a case while only one iteration is permitted in a different case. Figures 3.4 through 3.9 

show the time response, time history of pump control efforts, and changes in cost values 

with time, respectively.  The local controllers can track the centralized solution 

successfully for the case of four numbers of iterations through solving a reduced size 
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local optimal control problems. For one iteration per sampling, the controllers can still 

track the centralized MPC solution. The negative values and peaks in the local costs 

shown in Figures 3.6 and 3.9 are because of the third term in (2.20) and changes in the 

tracking local references, respectively. Figure 3.10 illustrates the number of 

communications per iteration required by the LC-DMPC algorithm versus sharing data 

with all agents for the case of extending the process to have twenty coupled tanks.  

Finally, Figures 3.11 and 3.12 show the eigenvalues of the convergence matrix (2.27a) 

for both proposed types couplings with different values for the convex combination 

scalar 𝛽. For both cases, all of the eigenvalues are located inside the unit circle which 

indicates the stability or convergence of Algorithm 2.1 in chapter II for the coupled tank 

process. The maximum eigenvalues at the corresponding value of 𝛽 for the both 

coupling types are given in the table 3.4. As expected, for smaller value of 𝛽 the 

algorithm converge faster.   

 

 

 

 

 

 

 

 

 

Table 3.3: Parameter Values Used in Simulations for the Six-   

tank Process 
 

Description  Symbol and value 

Weight on predicted error 𝑞1 = 10, 𝑞2 = 15, 𝑞3 = 14 

Weight on control effort 𝑠1 = 0.1, 𝑠2 = 1, 𝑠3 = 0.8 

Constraints on pump action 

(deviation from 𝑣 = 3V) 

−2 ≤ 𝑢1 ≤ 2 

−1.8 ≤ 𝑢2 ≤ 1.8 

−1.5 ≤ 𝑢3 ≤ 1.5 

Laguerre Functions Parameters for 

𝑢𝑖 𝑗 = 1,2,3 
𝑁𝑗 = 20, 𝑎𝑗 = 0.8 

Prediction and constraint horizons 
𝑁𝑝 = 100 (≈ 8.33 min.) 

𝑁𝑐 = 25 

Convex parameter 𝛽 = 0.5 
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Table 3.4: The Maximum Eigenvalues for the Convergence 

Matrix (2.27a) with the Six-tank System 

Coupling type Maximum eigenvalue 

State and control 

𝛽 = 0.1 0.0483+0.5793i 

𝛽 = 0.5 0.7741 

𝛽 = 0.9 0.9525 

Control only 

𝛽 = 0.1 0.6075 

𝛽 = 0.5 0.8362 

𝛽 = 0.9 0.9716 

Figure 3.4: Water level responses in lower tanks - state and control coupling  

(State feedback)    



78 

  

  

 

 

 

 

 

 

 

 

 

 Figure 3.5: Pump control efforts - state and control coupling (State feedback)    
    

Figure 3.6: Cost function values - state and control coupling (State feedback)    
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Figure 3.7: Water level responses in lower tanks - coupling in control only 

(State feedback)    
    

Figure 3.8: Pump control efforts - for coupling in control only (State feedback)    
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Figure 3.10: Number of communications per iteration for the LC-DMPC 

approach versus sharing information with all agents    

    

Figure 3.9: Cost function values - coupling in control only (State feedback)   
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Figure 3.11: Eigenvalues of the convergence matrix (2.27a) for the six-tank 

process (Coupling in state and control) 

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y 
ax

is

 

 

betta = 0.1

betta = 0.5

betta = 0.9

Figure 3.12: Eigenvalues of the convergence matrix (2.27a) for the six-tank 

process (Coupling in control only) 
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3.2.2 Application of Algorithms 2.1 & 2.2 with Output-Feedback 

In this section, the Laguerre functions are used to parametrize the communicated 

vectors (the output disturbance and cost function sensitivity) along with parameterizing 

the local control actions. Algorithms 2.1 & 2.2 are used with the feedback of the lower 

tank states only. Upper tanks are subjected to unmeasured disturbances in addition to 

measurement noise in the feedback states. Both input noises are uncorrelated and 

independent identically distributed with known distributions. The disturbed noises are 

considered to be white with discrete Gaussian distributed and zero mean value. Table 3.5 

gives the used covariance. With same parameter values in tables 3.2 and 3.3, the process 

is simulated considering coupling in states and control actions with four iterations per 

sampling in a case and one iteration in a different case.            

 

Table 3.5: Noise Covariance Used for the Six-tank Process  

Description  Symbol and value 

Process and  

measurement covariance 

𝑄𝑤,1 = 0.210,  𝑄𝑣,1 = 0.130 

𝑄𝑤,2 = 0.164, 𝑄𝑣,2 = 0.210  

𝑄𝑤,3 = 0.340,  𝑄𝑣,3 = 0.110  
 

 

Once again, Figures 3.13 through 3.15 show the time response of the water levels in 

the lower tanks, the control efforts of the local pumps, and the decrease in the total cost 

function for both number of iterations, respectively. The local controllers are capable of 

tracking the centralized solution within the desired set points. The exchanged vectors are 

assumed to be inaccurate by 8% (𝜖 = 0.08) which allows reducing the communicated 

signal sizes significantly as shown in Figures 3.16 through 3.19. 
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Figure 3.13: Water level responses in lower tanks - coupling in state and control  

(Output feedback)   

     

Figure 3.14: Pump control efforts - coupling in state and control  

(Output feedback)     
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Figure 3.16: Maximum, minimum, and average shared lengths for Z𝑖, i =1, 2, 3, 

(4 iterations per sampling) - coupling in state and control (Output feedback) 

    

Figure 3.15: Cost function values - coupling in state and control  

(Output feedback)   
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Figure 3.17: Maximum, minimum, and average shared lengths for γ𝑖, i =1, 2, 3, 

(4 iterations per sampling) - coupling in state and control (Output feedback) 

    

Figure 3.18: Maximum, minimum, and average shared lengths for Z𝑖, i =1, 2, 3, 

(One iteration per sampling) - coupling in state and control (Output feedback) 
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    Since the structure of the local dynamics and cost functions is the same as in the case 

of the full state-feedback (coupling in state and control), the LC-DMPC with the output 

feedback will have the same eigenvalues shown in Figure 3.12 with the convergence 

condition matrix (2.72a).   

 

Figure 3.19: Maximum, minimum, and average shared lengths for γ𝑖, i =1, 2, 3, 

(One iteration per sampling) - coupling in state and control (Output feedback) 
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4. THE SUBOPTIMAL LC-DMPC ALGORITHM 

 

The convergence condition for the LC-DMPC algorithm presented in Chapter II 

(Theorem I) is based on the availability of the all subsystems’ dynamic and cost function 

information in a single matrix. In addition, Theorem II proves the closed-loop stability 

with the assumption of having sufficient number of iterations per sampling. As a result 

with the optimal LC-DMPC approach, a centralized supervisor with access to all 

network information is required and the complexities (or sizes) of the subsystems 

determine whether if the algorithm can be applied or not. This may restrict the real time 

application of the approach as subsystem local information change frequently which 

requires resolving the convergence condition in (2.27); moreover the solution of the 

convergence matrix becomes more expensive computationally as the subsystems in the 

network increases.   

 In this chapter, the suboptimal LC-DMPC algorithm is introduced. This approach 

eliminates the need for a centralized monitor by distributing the convergence condition 

through the subsystems which also reduces the computational loads significantly. Each 

subsystem is required to show dissipativity in the local information dynamics with a 

local gain less than one. This ensures the convergence of the algorithm without the need 

of solving a systemwide problem. However, this is a conservative problem. As an 

alternative method, a smaller systemwide problem based only on the finite gains of the 

local subsystems and network topology is proposed. This method gives a condition for 

the network information dynamic dissipativity that guarantees convergence of the 
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algorithm. For each subsystem to be dissipative with a finite gain comes on the price of 

the suboptimality of the distributed problems. This also affects the closed-loop stability 

as Theorem II depends on the assumption that the local control actions can approach the 

centralized solution per sampling. To solve the local subsystem closed-loop stability 

with the suboptimal LC-DMPC algorithm, a distributed synthesis of a local stabilizing 

terminal cost is introduced.   

This chapter is outlined as follows: Section 4.1 introduces a network of coupled 

subsystems as an example to demonstrate the applications of the proposed concepts. In 

Section 4.2, the core idea of the suboptimal LC-DMPC algorithm is given where the 

suboptimal cost function is studied with new introduced local variables. Dissipativity 

definitions for the local subsystems and network dissipativity conditions are presented in 

Section 4.3. Section 4.4 illustrates the local closed-loop stability terminal cost synthesis 

while Section 4.5 details the steps of the suboptimal LC-DMPC algorithm. 

 

4.1 A Simple Interconnected Subsystems Example 

Throughout this chapter, two theorems and many definitions will be stated and in 

order to demonstrate the applications of these introduced statements, a small network 

example is used. Figure 4.1 shows the interconnected subsystem example. There are 

three subsystems with different dimensions, inputs, outputs, and couplings (states, 

control actions or both).   
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    Subsystem 1 has two downstream outputs: The output 𝑦1,2 and control action 𝑢1,2 

which affect subsystem 2 through 𝑧1,2, and 𝑧1,2 = 𝑦1,3 which disturbs subsystem 3. 

Subsystem 2 also has two downstream outputs: 𝑧2,1 = 𝑦2,1 for subsystem 1, and 

𝑧2,3 = 𝑦2,3 for subsystem3. Finally, subsystem 3 disturbs subsystem 1 only through its 

control action 𝑧3 = 𝑢3. With this coupling and for prediction horizon equal to one 

(𝑁𝑝 = 1), we can write the following network relationship (Appendix B gives more 

details): 

[
 
 
 
 𝑣1 {

𝑣1,2
𝑣1,3
𝑣2

𝑣3 {
𝑣3,1
𝑣3,2]

 
 
 
 

=

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0]

 
 
 
 
 

⏟              
Γ𝑁𝑝=1

[
 
 
 
 𝑧1 {

𝑧1,2
𝑧1,3

𝑧2 {
𝑧2,1
𝑧2,3
𝑧3 ]

 
 
 
 

 

The local dynamics and cost function matrices are given in appendix B. For 𝑁𝑝 = 20 

and 𝛽 = 0.1, the eigenvalues of the convergence matrix (2.27a) are plotted in Figure 4.2. 

As can be seen, there are some eigenvalues outside the unit circle which violate the 

Figure 4.1: Three interconnected subsystems example 
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convergence condition given by Theorem II in chapter II (even for 𝛽 = 0), therefore, 

this network is not LC-DMPC stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 The Suboptimal Approach Core Idea 

In order for us to drive a local convergence condition, we have used the definition of a 

dissipative system. At the local subsystem, the dynamic of the information exchange can 

be formulated as input-output system along the horizon as shown in Figure 4.3. The idea 

is to find some local variables that can make this input-output system be dissipative with 

respect to the iteration domain. Then, based on the dissipativity of each local agent, we 

can ensure the dissipativity of the information dynamics at the network level which 

Figure 4.2: Eigenvalues of the convergence matrix (2.27a) for the interconnected 

network example 
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consequently ensures the convergence of the LC-DMPC algorithm.  With the intention 

of having local free design variables, we require the LC-DMPC algorithm to operate at 

some suboptimal level. This gives us the ability to add two more design variables to the 

local information exchange dynamics. Next section details the addition of such variables. 

 

 

 

 

 

4.2.1 Suboptimal Local Cost and Sensitivity Functions 

To converge to the systemwide optimum, we require that the local MPC solves a 

modified cost function with three terms. The first two terms is same as the centralized 

cost but defined locally and the third term represents the penalty on the subsystem output 

for downstream systems. In order to have more freedom for designing the local 

convergence conditions, we relaxed the third term in the local cost with a scalar. The 

new local cost function is given by: 

𝐽𝑖 = ∑ ‖𝑒𝑖(𝑘 + 𝑚)‖𝑞𝑖
2 + ∑ ‖𝑢𝑖(𝑘 + 𝑚)‖𝑠𝑖

2𝑁𝑝−1

𝑚=0

𝑁𝑝
𝑚=1 + 𝛼𝑖 ∑ 𝜓𝑖(𝑘 + 𝑚)

𝑇𝑧𝑖(𝑘 + 𝑚)
𝑁𝑝−1

𝑚=0   

or 

𝐽𝑖 = e𝑖
𝑇Q𝑖e𝑖 + U𝑖

𝑇S𝑖U𝑖 + 𝛼𝑖Ψ𝑖
𝑇Z𝑖 

where 𝛼𝑖 ∈ ℜ: 0 ≤ 𝛼𝑖 ≤ 1  

    This means that now the local MPC will not fully consider its output effects for 

downstream systems in the cost function. The scalar 𝛼𝑖 determines how much the local 

V𝑖 

Ψ𝑖 

Z𝑖  

γ𝑖 

Figure 4.3: Input-output information dynamic system for an LC-DMPC 

local controller 

controller 

 

Σ𝑖 
Subsystem 

 



92 
 
 

 

 

agent should count for its disturbance for downstream neighbors before it is not 

dissipative. This, of course, will affect the optimality of the LC-DMPC algorithm as it 

will be at some level of suboptimality with respect to the centralized solution.      

The second local free variable is added to the sensitivity equation. In chapter II, the 

following local sensitivity equation was used in the LC-DMPC algorithm (with 𝑑𝑖 = 0): 

γ𝑖 = 2𝑁𝑦,𝑖
𝑇 Q𝑖𝑁𝑦,𝑖V𝑖 + 2𝑁𝑦,𝑖

𝑇 Q𝑖𝑀𝑦,𝑖U𝑖 + 2𝑁𝑦,𝑖
𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖 + 𝑁𝑧,𝑖

𝑇 𝛼𝑖Ψ𝑖 − 2𝑁𝑦,𝑖
𝑇 Q𝑖r𝑖 

This local sensitivity equation is also relaxed with the variable 𝜇𝑖 as shown below: 

γ𝑖 = 𝜇𝑖{2𝑁𝑦,𝑖
𝑇 Q𝑖𝑁𝑦,𝑖V𝑖 + 2𝑁𝑦,𝑖

𝑇 Q𝑖𝑀𝑦,𝑖U𝑖 + 2𝑁𝑦,𝑖
𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖 +𝑁𝑧,𝑖

𝑇 𝛼𝑖Ψ𝑖 − 2𝑁𝑦,𝑖
𝑇 Q𝑖r𝑖} 

where 𝜇𝑖 ∈ ℜ: 0 ≤ 𝜇𝑖 ≤ 1. 

At this point, it is important to state the following: 

1. In the optimal case where no 𝛼𝑖 or 𝜇𝑖 is used, there are three free variables that can 

be manipulated in order to have a stable LC-DMPC algorithm. The local weighting 

matrices 𝑞𝑖 & 𝑠𝑖 and the convex combination parameter 𝛽. However, in some real 

applications, the cost matrices cannot be changed as they are related to operation 

costs or safety requirements, therefore the only available free design variable is 𝛽.  

2. In the suboptimal mode, we have added two more free variables 𝛼𝑖 and 𝜇𝑖 in 

addition, the convex combination parameter 𝛽 may also be treated as a local 

parameter, i.e. 𝛽𝑖. 

3. The new suboptimal free variables 𝛼𝑖 and 𝜇𝑖 determine the level of suboptimality as 

will be shown in the next section. 

4. The suboptimal level of the LC-DMPC algorithm is not with respect to a 

decentralized solution. In a decentralized solution, the local controllers are not 
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considering the couplings within neighbors. However, even with 𝛼𝑖 = 𝜇𝑖 = 0, for 

𝑖 = 1, … , 𝑝, the local agents with the LC-DMPC algorithm are still counting for the 

measured input disturbances 𝑣𝑖 from upstream neighbor subsystems.  

 

4.2.2 Optimality  

    As it is stated above, the introduced free variables 𝛼𝑖 and 𝜇𝑖 will drive the LC-DMPC 

algorithm to work in a suboptimal level. In this section, we will show how the 

centralized cost function changes with the variables 𝛼𝑖 and 𝜇𝑖 at the network level.     

The local suboptimal unconstrained MPC control action (with 𝑑𝑖 = 0) is now given by: 

(S𝑖 +𝑀𝑦,𝑖
𝑇 Q𝑖𝑀𝑦,𝑖)U𝑖

𝑄𝑃 = [𝑀𝑦,𝑖
𝑇 Q𝑖r𝑖 −𝑀𝑦,𝑖

𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖 − 0.5𝛼𝑖𝑀𝑧,𝑖
𝑇 Ψ𝑖 −𝑀𝑦,𝑖

𝑇 Q𝑖𝑁𝑦,𝑖V𝑖] 

where Ψ𝑖 = 𝑓(𝜇𝑖−1). 

Following the same steps in chapter II, we can write the unconstrained control actions as 

function of the local defined free variables at the network level as:   

[𝐒 + (𝐌𝒚 + (𝛂𝐌𝐳
𝑇[𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛

𝑇]−1𝚪𝑇𝛍𝐍𝐲
𝑇)
𝑇
)
𝑇

𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)] 𝐔
𝑸𝑷 = 

[𝐌𝒚 + (𝛂𝐌𝒛
𝑇[𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛

𝑇]−𝟏𝚪𝑇𝛍𝐍𝐲
𝑇)
𝑇
]
𝑇

𝐐𝐫 − 

                      [(𝐌𝒚 + (𝛂𝐌𝒛
𝑇[𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛

𝑇]−𝟏𝚪𝑇𝛍𝐍𝐲
𝑇)
𝑇
)
𝑇

𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)] 𝐗𝟎        (4.1) 

where 

𝛂 = 𝑑𝑖𝑎𝑔(𝛼1, ⋯ , 𝛼𝑝), 𝛍 = 𝑑𝑖𝑎𝑔(𝜇1, ⋯ , 𝜇𝑝), and 𝐖 = [𝐼 − 𝚪𝐍𝐳]
−𝟏𝚪. 

Recall that the optimum network centralized control action is: 
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[𝐒 + (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)] 𝐔

𝐐𝐏 = [𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳]
𝑇
𝐐𝐫 − 

                                         [(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐(𝐅𝒚 +𝐍𝒚𝐖𝐅𝐳)] 𝐗𝟎                             (4.2) 

In (4.1), if 𝛂 = 0 & 𝛍 = 0, the suboptimal control action would be:  

             [𝐒 + 𝐌𝐲
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]𝐔

𝑸𝑷 = 𝐌𝐲
𝑇𝐐𝐫 − [𝐌𝐲

𝑇𝐐(𝐅𝑦 + 𝐍𝑦𝐖𝐅z)]𝐗𝟎         (4.3) 

and as 𝛂 → 𝐼 & 𝛍 → 𝐼, equation (4.1) convergences to the optimal (4.2) solution. 

    As another way to show that (4.1) approaches (4.2) as 𝛂 → 𝐼 is by finding the 

derivative of the centralized cost function with respect to 𝛂 when 𝛍 = 𝐼 and prove that 

the derivative is equal to zero when 𝛂 = 𝐼. This is illustrated below. 

Recall that the centralized cost function is: 

𝐽CMPC =  𝐔
𝑇 [𝐒 + (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)] 𝐔 + 

        2 [𝐗𝟎
𝑇(𝐅𝑦 + 𝐍𝑦𝐖𝐅z)

𝑇
𝐐(𝐌𝑦 + 𝐍𝑦𝐖𝐌z) − 𝐫

𝑇𝐐(𝐌𝑦 +𝐍𝑦𝐖𝐌z)] 𝐔 + 𝐶0        (4.4) 

where  

𝐶0 = 𝐗0
𝑇(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝒛)

𝑇
𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝒛)𝐗0 − 2𝐗0

𝑇(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝒛)𝐐𝐫 + 𝐫
𝑇𝐐𝐫 

By substituting (4.1) in (4.4) for 𝐔 and differentiating the result with respect to the 

variable 𝛂 (assuming 𝛍 = 𝐼), we will have the following (see appendix III for details): 

                   
𝜕𝐽CMPC

𝜕𝛂
= 2([𝑋𝛍𝛂𝐺𝛍𝛂]

𝑇
𝐻1 + 𝐻2) [𝑋𝛍𝛂

𝜕𝐺𝛍𝛂

𝜕𝛂
+ (𝐺𝛍𝛂

𝑇 𝜕𝑋𝛍𝛂

𝜕𝛂
)
𝑇

]                      (4.5) 

where 

𝜕𝐺𝛍𝛂

𝜕𝛂
= [((𝛂𝐌𝒛

𝑇[[𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛
𝑻]−𝟏[𝚪𝑇𝛍𝐍𝒛

𝑇][𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛
𝑇]−𝟏]

+ [𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛
𝑇]−𝟏𝐌𝒛

𝑇)𝚪𝑇𝛍𝐍𝐲
𝑇)
𝑇

]
𝑇

[𝐐𝐫 − 𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)𝐗𝟎] 
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𝜕X𝛍𝛂

𝜕𝛂
= −[𝐒 + 𝐺1

𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]
−𝟏
∙ 

[((𝛂𝐌𝒛
𝑇([𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛

𝑇]−𝟏𝚪𝑇𝛍𝐍𝒛
𝑇[𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛

𝑇]−𝟏) + [𝐼 − 𝚪𝑇𝛍𝛂𝐍𝒛
𝑇]−𝟏𝐌𝒛

𝑇)𝚪𝑇𝛍𝐍𝐲
𝑇)
𝑇

]
𝑇

 

∙ 𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)[𝐒 + 𝑮𝟏
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]

−𝟏
 

𝐺1 = 𝐌𝑦 + (𝛂M𝑧
𝑇[𝐼 − Γ𝑇𝛍𝛂𝐍𝑧

𝑇]−1Γ𝑇𝛍Ny
𝑇)
𝑇
 

𝐺𝛍𝛂 = 𝐺1
𝑇[𝐐𝐫 − 𝐐(𝐅𝑦 +𝐍𝑦𝐖𝐅z)𝐗𝟎] 

X𝛍𝛂 = [𝐒 + 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]

−1
 

𝐻1 = 𝐒 + (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐(𝐌𝒚 +𝐍𝒚𝐖𝐌𝐳) 

𝐻2 = 𝐗𝟎
𝑇(𝐅𝑦 + 𝐍𝑦𝐖𝐅z)

𝑇
𝐐(𝐌𝑦 + 𝐍𝑦𝐖𝐌z) − 𝐫

𝑇𝐐(𝐌𝑦 + 𝐍𝑦𝐖𝐌z) 

In order to show that the derivative of the centralized cost with respect to 𝛂 is zero when 

𝛂 = 𝐼, we can take the first term of the LHS of (4.5) and extend it as following: 

[𝑋𝛍𝛂𝐺𝛍𝛂]
𝑇
𝐻1 + 𝐻2 = 

(𝐺1
𝑇(𝐐𝐫 − 𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)𝐗𝟎))

𝑇

((𝐒 + 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳))

−1

)
𝑇

∙ 

(𝐒 + (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)) + 

𝐗𝟎
𝑻(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) − 𝐫

𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) 

Note that for 𝛍 and 𝛂 = 𝐼:  

𝐺1 = M𝑦 + (αM𝑧
𝑇[I − Γ𝑇μαN𝑧

𝑇]−1Γ𝑇μNy
𝑇)
𝑇
= M𝑦 + (M𝑧

𝑇[𝐼 − Γ𝑇N𝑧
𝑇]−1Γ𝑇Ny

𝑇)
𝑇
 

And we have the definition of  𝐖 as:  

𝐖 = [𝐼 − 𝚪𝐍𝐳]
−1𝚪 
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which, with a matrix identity, can also be written as: 

𝐖𝑇 = [𝐼 − 𝚪𝑇𝐍𝐳
𝑇]−1𝚪𝑇 

Then we can write: 

𝐺1 = M𝑦 + (M𝑧
𝑇𝑊𝑇Ny

𝑇)
𝑇
= M𝑦+Ny𝑊Mz 

This makes the following term equal to identity: 

((𝐒 + 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳))

−1

)
𝑇

(𝐒 + (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)) = 

(𝐒 + (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳))

−𝑇

(𝐒

+ (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)) = 𝐼 

which with  𝐺1 = 𝐌𝒚+𝐍𝐲𝐖𝐌𝐳  gives: 

((𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
[𝐐𝐫 − 𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)𝐗𝟎])

𝑇

+ 

𝐗𝟎
𝑻(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) − 𝐫

𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) 

where the first term on LHS can be written as: 

((𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
(𝐐𝐫 − 𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)𝐗𝟎))

𝑇

= 

((𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)
𝑇
𝐐𝐫 − (𝐌𝒚 +𝐍𝒚𝐖𝐌𝐳)

𝑇
𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)𝐗𝟎)

𝑇

 

or  

𝐫𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) − 𝐗𝟎
𝑻(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) 

Therefore by summing both sides: 

𝐫𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) − 𝐗𝟎
𝑇(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) + 
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𝐗𝟎
𝑇(𝐅𝒚 +𝐍𝒚𝐖𝐅𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) − 𝐫

𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) = 0 

and consequently: 

𝜕𝐽CMPC

𝜕α
= 0, for 𝛍 and 𝛂 = 𝐼. 

 

4.3 Convergence and Local Dissipativity 

    In this section the definition of a dissipative system as well as conditions for a system 

to be dissipative are given. The section begins by realizing the local dynamics of 

information sharing in a state-space representation. Then dissipativity conditions for 

local and network information dynamics are presented.  For network dissipativity, three 

different methods are stated based on the dissipativity inequality. Finally, the 

interconnected subsystems example is used to show the applications of the presented 

methods.  

 

4.3.1 Local Information Dynamics and Dissipativity 

    Before stating the convergence theorem of the suboptimal LC-DMPC algorithm, the 

dynamics of information exchange at the level of a subsystem is first represented as 

state-space realization. 

    According to the LC-DMPC algorithm, the local information sharing dynamics (with 

𝑑𝑖 = 0)  at each subsystem is given by the following difference equations where 𝑗 is the 

iteration index: 

U𝑖(𝑗 + 1) = 𝛽𝑖U𝑖(𝑗) + (1 − 𝛽𝑖)U𝑖
𝑄𝑃(𝑗) 
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Z𝑖(𝑗 + 1) = 𝐹𝑧,𝑖𝑥0,𝑖(𝑘) + 𝑀𝑧,𝑖𝛽𝑖U𝑖(𝑗) + 𝑀𝑧,𝑖(1 − 𝛽𝑖)U𝑖
𝑄𝑃(𝑗) + 𝑁𝑧,𝑖V𝑖(𝑗) 

γ𝑖(𝑗 + 1) = 2𝜇𝑖𝑁𝑦,𝑖
𝑇 Q𝑖{𝐹𝑦,𝑖𝑥0,𝑖(𝑘) + 𝑀𝑦,𝑖𝛽𝑖U𝑖(𝑗) + 𝑀𝑦,𝑖(1 − 𝛽𝑖)U𝑖

𝑄𝑃(𝑗) + 𝑁𝑦,𝑖V𝑖(𝑗) 

−r𝑖(𝑘)} + 𝜇𝑖𝑁𝑧,𝑖
𝑇 𝛼𝑖Ψ𝑖(𝑗) 

and by introducing the local suboptimal unconstrained control action: 

U𝑖
𝑄𝑃(𝑗) = X𝑖[𝑀𝑦,𝑖

𝑇 Q𝑖r𝑖(𝑘) − 𝑀𝑦,𝑖
𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘)−𝑀𝑦,𝑖

𝑇 Q𝑖𝑁𝑦,𝑖V𝑖(𝑗) − 0.5𝛼𝑖𝑀𝑧,𝑖
𝑇 Ψ𝑖(𝑗)] 

where X𝑖 = (S𝑖 +𝑀𝑦,𝑖
𝑇 Q𝑖𝑀𝑦,𝑖) into these difference equations, the resulted difference 

equations would a function of U𝑖(𝑗), V𝑖(𝑗), and Ψ𝑖(𝑗) that change with iteration 𝑗 and 

r𝑖(𝑘) and 𝑥0,𝑖(𝑘) that change with the sampling 𝑘 as following: 

U𝑖(𝑗 + 1) = 𝛽𝑖U𝑖(𝑗) + (1 − 𝛽𝑖)X𝑖[𝑀𝑦,𝑖
𝑇 Q𝑖r𝑖(𝑘) − 𝑀𝑦,𝑖

𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘) − 𝑀𝑦,𝑖
𝑇 Q𝑖𝑁𝑦,𝑖V𝑖(𝑗) − 

0.5𝛼𝑖𝑀𝑧,𝑖
𝑇 Ψ𝑖(𝑗)] 

Z𝑖(𝑗 + 1) = 𝐹𝑧,𝑖𝑥𝑖(𝑘) + 𝑀𝑧,𝑖𝛽𝑖U𝑖(𝑗) + 𝑀𝑧,𝑖(1 − 𝛽𝑖)X𝑖[𝑀𝑦,𝑖
𝑇 Q𝑖r𝑖(𝑘) − 

𝑀𝑦,𝑖
𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘) − 𝑀𝑦,𝑖

𝑇 Q𝑖𝑁𝑦,𝑖V𝑖(𝑗) − 0.5𝛼𝑖𝑀𝑧,𝑖
𝑇 Ψ𝑖(𝑗)] + 𝑁𝑧,𝑖V𝑖(𝑗) 

γ𝑖(𝑗 + 1) = 2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖𝑁𝑦,𝑖V𝑖(𝑗) + 2𝜇𝑖𝑁𝑦,𝑖

𝑇 𝑄𝑖𝑀𝑦,𝑖𝛽𝑖U𝑖(𝑗) + 2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖𝑀𝑦,𝑖(1 − 𝛽𝑖)X𝑖 

[𝑀𝑦,𝑖
𝑇 𝑄𝑖r𝑖(𝑘) −𝑀𝑦,𝑖

𝑇 Q𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘) − 𝑀𝑦,𝑖
𝑇 Q𝑖𝑁𝑦,𝑖V𝑖(𝑗) 

−0.5𝛼𝑖𝑀𝑧,𝑖
𝑇 Ψ𝑖(𝑗)] + 𝜇𝑖𝛼𝑖𝑁𝑧,𝑖

𝑇 Ψ𝑖(𝑗) + 2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘) − 2𝜇𝑖𝑁𝑦,𝑖

𝑇 𝑄𝑖r𝑖(𝑘) 

    To realize these difference equations as a state-space representation, let the state, 

input, output, and input disturbance variables be defined as: 

𝑤𝑖(𝑗) = {

U𝑖(𝑗)
Z𝑖(𝑗)
γ𝑖(𝑗)

},  ℏ𝑖(𝑗) = {
V𝑖(𝑗)
Ψ𝑖(𝑗)

},  𝜂𝑖(𝑗) = {
Z𝑖(𝑗)
γ𝑖(𝑗)

}, and  ℊ𝑖(𝑘) = {
𝑥0,𝑖(𝑘)

r𝑖(𝑘)
} 

Then the following state-space realization can be written: 
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𝑤𝑖(𝑗 + 1) = �̂�𝑖𝑤(𝑗) + �̂�𝑖ℏ𝑖(𝑗) + �̂�𝑖ℊ𝑖(𝑘)

         𝜂𝑖(𝑗) = �̂�𝑖𝑤𝑖(𝑗)
                              (4.6) 

where 

�̂�𝑖 = [

𝛽𝑖 0 0
𝑀𝑧,𝑖𝛽𝑖 0 0

2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖𝑀𝑦,𝑖𝛽𝑖 0 0

]         

 �̂�𝑖 = [

−(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖𝑁𝑦,𝑖

𝑁𝑧,𝑖 −𝑀𝑧,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖𝑁𝑦,𝑖

2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖𝑁𝑦,𝑖 − 2𝜇𝑖𝑁𝑦,𝑖

𝑇 𝑄𝑖𝑀𝑦,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖𝑁𝑦,𝑖

           

                 

−0.5𝛼𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑧,𝑖
𝑇

−0.5𝛼𝑖𝑀𝑧,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑧,𝑖
𝑇

𝜇𝑖𝑁𝑧,𝑖
𝑇 𝛼𝑖 − 𝜇𝑖𝑁𝑦,𝑖

𝑇 𝑄𝑖𝑀𝑦,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑧,𝑖
𝑇 𝛼𝑖

]      

 

�̂�𝑖 = [

−(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖𝐹𝑦,𝑖

𝐹𝑧,𝑖 −𝑀𝑧,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖𝐹𝑦,𝑖

2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖𝐹𝑦,𝑖 − 2𝜇𝑖𝑁𝑦,𝑖

𝑇 𝑄𝑖𝑀𝑦,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖𝐹𝑦,𝑖

 

(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖

𝑀𝑧,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖
𝑇 𝑄𝑖

2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖𝑀𝑦,𝑖(1 − 𝛽𝑖)X𝑖𝑀𝑦,𝑖

𝑇 𝑄𝑖 − 2𝜇𝑖𝑁𝑦,𝑖
𝑇 𝑄𝑖

] 

and 

�̂�𝑖 = [
0 𝐼 0
0 0 𝐼

]. 

    Next the definition of a dissipative system will be stated as well as the dissipativity 

conditions. Then the stability of a dynamical system (in state-space form) in terms of 

these conditions is given. First let us start with this definition: 



100 
 
 

 

 

Definition 1. A discrete time dynamical system with input, output and state 𝑢, 𝑦 and 𝑥, 

respectively, is said to be dissipative if there exists a function defined on the input and 

output variables, called the supply rate 𝑠(𝑢, 𝑦):ℜ𝑛𝑢 × ℜ𝑛𝑦 → ℜ  and positive 

semidefinite function defined on the state, called the storage function 𝑉(𝑥(𝑡)):ℜ𝑛 → ℜ 

such that the following dissipation inequality: 

                                      𝑉(𝑥(𝑘 + 1) − 𝑉(𝑥(𝑘))) ≤ 𝑠(𝑢(𝑘), 𝑦(𝑘))                             (4.7) 

is satisfied for any 𝑢 at any time steps 𝑘. 

    In literature, the common used supply rate has the quadratic structure given as [85]:  

𝑠(𝑢, 𝑦, 𝑇) = ∑ (𝑦(𝑘)𝑇𝑞𝑑𝑦(𝑘) + 2𝑦(𝑘)
𝑇𝑠𝑑𝑢(𝑘) + 𝑢(𝑘)

𝑇𝑟𝑑𝑢(𝑘))
𝑇
𝑘=0   

or 

                                        s(u, y) = 𝑦𝑇𝑄𝑑𝑦 + 2𝑦
𝑇𝑆𝑑𝑢 + 𝑢

𝑇𝑅𝑑𝑢                                 (4.8) 

where 

u = [𝑢0
𝑇 ⋯ 𝑢𝐿

𝑇]𝑇 , 

y = [𝑦0
𝑇 ⋯ 𝑦𝐿

𝑇]𝑇 

𝑄𝑑 = 𝑑𝑖𝑎𝑔(𝑞𝑑,0 ⋯ 𝑞𝑑,𝐿),   

𝑆𝑑 = 𝑑𝑖𝑎𝑔(𝑠𝑑,0 ⋯ 𝑠𝑑,𝐿), and 

𝑅𝑑 = 𝑑𝑖𝑎𝑔(𝑟𝑑,0 ⋯ 𝑟𝑑,𝐿) 

and 𝑄𝑑 , 𝑆𝑑, and 𝑅𝑑 are some given constant matrices. 

With the supply rate given in (4.8) the following points can be stated: 

1. For 𝑄𝑑 = 𝑄𝑑
𝑇 ∈ ℜ𝑛𝑦×𝑛𝑦 , 𝑆𝑑 ∈ ℜ

𝑛𝑦×𝑛𝑢 and 𝑅𝑑 = 𝑅𝑑
𝑇 ∈ ℜ𝑛𝑢×𝑛𝑢, the system is said to 

be (𝑄𝑑, 𝑆𝑑, 𝑅𝑑)-dissipative if [86]: 

s(u, y) = 𝑦𝑇𝑄𝑑𝑦 + 2𝑦
𝑇𝑆𝑑𝑢 + 𝑢

𝑇𝑅𝑑𝑢 ≥ 0. 
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2. As a special case if: 𝑄𝑑 = −𝐼, 𝑆𝑑 = 0, 𝑅𝑑 = 𝑘
2𝐼, (where for 0 < 𝑘 ≤ 1 we will have 

the 𝐻∞ case) then with (4.8) we would have the following input-output relation: 

−y𝑇y + 𝑘2u𝑇u ≥ 0 ⇒ y𝑇y ≤ 𝑘2u𝑇u ⇒
‖y‖2

2

‖u‖2
2 ≤ 𝑘

2 ⇒
‖y‖2

‖u‖2
≤ 𝑘. 

    The dissipativity of the local information dynamics given in (4.6) with a supply rate 

can be ensured by solving a Linear Matrix Inequality (LMI) problem as following:    

The local information dynamics in (4.6) without the disturbance ℊ𝑖(𝑘) and disturbance 

dynamic �̂�𝑖 is given by: 

                                             
𝑤𝑖(𝑗 + 1) = �̂�𝑖𝑤𝑖(𝑗) + �̂�𝑖ℏ𝑖(𝑗)

         𝜂𝑖(𝑗) = �̂�𝑖𝑤𝑖(𝑗)
                                       (4.9) 

Assuming the following local supply rate with pre-defined (𝑄𝑑,𝑖, 𝑆𝑑,𝑖, 𝑅𝑑,𝑖) matrices: 

                 s𝑖(𝜂𝑖(𝑗), 𝑞𝑖(𝑗)) = 𝜂𝑖
𝑇(𝑗)𝑄𝑑,𝑖𝜂𝑖(𝑗) + 2𝜂𝑖

𝑇(𝑗)𝑆𝑑,𝑖𝑞𝑖(𝑗) + ℏ𝑖
𝑇(𝑗)𝑅𝑑,𝑖ℏ𝑖(𝑗)    (4.10) 

Then we need to satisfy the dissipativity inequality in (4.7) which with (4.10) can be 

written as:  

                                𝑉𝑖(𝑤𝑖(𝑗 + 1)) − 𝑉𝑖(𝑤𝑖(𝑗)) ≤ s𝑖(𝜂𝑖(𝑗), ℏ𝑖(𝑗))                             

Let us assume the following Lyapunov function on the state 𝑤𝑖: 

𝑉𝑖(𝑤𝑖(𝑗)) = 𝑤𝑖
𝑇(𝑗)�̂�𝑖𝑤𝑖(𝑗) 

then we can extend the dissipativity inequality as: 

𝑤𝑖
𝑇(𝑗 + 1)�̂�𝑖𝑤𝑖(𝑗 + 1)  − 𝑤𝑖

𝑇(𝑗)�̂�𝑖𝑤𝑖(𝑗)  ≤ 

𝜂𝑖
𝑇(𝑗)𝑄𝑑,𝑖𝜂𝑖(𝑗) + 2𝜂𝑖

𝑇(𝑗)𝑆𝑑,𝑖ℏ𝑖(𝑗) + ℏ𝑖
𝑇(𝑗)𝑅𝑑,𝑖ℏ𝑖(𝑗) 

By introducing the local information dynamic (4.9), the above inequality becomes:  



102 
 
 

 

 

{𝑤𝑖
𝑇(𝑗) ℏ𝑖

𝑇(𝑗)} [
�̂�𝑖
𝑇�̂�𝑖�̂�𝑖 − �̂�𝑖 − �̂�𝑖

𝑇𝑄𝑑,𝑖�̂�𝑖 �̂�𝑖
𝑇�̂�𝑖�̂�𝑖 − �̂�𝑖

𝑇𝑆𝑑,𝑖

�̂�𝑖
𝑇�̂�𝑖�̂�𝑖 − 𝑆𝑑,𝑖

𝑇 �̂�𝑖 �̂�𝑖
𝑇�̂�𝑖�̂�𝑖 − 𝑅𝑑,𝑖

] {
𝑤𝑖(𝑗)

ℏ𝑖(𝑗)
} ≤ 0 

Taking the matrix part only in the above inequality, we will have the following new 

inequality: 

[
�̂�𝑖 + �̂�𝑖

𝑇𝑄𝑑,𝑖�̂�𝑖−�̂�𝑖
𝑇�̂�𝑖�̂�𝑖 �̂�𝑖

𝑇𝑆𝑑,𝑖 − �̂�𝑖
𝑇�̂�𝑖�̂�𝑖

𝑆𝑑,𝑖
𝑇 �̂�𝑖 − �̂�𝑖

𝑇�̂�𝑖�̂�𝑖 𝑅𝑑,𝑖 − �̂�𝑖
𝑇�̂�𝑖�̂�𝑖

] ≥ 0 

To write this inequality as a LMI, it also can be formulated as: 

[
�̂�𝑖 �̂�𝑖

𝑇𝑆𝑑,𝑖

𝑆𝑑,𝑖
𝑇 �̂�𝑖 𝑅𝑑,𝑖

] − [
�̂�𝑖
𝑇�̂�𝑖�̂�𝑖 − �̂�𝑖

𝑇𝑄𝑑,𝑖�̂�𝑖 �̂�𝑖
𝑇�̂�𝑖�̂�𝑖

�̂�𝑖
𝑇�̂�𝑖�̂�𝑖 �̂�𝑖

𝑇�̂�𝑖�̂�𝑖
] ≥ 0 

or as sum of a linear part and quadratic part: 

[
�̂�𝑖 �̂�𝑖

𝑇𝑆𝑑,𝑖

𝑆𝑑,𝑖
𝑇 �̂�𝑖 𝑅𝑑,𝑖

] − [
�̂�𝑖
𝑇�̂�𝑖 −�̂�𝑖

𝑇𝑄𝑑,𝑖

�̂�𝑖
𝑇�̂�𝑖 0

] [
�̂�𝑖
−1 0

0 −𝑄𝑑,𝑖
−1] [

�̂�𝑖�̂�𝑖 �̂�𝑖�̂�𝑖
−𝑄𝑑,𝑖�̂�𝑖 0

] ≥ 0 

Using Schur complement, the following LMI with the variable 𝑃𝑖 can expressed: 

                                        

[
 
 
 
 
 �̂�𝑖 �̂�𝑖

𝑇
𝑆𝑑,𝑖 �̂�𝑖

𝑇
�̂�𝑖 −�̂�𝑖

𝑇
𝑄𝑑,𝑖

𝑆𝑑,𝑖
𝑇 �̂�𝑖 𝑅𝑑,𝑖 �̂�𝑖

𝑇
�̂�𝑖 0

�̂�𝑖�̂�𝑖 �̂�𝑖�̂�𝑖 �̂�𝑖 0

−𝑄𝑑,𝑖�̂�𝑖 0 0 −𝑄𝑑,𝑖 ]
 
 
 
 
 

> 0                                    (4.11)   

    Stability of a dissipative system is given next but we need to state the following 

definition of local zero-state detectability for a dynamic system:  

Definition 2 [87]. A dynamic system Σ that is described by the nonlinear state-space: 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) + 𝑔(𝑥(𝑘))𝑢(𝑘)

      𝑦(𝑘) = ℎ(𝑥(𝑘)) + 𝑞(𝑥(𝑘))𝑢(𝑘)
 

is locally zero-state detectable if there exists a neighborhood 𝑁 of 𝑥 = 0 such that, for 

all 𝑥 ∈ 𝑁: 



103 
 
 

 

 

𝑦(𝑘)|𝑢(𝑘)=0 = ℎ(𝜙(𝑘; 𝑥; 0)) = 0 for all  𝑘 ∈ 𝑍+ 

which implies lim𝑘→∞ 𝜙(𝑘; 𝑥; 0) = 0.  

where 𝜙(𝑘; 𝑥; 0) = 𝑓𝑘(𝑥) is a trajectory of the unforced system 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) 

from 𝑥(0) = 𝑥. If 𝑁 = ℜ𝑛, the system is zero-state detectable. 

    Definitions 1 and 2 fulfill the following stability criterion of a dissipative system 

which is also stated in [88]: If the system Σ is zero-state detectable and dissipative with 

respect to the supply rate (4.8), then the system is Lyapunov stable if 𝑄𝑑 ≤ 0 and 

asymptotically stable if 𝑄𝑑 < 0.    

    For the rest of this chapter we will assume that the dynamic (4.9) is zero-state 

detectable for 𝑖 = 1,⋯ , 𝑝. 

 

4.3.2 The Network Dissipativity 

    In the previous subsection we discussed the dissipativity of a dynamic system and 

presented a stability criterion based on this dissipativity. Using the same criteria, in this 

section we try to prove the stability of a networked system. This will give us different 

methods by which we can have new convergence conditions for the LC-DMPC 

algorithm. Theorem III presents a systemwide convergence condition for the suboptimal 

LC-DMPC algorithm based on local finite gains and network couplings only.    

Theorem III: Let subsystem 𝛴𝑖 have a finite gain 𝑘𝑖 from the local information input 

ℏ𝑖 = [V𝑖
𝑇 Ψ𝑖

𝑇]𝑇 to the local information output 𝜂𝑖 = [Z𝑖
𝑇 γ𝑖

𝑇]𝑇 for 𝑖 = 1,2,⋯𝑝, then 

if: 𝐼 − 𝐻𝑇𝐾𝐻 ≥ 0 where 𝐾 = 𝑑𝑖𝑎𝑔(𝑘1𝐼 ⋯ 𝑘𝑝𝐼), and 𝐻 is mapping the network 
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output 𝜂 to the network input ℏ: ℏ = 𝐻𝜂, the interconnected network system is stable i.e. 

the LC-DMPC algorithm is converging.   

Proof: 

For each subsystem let the matrices: 𝑄𝑖, 𝑆𝑖, 𝑅𝑖 be given with 𝑄𝑖 & 𝑅𝑖 symmetric, then we 

can say that the subsystem is 𝑄𝑖, 𝑆𝑖, 𝑅𝑖 dissipative from the input  ℏ𝑖 = [V𝑖
𝑇 Ψ𝑖

𝑇]𝑇 to the 

output 𝜂𝑖 = [Z𝑖
𝑇 γ𝑖

𝑇]𝑇 if: 

                                 𝑤𝑖(𝜂𝑖, ℏ𝑖) = 𝜂𝑖
𝑇𝑄𝑖𝜂𝑖 + 2𝜂𝑖

𝑇𝑆𝑖ℏ𝑖 + ℏ𝑖
𝑇𝑅𝑖ℏ𝑖 ≥ 0                         (4.12) 

By summing (4.12) over all 𝛴𝑖 in the network we get: 

                                         w(𝜂, ℏ) = 𝜂𝑇𝑄𝜂 + 2𝜂𝑇𝑆ℏ + ℏ𝑇𝑅ℏ                                   (4.13) 

where  

ℏ = [ℏ1
𝑇 , ⋯ , ℏ𝑝

𝑇]
𝑇
,  ℏ = [ℏ1

𝑇 ,⋯ , ℏ𝑝
𝑇]
𝑇
, 

𝑄 = 𝑑𝑖𝑎𝑔(𝑄1, ⋯ , 𝑄𝑝),  𝑆 = 𝑑𝑖𝑎𝑔(𝑆1,⋯ , 𝑆𝑝),  and  𝑅 = 𝑑𝑖𝑎𝑔(𝑅1, ⋯ , 𝑅𝑝) 

For a local subsystem we can have the following relation between the local subsystem 

input and the total network output: 

ℏ𝑖 = {
V𝑖
Ψ𝑖
} = 𝐻𝑖𝜂 

where 𝐻𝑖 is defined as: for ℏ𝑖 ∈ ℜ
𝑙𝑖 and 𝜂 ∈ ℜ𝐿 then for ℏ𝑖 = col(𝑢𝑗

𝑖) and 𝜂 = col(𝜂ℎ), 

𝑖 = 1,⋯ 𝑙𝑖, ℎ = 1,⋯𝐿 and ℏ𝑗
𝑖 = 𝐻𝑖(𝑖, ℎ)𝜂

ℎ, 𝐻𝑖(𝑖, ℎ) = 1 if ℏ𝑗
𝑖 = 𝜂ℎ and 0 otherwise. 

Therefor for 𝑝 subsystems in the network: 

ℏ = [

𝐻1
⋮
𝐻𝑝
] 𝜂 = H𝜂 

Then we can introduce this global relationship into the total supply rate (4.13) as: 
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w(𝜂, ℏ) = 𝜂𝑇𝑄𝜂 + 2𝜂𝑇𝑆𝐻𝜂 + 𝜂𝑇𝐻𝑇𝑅𝐻𝜂 

Thus the total supply rate is now only a function of the total network output 𝜂:  

w(𝜂) = 𝜂𝑇[𝑄 + 2𝑆𝐻 + 𝐻𝑇𝑅𝐻]𝜂 = 𝜂𝑇[𝑄 + 2𝑆𝐻 + 𝐻𝑇𝑅𝐻]𝜂 

therefore for network stability: 

𝜂𝑇(𝑄 + 2𝑆𝐻 + 𝐻𝑇𝑅𝐻)𝜂 ≤ 0 

or 

𝑄 + 2𝑆𝐻 + 𝐻𝑇𝑅𝐻 ≤ 0 ⇒ −𝑄 − 2𝑆𝐻 − 𝐻𝑇𝑅𝐻 ≥ 0 

For a special case we have  𝑄 = −𝐼, 𝑆 = 0, 𝑅 = 𝐾 = 𝑑𝑖𝑎𝑔(𝑘1 ⋯ 𝑘𝑝), then: 

                                                           𝐼 − 𝐻𝑇𝐾𝐻 ≥ 0                                                 (4.14) 

A similar result is also given by [86] (as Theorem 5) for stability of interconnected large-

scale systems with single-input, single-output subsystems. 

The network dissipativity condition given in (4.14) can be expressed as a different 

problem. It can be formulated as the problem of finding the diagonal matrix 𝐾 such that 

(4.14) is satisfied. This new problem can be easily stated as a LMI as following:  

With Schur complement, (4.14) can be written as: 

[ 𝐼 𝐻𝑇𝐾
𝐾𝐻 𝐾

] ≥ 0 

Which also can be formulated as an optimization problem of finding the maximum trace 

of the matrix 𝐾 = 𝑑𝑖𝑎𝑔(𝑘1 ⋯ 𝑘𝑝): 

                                                         Maximize trace (𝐾)                                           (4.15) 

such that: 

 𝐾 ≥ 0 
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[ 𝐼 𝐻𝑇𝐾
𝐾𝐻 𝐾

] ≥ 0 

In Theorem III (which is based on the small gain theorem) we still need to check the 

convergence at the centralized level; however, we do not require information of the local 

dynamics or cost functions. The only required information are the gains of the 

dissipativity for the local subsystems, i.e. 𝑘𝑖, for 𝑖 = 1,2,⋯ , 𝑝, and the network topology 

𝐻.  A naive way is to choose a local gain 𝑘𝑖 less or equal to one and not checking for 

network dissipativity. This is because for any two dynamical systems 𝐺1 and 𝐺2, in a 

loop, we can write [89]: 

‖𝐺1 ∙ 𝐺2 ‖∞ ≤ ‖𝐺1 ‖∞ ∙ ‖𝐺2 ‖∞ 

Which, according to the small gain theorem, the stability (or convergence) around any 

loop in the network is guaranteed. Such an approach, however, would be conservative. It 

is desirable to make each subsystem to have a finite gain, as long as the network is 

satisfying theorem III. 

    At this point, to check the convergence of the LC-DMPC algorithm with suboptimal 

operation, we have the following three methods: 

 For given local finite gains 𝑘𝑖, for 𝑖 = 1,2,⋯ , 𝑝, and network topology H we can 

use Theorem III. 

 We can solve the LMI problem given in (4.15) and then for 𝑖 = 1,2,⋯ , 𝑝: 

1. 𝑘𝑖 = min (corresponding diagonal elements in 𝐾). 

2. Make the local subsystem to be dissipative with 𝑘𝑖 , with the local free variables 

𝛽𝑖, 𝑞𝑖 , 𝑠𝑖, 𝛼𝑖 , and 𝜇𝑖 . 



107 
 
 

 

 

 Or, we can select 𝑘𝑖 < 1 for 𝑖 = 1,2,⋯ , 𝑝. 

    For the example of the interconnected subsystems, we used last two methods to make 

each subsystem showing dissipativity behavior in the information dynamics with a finite 

gain. The local values for the variables 𝛼𝑖 and 𝜇𝑖 for 𝑖 = 1,2,3 for each method are 

shown in table 4.1. In both cases, we select 𝛽𝑖 = 0.1 for all subsystems. Figure 4.4 

illustrates the eigenvalues of convergence condition given by matrix (2.27a) with 𝛼𝑖 and 

𝜇𝑖 in table 4.1. All eigenvalues are inside the unit circle which indicates the stability 

(convergence) of the algorithm.    

The following two points should be considered for the developed convergence methods: 

 The presented methods for checking the convergence locally or using limited 

information (finite local gains and network topology) are still conservative where 

for the provided networked example, we can have a stable (i.e. converging) LC-

DMPC algorithm just by choosing 𝛼1 = 0.1 and keep all other free local 

parameters values at one. Figure 4.5 shows the eigenvalues of (2.27a) with such 

case.     

 The maximum value for 𝐾 that Theroem III can result is the identity matrix; 

however, this does not mean that it is better to choose the local gain 𝑘𝑖 = 1 for all 

subsystems. For instance, in the network system shown in Figure 4.6, if we assume 

that 𝑘𝑖 = 1 for 𝑖 = 1,⋯ ,5, Theorem III will not be satisfied while the results of 

problem (4.14) are: 𝑘1 = 𝑘2 = 𝑘4 = 1, 𝑘3 = 0.4856, and 𝑘5 = 0.8315.       
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Figure 4.7 shows the values of the centralized cost function (4.4) using the resulted 

control actions with: 𝛼1 = 0.1 and all other free local parameters values at one, the free 

local parameters in table 1, and all free local parameters equal to zero, respectively. 

The dissipativity inequality over the information dynamics may give an indication 

whether if two or more subsystems should be combined and treated as one subsystem. In 

case if the dissipativity condition (4.11) does not satisfied even when 𝛼𝑖 and 𝜇𝑖 are either 

zeros or have very small values (close to zero), we may consider combining the 

undertaken subsystem with one or more of its neighbor subsystems. In a LC-DMPC 

network, two coupled subsystems Σ𝑖 and Σ𝑖−1 can be combined as following:       

Let the dynamic of subsystem Σ𝑖 is given by: 

𝑥𝑖
+ = 𝐴𝑖𝑥𝑖 + 𝐵𝑢,𝑖𝑢𝑖 + 𝐵𝑣,𝑖𝑣𝑖
  𝑦𝑖 = 𝐶𝑦,𝑖𝑥𝑖
  𝑧𝑖 = 𝐶𝑧,𝑖𝑥𝑖 + 𝐷𝑧,𝑖𝑢𝑖

 

while subsystem Σ𝑖−1 is given by: 

𝑥𝑖−1
+ = 𝐴𝑖−1𝑥𝑖−1 + 𝐵𝑢,𝑖−1𝑢𝑖−1 + 𝐵𝑣,𝑖−1𝑣𝑖−1
  𝑦𝑖−1 = 𝐶𝑦,𝑖−1𝑥𝑖−1
  𝑧𝑖−1 = 𝐶𝑧,𝑖−1𝑥𝑖−1 + 𝐷𝑧,𝑖−1𝑢𝑖−1

 

Both subsystems are connected as shown in Figure 4.8a where we can write the local 

couplings as: 𝑣𝑖 =   𝑧𝑖−1.  

To combine Σ𝑖 and Σ𝑖−1 into one subsystem Σ, we can write: 

[
𝑥𝑖
𝑥𝑖−1

]
+

= [
𝐴𝑖 0
0 𝐴𝑖−1

] [
𝑥𝑖
𝑥𝑖−1

] + [
𝐵𝑢,𝑖 0

0 𝐵𝑢,𝑖−1
] [
𝑢𝑖
𝑢𝑖−1

] + [
𝐵𝑣,𝑖 0

0 𝐵𝑣,𝑖−1
] [
𝑣𝑖
𝑣𝑖−1

] 

However, 𝑣𝑖 =   𝑧𝑖−1 = 𝐶𝑧,𝑖−1𝑥𝑖−1 + 𝐷𝑧,𝑖−1𝑢𝑖−1, then: 
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[
𝑥𝑖
𝑥𝑖−1

]
+

= [
𝐴𝑖 𝐵𝑣,𝑖𝐶𝑧,𝑖−1
0 𝐴𝑖−1

] [
𝑥𝑖
𝑥𝑖−1

] + [
𝐵𝑢,𝑖 𝐵𝑣,𝑖𝐷𝑧,𝑖−1
0 𝐵𝑢,𝑖−1

] [
𝑢𝑖
𝑢𝑖−1

] + [
0

𝐵𝑣,𝑖−1
] 𝑣𝑖−1 

and dynamics of the regulated outputs and outputs for downstream neighbors are: 

[
𝑦𝑖
𝑦𝑖−1

] = [
𝐶𝑦,𝑖 0

0 𝐶𝑦,𝑖−1
] [
𝑥𝑖
𝑥𝑖−1

] 

  𝑧𝑖 = [𝐶𝑧,𝑖 0] [
𝑥𝑖
𝑥𝑖−1

] + [𝐷𝑧,𝑖 0] [
𝑢𝑖
𝑢𝑖−1

] 

Thus, subsystem Σ has the measured input disturbance 𝑣𝑖−1 (the input for Σ𝑖−1) and the 

downstream output 𝑧𝑖 (the output of Σ𝑖). Figure 4.8b shows the combined subsystem Σ.  

Table 4.2 gives the three possible combinations of the subsystems for the example of 

the interconnected subsystems (more details are given in appendix B) with the 

corresponding local design parameters for dissipativity. As can be seen, combining 

subsystems 1 & 2 gives more reasonable results if it is compared with if subsystems 1 

and 2 are dealt with as individual subsystems.   

 

 

Table 4.1: Local Convergence Parameters for the Three 

Interconnected Subsystems Example 

Method 𝑘 𝛼 𝜇 
𝜆(𝐼 − 𝐻𝑇𝐾𝐻) 

𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛 

LMI 

Problem 

(4.14) 

𝑘1 = 1
𝑘2 = 1
𝑘3 = 1

 

𝛼1 = 0.80
𝛼2 = 0.01
𝛼3 = 0.80

 

𝜇1 = 0.030
𝜇2 = 0.001
𝜇3 = 0.020

 0 0 

Selecting 

𝑘𝑖 < 1 

𝑘1 = 0.98
𝑘2 = 0.92
𝑘3 = 0.99

 

𝛼1 = 0.80
𝛼2 = 0.01
𝛼3 = 0.80

 

𝜇1 = 0.030
𝜇2 = 0.001
𝜇3 = 0.020

 0.08 0.01 
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Figure 4.4: Eigenvalues of the convergence matrix (2.27a) for the 

interconnected network example with 𝛼𝑖 and 𝜇𝑖 given in table 4.1 

Figure 4.5: Eigenvalues of the convergence matrix (2.27a) for the interconnected 

network example with 𝛼1 = 0.1 and other local free parameters are hold at 1 
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Figure 4.6: A network system with five interconnected subsystems 

with coupling in outputs (states) only 

Figure 4.7: Cost values with solutions of a centralized MPC and the suboptimal 

LC-DMPC for the three interconnected subsystems example 
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Table 4.2: Combined Subsystems for the Three 

Interconnected Subsystems Example 

Combined Subsystems 𝑘 𝛼 𝜇 

1 & 2 1 1 0.15 

1 & 3 1 1 0.038 

2 & 3 1 1 0.012 

 

4.4 Local Closed-Loop Stability 

In Theorem II, the closed-loop stability is proven based on the assumption that the 

LC-DMPC converges to the centralized solution at each sampling. However, with 

theorem III, the subsystems are working in suboptimal levels meaning that the local 

control actions are not converging to the centralized control actions. Therefore we need 

to prove the closed-loop stability with a different method. Generally, the closed-loop 

stability of MPC is ensured by using a cost function with infinite horizon. However, 

solving an infinite constrained cost function is almost impossible. Therefore, researchers 

suggest combining a constrained finite horizon cost function with an infinite LQR 

problem as a terminal cost. Recent works also proposed to relax the LQR terminal 

weight by solving a Lyapunov stability inequality.   For our problem, we suggest adding 

Figure 4.8: Combing two LC-DMPC subsystems 

 (a): Two coupled subsystems in a LC-DMPC network 

 

 (b): The resulted combined subsystem 
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terminal stabilizing costs at the end of the local distributed problems without terminal 

sets. With appropriate choice of the prediction horizon, adding a terminal cost would be 

sufficient for the MPC stability. To design such terminal costs in a distributed means, we 

modified the method that is given in [47] such that it can handle the distributed LC-

DMPC cost functions.  

 

4.4.1 MPC for Reference Tracking 

   As in this thesis, we are considering the reference tracking MPC (centralized as well as 

distributed) problems i.e. the servo problems, the undertaken systems will not converge 

to the origin but settle at some desired steady state point (𝑥𝑟 , 𝑢𝑟). A combination of 

steady state and input control has to be selected to satisfy the desired tracking reference 

𝑟 such that 𝑥(𝑘 + 1) = 𝑥(𝑘) = 𝑥𝑟 and 𝑦(𝑘) = 𝑟.  

    For non-unique choices, the following simple optimization problem can be solved 

[90]: 

                                                      min𝑥𝑟,𝑢𝑟 𝑢𝑟
𝑇𝑄𝑟𝑢𝑟                                                   (4.16) 

subject to: 

[
𝐴 − 𝐼 𝐵
𝐶 0

] {
𝑥𝑟
𝑢𝑟
} = [

0
𝑟
]

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑟 ≤ 𝑢𝑚𝑎𝑥

 

    To apply the standard MPC scheme with reference tracking case, a practical approach 

is to shift the origin of the problem by (𝑥𝑟 , 𝑢𝑟) and then use the typical MPC methods 

(such as stability and feasibility) on the translated problem. In other words, penalize the 
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deviations of the original problem from the steady-state setpoint [91]. This means that 

for a standard regulation and unconstrained MPC problem given by: 

min𝑢 Θ𝑓 (𝑥(𝑘 + 𝑁𝑝)) + ∑ 𝑙(𝑥(𝑘 + 𝑖), 𝑢(𝑘 + 𝑖))
𝑁𝑝−1

𝑖=0
  

subject to: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

        𝑥(0) = 𝑥0
 

a reference tracking MPC problem can be formulated by shifting this problem such that 

it is centered at the steady-state setpoint resulted by problem (4.16). This new problem 

can be formulated as:  

min𝑢 Θ𝑓 (𝑥(𝑘 + 𝑁𝑝 − 𝑥𝑟)) + ∑ 𝑙(𝑥(𝑘 + 𝑖) − 𝑥𝑟 , 𝑢(𝑘 + 𝑖) − 𝑢𝑟)
𝑁𝑝−1

𝑖=0
  

subject to: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

        𝑥(0) = 𝑥0
 

    In general, we assume that the tracking reference 𝑟(𝑘) is reachable where for a 

discrete LTI system that is given by: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

        𝑦(𝑘) = 𝐶𝑥(𝑘)
 

and with constraints on control actions only (𝑢(𝑘) ∈ ℘), a reference signal 𝑟(𝑘) is said 

to be reachable if there exists a control signal such that: 

 The control signal is admissible, i.e. 𝑢(𝑘) ∈ ℘, and 

 The control signal maps the above discrete system with the reference 𝑟(𝑘), i.e. 

𝑦(𝑘) = 𝑟(𝑘) = 𝐶𝑥(𝑘) 



115 
 
 

 

 

Thus, the MPC problems will have feasible solutions only if the tracking signal is 

reachable.  

In case if the reference signal is not reachable, then an approximate reachable 

reference that is closest to the original tracking reference can be calculated by a 

trajectory planner. Then the MPC problem is solved by so called two layer solver. In this 

structure, the first layer would be the trajectory planner which passes a reachable 

reference for the second layer where the MPC problem is.  

At the trajectory planner layer, a reachable reference is computed by solving the 

following optimization problem: 

                                           min𝑥𝑟,𝑢𝑟(𝐶𝑥𝑟 − 𝑟)
𝑇𝑄𝑟(𝐶𝑥𝑟 − 𝑟)                                      

subject to: 

𝑥𝑟 = 𝐴𝑥𝑟 + 𝐵𝑢𝑟

𝑢𝑟 ∈ ℘
 

For the LC-DMPC approach, this trajectory planner is designed locally and each agent 

has to share its solution with neighbors in order to compute the reachable references 

locally. The following shows the optimization at the local trajectory planner level and a 

simple algorithm to compute the local reachable reference in a distributed fashion: 

The local trajectory planner steady-state optimization problem is given as: 

min
𝑥𝑟,𝑖,𝑢𝑟,𝑖

(𝐶𝑦,𝑖𝑥𝑟,𝑖 − 𝑟𝑖)
𝑇
𝑄𝑟,𝑖(𝐶𝑦,𝑖𝑥𝑟,𝑖 − 𝑟𝑖) 

subject to: 
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𝑥𝑟,𝑖 = 𝐴𝑖𝑥𝑟,𝑖 + 𝐵𝑢,𝑖𝑢𝑟,𝑖 + 𝐵𝑣,𝑖𝑣𝑟,𝑖

𝑢𝑚𝑖𝑛,𝑖 ≤ 𝑢𝑟,𝑖 ≤ 𝑢𝑚𝑎𝑥,𝑖

 

This problem can also be written as: 

min
𝑢𝑟,𝑖

𝑢𝑟,𝑖
𝑇 [𝑀𝑠,𝑖

𝑇 𝑄𝑟,𝑖𝑀𝑠,𝑖]𝑢𝑟,𝑖 + 2𝑢𝑟,𝑖
𝑇 [𝑀𝑠,𝑖

𝑇 𝑄𝑟,𝑖𝑁𝑠,𝑖𝑣𝑟,𝑖 −𝑀𝑠,𝑖
𝑇 𝑄𝑟,𝑖𝑟𝑖] 

subject to: 

𝑢𝑚𝑖𝑛,𝑖 ≤ 𝑢𝑟,𝑖 ≤ 𝑢𝑚𝑎𝑥,𝑖 

where 

𝑀𝑠,𝑖 = 𝐶𝑦,𝑖(𝐼 − 𝐴𝑖)
−1𝐵𝑢,𝑖,   𝑁𝑠,𝑖 = 𝐶𝑦,𝑖(𝐼 − 𝐴𝑖)

−1𝐵𝑣,𝑖 

While the following algorithm calculates the distributed reachable references: 

 

Algorithm 4.1: Distributed Reachable Reference Calculation 

Input: Number of iterations ℕ𝑖and set: 𝑣𝑟,𝑖 = 0. 

Start the Iterations: For j = 1 to ℕ𝑖:  

Step 1: Exchange current information with local agents:  𝑉𝑟(𝑗 + 1) = Γ𝑠Z𝒓(𝑗) 

Step 2: Solve the following optimization problem: 

min
𝑢𝑟,𝑖

𝑢𝑟,𝑖
𝑇 [𝑀𝑦,𝑖

𝑇 𝑄𝑟,𝑖𝑀𝑦,𝑖]𝑢𝑟,𝑖 + 2𝑢𝑟,𝑖
𝑇 [𝑀𝑦,𝑖

𝑇 𝑄𝑟,𝑖𝑁𝑦,𝑖𝑣𝑟,𝑖 −𝑀𝑦,𝑖
𝑇 𝑄𝑟,𝑖𝑟𝑖] 

subject to:           

[
𝐼𝑟𝑢,𝑖
−𝐼𝑟𝑢,𝑖

] 𝑢𝑟,𝑖 ≤ {
𝑢𝑚𝑎𝑥,𝑖
𝑢𝑚𝑖𝑛,𝑖

} 

  assign the solution as 𝑢𝑟,𝑖(𝑗 + 1), and compute: 𝑥𝑟,𝑖 = (𝐼𝑛𝑖 − 𝐴𝑖)
−1
[𝐵𝑢,𝑖𝑢𝑟,𝑖 + 𝐵𝑢,𝑖𝑣𝑟,𝑖]. 

Step 3: Update local output disturbance prediction: 
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𝑧𝑟,𝑖(𝑗 + 1) = [𝐶𝑧,𝑖(𝐼 − 𝐴𝑖)
−1𝐵𝑢,𝑖 + 𝐷𝑧,𝑖]𝑢𝑟,𝑖(𝑗 + 1) + [𝐶𝑧,𝑖(𝐼 − 𝐴𝑖)

−1𝐵𝑣,𝑖]𝑣𝑟,𝑖(𝑗) 

Next j 

where Γ𝑠 is the interconnecting matrix for 𝑁𝑝 = 1, and 

𝑉𝑟(𝑗) = [𝑣𝑟,1
𝑇 (𝑗) 𝑣𝑟,2

𝑇 (𝑗) ⋯ 𝑣𝑟,𝑖
𝑇 (𝑗)]

𝑇
 

𝑍𝑟(𝑗) = [𝑧𝑟,1
𝑇 (𝑗) 𝑧𝑟,2

𝑇 (𝑗) ⋯ 𝑧𝑟,𝑖
𝑇 (𝑗)]

𝑇
 

    For non-reachable reference problems, we can simply replace the optimization 

problem in step 2 by (which is the distributed version of problem (4.16)):   

min
𝑥𝑟,𝑖,𝑢𝑟,𝑖

𝑢𝑟,𝑖
𝑇 𝑄𝑟,𝑖𝑢𝑟,𝑖 

subject to: 

[
𝐴𝑖 − 𝐼𝑖 𝐵𝑢,𝑖
𝐶𝑖 0

] {
𝑥𝑟,𝑖
𝑢𝑟,𝑖
} = [

−𝐵𝑢,𝑖𝑣𝑟,𝑖
𝑟𝑖

]

𝑢𝑚𝑖𝑛,𝑖 ≤ 𝑢𝑟,𝑖 ≤ 𝑢𝑚𝑎𝑥,𝑖

 

Figure 4.9 shows the application of Algorithm 4.1 versus a centralized solution for 

computing reachable references with the provided interconnected subsystems example.     

    The convergence of Algorithm 4.1 can be proven following the same method used 

with the main algorithm presented in chapter II (Algorithm 2.1). 
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Figure 4.9: Application of Algorithm 4.1 with the coupled subsystems example 

(b) Steady-state control actions convergence 

convergence  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

(a) Steady-state states convergence  
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4.4.2 Design of the Stabilizing Local Terminal Weights 

    As we simply can use standard state regulating MPC solutions with the reference 

tracking problems, we will focus on the state regulation MPC problem to formulate the 

terminal stabilizing cost synthesis for the stability of the suboptimal LC-DMPC 

algorithm.   

    First let us consider the following unconstrained state regulator MPC problem:   

𝑉∗(𝑥) = min𝑢 𝑉𝑓 (𝑥(𝑘 + 𝑁𝑝)) + ∑ 𝑙(𝑥(𝑘 + 𝑖), 𝑢(𝑘 + 𝑖))
𝑁𝑝−1

𝑖=0
  

subject to: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

        𝑥(0) = 𝑥0
 

Here both the stage cost 𝑙(𝑥, 𝑢) and the terminal cost 𝑉𝑓(𝑥) are assumed to be convex 

functions. Let 𝑈∗(𝑥) be the optimal control trajectory that is the result of solving the 

problem, and let 𝑢∗(𝑥) be the first element of the sequence 𝑈∗(𝑥) that will be applied to 

the dynamical system. Then according to the receding horizon fashion we have: 

                                            𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢∗(𝑥)                                         (4.17) 

As sufficient conditions for stability of (4.17), is to have a terminal control law 𝑢𝑓(𝑥) 

and 𝜅∞ functions 𝛼1, 𝛼2, and 𝛼3 [92] such that:  

𝛼1(‖𝑥‖) ≤ 𝑉𝑓(𝑥) ≤ 𝛼2(‖𝑥‖) 

𝑉𝑓(𝐴𝑥(𝑘) + 𝐵𝑢𝑓(𝑥(𝑘))) − 𝑉𝑓(𝑥(𝑘)) ≤ −𝛼3(‖𝑥(𝑘)‖) 

In other words,  𝑉𝑓(𝑥(𝑘)) is a Lyapunov function for the closed-loop dynamic given by: 

                                          𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑓(𝑥(𝑘))                                     (4.18) 
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For a distributed subproblem in the LC-DMPC algorithm we have the following local 

problem:   

𝐽𝑖 = min
𝑢𝑖
{𝑉𝑓,𝑖(𝑥𝑖, 𝑥𝑟,𝑖, 𝑁𝑝) + ∑ (𝑥𝑖(𝑘 + 𝑗) − 𝑥𝑟,𝑖)

𝑇
𝑞𝑖(𝑥𝑖(𝑘 + 𝑗) − 𝑥𝑟,𝑖)

𝑁𝑝−1

𝑗=1
+  

∑ [(𝑢𝑖(𝑘 + 𝑗) − 𝑢𝑟,𝑖)
𝑇
𝑠𝑖(𝑢𝑖(𝑘 + 𝑗) − 𝑢𝑟,𝑖) + 𝛼𝑖𝜓𝑖

𝑇(𝑘 + 𝑗)𝑧𝑖(𝑘 + 𝑗)]
𝑁𝑝−1

𝑗=0
}  

subject to: 

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘) + 𝐵𝑣,𝑖𝑣𝑖(𝑘)

        𝑦𝑖(𝑘) = 𝐶𝑦,𝑖𝑥𝑖(𝑘)

        𝑧𝑖(𝑘) = 𝐶𝑧,𝑖𝑥𝑖(𝑘) + 𝐷𝑧,𝑖𝑢𝑖(𝑘)

 

where we assumed that: 

𝑉𝑓,𝑖(𝑥𝑖 , 𝑥𝑟,𝑖) = (𝑥𝑖(𝑘 + 𝑁𝑝) − 𝑥𝑟,𝑖)
𝑇
𝑃𝑖(𝑥𝑖(𝑘 + 𝑁𝑝) − 𝑥𝑟,𝑖) 

We can write this problem in a more compact formula as: 

𝐽𝑖 = (X𝑖 − X𝑟,𝑖)
𝑇
𝑄𝑖(X𝑖 − X𝑟,𝑖) + (U𝑖 − U𝑟,𝑖)

𝑇
𝑆𝑖(U𝑖 − U𝑟,𝑖) + 𝛼𝑖Ψ𝑖

𝑇Z𝑖 

subject to: 

X𝑖 = 𝐹𝑥,𝑖𝑥𝑖(𝑘) + 𝑀𝑥,𝑖U𝑖 + 𝑁𝑥,𝑖V𝑖
Z𝑖 = 𝐹𝑧,𝑖𝑥𝑖(𝑘) + 𝑀𝑧,𝑖U𝑖 + 𝑁𝑧,𝑖V𝑖

 

where 

𝑋𝑟,𝑖 = [𝑥𝑟,𝑖
𝑇 (𝑘 + 1) ⋯ 𝑥𝑟,𝑖

𝑇 (𝑘 + 𝑁𝑝)], 

 𝑈𝑟,𝑖 = [𝑢𝑟,𝑖
𝑇 (𝑘) ⋯ 𝑢𝑟,𝑖

𝑇 (𝑘 + 𝑁𝑝 − 1)] 

𝑄𝑖 = [
𝑞𝑖 0 0
0 ⋱ 0
0 0 𝑃𝑖

] 

while other quantities are defined as in chapter II. 

The new references 𝑥𝑟,𝑖 & 𝑢𝑟,𝑖 are the solution of Algorithm 4.1. 
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At this point we can state the following theorem that proves the stability of the local 

closed-loop stability with locally designed stabilizing terminal costs.  

Theorem IV: If there exists functions 𝑉𝑓,𝑖(𝑥𝑖), ℑ𝑖(𝜓𝑖), 𝑢𝑓,𝑖(𝑥ℵ,𝑖) and 𝑙𝑖(𝑥ℵ,𝑖, 𝑢𝑓,𝑖(𝑥ℵ,𝑖)) as 

well as 𝛼1,𝑖, 𝛼2,𝑖 and 𝛼3,𝑖 ∈ 𝜅∞ such that for 𝑖 = 1,2,⋯ , 𝑝: 

𝛼1,𝑖(‖𝑥𝑖‖) ≤ 𝑉𝑓,𝑖(𝑥𝑖) ≤ 𝛼2,𝑖(‖𝑥𝑖‖) 

𝛼3,𝑖(‖𝑥ℵ,𝑖‖) ≤ 𝑙𝑖(𝑥ℵ,𝑖, 𝑢𝑓,𝑖(𝑥ℵ,𝑖)) 

𝑉𝑓,𝑖(𝑥𝑖(𝑘 + 1)) − 𝑉𝑓,𝑖(𝑥𝑖(𝑘)) ≤ −𝑙𝑖 (𝑥ℵ,𝑖, 𝑢𝑓,𝑖(𝑥ℵ,𝑖)) + ℑ𝑖(𝜓𝑖) 

Then the function 𝑉𝑓,𝑖(𝑥𝑖),  is a Lyapunov function for the local distributed system under 

the control law 𝑢𝑓,𝑖(𝑥ℵ,𝑖), where 𝑥ℵ,𝑖 denotes the ordered set of neighbors’ states of 

subsystem 𝑖 including the state of 𝑖. 

Proof: 

Before staring the proof, the following notes have been considered according to [47]: 

 The following are defined as: the local feedback control law 𝑢𝑓,𝑖(𝑥ℵ,𝑖) = 𝐾ℵ,𝑖𝑥ℵ,𝑖, the 

stage function 𝑥ℵ,𝑖
𝑇 𝑞ℵ,𝑖𝑥ℵ,𝑖 + 𝑢𝑖

𝑇𝑠𝑖𝑢𝑖 + 𝛼𝑖𝜓𝑖
𝑇𝑧𝑖, 𝑞ℵ,𝑖 ∈ ℜ

𝑛ℵ,𝑖 and the terminal cost 

𝑉𝑓,𝑖(𝑥𝑖) = 𝑥𝑖
𝑇𝑃𝑖𝑥𝑖. 

 For each subsystem let: ℧𝑖 ∈ [0,1]
𝑛𝑖×𝑛 and 𝜁𝑖 ∈ [0,1]

𝑛ℵ,𝑖×𝑛 be two mapping matrices 

such that:  𝑥𝑖 = ℧𝑖𝑥,   𝑥ℵ,𝑖 = 𝜁𝑖𝑥  and consequently one can write: 𝑥𝑖 = ℧𝑖𝜁𝑖
𝑇𝑥ℵ,𝑖. 

 The coupling between two neighbor subsystems now can be defined as: 

𝑣𝑖 = 𝑧𝑖 = 𝐶𝑧,𝑖−1𝑥𝑖−1 + 𝐷𝑧,𝑖−1𝑢𝑖−1 = [𝐶𝑧,𝑖−1 + 𝐷𝑧,𝑖−1𝐾ℵ,𝑖−1𝜁𝑖−1℧𝑖−1
𝑇 ]𝑥𝑖−1 

 With above definitions, the local subsystem dynamic would be given as: 
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𝑥𝑖(𝑘 + 1) = 𝐴ℵ,𝑖𝑥ℵ,𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘)

        𝑦𝑖(𝑘) = 𝐶𝑦,𝑖𝑥𝑖(𝑘)

        𝑧𝑖(𝑘) = 𝐶𝑧,𝑖𝑥𝑖(𝑘) + 𝐷𝑧,𝑖𝑢𝑖(𝑘)

 

where   

𝐴ℵ,𝑖 = [𝐴𝑖 𝐵𝑣,𝑖(𝐶𝑧,𝑖−1 + 𝐷𝑧,𝑖−1𝐾ℵ,𝑖−1𝜁𝑖−1℧𝑖−1
𝑇 )] 

𝑥ℵ,𝑖 = {
𝑥𝑖
𝑥𝑖−1

} 

Now the last condition from theorem IV can be formulated as a set of the following 

inequalities for 𝑖 = 1,2,⋯ , 𝑝: 

[𝐴ℵ,𝑖𝑥ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖𝑥ℵ,𝑖]
𝑇
𝑃𝑖[𝐴ℵ,𝑖𝑥ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖𝑥ℵ,𝑖] − 𝑥ℵ,𝑖

𝑇 𝜁𝑖℧𝑖
𝑇𝑃𝑖℧𝑖𝜁𝑖

𝑇𝑥ℵ,𝑖 ≤ 

−[𝑥ℵ,𝑖
𝑇 𝑞ℵ,𝑖𝑥ℵ,𝑖 + 𝑥ℵ,𝑖

𝑇 𝐾ℵ,𝑖
𝑇 𝑠𝑖𝐾ℵ,𝑖𝑥ℵ,𝑖 + 𝛼𝑖𝜓𝑖

𝑇(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇𝑥ℵ,𝑖 + 𝐷𝑧,𝑖𝑢𝑖𝐾ℵ,𝑖𝑥ℵ,𝑖)] + ℑ𝑖(𝜓𝑖) 

which also can be written as: 

𝑥ℵ,𝑖
𝑇 ([𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖]

𝑇
𝑃𝑖[𝐴𝑁,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖] + 𝑞ℵ,𝑖 + 𝐾ℵ,𝑖

𝑇 𝑠𝑖𝐾ℵ,𝑖 − �̅�𝑖) 𝑥ℵ,𝑖 + 

𝛼𝑖𝜓𝑖
𝑇(𝐶𝑧,𝑖℧𝑖𝜁𝑖

𝑇 +𝐷𝑧,𝑖𝑢𝑖𝐾ℵ,𝑖)𝑥ℵ,𝑖 − ℑ𝑖(𝜓𝑖) ≤ 0 

where: �̅�𝑖 = 𝜁𝑖℧𝑖
𝑇𝑃𝑖℧𝑖𝜁𝑖

𝑇 

Let us write this inequality in a different form as: 

                                                       Ξ𝑖(𝑥ℵ,𝑖, 𝜓𝑖) − ℑ𝑖(𝜓𝑖) ≤ 0                                    (4.19) 

where 

Ξ𝑖(𝑥ℵ,𝑖, 𝜓𝑖) = 𝑥ℵ,𝑖
𝑇 ([𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖]

𝑇
𝑃𝑖[𝐴𝑁,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖] + 𝑞ℵ,𝑖 + 𝐾ℵ,𝑖

𝑇 𝑠𝑖𝐾ℵ,𝑖 − �̅�𝑖) 𝑥ℵ,𝑖 + 

𝛼𝑖𝑥ℵ,𝑖
𝑇 (𝐶𝑧,𝑖℧𝑖𝜁𝑖

𝑇 + 𝐷𝑧,𝑖𝑢𝑖𝐾ℵ,𝑖)
𝑇
𝜓𝑖 

We cannot solve inequality (4.19) as 𝑥ℵ,𝑖 appears in a non-quadratic form. Therefore, we 

have used a simple technique that has been imposed in [93] for stabilizing discrete-time 
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linear systems with unknown disturbances. The idea is that since inequality (4.19) must 

be satisfied for all 𝑥ℵ,𝑖, it also has to hold for the maximum value of Ξ𝑖(𝑥ℵ,𝑖, 𝜓𝑖) for any 

value of 𝜓𝑖. In order for Ξ𝑖(𝑥ℵ,𝑖, 𝜓𝑖) to have a maximum value at 𝜓𝑖, we assume that: 

𝑅𝑖 = [𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖]
𝑇
𝑃𝑖[𝐴𝑁,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖] + 𝑞ℵ,𝑖 + 𝐾ℵ,𝑖

𝑇 𝑠𝑖𝐾ℵ,𝑖 − �̅�𝑖 < 0 

(which is guaranteed to be satisfied in the final result). This implies that Ξ𝑖(𝑥ℵ,𝑖, 𝜓𝑖) is a 

concave function of 𝑥ℵ,𝑖 with a maximum that can be computed as: 

𝜕 

𝜕𝑥ℵ,𝑖
Ξ𝑖(𝑥ℵ,𝑖, 𝜓𝑖) = 0 

where the maximum point is: 

𝑥ℵ,𝑖
∗ (𝜓𝑖) = −0.5𝛼𝑖𝑅𝑖

−1(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

𝑇
𝜓𝑖 

Then the maximum value of the function Ξ𝑖(𝑥ℵ,𝑖, 𝜓𝑖) would be: 

Ξ𝑖(𝑥ℵ,𝑖
∗ , 𝜓𝑖) = −0.25𝛼𝑖

2𝜓𝑖
𝑇(𝐶𝑧,𝑖℧𝑖𝜁𝑖

𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)𝑅𝑖
−1(𝐶𝑧,𝑖℧𝑖𝜁𝑖

𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)
𝑇
𝜓𝑖 

Then (4.19) becomes: 

                                                      Ξ𝑖(𝑥ℵ,𝑖
∗ , 𝜓𝑖) − ℑ𝑖(𝜓𝑖) ≤ 0                                     (4.20) 

We need now to solve inequality (4.20) for the stabilizing terminal costs, therefore let us 

assume that: 

ℑ𝑖(𝜓𝑖) = 𝜓𝑖(𝑘)
𝑇Φ𝑖𝜓𝑖(𝑘),    Φ𝑖 = 𝜑𝑖𝐼  

for some unknown scalar 𝜑𝑖 ≥ 0. Then (4.20) will be an inequality with 𝜓𝑖 appears in a 

quadratic form that can be written as: 

𝜓𝑖
𝑇 [Φ𝛿𝑖 + 0.25(𝐶𝑧,𝑖℧𝑖𝜁𝑖

𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)𝑅𝑖
−1(𝐶𝑧,𝑖℧𝑖𝜁𝑖

𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)
𝑇
] 𝜓𝑖 ≥ 0 

where 
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Φ𝛿𝑖 =
Φ𝑖
𝛼𝑖2

=
𝜑𝑖
𝛼𝑖2

𝐼 

Considering the definition of 𝑅𝑖 and applying Schur complement, the above inequality is 

equivalent to: 

[
Φ𝛿𝑖

(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

𝑇 

(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

−4 ([𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖]
𝑇
𝑃𝑖[𝐴𝑁,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖] + 𝑞ℵ,𝑖 + 𝐾ℵ,𝑖

𝑇 𝑠𝑖𝐾ℵ,𝑖 − �̅�𝑖)
] ≥ 0 

which also can be reformatted as: 

[
Φ𝛿𝑖 (𝐶𝑧,𝑖℧𝑖𝜁𝑖

𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

𝑇
4(�̅�𝑖 − 𝑞ℵ,𝑖 − 𝐾ℵ,𝑖

𝑇 𝑠𝑖𝐾ℵ,𝑖)
] − 

[
0

2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖)
𝑇] 𝑃𝑖[0 2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖)] ≥ 0 

Applying Schur complement a second time:   

[
 
 
 

Φ𝛿𝑖 (𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖) 0

(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

𝑇
4(�̅�𝑖 − 𝑞ℵ,𝑖 − 𝐾ℵ,𝑖

𝑇 𝑠𝑖𝐾ℵ,𝑖) 2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖)
𝑇

0 2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖) 𝑃𝑖
−1

]
 
 
 
≥ 0 

Once again this inequality can be written as: 

[
 
 
 

Φ𝛿𝑖 (𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖) 0

(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

𝑇
4�̅�𝑖 2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖)

𝑇

0 2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖) 𝑃𝑖
−1

]
 
 
 
− 

[2
0 0

𝑞ℵ,𝑖
1 2⁄ 2𝐾ℵ,𝑖

𝑇 𝑠𝑖
1 2⁄

0 0

] [
𝐼 0
0 𝐼

] [
0 2𝑞ℵ,𝑖

1 2⁄ 0

0 2𝑠𝑖
1 2⁄ 𝐾ℵ,𝑖 0

] ≥ 0 

Through Schur complement, the final LIM inequality is given by: 
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[
 
 
 
 
 
 

Φ𝛿𝑖 (𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖) 0

(𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇 + 𝐷𝑧,𝑖𝐾𝑥ℵ,𝑖)

𝑇
4�̅�𝑖 2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖)

𝑇

0 2(𝐴ℵ,𝑖 + 𝐵𝑢,𝑖𝐾ℵ,𝑖) 𝑃𝑖
−1

0 2𝑞ℵ,𝑖
1 2⁄ 0

0 2𝑠𝑖
1 2⁄ 𝐾ℵ,𝑖 0

 

0 0

2𝑞ℵ,𝑖
1 2⁄ 2𝐾ℵ,𝑖

𝑇 𝑠𝑖
1 2⁄

0 0
𝐼 0
0 𝐼 ]

 
 
 
 

≥ 0 

To finalize the proof, let us define the following: ℇ𝑖 = 𝑃𝑖
−1 and ℇ = 𝑑𝑖𝑎𝑔(ℇ1 ⋯ ℇ𝑝),  

which give: ℇ̅𝑖 = 𝜁𝑖℧𝑖
𝑇𝑃𝑖

−1℧𝑖𝜁𝑖
𝑇,  and  ℇℵ,𝑖 = 𝜁𝑖ℇ𝜁𝑖

𝑇. Also let ℷℵ,𝑖 = 𝐾ℵ,𝑖ℇℵ,𝑖, then by pre- 

and post-multiplying the last LMI by 𝑑𝑖𝑎𝑔(𝐼, ℇℵ,𝑖, 𝐼, 𝐼, 𝐼), and applying the change of 

variables, the final result would be: 

[
 
 
 
 
 

Φ𝛿𝑖 𝐶𝑧,𝑖℧𝑖𝜁𝑖
𝑇ℇℵ,𝑖 + 𝐷𝑧,𝑖ℷℵ,𝑖 0

ℇℵ,𝑖𝜁𝑖℧𝑖
𝑇𝐶𝑧,𝑖

𝑇 + ℷℵ,𝑖
𝑇 𝐷𝑧,𝑖

𝑇 4ℇ̅𝑖 2ℇℵ,𝑖𝐴ℵ,𝑖
𝑇 + 2ℷℵ,𝑖

𝑇 𝐵𝑢,𝑖
𝑇

0 2𝐴ℵ,𝑖ℇℵ,𝑖 + 2𝐵𝑢,𝑖ℷℵ,𝑖 ℇ𝑖

0 2𝑞ℵ,𝑖
1 2⁄ ℇℵ,𝑖 0

0 2𝑠𝑖
1 2⁄ ℷℵ,𝑖 0

 

0 0

2ℇℵ,𝑖𝑞ℵ,𝑖
1 2⁄ 2ℷℵ,𝑖

𝑇 𝑠𝑖
1 2⁄

0 0
𝐼 0
0 𝐼 ]

 
 
 
 

≥ 0    (4.21) 

This ends the proof and the final LMI has the following variables: Φ𝛿𝑖 , ℇ𝑖, ℇ̅𝑖 , and ℇℵ,𝑖. 

    Each LC-DMPC agent needs to solve LMI (4.21) locally and off-line and for that it 

needs the dynamic of couplings. Now each subsystem needs to share the coupling 

matrices 𝐶𝑧,𝑖 and 𝐷𝑧,𝑖  as well as the matrices of ℧𝑖 and 𝜁𝑖 with the local neighbors. If a 
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subsystem has a coupling through the control action with upstream subsystems, it also 

needs to know the control gain 𝐾ℵ,𝑖−1. Sharing of such information is limited as only 

coupled systems need to exchange information. Any changes in local dynamics, cost 

functions, or constraints do not require updating the neighbors as long as the coupling 

dynamics are not changed.  

    For subsystems with coupling in control actions as well as in states the LMI (4.21) has 

to be solved twice, first assuming coupling in state only (as 𝐾ℵ,𝑖−1 is unknown), and 

second time when 𝐾ℵ,𝑖−1 is available for exchange.  To explain more, in the 

interconnected subsystems example, subsystem 1 for instance has two disturbances: 

𝑣1,2 = 𝑦2,1 the output from subsystem 2, and 𝑣1,3 = 𝑢3 the control action of subsystem 

3. Therefore: 

[

𝑥1
𝑥2
𝑥3
] = ℧1𝑥 = [𝐼3 03×4]

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7]
 
 
 
 
 

 

where states of subsystems 1, 2, and 3 are: [𝑥1 𝑥2 𝑥3]𝑇 , [𝑥4 𝑥5]𝑇 , and [𝑥6 𝑥7]𝑇 , 

respectively. To compute the LMI in (4.21), first we assume coupling in states only (i.e. 

𝑣1 = 𝑣1,2 = 𝑦2 = 𝐶𝑧,2𝑥2) thus: 

𝑥ℵ,1 =

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

= 𝜁1𝑥 = [𝐼5 05×2]

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7]
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Following the same procedure for subsystems 2 and 3 (in 3 there are only couplings in 

states) we will have the following: 

[
𝑥4
𝑥5
] = ℧2𝑥 = [02×3 𝐼2 02×2]

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7]
 
 
 
 
 

, 𝑥ℵ,2 =

[
 
 
 
 
𝑥4
𝑥5
𝑥1
𝑥2
𝑥3]
 
 
 
 

= 𝜁2𝑥 = [
03×2 𝐼2 02×2
𝐼3 03×2 02×2

]

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7]
 
 
 
 
 

, 

[
𝑥6
𝑥7
] = ℧3𝑥 = [02×5 𝐼2]

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7]
 
 
 
 
 

, and  𝑥ℵ,3 =

[
 
 
 
 
 
𝑥6
𝑥7
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 
 

= 𝜁3𝑥 = [
02×5 𝐼2
𝐼5 05×2

]

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7]
 
 
 
 
 

. 

After solving the LMI problem in (4.21), 𝐾ℵ,𝑖, 𝑖 = 1,2,3  will be available then 

subsystems 1 and 2 need to share 𝐾ℵ,1 and 𝐾ℵ,2 and subsystem 1 has to update the matrix 

of 𝜁1 as states of subsystem 3 will affect it through 𝑣1,3 = 𝑢3 = 𝐾ℵ,3𝜁3℧3
𝑇 [
𝑥6
𝑥7
], therefore 

𝜁1 = 𝜁𝑢,1 = 𝐼7.   Subsystem 2 needs only to know 𝐾ℵ,1 as the only states that are 

disturbing it are those of subsystem 1 which are already appearing in the disturbance 

𝑦1,1. Finally, subsystem 3 is not updating any information since it is not being affected 

on by any control action.  Now subsystems 1 and 2 will need to solve the LIM problem 

one more time to consider the effects in control actions. 

    This procedure is summarized as following: 
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For coupling in states only: 

Subsystem 1: 

 𝑣1 = [
𝑣1,2
𝑣1,3

] = [
𝑧2,1
𝑧3,1

] = [
𝑦2,1
𝑢3
] = [

𝑦2,1
0
] = [

𝐶𝑧,2 0

0 0
] [

𝑥4
𝑥5
𝑥6
𝑥7

] 

𝐴ℵ,1 = [𝐴1 𝐵𝑣,1𝐶𝑧,2]

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

 

Subsystem 2: 

𝑣2 = 𝑧1,2 = [
𝑦1,2
𝑢1,2

] = [
𝑦1,2
0
] = [

𝐶𝑧,1
0
] [
𝑥1
𝑥2
𝑥3
] 

𝐴ℵ,2 = [𝐴2 𝐵𝑣,2𝐶𝑧,1]

[
 
 
 
 
𝑥4
𝑥5
𝑥1
𝑥2
𝑥3]
 
 
 
 

 

Subsystem 3: 

𝑣3 = [
𝑣3,1
𝑣3,2

] = [
𝑧1,3
𝑧2,3

] = [
𝑦1,3
𝑦2,3

] = [
𝐶𝑧,1 0

0 𝐶𝑧,2
]

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

 

𝐴ℵ,3 = [𝐴3 𝐵𝑣,3 (
𝐶𝑧,1 0

0 𝐶𝑧,2
)]

[
 
 
 
 
 
 
𝑥6
𝑥7
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
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For coupling in states and control actions:  

Subsystem 1: 

 𝑣1 = [
𝑣1,2
𝑣1,3

] = [
𝑧2,1
𝑧3,1

] = [
𝑦2,1
𝑢3
] = [

𝐶𝑧,2 0

0 𝐷z,3𝐾ℵ,3𝜁3℧3
𝑇] [

𝑥4
𝑥5
𝑥6
𝑥7

] 

𝐴ℵ,1 = [𝐴1 𝐵𝑣,1 (
𝐶𝑧,2 0

0 𝐷z,3𝐾ℵ,3𝜁3℧3
𝑇)]

[
 
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7]
 
 
 
 
 
 

 

and for solving the LMI (4.21) for second time: 𝜁1 = 𝜁𝑢,1 = 𝐼7  

Subsystem 2: 

𝑣2 = 𝑧1,2 = [
𝑦1,2
𝑢1,2

] = [𝐶𝑧,1 + 𝐷z,1𝐾ℵ,1𝜁1℧1
𝑇] [
𝑥1
𝑥2
𝑥3
] 

𝐴ℵ,2 = [𝐴2 𝐵𝑣,2(𝐶𝑧,1 + 𝐷z,1𝐾ℵ,1𝜁1℧1
𝑇)]

[
 
 
 
 
𝑥4
𝑥5
𝑥1
𝑥2
𝑥3]
 
 
 
 

 

While subsystem 3 will have the same matrices and structures as it does not have to 

solve the LMI problem (4.21) twice. 

 

4.5 The Suboptimal LC-DMPC Algorithm 

Based on the theorems and definitions that have been presented throughout this 

chapter, the following suboptimal LC-DMPC algorithm is stated. It has two subsection 

calculations: The off-line calculations where the local terminal stabilizing costs and 
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converging parameters are computed, and on-line calculations which is the real 

application of the algorithm. For constant (step function) references, Algorithm 4.1 can 

also be added to the off-line calculations. For dynamic references, however, Algorithm 

4.1 should be integrated in the on-line calculation part.   

 

Algorithm 4.2: Suboptimal Unconstrained LC-DMPC Algorithm 

Off-line Mode: Reachable references, terminal stabilizing costs, and network and local 

dissipativity. 

For Reachable References: Run Algorithm 4.1.  

For Terminal Costs and Network dissipativity: Do the following:  

Input: Local values of 𝑞𝑖, 𝑠𝑖, 𝛼𝑖, 𝜇𝑖, 𝑘𝑖, 𝜁𝑖  and ℧𝑖 

Step 1:  Share the coupling matrix dynamics:  𝐶𝑧,𝑖 and 𝐷𝑧,𝑖 with neighbors.  

Step 2:  Compute the LMI given in (4.21), assuming coupling in states only, i.e. 

𝐴ℵ,𝑖 = [𝐴𝑖 𝐵𝑣,𝑖𝑑𝑖𝑎𝑔(𝐶𝑧,1 ⋯ 𝐶𝑧,𝑝)] 

Step 3: For subsystems with coupling in control actions, update 𝜁𝑖, if necessary, and 

share the initial computed 𝐾ℵ,𝑖. Re-compute the LMI problem in (4.21) with 

updated coupling dynamics:  

𝐴ℵ,𝑖 = [𝐴𝑖 𝐵𝑣,𝑖𝑑𝑖𝑎𝑔(𝐶𝑧,1+𝐷𝑧,1𝐾ℵ,1𝜁1℧1
𝑇 ⋯ 𝐶𝑧,𝑝+𝐷𝑧,𝑝𝐾ℵ,𝑝𝜁𝑝℧𝑝

𝑇)] 

Step 5: Check the network dissipativity through Theorem III for given local finite gains, 

or solve the optimization problem (4.14) and distribute the results.  

Step 4: Check the dissipativity of the local information dynamics by solving for �̂�𝑖 from 

the LMI problem (4.11). If not dissipative, change local values of 𝛼𝑖 and/or 𝜇𝑖. 
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Step 6: If local information dynamics is not dissipative with given dissipativity matrices, 

change the dissipativity matrices or cost weighting matrices and go to step 2.   

On-line Mode: Real time implementation of the suboptimal LC-DMPC algorithm. 

Input: Number of iterations ℕ𝑖, initial values for states 𝑥0,𝑖 and error covariance ℌ𝑖 and 

from the off-line mode get: 𝑞𝑖, 𝑠𝑖, 𝛼𝑖, and 𝜇𝑖 . 

Set: initial values for 𝑉𝑖 = 0, 𝑈𝑖 = 0, 𝛹𝑖 = 0 or take previous values.  

Start of iteration: For j = 1 to ℕ𝑖 Do:  

Step 1: Exchange current information with local agents: 

𝚿(𝑗 + 1) = [𝛹1(𝑗 + 1),⋯ ,𝛹𝑓(𝑗 + 1)]
𝑇
= 𝚪𝑇[𝛾1(𝑗),⋯ , 𝛾𝑓(𝑗)]

𝑇
= 𝚪𝑇𝛄(𝑗) 

                 𝐕(𝑗 + 1) = [𝑉1(𝑗 + 1),⋯ , 𝑉𝑓(𝑗 + 1)]
𝑇
= 𝚪[𝑍1(𝑗),⋯ , 𝑍𝑓(𝑗)]

𝑻
= 𝚪𝐙(𝑗) 

Step 2: Set: 

U𝑖
𝑄𝑃 = −X𝑖[𝑀𝑥,𝑖

𝑇 𝑄𝑖𝐹𝑥,𝑖𝑥0,𝑖 +𝑀𝑥,𝑖
𝑇 𝑄𝑖𝑁𝑥,𝑖V𝑖(𝑗) + 0.5𝛼𝑖𝑀𝑧,𝑖

𝑇 Ψ𝑖(𝑗) − 𝑀𝑥,𝑖
𝑇 𝑄𝑖X𝑟,𝑖 − 𝑆𝑖U𝑟,𝑖] 

with X𝑖 = [𝑀𝑥,𝑖
𝑇 𝑄𝑖𝑀𝑥,𝑖 + 𝑆𝑖]

−1
 

Step 3: For 𝛽𝑖 ∈ [0,1), set: 

U𝑖(𝑗 + 1) ← 𝛽𝑖𝑈𝑖(𝑗) + (1 − 𝛽𝑖)U𝑖
𝑄𝑃(𝑗) 

Step 4: Update local output disturbance: 

Z𝑖(𝑗 + 1) ← 𝐹𝑧,𝑖𝑥0,𝑖 +𝑀𝑧,𝑖U𝑖(𝑗 + 1) + 𝑁𝑧,𝑖V𝑖(𝑗) 

Step 5: Update local sensitivity for input disturbance: 

𝛾𝑖(𝑗 + 1) ← 𝜇𝑖(2𝑁𝑥,𝑖
𝑇 𝑄𝑖𝑁𝑥,𝑖V𝑖(𝑗) + 2𝑁𝑥,𝑖

𝑇 𝑄𝑖𝐹𝑥,𝑖𝑥0,𝑖 + 𝛼𝑖𝑁𝑧,𝑖
𝑇 Ψ𝑖(𝑗) + 

2𝑁𝑥,𝑖
𝑇 𝑄𝑖𝑀𝑥,𝑖U𝑖(𝑗 + 1) − 2𝑁𝑥,𝑖

𝑇 𝑄𝑖X𝑟,𝑖) 

Next j  
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End of iteration 

Output: First value of the computed control action U𝑖. (Inject this value into the local 

subsystem). 

Get: new measurements for 𝑦𝑖, 𝑢𝑖, and 𝑣𝑖 then estimate the state. 

Go to: Start of iteration.  

End of Algorithm 4.2 

Figure 4.10 shows the time response of the interconnected subsystems example with 

Algorithm 4.2 and parameter values given in table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.10: Time response of the interconnected subsystems example 
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4.6 Summary of the Chapter Statements 

Throughout this chapter many theories, definitions, and algorithms were stated for the 

suboptimal LC-DMPC approach. This section summarizes all of the introduced 

statements through three points: 

1- The suboptimality of the approach:  

In order to distribute the convergence condition over the local controllers, two design 

variables are defined for each distributed agent. The values of these design variables are 

selected such that the local information dynamics conduct a dissipative behavior along 

the iteration domain. Each subsystem will have a finite gain associated with the solution 

of the local dissipativity inequality. However, these designed values will make LC-

DMPC algorithm to operate in a suboptimal level compared with the systemwide 

performance. 

2- The dissipativity of the network (or the convergence of the algorithm): 

Using the theory of a dissipative system, the convergence of the suboptimal LC-

DMPC algorithm can be proven or achieved by the following methods: 

a) With the given finite gains for each subsystems in the network, Theorem III 

can be used using the network topology, 

b) The LMI problem given in (4.14) is solved first with the network topology 

information. Then the result is distributed throughout the local agents. Each 

subsystem now can calculate the values for the design local variables such that 

the local information dynamics are dissipative by the corresponding distributed 

gain, or 
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c) Each subsystem is dissipative in its local information dynamics with gain less 

than one (the local free variables are selected to realize such dissipativity). 

With the first two methods above, a centralized monitor is required but with less 

information (only local finite gains and network topology); however, last method can be 

implemented locally with local information only.     

3- The closed-loop stability: 

To design a stabilizable terminal cost for the distributed MPC, the LMI problem in 

(4.21) has to be solved locally by each agent. This requires the local agents to share the 

coupling dynamics with their neighbors. The introduced stabilizing problem is 

developed for state regulator MPC. The local problem with an LC-DMPC agent, 

however, is a reference tracking problem. Therefore, this last problem is shifted from the 

original in order for stander state regulation MPC techniques to be applied. Further work 

is introduced to compute reachable references that a local LC-DMPC agent can track 

without involving feasibility problems. Algorithm 4.1 is propped for computing 

reachable references locally where each agent shares its solution with downstream 

neighbors. This eliminates the need for a centralized monitor for the computation of 

reachable references.        

As a final step, Algorithm 4.2 is introduced with two modes of calculations. The off-

line mode involves the computations of reachable references, terminal stabilizing costs, 

and network convergence. And the on-line mode where the real time application of the 

suboptimal LC-DMPC approach is given.                     
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5. APPLICATION OF THE LC-DMPC ALGORITHM FOR BUILDING HVAC 

SYSTEMS 

 

    In chapter II the optimal LC-DMPC algorithm is presented for networks of linear 

discrete coupled subsystems. In this chapter the algorithm is applied to control an HVAC 

system in a building with ten temperature controlled zones and the details of applying 

the algorithm is introduced and discussed.  The chapter begins by presenting the 

software that is used to model the building zones and HVAC system and run and 

interface the algorithm. Then the LC-DMPC decomposition of the building HVAC 

system into a network of subsystems is introduced. The following section details the 

implemented local dynamic models, local economic cost functions, and distributed 

controller design. Finally the application of the LC-DMPC algorithm is demonstrated 

through a series of simulations.  

 

5.1 Modeling and Actual Control Structure of the Simulated Building 

5.1.1 Modeling of the Building Zones and HVAC System with EnergyPlus 

EnergyPlus (EP) is a software available from the U.S. Department of Energy [94] 

which allows the users to model a whole building with complete HVAC systems. It also 

analyzes the energy consumption and gives the opportunity to apply and investigate 

different control strategies for buildings with the help of interfacing programs.  The user 

can model the building with the fenestrations in 3-D using the freeware program 

SketchUp [95] as a first step. The SketchUp model and EP can be connected to each 
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other through the software suite OpenStudio [96] to simplify the setup of the building. 

EP is a simulation and evaluation media only and in order to create the local LC-DMPC 

controllers for the building zones and HVAC systems, Matlab is used. In Matlab, the 

distributed controllers compute the setpoints and exchange information and at the 

beginning of a sampling, they inject the setpoints into EP through an interfacing 

software program. The Building Controls Virtual Test Bed (BCVTB) software [97] 

(developed at the Lawrence Berkeley National Laboratory in Berkeley, CA) is used as 

the interfacing media.  However, this software is not user friendly as it does not provide 

an easy way for interfacing Matlab with EP, therefore, MLEP Matlab/Simulink [98] 

toolbox is sued as the main interfacing software. MLEP is an open source that is 

developed by University of Pennsylvania for users who are familiar with Matlab and 

Simulink.      

The building used in simulation is the Utilities Business Office (UBO) at Texas A&M 

University in College Station, Texas. The building has eleven rooms with a separate 

Variable Air Volume (VAV) box serving each room (in this work a zone refers to a 

room with the corresponding VAV box).  Figure 5.1 shows the SketchUp views. Real 

dimensions are used to draw and simulate the building HVAC control. All rooms are 

controlled with a PI controller except room 10 which is not controlled (a server room).    

With the HVAC System Templates capability in EP, a basic and quick HVAC system 

is modeled for the building. The HVAC system has two main components: The main Air 

Handling Unit (AHU) and distributed Variable Air Volume (VAV) boxes per each room.  
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The AHU has a variable speed fan and heat exchanger. The fan provides the VAV boxes 

with treated supply air and the total volume of the supplied air can be controlled through 

the speed of the main fan. The supply air (which is the return air from rooms with some 

ratio of outside air) is regulated to the desired temperature through the heat exchanger 

using recycling chilled water from the main cooling tower. The amount of cooling or 

heating that can be provided by the heat exchanger is controlled through regulations of a 

valve position.  Each zone has a VAV box, which adjusts the room temperature to a pre-

user defined set-point through a damper. Figure 5.2 shows a basic schematic of the zones 

and HVAC systems and control structures of the UBO building.  
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Figure 5.1: Views of the actual and simulation UBO building 

Actual view 

SketchUp side views 
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The UBO HVAC system components  

 

Figure 5.2: UBO HVAC components and control systems 

 

UBO HVAC control systems  
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5.1.2 Demand Calculations and HVAC Control Systems in the UBO Building 

In the real UBO building, at the AHU control structure, the following methods are 

used to calculate the demands for discharge air temperature and static pressure (𝑃𝐸𝐷𝑆) 

using the local zone demands. These demands are then used as set-points for the AHU 

lower level controllers.  

Discharge air temperature demand: 

    For each room, the cooling demand is calculated through a PI/PID control loop that is 

being fed with the difference between a user defined set-point and the actual room 

temperature as shown in Figure 5.3. Using all zone demands, the building level demand 

is then computed through the following equation:    

Discharge Air Demand = 0.6 ∙ average(cooling demand of zone𝑠) + 

                                    0.4 ∙ max(cooling demand across zone𝑠)                              (5.1)  

 

 

 

 

 

Static pressure (𝑃𝐸𝐷𝑆) demand: 

For the 𝑃𝐸𝐷𝑆 demand a similar equation is sued as (5.1) but with local damper position 

information: 

𝑃𝐸𝐷𝑆 Demand = 0.4 ∙ average(zones VAV damper position𝑠) + 

                                 0.6 ∙ max(damper position across zone VAV boxes)          (5.2) 

Figure 5.3: Local calculations of the cooling demand 
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    The differences between the results from (5.1) and (5.2) and predefined set-points are 

then fed to the control loop at the Air Handing Unit (AHU) level to regulate the fan 

speed and supply air temperature. Figures 5.4 and 5.5 show the actual architecture of the 

UBO building HVAC system control.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Local AHU controllers in the real UBO HVAC system 

 

Figure 5.5: Actual control architecture in the UBO HVAC system 
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5.2 Application of the LC-DMPC Algorithm with the UBO Building 

In this section we will explain how the subsystems are subdivided according to the 

LC-DMPC algorithm and show the local exchanged signals. Then the local cost 

functions as well as sensitivity calculations are detailed. Finally, the LC-DMPC 

distributed problems and algorithm are introduced. 

 

5.2.1 Partitions of Local Subsystems 

According to the upstream and downstream subsystem division followed in the LC-

DMPC algorithm, we can subdivide the UBO building and HVAC systems into the 

following subsystems: Each room with corresponding VAV box (i.e. a zone) represents 

a subsystem in total of nine zone subsystems (rooms 10 and 11 have no control). The 

AHU will only have a static optimizer as no dynamical models are used to represent the 

unit. This optimizer computes the optimal 𝑃𝐸𝐷𝑆 and discharge air temperature set-points 

for AHU local controllers.  Figure 5.6 shows the proposed subsystems.  

 

 

 

 

 

 

 

 
Figure 5.6: The LC-DMPC subsystems structure for the UBO building  
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5.2.1.1 Local Room Model, Control Structure, and Zone Subsystem 

The actual model of the lower level PI controllers, VAV box, and room is shown in 

Figure 5.7. There are two PI control loops. The first (or outer) loop produces a set-point 

for the inlet flow rate through the difference between the desired and actual room 

temperatures. This flow rate set-point is regulated against the supplied air flow through 

the second (or inner) PI control loop that adjusts the damper position inside the 

corresponding VAV box. The input disturbances to the room dynamics are the AHU 

discharge air temperature 𝑇𝐴𝐻𝑈, surrounding room temperatures, outside temperature 

𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒, and relative humidity 𝑅𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒. 

 

 

 

 

 

In this work, however, the dynamic between the “Inlet flow_sp” and “Supply flow” 

(i.e. the inner PI closed control loop) signals is assumed to be instant and perfect so that 

the “Inlet flow_sp” is equal to “Supply flow”. The identification algorithm proposed in 

[99] was used to identify the individual room dynamics with the following state-space 

representation: 

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘) + 𝐵𝑣,𝑖𝑣𝑖(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘) 

                                𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘)                                                                              

where 

Figure 5.7: The actual control structure of a zone inside the UBO building 
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𝑥𝑖 is the state of room i, 

𝑢𝑖 is the fraction of the inlet flow rate  

𝑣𝑖 is the measured disturbing neighbor temperatures,  and 

𝑑𝑖 is the unmeasured disturbances (outside temperature and relative humidity). 

However, this realization does not consider the discharge air temperature of the AHU 

as one of the inputs. This is because the control input (cooling load) to the room 

dynamics is the product of the inlet flow are and the AHU discharge air temperature. 

This gives a bilinear room dynamic which the identification algorithm cannot identify 

(the algorithm can give only linear modes for the rooms). For us to consider the effect of 

the AHU discharge air temperature in the rooms and to have linear models at the same 

time, the following modification for the identified models was implemented: 

Consider a simplified energy balance for a room under cooling demand as shown in 

Figure 5.8 where only the input and output heat energy are considered.  

        

 

 

 

 

 

 

The heat balance can be written as: 

𝑑

𝑑𝑡
(𝐶𝑝𝑇𝑟𝑜𝑜𝑚𝑚𝑎𝑖𝑟) = �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 = �̇�𝑖𝑛𝐶𝑝𝑇𝐴𝐻𝑈 − �̇�𝑜𝑢𝑡𝐶𝑝𝑇𝑟𝑜𝑜𝑚 

Figure 5.8: Simplified heat balance for a typical room 
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or 

𝑑

𝑑𝑡
𝑇𝑟𝑜𝑜𝑚 =

�̇�𝑓𝑎𝑛

𝑚𝑎𝑖𝑟

(𝑇𝐴𝐻𝑈 − 𝑇𝑟𝑜𝑜𝑚) 

where 

𝐶𝑝 is the heat capacity of the room 

𝑚𝑎𝑖𝑟 is the mass of the air inside the room (constant with time) 

�̇�𝑓𝑎𝑛 is the supplied inlet flow rate. 

Now, the changes in �̇�𝑟𝑜𝑜𝑚 with respect to changes in �̇�𝑓𝑎𝑛 and 𝑇𝐴𝐻𝑈 can be written as: 

𝑑�̇�𝑟𝑜𝑜𝑚 = 𝐵1 ∙ 𝑑�̇�𝑓𝑎𝑛|𝑇𝐴𝐻𝑈=𝑐𝑜𝑛𝑠
+ 𝐵2 ∙ 𝑑𝑇𝐴𝐻𝑈|�̇�𝑓𝑎𝑛=𝑐𝑜𝑛𝑠 

where 

𝐵1 =
1

𝑚𝑎𝑖𝑟

(𝑇𝐴𝐻𝑈 − 𝑇𝑟𝑜𝑜𝑚) 

𝐵2 =
�̇�𝑓𝑎𝑛

𝑚𝑎𝑖𝑟
 

The coefficient 𝐵1 (or 𝐵𝑢,𝑖) is identified by the identification algorithm and for small 

variation in 𝑇𝐴𝐻𝑈, 𝐵2 can be calculated from the relation: 

𝐵2 = 𝐵1
�̇�𝑓𝑎𝑛

(𝑇𝐴𝐻𝑈 − 𝑇𝑟𝑜𝑜𝑚)
 

Therefore, the variation in �̇�𝑟𝑜𝑜𝑚 for room 𝑖 can be expressed as: 

𝑑�̇�𝑟𝑜𝑜𝑚𝑖 = 𝐵𝑢,𝑖 (𝑑�̇�𝑓𝑎𝑛 +
�̇�𝑓𝑎𝑛

(𝑇𝐴𝐻𝑈 − 𝑇𝑟𝑜𝑜𝑚)
𝑑𝑇𝐴𝐻𝑈) 

Note that the values of �̇�𝑓𝑎𝑛, 𝑇𝐴𝐻𝑈, and 𝑇𝑟𝑜𝑜𝑚 are measurable. This simple modification 

changes the local zone control problem from a bilinear problem into a linear one. 
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The coefficient 𝐵2 can be updated at each time step, or through some pre-defined 

schedule. In this work, however, we preferred to take the average of 𝐵2 across the 

simulation of three months. With this modification, the final state space form of a room 

dynamic would be: 

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘) + 𝐵𝑣,𝑖𝑣𝑖(𝑘) + 𝐵𝑡,𝑖𝑇𝐴𝐻𝑈(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘) 

                    𝑦𝑖(𝑘) = 𝐶𝑖𝑥𝑖(𝑘)                                                                                        (5.3) 

where 𝐵𝑡,𝑖 is the calculated coefficient (𝐵2) for room 𝑖, and the AHU discharge air 

temperature (𝑇𝐴𝐻𝑈) is treated as a measured disturbance.  

    Figure 5.9 shows the simplified local zone control structure sued for simulation. 

 

 

 

 

 

 

    Through the applied flow rate, the 𝑃𝐸𝐷𝑆 and AHU discharge air temperature disturb 

the room dynamics; however, the lower PI controller rejects this disturbance as long as 

the damper is not fully open. In this case, the inlet flow rate is a function of the damper 

position only and room temperature dynamics have no sensitivity for changes in the 

𝑃𝐸𝐷𝑆 or 𝑇𝐴𝐻𝑈. For a fully opened damper, the entering air flow rate will be a function of 

the 𝑃𝐸𝐷𝑆 only (the damper is not controlling the flow rate any more) and room dynamics 

Figure 5.9: The simplified local zone control structure for the UBO building 
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will be sensitive for any variations in the fan 𝑃𝐸𝐷𝑆 and AHU discharge temperature 

𝑇𝐴𝐻𝑈.       

With the simplified room control and dynamics, the LC-DMPC partition for the room 

zones is now defined. A zone subsystem accepts an optimal temperature set-point from 

the local LC-DMPC agent. The local lower level PI control system regulates the room 

temperature around the optimum set-point while the local MPC modulates the occupant 

desired set-point with a pre-defined comfort level. The upstream disturbance inputs are 

the predicted neighbor room temperatures and AHU discharge air temperature. On the 

other hand, the outputs for downstream subsystems (neighbor zones and AHU) are the 

predicted room temperature and cos sensitivities. Outside air temperature and relative 

humidity are treated as exogenous disturbances. Figure 5.10 illustrates a zone subsystem 

with a local LC-DMPC agent as well as the lower level PI controller.   

The rooms are simulated inside the EP and the identified models are used to design 

the LC-DMPC controllers. Local PI controllers and LC-DMPC agents are simulated 

inside the Matlab environment.  
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5.2.1.2 The AHU Optimizer 

Figure 5.11 shows the AHU lower level controllers (PI) with the set-point optimizer 

for the AHU discharge air temperature and fan speed. In this work, we assumed that the 

AHU outputs (i.e. the 𝑃𝐸𝐷𝑆 and discharge air temperature) will reach the optimum set-

points through the local PI controllers in the next sampling. Therefore, from the LC-

DMPC perspective, the AHU will only have a set-point optimizer where the dynamics 

are not considered in order to show the general concept of the HVAC system application 

for the LC-DMPC approach in a simple and trackable way.  

    The AHU optimizer computes the optimum set-points for the fan speed and AHU 

discharge using the sensitivities information fed from the zone local MPCs. The cost 

Figure 5.10: A zone subsystem in the UBO building with local LC-DMPC 

agent and PI controller  
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function used by the optimizer is the summation of two economic costs in terms of fan 

𝑃𝐸𝐷𝑆 and AHU discharge air temperature 𝑇𝐴𝐻𝑈.  

    The next section details the economic cost functions as well as the calculations of the 

zone sensitivities.    

 

 

 

 

 

 

5.2.2 Cost Functions and Sensitivities 

In this section, the cost functions for zones and AHU optimizers as well as sensitivity 

calculations are derived. The cost functions used in this work are economic costs which 

mean that the local LC-DMPC controllers try to minimize actual financial costs while 

maintaining the comfort levels inside the rooms. The cost functions are not derived by 

the author of this dissertation and the reader is referred to appendix D for more details.  

 

5.2.2.1 Zone Cost Functions 

At the level of a zone, the cost function for the local distributed MPC will have the 

following form: 

                 𝐽𝑖 = ∑ (𝑒𝑖
𝑇(𝑘 + 𝑗) ∙ ℤ𝑖(𝑘 + 𝑗)) + ∑ 𝜓𝑖

𝑇(𝑘 + 𝑗) ∙ 𝑧𝑖(𝑘 + 𝑗)
𝑁𝑝−1

𝑗=0

𝑁𝑝
𝑗=1

          (5.4) 

where 

Figure 5.11: The AHU set-point optimizers and lower level controllers   
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𝑒𝑖 = 𝑇𝑟𝑜𝑜𝑚,𝑖 − 𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑖, 

𝑧𝑖 is the output disturbing temperatures for downstream neighbors that are weighted by 

the cost sensitivity of the neighbor zones 𝜓𝑖. 

The variable ℤ𝑖 is derived using the Predicted Mean Vote (PMV) equation [101] as 

well as Loss Of Productivity (LOP) relationships that are detailed in the appendix D. ℤ𝑖 

will be a function of the room i temperature (𝑇𝑟𝑜𝑜𝑚,𝑖) with the following final form:  

                                                  ℤ𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖) = 𝜙𝑖 ∙ 𝑇𝑟𝑜𝑜𝑚,𝑖 + 𝜑𝑖                                  (5.5) 

where the derivations of 𝜙𝑖  & 𝜑𝑖 are detailed in appendix D.  

    The term ℤ𝑖 has a unit of  $ ℃⁄  where it relates the occupancy productivities ($) with 

the required comfort levels in terms of temperature (℃).  Thus, it gives a tool for 

measuring and relating the activity of occupancy and the HVAC performance. The LOP 

measures how much the occupancies lose their productivities as they get more 

uncomfortable due to inadequate HVAC system.      

    Equation (5.5) is an affine linear expression that can be extended along the prediction 

horizon 𝑁𝑝 as shown below: 

                      [

ℤ𝑖(𝑘 + 1)

ℤ𝑖(𝑘 + 2)
⋮

ℤ𝑖(𝑘 + 𝑁𝑝)

] = [

𝜙𝑖 0 0 0
0 𝜙𝑖 0 0

0
0

0
0

⋱
0

0
𝜙𝑖

]

⏟          
ℳ𝑖

[
 
 
 
𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘 + 1)

𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘 + 2)
⋮

𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘 + 𝑁𝑝)]
 
 
 

+ [

𝜑𝑖
𝜑𝑖
⋮
𝜑𝑖

]

⏟
ℵ𝑖

              (5.6) 

Using the local predicted zone temperature vector Y𝑖 where: 

Y𝑖 =

[
 
 
 
𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘 + 1)

𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘 + 2)
⋮

𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘 + 𝑁𝑝)]
 
 
 

 



 

151 
 
 
 

and the local desired reference r𝑖, the zone cost 𝐽𝑖 (not considering the downstream 

costs) with (5.6) can be re-written as: 

                                                 𝐽𝑖 = (Y𝑖 − r𝑖)
𝑇(ℳ𝑖Y𝑖 + ℵ𝑖)                                         (5.7) 

    Generally speaking, there are two references in (5.7): the user defined reference r𝑖 and 

the reference that is associated with the aggregate occupant comfort (i.e. PMV). The 

optimum reference, however, is some point between these two temperature references. 

Therefore, based on the desired room reference and comfort level, there will be two 

different cases for the optimum reference that the zone MPC attempts to approach. The 

first case is when both reference temperatures match. In this case the optimum reference 

will match the desired or comfort reference. The second case is when both references are 

different. Here, the zone MPC tries to track the average of the two references and the 

associated cost will be negative. The negative cost value is because either the desired 

reference (the room temperature is below the user-defined reference and the MPC still 

requiring more air) or the comfort reference (loss in productivity) is not met.    

    Figure 5.12 shows the cost function (5.7) with the second case for an office activity of 

Metabolic rate 𝑀 = 85 𝑊 𝑚2⁄  (the activity level of the occupancy) and clothing 

insulation 𝐼𝑐𝑙 = 0.1162 𝑚
2k W⁄  (light business suit). The relative humidity is 50%, 

𝑁𝑝 = 1,  productivity cost  = $1.0016 (typical yearly payment of $25000), and with two 

different desired reference temperatures 22 and 18 ℃. In Figure 5.12 a, the optimum 

room temperature (that will be tracked by the local MPC) is 21.2 ℃ which is the average 

of the desired tempearure 22 ℃ and the PMV comfort reference 20.4 ℃. On the other 
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hand, the optimum reference for the local MPC is 19.2 ℃ when the desired reference 

changes to 18 ℃ as shown Figure 5.12 b.    

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

    With (5.7), using the local predicted temperature dynamics Y𝑖 and downstream output 

temperature dynamics Z𝑖 given by: 

Figure 5.12: Cost function (5.7) with different desired room temperature and 

same comfort level   

(b) When PMV comfort reference is greater than the desired room temperature  

(a) When desired room temperature is greater than the PMV comfort reference   
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Y𝑖 = 𝐹𝑦,𝑖𝑥0,𝑖 +𝑀𝑦,𝑖U𝑖 + 𝑁𝑦,𝑖V𝑖 + 𝑃𝑦,𝑖D𝑖 + 𝑃𝑡𝑦,𝑖D𝑇𝐴𝐻𝑈 

Z𝑖 = 𝐹𝑧,𝑖𝑥0,𝑖 +𝑀𝑧,𝑖U𝑖 + 𝑁𝑧,𝑖V𝑖 + 𝑃𝑧,𝑖D𝑖 + 𝑃𝑡𝑧,𝑖D𝑇𝐴𝐻𝑈 

where 𝑃𝑡𝑦,𝑖 and 𝑃𝑡𝑧,𝑖 are computed in the same way that 𝑃𝑦,𝑖 is computed but with 𝐵𝑡,𝑖, 

and D𝑇𝐴𝐻𝑈 is the AHU discharge temperature along 𝑁𝑝, then the zone cost along 𝑁𝑝 can 

be expressed as:   

𝐽𝑖 = U𝑖
𝑇[𝑀𝑦,𝑖

𝑇 ℳ𝑖𝑀𝑦,𝑖]U𝑖 + 

2U𝑖
𝑇[𝑀𝑦,𝑖

𝑇 ℳ𝑖𝐹𝑦,𝑖𝑥0,𝑖 +𝑀𝑦,𝑖
𝑇 ℳ𝑖𝑁𝑦,𝑖V𝑖 +𝑀𝑦,𝑖

𝑇 ℳ𝑖𝑃𝑦,𝑖D𝑖 +𝑀𝑦,𝑖
𝑇 ℳ𝑖𝑃𝑡𝑦,𝑖D𝑇𝐴𝐻𝑈 + 0.5𝑀𝑧,𝑖

𝑇 Ψ𝑖 

+0.5𝑀𝑦,𝑖
𝑇 ℵ𝑖 − 0.5𝑀𝑦,𝑖

𝑇 ℳ𝑖r𝑖] + 

V𝑖
𝑇[𝑁𝑦,𝑖

𝑇 ℳ𝑖𝑁𝑦,𝑖]V𝑖 + 2V𝑖
𝑇[𝑁𝑦,𝑖

𝑇 ℳ𝑖𝐹𝑦,𝑖𝑥0,𝑖 + 𝑁𝑦,𝑖
𝑇 ℳ𝑖𝑃𝑦,𝑖D𝑖+𝑁𝑦,𝑖

𝑇 ℳ𝑖𝑃𝑡𝑧,𝑖D𝑇𝐴𝐻𝑈 + 

0.5𝑁𝑧,𝑖
𝑇 Ψ𝑖 + 0.5𝑁𝑦,𝑖

𝑇 ℵ𝑖 − 0.5𝑁𝑦,𝑖
𝑇 ℳ𝑖r𝑖] + 

D𝑇𝐴𝐻𝑈
𝑇 [𝑃𝑡𝑦,𝑖

𝑇 ℳ𝑖𝑃𝑡𝑦,𝑖]D𝑇𝐴𝐻𝑈 + 

        

2D𝑇𝐴𝐻𝑈
𝑇 [𝑃𝑡𝑦,𝑖

𝑇 ℳ𝑖𝐹𝑦,𝑖𝑥0,𝑖 + 𝑃𝑡𝑦,𝑖
𝑇 ℳ𝑖𝑃𝑦,𝑖D𝑖+0.5𝑃𝑡𝑧,𝑖

𝑇 Ψ𝑖 + 0.5𝑃𝑡𝑦,𝑖
𝑇 ℵ𝑖 − 0.5𝑃𝑡𝑦,𝑖

𝑇 ℳ𝑖r𝑖] + 

                                                                  constants                                                      (5.8) 

 

5.2.2.2 AHU Optimizer Cost Functions 

To compute the optimum set-points for the AHU fan speed and discharge air 

temperature, the following economic cost functions are suggested at the AHU level, 

respectively:  

         𝐽𝑓𝑎𝑛 = ∑ (𝑢𝑓𝑎𝑛
𝑇 (𝑘 + 𝑗) ∙ 𝛿𝑓𝑎𝑛(𝑘 + 𝑗) + 𝜓𝑓𝑎𝑛

𝑇 (𝑘 + 𝑗) ∙ 𝑧𝑓𝑎𝑛(𝑘 + 𝑗))
𝑁𝑝−1

𝑗=0
       (5.9) 

and 
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𝐽𝑇𝐴𝐻𝑈 = ∑ (𝑢𝑇𝐴𝐻𝑈
𝑇 (𝑘 + 𝑗) ∙ 𝛿𝑇𝐴𝐻𝑈(𝑘 + 𝑗) + 𝜓𝑇𝐴𝐻𝑈

𝑇 (𝑘 + 𝑗) ∙ 𝑧𝑇𝐴𝐻𝑈(𝑘 + 𝑗))
𝑁𝑝−1

𝑗=0
  

 (5.10) 

where 

𝑢𝑓𝑎𝑛 = 𝑃𝐸𝐷𝑆 and 𝑢𝑇𝐴𝐻𝑈 = 𝑇𝐴𝐻𝑈   

𝛿𝑓𝑎𝑛 & 𝛿𝑇𝐴𝐻𝑈  are detailed in appendix D,   

𝜓𝑓𝑎𝑛 = 𝛾𝑅𝑜𝑜𝑚_𝑃𝐸𝐷𝑆 and 𝜓𝑇𝐴𝐻𝑈 = 𝛾𝑅𝑜𝑜𝑚_𝑇𝐴𝐻𝑈, , and finally 

𝑧𝑓𝑎𝑛 = 𝑃𝐸𝐷𝑆 and 𝑧𝑇𝐴𝐻𝑈 = 𝑇𝐴𝐻𝑈. 

Both cost functions are quadratic because of the way the 𝛿𝑓𝑎𝑛 and 𝛿𝑇𝐴𝐻𝑈  are defined. 

The first term in the cost function (5.9) is minimizing the fan power while the second 

term represents the sensitivities of the local zone costs for the 𝑃𝐸𝐷𝑆 set-point.   Similarly, 

the first term in (5.10) is based on minimizing the cost of producing chilled water and 

the second term is the sensitivities that the local zone costs have for the AHU discharge 

air temperature set-point. All of the presented cost functions (zones and AHU costs) 

have the unit of ($).          

  

5.2.2.3 Zone Cost Function Sensitivities 

From the real data of the VAV box inside the UBO building, the damper flow 

characteristic is found. All of the 9 controlled zones are assumed to have the same flow 

characteristic.  Figure 5.13 shows the relations between the damper position (%), 𝑃𝐸𝐷𝑆 

(in. water), and air flow (cfm) at the VAV box of each zone.  
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    The 𝑃𝐸𝐷𝑆 value will be the same for all VAV boxes while the air flow will have 

different values.  From the damper flow characteristic of the real UBO building VAV 

box, the value of 𝜕𝑐𝑓𝑚𝑖 𝜕𝑃𝐸𝐷𝑆⁄  can be computed as following:  The air flow rate at 

VAV box i is a function of the 𝑃𝐸𝐷𝑆 and the corresponding damper position 𝜚𝑖, i.e. 

𝑐𝑓𝑚𝑖 = 𝑓(𝑃𝐸𝐷𝑆, 𝜚𝑖), therefore, the changes in 𝑐𝑓𝑚𝑖 with respect to changes in  𝑃𝐸𝐷𝑆 and 

𝜚𝑖 can be written as: 

 

 

  

 

 

 

 

 

 

𝑑𝑐𝑓𝑚𝑖 =
𝜕𝑓

𝜕𝑃𝐸𝐷𝑆
𝑑𝑃𝐸𝐷𝑆|

𝜚𝑖=𝑐𝑜𝑛𝑠

+
𝜕𝑓

𝜕𝜚𝑖
𝑑𝜚𝑖|

𝑃𝐸𝐷𝑆=𝑐𝑜𝑛𝑠

 

and as we need the derivative of 𝑐𝑓𝑚𝑖 with 𝑃𝐸𝐷𝑆 when the damper position is constant, 

then  
𝜕𝑓

𝜕𝜚𝑖
𝑑𝜚𝑖 = 0, thus: 

𝑑𝑐𝑓𝑚𝑖

𝑑𝑃𝐸𝐷𝑆
=

𝜕𝑓

𝜕𝑃𝐸𝐷𝑆
|
𝜚𝑖=𝑐𝑜𝑛𝑠

 

Figure 5.13: The VAV damper flow characteristic of the UBO building - 

reprinted with permission from [100]     
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    Using this partial derivative, the value of the zone cost function sensitivity with 

respect to 𝑃𝐸𝐷𝑆 can be computed as following: since we are interested in the sensitivity 

value of the zone cost function only when the damper is full opened,  then we can write: 

𝜕J𝑖
𝜕𝑃𝐸𝐷𝑆

=
𝜕J𝑖
𝜕𝑢𝑖

∙
𝜕𝑢𝑖
𝜕𝑃𝐸𝐷𝑆

|
𝜚𝑖=100%

 

where 𝑢𝑖 (which is 𝑐𝑓𝑚𝑖) is the first move in the computed optimum flow rate (control 

action) by the zone local MPC.  This can be extended along the horizon; however, in this 

work we only considered the first applied local control action. For 𝜕𝐽𝑖 𝜕𝑢𝑖⁄  one can 

simply differentiate the cost (5.8) with respect to 𝑢𝑖. The identification algorithm used to 

produce the local zone dynamics is assuming that the input flow rate is fractional. That is 

the input flow rate is a fraction of the maximum flow arte specified inside the 

energyplus. Therefore, (𝑢𝑖 = 𝑢𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑙𝑜𝑤 𝑢𝑚𝑎𝑥_𝑓𝑙𝑜𝑤_𝐸𝑃⁄ ) and this has to be taken care of 

in the numerical differentiation of  𝑓(𝑃𝐸𝐷𝑆, 𝜚𝑖).    

    We are also interested in the zone cost sensitivity with respect to the AHU discharge 

air temperature when the damper is fully opened. This value can also be calculated by 

differentiating (5.8) with respect to 𝑇𝐴𝐻𝑈. Once again we, in this work, are only 

considering the first value of the cost sensitivity with respect to 𝑇𝐴𝐻𝑈 as with 𝑃𝐸𝐷𝑆. 

 

5.2.3 Zone and AHU LC-DMPC Local Problems 

This section introduces the LC-DMPC local problems and details the implementation 

of the LC-DMPC approach for the UBO building HVAC system. 
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5.2.3.1 Zone Local LC-DMPC Problem 

As it was shown in Figure 5.10, a zone subsystem has two local controllers: the lower 

PI controller and the LC-DMPC MPC. The design of the local MPC includes the room 

dynamics only. This MPC problem computes a sequence of optimum flow rate fractions 

from the inputs: desired room temperature, room actual temperature, upstream neighbor 

disturbing temperatures, downstream neighbor sensitivities, AHU discharge air 

temperature, and unmeasured outside disturbances. The first element of the optimum 

flow fractions is then fed into the dynamic of the local PI controller which gives the 

optimum temperature set-point of the room. Figure 5.14 shows the local zone MPC 

problem.  

 

 

 

   

 

 

 

From Figure 5.14, the optimization problem 𝑖 is given as: 

min𝑢𝑖(𝑗):𝑗=0,⋯𝑁𝑝−1 {
∑ [𝑒𝑖

𝑇(𝑘 + 𝑗) ∙ ℤ𝑖(𝑘 + 𝑗)] + ∑ 𝜓𝑖
𝑇(𝑘 + 𝑗) ∙ 𝑧𝑖(𝑘 + 𝑗)

𝑁𝑝−1

𝑗=0
 

𝑁𝑝
𝑗=1

}      

                                         (5.11)               

subject to:  

                                                                                                                     

Figure 5.14: Zone level LC-DMPC controller     
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𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐵𝑢,𝑖𝑢𝑖(𝑘) + 𝐵𝑣,𝑖𝑣𝑖(𝑘) + 𝐵𝑡,𝑖𝑇𝐴𝐻𝑈(𝑘) + 𝐵𝑑,𝑖𝑑𝑖(𝑘) 

                    𝑦𝑖(𝑘) = 𝐶𝑦,𝑖𝑥𝑖(𝑘) 

                    𝑧𝑖(𝑘) = 𝐶𝑧,𝑖𝑥𝑖(𝑘) 

0.07 ≤ 𝑢𝑖(𝑘 + 𝑗) ≤ 𝑢𝑚𝑎𝑥(𝑘), 𝑗 = 0,⋯𝑁𝑝 − 1 

and from the PI𝑖 controller dynamics, the optimum applied temperature set-point is 

computed using the first move from the optimization problem (5.11). 

In (5.11) the outside temperature, relative humidity, and AHU discharge air 

temperature values are assumed to be constant along the horizon 𝑁𝑝 and are updated 

periodically at each sampling. The value of the constraint 𝑢𝑚𝑎𝑥(𝑚) changes per the 

sampling 𝑘 as the 𝑃𝐸𝐷𝑆 changes and is computed as: 

𝑢𝑚𝑎𝑥(𝑘) = 𝑓(𝑃𝐸𝐷𝑆(𝑘), 𝜚𝑖) 𝑢𝑚𝑎𝑥_𝑓𝑙𝑜𝑤_𝐸𝑃⁄  

where 𝜚𝑖 is kept at 100% (i.e. the maximum flow rate when the damper is fully open) 

and 𝑢𝑚𝑎𝑥_𝑓𝑙𝑜𝑤_𝐸𝑃 is specified to be 0.5𝑚3 𝑠𝑒𝑐⁄  inside the EP for all zones. 

Finally, a flow rate of 5 cfm (corresponds to 0.07) is imposed as the minimum limit on 

the control action in order to satisfy the natural ventilation requirement.      

    

5.2.3.2 AHU Local Optimizer LC-DMPC Problem 

The LC-DMPC optimization problem for computing the AH set-points is illustrated in 

Figure 5.15.  
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As the LC-DMPC controller injects only the first control action into the corresponding 

zone dynamics, we are only computing the AHU set-points to the changes in zone cost 

sensitivities with respect to the change in the applied flow rate fraction. Thus, the AHU 

optimization problem for one time step is given as:    

min
𝑢𝑓𝑎𝑛,   𝑢𝑇𝐴𝐻𝑈

[(𝑢𝑓𝑎𝑛
𝑇 ∙ 𝐻𝑓𝑎𝑛 ∙ 𝑢𝑓𝑎𝑛 + 𝑓𝑓𝑎𝑛(𝑘) ∙ 𝑢𝑓𝑎𝑛) +  

                           𝑢𝑇𝐴𝐻𝑈
𝑇 ∙ 𝐻𝑇𝐴𝐻𝑈 ∙ 𝑢𝑇𝐴𝐻𝑈 + 𝑓𝑇𝐴𝐻𝑈(𝑘) ∙ 𝑢𝑇𝐴𝐻𝑈] 

or 

min
𝑢𝑓𝑎𝑛,𝑢𝑇𝐴𝐻𝑈

{(𝑢𝑓𝑎𝑛
𝑇 𝑢𝑇𝐴𝐻𝑈

𝑇 ) [
𝐻𝑓𝑎𝑛 0

0 𝐻𝑇𝐴𝐻𝑈
] (
𝑢𝑓𝑎𝑛
𝑢𝑇𝐴𝐻𝑈

) + (𝑓𝑓𝑎𝑛(𝑘) 𝑓𝑇𝐴𝐻𝑈(𝑘)) (
𝑢𝑓𝑎𝑛
𝑢𝑇𝐴𝐻𝑈

)} 

subject to:                                                                                                                     

                                              [
0.2
14.45

] ≤ (
𝑢𝑓𝑎𝑛
𝑢𝑇𝐴𝐻𝑈

) ≤ [
1.8
17.78

]                                     (5.12) 

where 𝑓𝑓𝑎𝑛(𝑘) and 𝑓𝑇𝐴𝐻𝑈(𝑘) are detailed in appendix D.   

In problem (5.12), the constraint values for the control moves are taken for the normal 

operation of the real UBO building. We also assumed that the lower level PI controllers 

at the AHU level are perfect and fast such that at the next sampling time the discharge 

air temperature and fan speed hit the computed set-points, i.e. there is one time delay 

between the AHU outputs and computed set-points.    

Figure 5.15: The AHU set-points optimizer     
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As the values of 𝑃𝐸𝑆𝐷 and  𝑇𝐴𝐻𝑈 are constant for all zones at instance 𝑘 and each zone 

has different cost sensitivities, the question now is which values for 𝜓𝑓𝑎𝑛
𝑇  and  𝜓𝑇𝐴𝐻𝑈

𝑇  

should be selected by the AHU optimizer? To answer this question, we need to know 

𝜕𝐽𝑖 𝜕𝑃𝐸𝐷𝑆⁄  and 𝜕𝐽𝑖 𝜕𝑇𝐴𝐻𝑈⁄ .  When a zone has a fully opened damper, it means that the 

damper is no longer regulating the temperature inside the room. At this point, the room 

asks the AHU to improve its zone level cost performance throughout the changes in the 

fan speed and/or the discharge air temperature. The 𝜕𝐽𝑖 𝜕𝑃𝐸𝐷𝑆⁄  must have a negative 

value which means that any increasing in the fan speed (or the 𝑃𝐸𝐷𝑆) will result in 

decreasing in the cost value of 𝐽𝑖. On the other hand, the value of 𝜕𝐽𝑖 𝜕𝑇𝐴𝐻𝑈⁄  should be 

positive, i.e. the zone asks for inlet air with cooler temperature which reduces its local 

cost value. Based on above we propose that the AHU optimizer selects the values for 

𝜓𝑓𝑎𝑛
𝑇  and  𝜓𝑇𝐴𝐻𝑈

𝑇  as following: 

𝜓𝑓𝑎𝑛
𝑇 = min

𝑖=1,2,⋯,10
(𝜕𝐽𝑖 𝜕𝑃𝐸𝐷𝑆⁄ ) 

𝜓𝑇𝐴𝐻𝑈
𝑇 = max

𝑖=1,2,⋯,10
(𝜕𝐽𝑖 𝜕𝑇𝐴𝐻𝑈⁄ ) 

 

5.2.3.3 The Main LC-DMPC Algorithm for the UBO Building  

In this section, the main control algorithm for controlling the HVAC system in the 

UBO building is stated. This control algorithm is based on the optimum LC-DMPC 

algorithm proposed in chapter 2 (Algorithm 2.1). 

 

Algorithm 5.1: The main UBO building control 

Input: Number of iterations 𝑁𝑎 and initial values for states 𝑥0,𝑖 and error covariance ℌ𝑖. 
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    Set: initial values for 𝑉𝑖 = 0, 𝑈𝑖 = 0, 𝛹𝑖 = 0,or take previous values from last step 

and measure 𝑇𝑜𝑢𝑡(𝑘), 𝑅𝐻𝑜𝑢𝑡(𝑘), 𝑃𝐸𝐷𝑆(𝑘), and 𝑇𝐴𝐻𝑈(𝑘). 
 

 

Start of Iteration: For j = 1 to 𝑁𝑎 Do:  

 

Step 1: Exchange current information with local agents: 
 

𝚿(𝑗 + 1) = [Ψ1(𝑗 + 1),⋯ ,Ψ𝑝(𝑗 + 1)]
𝑇
= 𝚪𝑇[γ1(𝑗),⋯ , γ𝑝(𝑗)]

𝑇
= 𝚪𝑇𝛄(𝑗) 

                 𝐕(𝑗 + 1) = [V1(𝑗 + 1),⋯ , V𝑝(𝑗 + 1)]
𝑇
= 𝚪[Z1(𝑗),⋯ , Z𝑝(𝑗)]

𝑻
= 𝚪𝐙(𝑗) 

 

 

Step 2: Solve the optimization problem given in (5.11): 
 

U𝑖
𝑄𝑃(𝑗) ← argmin Problem(5.11) 

 

Step 3: For 𝛽 ∈ [0,1), set: 
 

U𝑖(𝑗 + 1) ← 𝛽𝑈𝑖(𝑗) + (1 − 𝛽)U𝑖
𝑄𝑃(𝑗) 

 

Step 4: Update local output disturbance: 
 

Z𝑖(𝑗 + 1) ← 𝐹𝑧,𝑖𝑥0,𝑖(𝑘) + 𝑀𝑧,𝑖U𝑖(𝑗 + 1) + 𝑁𝑧,𝑖V𝑖(𝑗) + 𝑃𝑦,𝑖D𝑖(𝑘) + 𝑃𝑡𝑧,𝑖D𝑇𝐴𝐻𝑈(𝑘) 
 

Step 5: Update sensitivity for input disturbance. Set: 
 

𝛾𝑖(𝑗 + 1) ← −𝑁𝑦,𝑖
𝑇 ℳ𝑖r𝑖(𝑘) + 2𝑁𝑦,𝑖

𝑇 ℳ𝑖𝑀𝑦,𝑖U𝑖(𝑗 + 1) + 2𝑁𝑦,𝑖
𝑇 ℳ𝑖𝑁𝑦,𝑖V𝑖(𝑗) + 

2𝑁𝑦,𝑖
𝑇 ℳ𝑖𝑃𝑦,𝑖D𝑖(𝑘) + 2𝑁𝑦,𝑖

𝑇 ℳ𝑖𝑃𝑡𝑦,𝑖D𝑇𝐴𝐻𝑈(𝑘) + 𝑁𝑧,𝑖
𝑇 Ψ𝑖(𝑗) + 2𝑁𝑦,𝑖

𝑇 ℳ𝑖𝐹𝑦,𝑖𝑥0,𝑖(𝑘) + 𝑁𝑦,𝑖
𝑇 ℵ𝑖 

 

 

Next j  

Step 6: Compute the zone sensitivities for 𝑃𝐸𝐷𝑆 and 𝑇𝐴𝐻𝑈 as: 

             For ∀ Σ𝑖 ∈ 𝑝: 

             If 𝜚𝑖 = 100% then: 

𝛾𝑟𝑜𝑜𝑚,𝑖𝑃𝐸𝐷𝑆
(𝑘) = 𝜕J𝑖 𝜕𝑃𝐸𝐷𝑆(𝑘) = 𝜕J𝑖 𝜕𝑢𝑖⁄ ∙⁄ 𝜕𝑢𝑖 𝜕𝑃𝐸𝐷𝑆(𝑘)⁄ |𝜚𝑖=100% 

𝛾𝑟𝑜𝑜𝑚,𝑖𝑇𝐴𝐻𝑈
(𝑘) = 𝜕J𝑖 𝜕𝑇𝐴𝐻𝑈(𝑘)⁄  

             Otherwise 

𝛾𝑟𝑜𝑜𝑚,𝑖𝑃𝐸𝐷𝑆
(𝑘) = 0,  𝛾𝑟𝑜𝑜𝑚,𝑖𝑇𝐴𝐻𝑈

(𝑘) = 0 
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Step 7: With the values of: 

𝜓𝑓𝑎𝑛
𝑇 = min

𝑖=1,2,⋯,9
(𝛾𝑟𝑜𝑜𝑚,𝑖_𝑃𝐸𝐷𝑆) , 𝜓𝑇𝐴𝐻𝑈

𝑇 = max
𝑖=1,2,⋯,9

(𝛾𝑟𝑜𝑜𝑚,𝑖_𝑇𝐴𝐻𝑈) 

             Solve the AHU optimizer problem given in (5.12) and set: 
 

{
𝑃𝐸𝐷𝑆(𝑘)

𝑇𝐴𝐻𝑈(𝑘)
} = argmin Problem(5.12)  

Output: U𝑖 (first value), 𝑃𝐸𝐷𝑆(𝑘), and 𝑇𝐴𝐻𝑈(𝑘)  (Inject into EnergyPlus). 

Get: new measurements for 𝑇𝑜𝑢𝑡, 𝑅𝐻𝑜𝑢𝑡, 𝑇𝑖, 𝑢𝑖, and 𝑣𝑖 and estimate current room state. 

Update: the flow rate constraint for the local MPCs: 
 

𝑢𝑚𝑎𝑥(𝑘 + 1) = 𝑓(𝑃𝐸𝐷𝑆(𝑘),100%) 𝑢max _𝑓𝑙𝑜𝑤_𝐸𝑃⁄  

Go to: Start of Iteration.  

 

Figure 5.16 shows the implementation of the Algorithm 5.1 with all communication 

details between Matlab and EnergyPlus through MLEP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: The implementation of the Algorithm 5.1 
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5.3 Simulation Results 

The UBO building is modeled inside the EnergyPlus while Algorithm 5.1 is computed 

in Matlab to regulate the air temperature inside the zones and calculate the set-points for 

the end static pressure and discharge air temperature of the AHU. The following data is 

used for the simulations: 

    For all zone subsystems, the following values represent a typical office activity [101]: 

Metabolic rate (sedentary activity): 𝑀 = 70W 𝑚2,⁄  effective mechanical power:  

𝑊 = 0W 𝑚2,⁄  clothing insulation (light business suit): 𝐼𝑐𝑙 = 0.1156𝑚
2K W⁄ , relative 

air velocity (typical for office): 𝑣𝑎𝑖𝑟 = 0.1𝑚 𝑠⁄ , clothing surface temperature initial 

value: 𝑇𝑐𝑙,0 = 20 𝐶
0, mean radiant temperature initial value: �̅�𝑟,0 = 20 𝐶

0, and for 

relative humidity of 50% (for typical comfort level) the following are set as 𝑘𝑝𝑎 =

84.21, 𝑞𝑝𝑎 = −515.79. The last four values are required by the equations presented in 

[101]. 

    For the AHU optimizer, all used data is given in appendix D and for the cost of 

calculating the 𝑃𝐸𝐷𝑆 set-point, the following equation is derived using the damper flow 

characteristic for all zones to relate the total flow-rate (cfm) and 𝑃𝐸𝐷𝑆 set-point: 

𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒𝑡𝑜𝑡𝑎𝑙(cfm) = 5149 ∙ 𝑃𝐸𝐷𝑆(in.  water) − 979.8 

General parameters for simulation: 

Sampling time: 𝑡𝑠 = 5 𝑚𝑖𝑛, prediction horizon: 𝑁𝑝 = 8 (40 min. ), convex combined 

scalar: 𝛽 = 0.1, and number of iterations per sampling: 𝑁𝑎 = 5. The last two values are 

required by the structure of the LC-DMPC approach.   

For the zone low level PI controllers, the gains are varying between the limits given as:  
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The proportional gains:  0.06 ≤ 𝑘𝑝,𝑖 ≤ 1.1, and  the integral time constant:  

600 ≤ 𝑇𝐼,𝑖 ≤ 3000 for 𝑖 = 1,2,⋯ ,10, where the unit for 𝑘𝑝,𝑖 is 𝑓𝑙𝑜𝑤 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ℃⁄  and 

for 𝑇𝐼,𝑖 is 𝑓𝑙𝑜𝑤 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑠𝑒𝑐 ∙ ℃)⁄ , respectively.  

    To verify the application of Algorithm 5.1 for controlling the UBO HVAC system, 

four different cases are simulated. All cases have same environmental conditions and 

cost function variables. However, they are different in the priorities that have been 

assigned for the subsystems or optimizers. In the first case room 8 is represented to be 

the most important subsystem. Therefore, more weight is assigned for the room in the 

comfort cost variable. In the second case, a higher priority is assigned for room 9.  For 

the third cases, we consider the cost of computing the 𝑃𝐸𝐷𝑆 set-point at the AHU level to 

have the highest priority. As the last case, less priority has been given for the zone cost 

functions comparing with AHU optimizer costs. In the first two cases, which are the 

normal operating daily cases, at the AHU optimizer the cost of running the fan for five 

minutes (i.e. during the sampling time) is less than the cost of producing chilled water 

for the same time period. And this is why we have not considered the case where the 

cost of computing the AHU discharge air temperature set-point has the largest priority 

over the 𝑃𝐸𝐷𝑆 set-point. Table 5.1 shows the weighting costs associated for each of the 

four simulation cases. 

All simulation groups are run from July the 11
th

 to the 13
th

 of the same month and four 

of the ten zones (zones 2, 7, 8, and 9) are selected as representative behavior for all of 

the simulated zones.  
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Table 5.1: Cost Associated with Each Simulation Case 

Subsystem Case 1  Case 2  Case 3 Case 4 Cost 

Zone 1 0.1603 0.1603 0.1603 0.0020 $ 

Zone 2 0.2003 0.2003 0.2003 0.0020 $ 

Zone 3 0.2003 0.2003 0.2003 0.0020 $ 

Zone 4 0.2003 0.4006 0.2003 0.0020 $ 

Zone 5 0.2003 0.2003 0.2003 0.0020 $ 

Zone 6 0.2003 0.2003 0.2003 0.0020 $ 

Zone 7 0.2003 0.2003 0.2003 0.0020 $ 

Zone 8 0.4006 0.2003 0.4006 0.0020 $ 

Zone 9 0.3005 0.6010 0.3005 0.0020 $ 

𝑃𝐸𝐷𝑆 optimizer 0.087 0.087 2.000 0.0870 $ (𝑘W. ℎ𝑟)⁄  

𝑇𝐴𝐻𝑈 optimizer 0.0655 0.0655 0.0136 0.0655 $ (mmBTU)⁄  

            

In table 5.1, the cost associated with the zones is the productivity cost of the 

occupancy. The desired tracking references for the rooms (specified by the user) are 

assumed to be the same for all the rooms. This desired reference changes between 22.22 

℃ (the cooling mode) and 29.44 ℃ (the non-cooling mode). During a business day, the 

cooling starts at 7 am and continues until 7 pm. We also assumed that the building 

occupancy starts at 8 am and stay constant until 6 pm for a normal business day. In 

addition to occupancy loads, there are lighting and machine scheduled heating loads as 

well.    

 

5.3.1 Case 1: When Room 8 Has the Higher Priority 

Figures 5.17 through 5.20 show the temperature and applied air flow rate responses of 

the pre-selected zones when higher priority is assigned for room 8. For this case, the 

optimum temperature that the local MPCs try to approach is 22.4 ℃  which is the 
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average of the desired reference 22.22 ℃  and the comfort optimum temperature 22.58 

℃. This average temperature is shown with green lines in the figures. 

During the cooling mode, the local MPC regulates the damper position whenever the 

room temperature is around the optimum average temperature. This can be seen at the 

beginning of the cooling period. Otherwise it fully opens the damper when the outside 

temperature is high and the room temperature is above the average temperature. When 

the desired temperature changes to 29.44 ℃, the optimum average temperature changes 

to around 26 ℃ and the local MPCs attempt to adjust the room temperature around this 

new reference. This is why the room temperature starts to oscillate. However, as we are 

only considering cooling in the simulations, the only way for the local MPC to regulate 

the temperature around the new reference is to bring down the damper position to its 

minimum limit. On the other hand, at the AHU level, from Figures 5.21 and 5.22 we can 

see that the 𝑃𝐸𝐷𝑆 set-point starts to increase at the beginning of the day (or beginning of 

cooling) and stays approximately constant at 1.8 in. of water for the rest of cooling 

mode. At the same time, the AHU discharge air temperature set-point will be constant at 

its minimum (around 17.8 ℃) and starts decreasing when the outside temperature 

increases where the rooms demand for more cooling loads. The AHU chilled water valve 

response is shown in Figure 5.23.  Figure 5.24 gives the instant operating dollar cost of 

running the HVAC system with Algorithm 5.1. In this cost we only considered the 

cooling portion of the zones (i.e. when the target temperature is 22.4 ℃ ).    

The actual air flow rate that enters a room can be computed simply by multiplying the 

air flow fraction by the maximum air flow rate that is specified inside the Energy Plus 
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(1059.44 𝑓𝑡3 𝑚𝑖𝑛⁄ ). On the other hand, a damper position is defined to be fully open in 

the resulted plots when the maximum air flow fraction is reached at that sampling time. 

For current simulations the maximum air flow fraction is 0.7824 when 𝑃𝐸𝐷𝑆𝑚𝑎𝑥 = 

1.8 in. water.  
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Figure 5.17: Temperature and air flow fraction for room 2 - case 1  
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Figure 5.18: Temperature and air flow fraction for room 7 - case 1  
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Figure 5.19: Temperature and applied air for room 8 - case 1  
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Figure 5.20: Temperature and air flow fraction for room 9 - case 1  

1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

Figure 5.21: The 𝑃𝐸𝐷𝑆 set-point - case 1  
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Figure 5.22: The 𝑇𝐴𝐻𝑈 set-point - case 1  
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Figure 5.23: AHU chilled water valve response - case 1  
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5.3.2 Case 2: When Room 9 Has the Higher Priority 

The main reasons for simulating this case are to show that Algorithm 5.1 gives the 

ability to assign different priorities for the subsystems and to show that the zone with 

high priority dominates the behavior of the AHU through the cost sensitivities. Figures 

5.25 through 5.29 show room 9 temperature and air flow fraction responses, 𝑃𝐸𝐷𝑆 and 

𝑇𝐴𝐻𝑈 set-points, AHU chilled water valve response, and instant total operation cost, 

respectively.     
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Figure 5.24: Instant operating cost of the UBO building HVAC system - case 1  
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Figure 5.25: Temperature and air flow fraction for room 9 - case 2  
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Figure 5.26: The 𝑃𝐸𝐷𝑆 set-point - case 2  
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Figure 5.27: The 𝑇𝐴𝐻𝑈 set-point - case 2  
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Figure 5.28: AHU chilled water valve response - case 2  
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5.3.3 Case 3: When AHU Fan Has Higher Energy Cost 

For this case, when the fan energy cost is higher than the cost of producing chilled 

water, the AHU optimizer will try to change the discharge air temperature set-point and 

keep the 𝑃𝐸𝐷𝑆 set-point as close as to the minimum value (0.2 in. water). However, 

because the modified room temperature models approximate the actual dynamics 

between zones and the AHU discharge air temperature as a linear relation (the actual 

relation is bilinear), this causes the oscillation of the zone temperatures as the set-point 

of the AHU discharge temperature changes rapidly. Room temperature dynamics are 

sensitive for changes in AHU discharge temperature. Figures 5.30 and 5.31 give the 

𝑃𝐸𝐷𝑆 and 𝑇𝐴𝐻𝑈 set-points while Figure 5.32 show the room 9 temperature and air flow 

fraction responses, respectively.   
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Figure 5.29: Instant operating cost of the UBO building HVAC system - case 2 
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Figure 5.31: The 𝑇𝐴𝐻𝑈 set-point - case 3  
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Figure 5.30: The 𝑃𝐸𝐷𝑆 set-point - case 3  



 

176 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.4 Case 4: When the Zones Have the Less Priority 

In this case the productivity costs for the zones are set to be much lower than the costs 

of running the fan and producing chilled water at the AHU level. We can see that AHU 

optimizer is trying to keep the discharge air temperature at its minimum value (around 

17.7 ℃) and changing the 𝑃𝐸𝐷𝑆 between the minimum and a value of 0.53 in. of water. 

This is because the cost of producing chilled water for five minutes is greater than 

running the fan for same time period (the normal daily operations as in cases 1 and 2). 

Also, the zone demands are small such that they can be regulated by the inlet flow rate 

only with the minimum AHU discharge air temperature.  Once again Figures 5.33 
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Figure 5.32: Temperature and air flow fraction for room 9 - case 3  
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through 5.35 show the 𝑃𝐸𝐷𝑆 and 𝑇𝐴𝐻𝑈 set-points and room 9 responses for this case, 

respectively.       
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Figure 5.34: The 𝑇𝐴𝐻𝑈 set-point - case 4 (𝑇𝐴𝐻𝑈 is at the warmest (minimum) point) 
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Figure 5.33: The 𝑃𝐸𝐷𝑆 set-point - case 4  
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5.3.5 LC-DMPC Approach and Centralized MPC 

   A centralized MPC was also implemented using the same building states in case 1. 

Figures 5.36 through 5.41 show that the solutions with Algorithm 5.1 can converge to a 

place that is very close to the centralized MPC solution. Moreover, Figure 5.42 gives the 

eigenvalues of the convergence matrix (2.27a) for the UBO building HVAC system with 

Algorithm 5.1. The figure shows the convergence (or stability) of the Algorithm.      
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Figure 5.35: Temperature and air flow fraction for room 9 - case 4 
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Figure 5.36: Temperature and air flow fraction for room 2 with Algorithm 5.1 

and the centralized MPC 
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Figure 5.37: Temperature and air flow fraction for room 7 with Algorithm 5.1 

and the centralized MPC 
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Figure 5.38: Temperature and air flow fraction for room 8 with Algorithm 5.1 

and the centralized MPC 
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Figure 5.39: Temperature and air flow fraction for room 9 with Algorithm 5.1 

and the centralized MPC 
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Figure 5.41: The 𝑇𝐴𝐻𝑈 set-point with Algorithm 5.1 and the centralized MPC 
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Figure 5.40: The 𝑃𝐸𝐷𝑆 set-point with Algorithm 5.1 and the centralized MPC 
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Figure 5.42: Eigenvalues of the convergence matrix (2.27a) for Algorithm 5.1 

with the UBO Building HVAC system application 



183 
 
 
 

6. CONCLUSION AND FUTURE WORKS 

 

6.1 Conclusion 

   The presented research in this dissertation has the main goal of developing an iterative 

and predictive control architecture for networks with coupled subsystems that can 

produce stabilizing control actions and at same time optimize overall performance. The 

work introduced here explores developing such algorithm in two different methods.   

    In the first method the introduced algorithm can converge to the global optimum 

solution. In this framework, the global control problem is divided into a number of 

coupled subsystems based on a neighbor upstream and downstream structure. According 

to this structure, a subsystem views the coupling signals from upstream neighbors as 

measured disturbances and at the same time has outputs to downstream neighbors. In 

contrast with most DMPC schemes, the individual subsystems solve a different cost than 

the centralized problem. At each iteration, two bi-directional signals are communicated: 

Predicted disturbances for downstream neighbors and local cost sensitivity for upstream 

neighbors. Here, the convergence of the algorithm is tested at a centralized monitor that 

has access to the all local information. The distributed controller with local knowledge 

can converge to the systemwide solution by sharing information with neighbor agents 

only. The closed-stability of the distributed controllers relays on the convergence of the 

algorithm as the main condition. It also requires the local controllers to have long 

horizons. Long horizons not only reduce the number of iterations as the local problems 

need more time to be solved but also increase the communication burden. To reduce the 
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effects of long horizons, Laguerre functions are proposed to parametrize the local 

decision variables and the exchanged signals. This parametrization allows having more 

iterations between the local agents and reduces the communication bandwidth.   

In the second method, the suboptimal structure of the introduced algorithm is 

developed. The same subsystem partition structure and communication architecture are 

used with the new proposed algorithm. A systemwide monitor is no longer need and the 

global convergence is now ensured by the local controllers. For local closed-stability, the 

coupled agents need to share the coupling dynamics. Thus, the global convergence and 

local closed-loop stability are ensured locally. However, this enforces the local 

controllers to operate in a suboptimal level with respect to the systemwide performance. 

The conservative design of the local controllers is the reason of the suboptimality for the 

new algorithm. The distributed controllers are conservative because of the dissipativity 

of the local exchanged signal dynamics in the iteration domain.    

The last port of this thesis is the application of the LC-DMPC algorithm (presented in 

the first method) using a Heating, Ventilation, and Air Conditioning (HVAC) system in 

a typical office building. The HVAC system is divided into two subsystems. A zone 

subsystem that consists of a room and the corresponding controlling VAV box and the 

Air handling Unit (AHU) subsystem where fan speed and discharge air temperature are 

controlled. At the zone level, the local distributed MPC regulates the room temperature 

by computing optimum set-points for the local controllers (usually PI). On the other 

hand, at the AHU, there is an optimizer that produces the optimum set-points of the end 

static pressure and discharge air temperature for the local controllers. Economic cost 
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functions are used for the local MPCs in addition to the AHU optimizer.  Therefore, the 

local zone MPCs and AHU optimizer are attempting to minimize the dollar costs of the 

zone comfort levels and fan power as well as the chilled water production.   

For different priority cases, the algorithm gives the expected optimum solutions. For 

instance, when the zones and the chilled water operating costs are more important than 

the electricity cost for running the fan, the algorithm attends to use less chilled water 

with more fan speed to meet the cooling demands required by the zones. The LC-DMPC 

algorithm can track the centralized solutions at the zone levels as well as the AHU level. 

Linear models are used to represent the dynamics of the rooms at the zone MPCs. 

Where the control input is the inlet air flow while the AHU discharge air temperature is 

considered as unmolded disturbance. These linear models, however, do not reveal the 

actual behavior of the rooms as the control inputs are the products of the inlet air flows 

and AHU discharge temperature (the cooling loads). To model the effect of the AHU 

discharge temperature as a linear disturbing signal, a modification of the existed room 

linear models is proposed. This modification is valid for small variations in the AHU 

discharge air temperature. 

In summary, the main contributions of this dissertation compared to existing work in 

the areas of DMPC algorithms and building MPC control are: 

 Developing an optimal DMPC algorithm that can approach to the systemwide 

optimum performance through local agent communications only. 

 This algorithm has a high modularity and requires a centralized monitor for testing 

the convergence only. 
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 Developing a suboptimal DMPC algorithm that does not require (optional) a 

systemwide supervisor where all decisions can be taken by local agents.   

 In case if a supervisor is used by the suboptimal DMPC algorithm, the global 

convergence can be tested using less information from the network. 

 Developing a distributed MPC algorithm for buildings that is able to coordinate the 

optimality of HVAC system in a distributed approach with less exchanging 

information requirements between the local defined agents. 
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6.2 Future Works 

   In this work, the optimum and suboptimum LC-DMPC approaches are introduced for 

reference tracking. The local agents are solving constrained optimization problems with 

cost functions that count for the effects for downstream systems. Therefore, it is 

important to show the recursive feasibility of the distributed problems where the existing 

feasibility MPC methods do not apply. This issue becomes more important when hard 

constraints on state or output are imposed or coupled constraints between the neighbor 

subsystems are proposed. The local performance index has conflicting terms where the 

first tracking term tries to minimize the differences between the output and a tracking 

reference which is not same as minimizing the state. The last term, on the other hand, 

aims at minimizing the outputs for downstream by minimizing the state. Because of this 

confliction, it is not possible to use the local cost as Lyapunov function directly. 

However, according to a lemma by Aderson and Moore 1971, this confliction can be 

eliminated by a certain arrangement of the weighting matrices. This may give a new 

method for proofing the local LC-DMPC agent stability.  

Through a proper scaling of the exchanged signals, one may reduce the conservative 

problem with the suboptimal LC-DMPC approach. This point needs more developing 

work. Also, local subsystem information may be used to develop an optimal method for 

selecting the local free design variables for the global convergence. This new method 

may, instead of using the 𝐻∞ norm, use the closeness to the systemwide performance as 

the base idea. It is also would be welcome development efforts to work on the 

continuous-time version of the proposed algorithms and to extend the work for fault-
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detections in networks. As a final suggestion for future applications, a real system (such 

as a multi-stage compression cycle) could be used to demonstrate the aspects of the 

suboptimal LCD-DPMC approach.        

As future works for the HVAC application of the LC-DMPC algorithm, it would be 

interesting to include the dynamics of the Air Handling Unit (AHU) and to use a real 

building as a physical application environment. This can give a closer picture of the 

algorithm aspects.  As simulations, the HVAC application level of the LC-DMPC 

algorithm introduced in Chapter V can be extend to include the chilled water pumps, 

multiple AHU systems, and coordinating more than one building. On the other hand, it is 

better to use bilinear models for the rooms which consequently require developing a 

bilinear version of the LC-DMPC algorithm to handle such model structures.     
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APPENDIX A  

EXTENDING THE INTERCONNECTING MATRIX  𝚪 ALONG ANY 

PREDICTION HORIZON 𝑁𝑝 

    Extending the interconnecting matrix Γ along the prediction horizon is not trivial.  In 

this appendix, we will explain how to such extension using the local information about 

the input disturbance 𝑣𝑖 only for all subsystems in the given network.   

    To be more specific, we have used the network example given in chapter 5. There are 

9 coupled rooms with room temperature as output disturbance variables. Therefore: 

input_distrubance = {'T_room1', 'T_room2', 'T_room3', 'T_room4', 'T_room5', 

'T_room6', 'T_room7', 'T_room8', 'T_room9'} 

Each subsystem has local information by which it can specify the local input disturbance 

𝑣𝑖 as a subset of the set of input_distrubance. For a specific identification, we had the 

following couplings: 

𝑣1 = (′T_room5′ ′T_room6′)𝑇 

𝑣2 = (′T_room6′ ′T_room4′ ′T_room3′)𝑇 

𝑣3 = (′T_room5′ ′T_room2′ ′T_room4′)𝑇 

𝑣4 = (′T_room7′ ′T_room2′ ′T_room3′)𝑇 

𝑣5 = (′T_room8′ ′T_room2′ ′T_room4′)𝑇 

𝑣6 = (′T_room7′ ′T_room3′ ′T_room2′)𝑇 

𝑣7 = (′T_room2′ ′T_room9′)𝑇 

𝑣8 = (′T_room2′ ′T_room9′)𝑇 

𝑣9 = (′T_room2′ ′T_room7′ ′T_room1′)𝑇 
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Or in term of input_distrubance we can have numerical values of the local network 

disturbances as following: 

𝑣1 = [5 6]𝑇,  𝑣2 = [6 4 3]𝑇,  𝑣3 = [5 2 4]𝑇 

𝑣4 = [7 2 3]𝑇,  𝑣5 = [8 2 4]𝑇,  𝑣6 = [7 3 2]𝑇 

𝑣7 = [2 9]𝑇,  𝑣8 = [2 7]𝑇,  𝑣9 = [2 7 1]𝑇 

By stacking all local input disturbances into a new variable 𝑉 as: 

𝑉24×1 = [𝑣1
𝑇 𝑣2

𝑇 𝑣3
𝑇 𝑣4

𝑇 𝑣5
𝑇 𝑣6

𝑇 𝑣7
𝑇 𝑣8

𝑇 𝑣9
𝑇]𝑇 

gives the number of variables in each local output disturbance 𝑧𝑖 the sort of these 

variables with respect to 𝑉, as well as the output network disturbance 𝑉24×1. The 

following simple Matlab code can extrapolate these information: 

     Lz = []; % length of local zi 

 orz = []; % order of zi w.r.t. V  

for j = 1:length(input_distrubance)  

  orzi = find(V == j); Lzi = length(orzi);  

    Lz = [Lz;Lzi]; 

   orz = [orz;orzi];   

end 

 

Z = [];  

for i = 1:length(Lz) 

    for k = 1:Lz(i)     

        Z = [Z;input_distrubance(i)]; 

    end 

end 

 

The results of above are: 
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 Lz = [1 7 3 3 2 2 4 1 1]𝑇 

orz = [24 7 10 13 17 18 20 22 5 11 16 4 8 14 1 6 2 

3 9 15 21 23 12 19]𝑇 

and 

Z = [′T_room1′ ′T_room2′ ′T_room2′ ′T_room2′ ′T_room2′ ′T_room2′         

     ′T_room2′ ′T_room2′ ′T_room3′ ′T_room3′ ′T_room3′ ′T_room4′ 

     ′T_room4′ ′T_room4′ ′T_room5′ ′T_room5′ ′T_room6′ ′T_room6′ 

     ′T_room7′ ′T_room7′ ′T_room7′ ′T_room7′ ′T_room8′ ′T_room9′]𝑇 

The vector 𝑉 also gives the length of each individual 𝑣𝑖 as: 

lvi =[length(v1);length(v2);length(v3);length(v4); 

      length(v5);length(v6); length(v7);length(v8); 

      length(v9)]; 

or 

Lzi = [2 3 3 3 4 4 3 3 3]𝑇. 

 

Now using these information, we can calculate the value of  Γ when 𝑁𝑝 = 1. This is 

done using the following code: 

orv = []; % order of v w.r.t. z or (Γ at Np = 1) 

for j = 1:length(Z)  

    q   = find(orz == j);  

    orv = [orv;q]; 

end 

orv = orv'; 

 

or 
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orz = [15 17 18 12 9 16 2 13 19 3 10 23 4 14 20 

11 5 6 24 7 21 8 22 1]𝑇 

    To extend Γ for any 𝑁𝑝, we need two more information which can be determined from 

the already computed vectors. First, we need to know which element in 𝑍, the 

corresponding element in 𝑉 is referring to. This is computed through: 

erdv = []; % reffered element in z  

T1 = []; T2 = []; T3 = []; 

for t = 1:length(gz) 

    for k = 1:gz(t) 

        T1 = [T1;k]; 

        T2 = [T2;gz(t)]; 

    end 

end 

for i = 1:length(orv) 

    f = orv(i); 

    erdv = [erdv;T1(f)]; 

      T3 = [T3;T2(f)]; 

end 

erdv = erdv';  

or 

erdv = [1 1 2 1 1 2 1 2 1 2 2 1 3 3 2 

3 4 5 1 6 3 7 4 1]𝑇 

Second, we need to know the length of the 𝑧𝑖 in which an element in 𝑣𝑖 in erdv is 

referring to. This is already being computed in the above code and given in the variable 

T3, therefore: 

% ngz is the no. of elements in each group w.r.t. erdv  
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ngz = T3'; 

where 

ngz = [2 2 2 3 3 2 7 3 4 7 3 1 7 3 4 

3 7 7 1 7 4 7 4 1]𝑇 

 

 

Now all information are available to write the linear mapping matrix Γ for any given 𝑁𝑝 

as follows: 

1. Writing Γ as a zero matrix with dimension of sum(Lz)*Np:   

cap_gam = zeros(sum(Lz)*Np,sum(Lz)*Np); 

 

2. Shifting the elements in ordv (Γ at Np = 1) by the elements in Lz:  

for i = 1:sum(Lz) 

    if erdv(i) == 1 

        mogam(i) = (ordv(i)-1)*Np + 1; 

    else 

        mogam(i) = (ordv(i)-erdv(i))*Np + erdv(i);  

    end 

end 

 

3. The elements in mogam are now shifted by the elements in ngz: 

nt = [];  

for j =  1:Np-1  

    nt1 = mogam + j*ngz; 

    nt = [nt; nt1']; 

end  

nt = [mogam';nt]; 
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4. For the final step, all shifted information are now stored in the variable p: 

 p = []; h = 0; g = 0;  

L1 = length(ordv); L2 = length(Lv); 

for j = 1:L2 

    for k = 1:Np 

        for i = 1:Lv(j) 

            p = [p;nt(i+h)]; 

        end 

       h = h + L1; 

    end 

    h = Lv(j) + g; g = h;  

end 

  

5. Finally the matrix Γ along 𝑁𝑝 is computed by changing the elements given by p in 

cap_gam to one:      

for i = 1:Np*L1 

    cap_gam(i,p(i)) = 1; 

end 

 

Recall that all above steps are constant for any network and the only need information 

are prediction horizon 𝑁𝑝 and the first vector input_distrubance. 

 

 

    

  

 

 



208 
 

 
 

APPENDIX B  

THE INTERCONNECTED SUBSYSTEMS EXAMPLE USED IN CHAPTER IV: 

ALL RELATED INFORMATION 

 

    This appendix provides all information that has been used for the example of the 

chapter IV and details some results that have not be been stated in the chapter.  

First, the dynamic of each subsystem as well as variables and matrices that have been 

used in simulation for the local cost functions are given in table B.1 as follows: 

     

Table B.1: Local Subsystem Information 

For 𝒊 = 𝟏, 𝟐, 𝟑 
Subsystems 

1 2 3 

State matrix 𝐴𝑖 

 

[
0.3525 −0.5946  0.3841
−0.5946 0.0381 0.4962
0.3841  0.4962 0.3897

] 

 

[
−0.0470 0.6663
0.6663 −0.0412

] [
−0.3654 −0.5016
−0.5016 −0.0921

] 

Control input  

matrix 𝐵𝑢,𝑖 

 

[
0 0.8400

−1.1448 −0.6138
−2.2324 1.1722

] 

 

[
−0.8727
−0.9308

] [
−2.1246

0
] 

Disturbance input  

matrix 𝐵𝑣,𝑖 

 

[
−0.9582 0.5599
0.9531 −1.0380
0.7034 −0.1783

] 

 

[
0.0762 0
0 2.1315

] [
−0.2500 0.8200
0.6800 −1.0824

] 

Regulated output  

matrix 𝐶𝑦,𝑖 
[
−0.4699 0 −0.8314

0 −0.1975  −1.0486
] [−0.3258 0] [0 0.7412] 

Disturbance output  

matrix 𝐶𝑧,𝑖 

 

[
−0.9599 −0.1574 0

0 0 0
0 −0.1975 −1.0486

] 

 

[
−0.3258 0
−0.3258 0

] [0 0] 

Disturbance output  

matrix 𝐷𝑧,𝑖 

 

[
0 0

 0.5249 −0.7724
0 0

] 

 

[
0
0
] [0.1224] 

Initial condition [0.00 0.20 −0.98]𝑇 [−0.10 2.00]𝑇 [3.20 0.00]𝑇 

Reference 𝑟𝑖 [0.80 0.50]𝑇 1.20 2.00 

State weighting  

matrix  𝑞𝑖 
2𝐼3 2𝐼2 6𝐼2 

control weighting  

matrix  𝑠𝑖 
[
0.10 0.00
0.00 0.30

] 0.20 0.50 
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Second the LC-DMPC input and output vectors, interconnecting matrix Γ, and the 

mapping matrix 𝐻 for network dissipativity are detailed.  

The network input disturbance vector with local related information is given by: 

𝑉 = {

𝑣1
𝑣2
𝑣3
} =

{
 
 

 
 
𝑣1,2
𝑣1,3
𝑣2
𝑣3,1
𝑣3,2}

 
 

 
 

=

{
 
 

 
 
𝑦2,1
𝑢3
𝑦1,1
𝑢1,2
𝑦1,2
𝑦2,3}

 
 

 
 

 

While the network output disturbance vector with local related information is given by: 

𝑍 = {

𝑧1
𝑧2
𝑧3
} =

{
 
 

 
 
𝑧1,2
𝑧1,3
𝑧2,1
𝑧2,3
𝑧3 }
 
 

 
 

= {

𝑧1
𝑧2
𝑧3
} =

{
 
 

 
 
𝑦1,1
𝑢1,2
𝑦1,2
𝑦2,1
𝑦2,3
𝑢3 }
 
 

 
 

 

For prediction horizon equal to one (𝑁𝑝 = 1), these two vectors can be related as:   

{
 
 

 
 
𝑦2,1
𝑢3
𝑦1,1
𝑢1,2
𝑦1,2
𝑦2,3}

 
 

 
 

⏟    
𝑉

=

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0]

 
 
 
 
 

⏟              
Γ

{
 
 

 
 
𝑦1,1
𝑢1,2
𝑦1,2
𝑦2,1
𝑦2,3
𝑢3 }
 
 

 
 

⏟    
𝑍

 

The mapping matrix 𝐻 for network dissipativity is determined as follows:  

For the local information dynamics, let the input be denoted as 𝑢𝑖 and the output as 𝑦𝑖 

where:  𝑢𝑖 = {V𝑖
𝑇 Ψ𝑖

𝑇}𝑇 and 𝑦𝑖 = {Z𝑖
𝑇 γ𝑖

𝑇}𝑇. 

and let the total output be given by:  
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y = {

𝑦1
𝑦2
𝑦3
} =

{
 
 

 
 
Z1
γ1
Z2
γ2
Z3
γ3}
 
 

 
 

=

{
 
 
 
 

 
 
 
 
𝑧1,2
𝑧1,3
𝛾1,2
𝛾1,3
𝑧2,1
𝑧2,3
𝛾2
𝑧3
𝛾3,1
𝛾3,2}

 
 
 
 

 
 
 
 

=

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑦1,1
𝑢1,2
𝑦1,2
𝛾1,2𝑦2
𝛾1,3𝑢3
𝑦2,1
𝑦2,3
𝛾2𝑦1,1
𝛾2𝑢1,2
𝑢3

𝛾3,1𝑦1,2
𝛾3,2𝑦2 }

 
 
 
 
 
 

 
 
 
 
 
 

 

Then for subsystem 1, we can write the mapping between local input 𝑢1 and total output 

y as: 

𝑢1 = {
V1
Ψ1
} = {

𝑣1,2
𝑣1,3
𝜓1,2
𝜓1,3

} =

{
 
 

 
 
𝑦2,1
𝑢3
𝛾2𝑦1,1
𝛾2𝑢1,2
𝛾3,1𝑦1,2}

 
 

 
 

= 𝐻1y = 𝐻1

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑦1,1
𝑢1,2
𝑦1,2
𝛾1,2𝑦2
𝛾1,3𝑢3
𝑦2,1
𝑦2,3
𝛾2𝑦1,1
𝛾2𝑢1,2
𝑢3

𝛾3,1𝑦1,2
𝛾3,2𝑦2 }

 
 
 
 
 
 

 
 
 
 
 
 

 

where  

𝐻1 =

[
 
 
 
 
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0]

 
 
 
 

 

Similarly for subsystem 2: 
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𝑢2 = {
V2
Ψ2
} = {

𝑣2
𝜓2,1
𝜓2,3

} =

{
 

 
𝑦1,1
𝑢1,2
𝛾1,2𝑦2
𝛾3,2𝑦2}

 

 
= 𝐻2y 

where 

𝐻2 = [

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

] 

and for subsystem 3: 

𝑢3 = {
V3
Ψ3
} = {

𝑣3,1
𝑣3,2
𝜓3

} = {

𝑦1,2
𝑦2,3
𝛾1,3𝑢3

} = 𝐻3y 

where 𝐻3 is given as: 

𝐻3 = [
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

] 

Now let us define the total input vector as: 

u = {

𝑢1
𝑢2
𝑢3
} =

{
 
 

 
 
V1
Ψ1
V2
Ψ2
V3
Ψ3}
 
 

 
 

=

{
 
 
 
 

 
 
 
 
𝑣1,2
𝑣1,3
𝜓1,2
𝜓1,3
𝑣2
𝜓2,1
𝜓2,3
𝑣3,1
𝑣3,2
𝜓3 }
 
 
 
 

 
 
 
 

=

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑦2,1
𝑢3
𝛾2𝑦1,1
𝛾2𝑢1,2
𝛾3,1𝑦1,2
𝑦1,1
𝑢1,2
𝛾1,2𝑦2
𝛾3,2𝑦2
𝑦1,2
𝑦2,3
𝛾1,3𝑢3 }

 
 
 
 
 
 

 
 
 
 
 
 

 

which can be related to the total output vector by simply stacking 𝐻1, 𝐻2, and 𝐻3 in a 

column vector and writing: 
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u = [
𝐻1
𝐻2
𝐻3

] y  or  u = 𝐻y 

where 

𝐻 =

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

 

 

Finally the dynamics of the possible three combinations are given. 

Combining subsystems 1 & 2: 

The dynamics of subsystem 1 is: 

𝑥1
+ = 𝐴1𝑥1 + 𝐵𝑢,1𝑢1 + 𝐵𝑣,1 [

𝑣1,2
𝑣1,3

]

 𝑦1 = 𝐶𝑦,1𝑥1

 𝑧1 = [
𝑧1,2
𝑧1,3
] = 𝐶𝑧,1𝑥1 + 𝐷𝑧,1𝑢1

 

and for subsystem 2: 

𝑥2
+ = 𝐴2𝑥2 + 𝐵𝑢,2𝑢2 + 𝐵𝑣,2𝑣2
  𝑦2 = 𝐶𝑦,2𝑥2
  𝑧2 = 𝐶𝑧,2𝑥2 + 𝐷𝑧,2𝑢2

 

Then the combined dynamics would be: 

[
𝑥1
𝑥2
]
+

= [
𝐴1 0
0 𝐴2

] [
𝑥1
𝑥2
] + [

𝐵𝑢,1 0

0 𝐵𝑢,2
] [
𝑢1
𝑢2
] + [

𝐵𝑣,1 0

0 𝐵𝑣,2
] [
𝑣1,2
𝑣1,3
𝑣2
] 
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[
𝑦1
𝑦2
] = [

𝐶𝑦,1 0

0 𝐶𝑦,2
] [
𝑥1
𝑥2
] 

[
  𝑧1,3
  𝑧2,3

] = [
𝐶𝑧,1,3 0

0 𝐶𝑧,,3
] [
𝑥1
𝑥2
] + [

𝐷𝑧,1,3 0

0 𝐷𝑧,,3
] [
𝑢1
𝑢2
] 

or 

[
𝑥1
𝑥2
]
+

= [
𝐴1 0
0 𝐴2

] [
𝑥1
𝑥2
] + [

𝐵𝑢,1 0

0 𝐵𝑢,2
] [
𝑢1
𝑢2
] + [

[𝐵𝑣,1,2 𝐵𝑣,1,3] 0
0 𝐵𝑣,2

] [
𝑣1,2
𝑣1,3
𝑣2
] 

[
𝑦1
𝑦2
] = [

𝐶𝑦,1 0

0 𝐶𝑦,2
] [
𝑥1
𝑥2
] 

[
  𝑧1,3
  𝑧2,3

] = [
𝐶𝑧,1,3 0

0 𝐶𝑧,,3
] [
𝑥1
𝑥2
] + [

𝐷𝑧,1,3 0

0 𝐷𝑧,,3
] [
𝑢1
𝑢2
] 

The interaction between both subsystems is given by: 

𝑣1,2 = 𝑧2,1 = 𝐶𝑧,2,1𝑥2 +𝐷𝑧,2,1𝑢2,   𝑣2 = 𝑧1,2 = 𝐶𝑧,1,2𝑥1 + 𝐷𝑧,1,2𝑢1 

Using these couplings, the final dynamics become: 

[
𝑥1
𝑥2
]
+

= [
𝐴1 𝐵𝑣,1,2𝐶𝑧,2,1

𝐵𝑣,2𝐶𝑧,1,2 𝐴2
] [
𝑥1
𝑥2
] + [

𝐵𝑢,1 𝐵𝑣,1,2𝐷𝑧,2,1
𝐵𝑣,2𝐷𝑧,1,2 𝐵𝑢,3

] [
𝑢1
𝑢3
] + [

𝐵𝑣,1,3
0
] 𝑣1,3 

[
𝑦1
𝑦2
] = [

𝐶𝑦,1 0

0 𝐶𝑦,2
] [
𝑥1
𝑥2
] 

[
  𝑧1,3
  𝑧2,3

] = [
𝐶𝑧,1,3 0

0 𝐶𝑧,,3
] [
𝑥1
𝑥2
] + [

𝐷𝑧,1,3 0

0 𝐷𝑧,,3
] [
𝑢1
𝑢2
] 

Figure B.1 shows the network with subsystems 1 & 2 combined. 

 

 

 

 
Figure B.1: Subsystems 1 & 2 are combined 
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Combining subsystems 1 & 3: 

The dynamics of subsystem 1 is: 

𝑥1
+ = 𝐴1𝑥1 + 𝐵𝑢,1𝑢1 + 𝐵𝑣,1 [

𝑣1,2
𝑣1,3

]

  𝑦1 = 𝐶𝑦,1𝑥1

  𝑧1 = 𝐶𝑧,1𝑥1 + 𝐷𝑧,1𝑢1 = [
𝑧1,2
𝑧1,3
]

 

and for subsystem 3: 

𝑥3
+ = 𝐴3𝑥3 + 𝐵𝑢,3𝑢3 + 𝐵𝑣,3 [

𝑣3,1
𝑣3,2

]

  𝑦3 = 𝐶𝑦,3𝑥3
  𝑧3 = 𝐶𝑧,3𝑥3 + 𝐷𝑧,3𝑢3

 

Then the combined dynamics would be: 

[
𝑥1
𝑥3
]
+

= [
𝐴1 0
0 𝐴3

] [
𝑥1
𝑥3
] + [

𝐵𝑢,1 0

0 𝐵𝑢,3
] [
𝑢1
𝑢3
] + [

𝐵𝑣,1 0

0 𝐵𝑣,3
] [

𝑣1,2
𝑣1,3
𝑣3,1
𝑣3,2

] 

[
𝑦1
𝑦3
] = [

𝐶𝑦,1 0

0 𝐶𝑦,3
] [
𝑥1
𝑥3
] 

  𝑧1,2 = [𝐶𝑧,1,2 0] [
𝑥1
𝑥3
] + [𝐷𝑧,1,2 0] [

𝑢1
𝑢3
] 

Or 

[
𝑥1
𝑥3
]
+

= [
𝐴1 0
0 𝐴3

] [
𝑥1
𝑥3
] + [

𝐵𝑢,1 0

0 𝐵𝑢,3
] [
𝑢1
𝑢3
] + [

[𝐵𝑣,1,2 𝐵𝑣,1,3] 0

0 [𝐵𝑣,3,1 𝐵𝑣,3,2]
] [

𝑣1,2
𝑣1,3
𝑣3,1
𝑣3,2

] 

[
𝑦1
𝑦3
] = [

𝐶𝑦,1 0

0 𝐶𝑦,3
] [
𝑥1
𝑥3
] 

  𝑧1,2 = [𝐶𝑧,1,2 0] [
𝑥1
𝑥3
] + [𝐷𝑧,1,2 0] [

𝑢1
𝑢3
] 

The interaction between both subsystems is given by: 
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𝑣1,3 = 𝑧3 = 𝐶𝑧,3𝑥3 + 𝐷𝑧,3𝑢3,   𝑣3,1 = 𝑧1,3 = 𝐶𝑧,1,3𝑥1 + 𝐷𝑧,1,3𝑢1 

Through these couplings, the final dynamics become: 

[
𝑥1
𝑥3
]
+

= [
𝐴1 𝐵𝑣,1,3𝐶𝑧,3

𝐵𝑣,3,1𝐶𝑧,1,3 𝐴3
] [
𝑥1
𝑥3
] + [

𝐵𝑢,1 𝐵𝑣,1,3𝐷𝑧,3
𝐵𝑣,3,1𝐷𝑧,1,3 𝐵𝑢,3

] [
𝑢1
𝑢3
] + 

[
𝐵𝑣,1,2 0

0 𝐵𝑣,3,2
] [
𝑣1,2
𝑣3,2

] 

[
𝑦1
𝑦3
] = [

𝐶𝑦,1 0

0 𝐶𝑦,3
] [
𝑥1
𝑥3
] 

  𝑧1,2 = [𝐶𝑧,1,2 0] [
𝑥1
𝑥3
] + [𝐷𝑧,1,2 0] [

𝑢1
𝑢3
] 

The network with subsystems 1 & 3 combined is shown Figure B.2 shows. 

 

 

 

 

Finally combining subsystems 2 & 3: 

We have the following dynamics for subsystem 1: 

𝑥2
+ = 𝐴2𝑥2 + 𝐵𝑢,2𝑢2 + 𝐵𝑣,2𝑣2
  𝑦2 = 𝐶𝑦,2𝑥2
  𝑧2 = 𝐶𝑧,2𝑥2 + 𝐷𝑧,2𝑢2

 

and for subsystem 2: 

𝑥3
+ = 𝐴3𝑥3 + 𝐵𝑢,3𝑢3 + 𝐵𝑣,3 [

𝑣3,1
𝑣3,2

]

  𝑦3 = 𝐶𝑦,3𝑥3
  𝑧3 = 𝐶𝑧,3𝑥3 + 𝐷𝑧,3𝑢3

 

The combined dynamics are given as: 

Figure B.2: Subsystems 1 & 3 are combined 
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[
𝑥2
𝑥3
]
+

= [
𝐴2 0
0 𝐴3

] [
𝑥2
𝑥3
] + [

𝐵𝑢,2 0

0 𝐵𝑢,3
] [
𝑢2
𝑢3
] + [

𝐵𝑣,2 0

0 𝐵𝑣,3
] [

𝑣2
𝑣3,1
𝑣3,2

] 

[
𝑦2
𝑦3
] = [

𝐶𝑦,2 0

0 𝐶𝑦,3
] [
𝑥2
𝑥3
] 

[
  𝑧2,1
  𝑧3

] = [
𝐶𝑧,2,1 0

0 𝐶𝑧,3
] [
𝑥2
𝑥3
] + [

𝐷𝑧,2,3 0

0 𝐷𝑧,,3
] [
𝑢2
𝑢3
] 

Or 

[
𝑥2
𝑥3
]
+

= [
𝐴2 0
0 𝐴3

] [
𝑥2
𝑥3
] + [

𝐵𝑢,2 0

0 𝐵𝑢,3
] [
𝑢2
𝑢3
] + [

𝐵𝑣,2 0

0 [𝐵𝑣,3,2 𝐵𝑣,3,1]
] [

𝑣2
𝑣3,1
𝑣3,2

] 

[
𝑦2
𝑦3
] = [

𝐶𝑦,2 0

0 𝐶𝑦,3
] [
𝑥2
𝑥3
] 

For subsystems 2 & 3, the coupling is given by: 

𝑣3,2 = 𝑧2,3 = 𝐶𝑧,2,3𝑥2 + 𝐷𝑧,2,3𝑢2  

Therefore: 

[
𝑥2
𝑥3
]
+

= [
𝐴2 0

𝐵𝑣,3,2𝐶𝑧,2,3 𝐴3
] [
𝑥2
𝑥3
] + [

𝐵𝑢,2 0

𝐵𝑣,3,2𝐷𝑧,2,3 𝐵𝑢,3
] [
𝑢2
𝑢3
] + [

𝐵𝑣,2 0

0 𝐵𝑣,3,1
0 0

] [
𝑣2
𝑣3,1] 

[
𝑦2
𝑦3
] = [

𝐶𝑦,2 0

0 𝐶𝑦,3
] [
𝑥2
𝑥3
] 

[
  𝑧2,1
  𝑧3

] = [
𝐶𝑧,2,1 0

0 𝐶𝑧,3
] [
𝑥2
𝑥3
] + [

𝐷𝑧,2,3 0

0 𝐷𝑧,,3
] [
𝑢2
𝑢3
] 

and Figure B.3 shows the combined subsystem in the network. 

 

 

 

Figure B.3: Subsystems 2 & 3 are combined 
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APPENDIX C  

DERIVATIVE OF THE CENTRALIZED COST FUNCTION WITH RESPECT 

TO THE VARIABLE 𝛂 

 

    Recall that the local control actions as a function of α at the network level is given by 

(assuming 𝛍 = 𝐼): 

[𝐒 + (𝐌𝒚 + (𝛂𝐌𝒛
𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝒛

𝑇]−1𝚪𝑇𝐍𝐲
𝑇)
𝑇
)
𝑇

𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]𝐔
𝐐𝐏

= [𝐌𝒚 + (𝛂𝐌𝒛
𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝒛

𝑇]−1𝚪𝑇𝐍𝐲
𝑇)
𝑇
]
𝑇

𝐐𝐫 − 

[(𝐌𝒚 + (𝛂𝐌𝒛
𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝒛

𝑇]−1𝚪𝑇𝐍𝐲
𝑇)
𝑇
)
𝑇

𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)] 𝐗𝟎 

Now let:   

𝐗𝛂 = [𝐒 + 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]

−1
 

and  

𝐆𝛂 = 𝐺1
𝑇𝐐𝐫 − 𝐺1

𝑇𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)𝐗𝟎 = 𝐺1
𝑇(𝐐𝐫 − 𝐐(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)𝐗0) = 𝐺1

𝑇𝐇1 

where 

𝐺1 = 𝐌𝒚 + (𝛂𝐌𝒛
𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝒛

𝑇]−1𝚪𝑇𝐍𝐲
𝑇)
𝑇
 

𝐇𝟏 = [𝐐𝐫 − 𝐐(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)𝐗𝟎] 

Then we can write the local control actions at the network level as following:        

𝐔𝐐𝐏 = 𝐗𝛂𝐆𝛂 

Recall that the centralized cost function is given by: 

𝐽CMPC =  𝐔
𝑇 [𝐒 + (𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)] 𝐔 + 
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2 [𝐗0
𝑇(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝐳)

𝑇
𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) − 𝐫

𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)] 𝐔 + 𝐶0 

where the constant part is given by: 

𝐶0 = 𝐗0
𝑇(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝒛)

𝑇
𝐐(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝒛)𝐗0 − 2𝐗0

𝑇(𝐅𝒚 + 𝐍𝒚𝐖𝐅𝒛)𝐐𝐫 + 𝐫
𝑇𝐐𝐫 

By introducing 𝐔𝐐𝐏 (the suboptimal unconstrained control action at network level) into 

the centralized cost, we can write: 

𝐽CMPC = 𝐋
𝑇𝐇2𝐋 + 2𝐇3𝐋 + 𝐶0 

where 𝐋,𝐇𝟏 and 𝐇𝟐 are given by:  

𝐋 = 𝐗𝛂𝐆𝛂 

𝐇2 = 𝐒 + (𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳)
𝑇
𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳) 

𝐇3 = 𝐗0
𝑇(𝐅𝐲 + 𝐍𝐲𝐖𝐅𝐳)

𝑇
𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳) − 𝐫

𝑇𝐐(𝐌𝐲 + 𝐍𝐲𝐖𝐌𝐳) 

For derivatives of matrices, we have the following mathematical rules: 

i. Let A be a symmetric matrix and α = x𝑇Ax  and x = f(z) where z is a vector then:  

𝜕α

𝜕𝑧
= 2x𝑇A

𝜕x

𝜕𝑧
 

ii. Derivative of inverse: 

𝜕A−1

𝜕𝑧
= −A−1

𝜕A

𝜕𝑧
A−1 

iii. α = y𝑇x ,   x, y = f(z) then: 

𝜕α

𝜕𝑧
= y𝑇

𝜕x

𝜕𝑧
+ x𝑇

𝜕y

𝜕𝑧
 

Since the matrix 𝐇2 symmetric, we can use rule (i) to write the derivative of  𝐽CMPC with 

respect to 𝛂 as following: 
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𝜕𝐽CMPC

𝜕𝛂
= 2𝐋𝑇𝐇2

𝜕𝐋

𝜕𝛂
+ 2𝐇3

𝜕𝐋

𝜕𝛂
 

Since 𝐋 = 𝐗𝛂𝐆𝛂, then the derivative of  𝐋 with respect to 𝛂 can also be driven using rule 

(iii) as following: 

𝜕𝐋

𝜕𝛂
= 𝐗α

𝜕𝐆𝛂
𝜕𝛂

+ (𝐆𝛂
𝑇
𝜕𝐗𝛂
𝜕𝛂
)
𝑇

 

Using last equations, we have: 

𝜕𝐽CMPC
𝜕𝛂

= 2𝐋𝑇𝐇2 [𝐗α
𝜕𝐆𝛂
𝜕𝛂

+ (𝐆𝛂
𝑇
𝜕𝐗𝛂
𝜕𝛂
)
𝑇

] + 2𝐇3 [𝐗α
𝜕𝐆𝛂
𝜕𝛂

+ (𝐆𝛂
𝑇
𝜕𝐗𝛂
𝜕𝛂
)
𝑇

] 

or  

𝜕𝐽CMPC
𝜕𝛂

= 2[𝐋𝑇𝐇2 + 𝐇3] [𝐗α
𝜕𝐆𝛂
𝜕𝛂

+ (𝐆𝛂
𝑇
𝜕𝐗𝛂
𝜕𝛂

)
𝑇

] 

For 𝜕𝐆𝛂 𝜕𝛂⁄  we can write: 

𝜕𝐆𝛂
𝜕𝛂

=
𝜕

𝜕𝛂
𝐆𝟏
𝑇𝐇1 =

𝜕

𝜕𝛂
[𝐌𝐲 + (𝛂𝐌𝐳

𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1𝚪𝑻𝐍𝐲

𝑇)
𝑇
]
𝑇

𝐇1 

= [(
𝜕

𝜕𝛂
(𝛂𝐌𝐳

𝑇⏟
𝑓1(𝛂)

[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1𝚪𝑻𝐍𝐲

𝑇
⏟            

𝑓2(𝛂)

)𝚪𝑇𝛍𝐍𝐲
𝑇)

𝑇

]

𝑇

𝐇1 

= [((𝛂𝐌𝐳
𝑇⏟

𝑓1(𝛂)

𝜕

𝜕𝛂
[𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1⏟          
𝑓2(𝛂)

+ [𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1⏟          

𝑓2(𝛂)

𝜕

𝜕𝛂
𝛂𝐌𝐳

𝑇⏟
𝑓1(𝛂)

)𝚪𝑇𝛍𝐍𝐲
𝑇)

𝑇

]

𝑇

𝐇1 

⇒ [((𝛂𝐌𝐳
𝑇
𝜕

𝜕𝛂
[𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1 + [𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1𝐌𝐳

𝑇)𝚪𝑇𝛍𝐍𝐲
𝑇)

𝑇

]

𝑇

𝐇1 

Now by using the derivative of inverse given by rule (ii), we can differentiate [𝐼 −

𝚪𝑇𝛂𝐍𝐳
𝑇]−1 with respect to 𝛂 as following: 
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𝜕

𝜕𝛂
[𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1 = −[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1

𝛛

𝛛𝛂
(𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇)[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1 

⇒
𝜕

𝜕𝛂
[𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1 = −[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1(−𝚪𝑇𝛂𝐍𝐳

𝑇)[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1

= [𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1(𝚪𝐓𝛍𝐍𝐳

𝑇)[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1 

Therefore: 

𝜕𝐆𝛂
𝜕𝛂

= [((𝛂𝐌𝐳
𝑇([𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1(𝚪𝑇𝐍𝑧
𝑇)[𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1) + 

[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1𝐌𝐳

𝑇)𝚪𝑇𝐍𝐲
𝑇)
𝑇
]
𝑇

𝐇1 

Also, using the derivative of inverse for differentiation of  𝐗𝛂 with respect to 𝛂, we 

would have the following: 

𝜕𝐗𝛂
𝜕𝛂

=
𝜕

𝜕𝛂
[𝐒 + 𝐺1

𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]
−1

 

= −[𝐒 + 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]

−1 𝜕

𝜕𝛂
[𝐒

+ 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)][𝐒 + 𝐺1

𝑇𝐐(𝐌𝒚 +𝐍𝒚𝐖𝐌𝐳)]
−1

 

Note that: 

𝜕

𝜕𝛂
[𝐒 + 𝐺1

𝑇𝐐(𝐌𝒚 +𝐍𝒚𝐖𝐌𝐳)] =
𝜕

𝜕𝛂
𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳) =

𝜕

𝜕𝛂
𝐺1
𝑇𝐇4 

where 𝐇4 = 𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)  

Now: 

𝜕

𝜕𝛂
𝐺1
𝑇𝐇4 =

𝜕

𝜕𝛂
[𝐌𝒚 + (𝛂𝐌𝒛

𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝒛
𝑇]−1𝚪𝑇𝐍𝐲

𝑇)
𝑇
]
𝑇

𝐇4 

= [
𝜕

𝜕𝛂
(𝛂𝐌𝒛

𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝒛
𝑇]−1𝚪𝑇𝐍𝐲

𝑇)
𝑇
]
𝑇

𝐇4 

However, 
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𝜕

𝜕𝛂
(𝛂𝐌𝒛

𝑇[𝐼 − 𝚪𝑇𝛂𝐍𝒛
𝑇]−1𝚪𝑇𝐍𝐲

𝑇)
𝑇
= [((𝛂𝐌𝐳

𝑇([𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1(𝚪𝑇𝐍𝑧

𝑇)[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1) + 

[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1𝐌𝐳

𝑇)𝚪𝑇𝐍𝐲
𝑇)
𝑇
]
𝑇

 

Thus: 

𝜕

𝜕𝛂
[𝐒 + 𝐺1

𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)] = [((𝛂𝐌𝐳
𝑇([𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1(𝚪𝑇𝐍𝑧
𝑇)[𝐼 − 𝚪𝑇𝛂𝐍𝐳

𝑇]−1) + 

[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1𝐌𝐳

𝑇)𝚪𝑇𝐍𝐲
𝑇)
𝑇
]
𝑇

𝐇4 

Therefore, we eventually would have:  

𝜕𝐗𝛂
𝜕𝛂

= −[𝐒 + 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]

−1
[((𝛂𝐌𝐳

𝑇([𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1(𝚪𝑇𝐍𝑧

𝑇)[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1) 

+[𝐼 − 𝚪𝑇𝛂𝐍𝐳
𝑇]−1𝐌𝐳

𝑇)𝚪𝑇𝐍𝐲
𝑇)
𝑇
]
𝑇

𝐇4[𝐒 + 𝐺1
𝑇𝐐(𝐌𝒚 + 𝐍𝒚𝐖𝐌𝐳)]

−1
 

This ends the derivation of the derivative of 𝐽CMPC with respect to  𝛂. 
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APPENDIX D 

MORE DETAILS FOR THE COST FUCNTIONS USED IN CHAPTER 5 

 

In this appendix, more details are given for the cost functions that have been used in 

the control of the UBO building HVAC system. The economic cost functions given here 

are developed by Bay C. [100]. However, we modified the costs for MPC applications.    

 

Zone Cost Functions: 

Recall that the cost function used for designing the local LC-DMPC controllers at the 

zone subsystem levels has the following form (without the cost for downstream outputs):   

𝐽𝑖 = ∑ (𝑒𝑖
𝑇(𝑘 + 𝑗)ℤ𝑖(𝑘 + 𝑗))

𝑁𝑝
𝑗=1

  

where 𝑒𝑖 = 𝑇𝑟𝑜𝑜𝑚,𝑖 − 𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑖. 

The variable ℤ𝑖 is given as: 

              ℤ𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖, $) =
𝜕𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖)

𝜕𝑇𝑟𝑜𝑜𝑚,𝑖
∙
𝜕𝐿𝑂𝑃(𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖))

𝜕𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖)
∙

𝜕𝑅𝑂𝑐𝑜𝑠𝑡($)

𝜕𝐿𝑂𝑃(𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖))
        (D.1) 

where 

𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖) is the Predicted Mean Vote (PMV) equation, 

𝐿𝑂𝑃 (𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖)) (Loss Of Productivity) is a function of the PMV given as:  

          𝐿𝑂𝑃 (𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖))  = 𝑏1 ∙ 𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖)
2
+ 𝑏2 ∙ 𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖) + 𝑏3     (D.2) 

𝑅𝑂𝑐𝑜𝑠𝑡($) is the Room Operating cost that is given by: 

                               𝑅𝑂𝑐𝑜𝑠𝑡($) = 𝐿𝑂𝑃(𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖)) ∙ [
𝑝𝑦𝑒𝑎𝑟∙𝑡𝑠

52𝑤𝑘𝑠∙40ℎ𝑟𝑠
]                        (D.3) 



223 
 
 
 

𝑝𝑦𝑒𝑎𝑟 is the yearly payment of the people who occupy room i in dollar, and 

𝑡𝑠 is the sampling time (in hour). 

In this work, the term [
𝑝𝑦𝑒𝑎𝑟∙𝑡𝑠

52𝑤𝑘𝑠∙40ℎ𝑟𝑠
] is referred to as the productivity cost. 

    The productivity of the occupancies in the zones due to the HVAC system operation is 

measured through the quantity of Loss Of Productivity (LOP).  Through LOP, we related 

the productivity level of the occupancies (or employees) with the comfort level inside 

the zones which consequently is related to performance of the HVAC system.       

The equation of the PMV is nonlinear in term of the room temperature 𝑇𝑟𝑜𝑜𝑚,𝑖 which 

givens a nonlinear and non-convex MPC problem. However, a computationally traceable 

linear version of the PMV for MPC applications is proposed by Cigler at al. [101] as 

shown below: 

𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)) = (0.303 ∙ 𝑒
(−0.036∙𝑀) + 0.028) ∙ 𝐿𝑖(𝑘), 

𝐿𝑖(𝑘) = (𝑀𝑖 −𝑊𝑖) − 3.05 ∙ 10
−3 ∙ (5733 − 6.99(𝑀𝑖 −𝑊𝑖) − 𝑝𝑎,𝑖(𝑘)) − 

−0.24 ∙ ((𝑀𝑖 −𝑊𝑖) − 58.15) − 17. 10
−5 ∙ 𝑀𝑖 ∙ (5867 − 𝑝𝑎,𝑖(𝑘)) − 

−0.0014 ∙ 𝑀𝑖 ∙ (34 − 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)) − 𝑇𝑥,𝑖(𝑘), 

𝑝𝑎,𝑖(𝑘) = 𝑘𝑝𝑎,𝑖 ∙ 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) + 𝑞𝑝𝑎,𝑖, 

𝑇𝑥,𝑖(𝑘) = 3.96. 10
−8 ∙ 𝑓𝑐𝑙,𝑖 ∙ (𝑇𝑐𝑙,𝑖

′ (𝑘) − �̅�𝑐𝑙,𝑖
′ (𝑘)) + 𝑓𝑐𝑙,𝑖 ∙ ℎ𝑐,𝑖 ∙ (𝑇𝑐𝑙,𝑖(𝑘) − 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)), 

𝑇𝑐𝑙,𝑖
′ (𝑘) = 𝑇𝑐𝑙,𝑖,0 + 273.16 + 4 ∙ (𝑇𝑐𝑙,𝑖,0 + 273.16)

3
∙ (𝑇𝑐𝑙,𝑖(𝑘) − 𝑇𝑐𝑙,𝑖,0), 

�̅�𝑟,𝑖
′ (𝑘) = �̅�𝑟,𝑖,0 + 273.16 + 4 ∙ (�̅�𝑟,𝑖,0 + 273.16)

3
∙ (�̅�𝑟,𝑖(𝑘) − �̅�𝑟,𝑖,0), 

𝑇𝑐𝑙,𝑖(𝑘) = 35.7 − 0.028(𝑀𝑖 −𝑊𝑖) − 𝐼𝑐𝑙,𝑖 ∙ 𝑇𝑥,𝑖(𝑘), 
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ℎ𝑐,𝑖 = 12.1√𝑣𝑎𝑟,𝑖, and 

𝑓𝑐𝑙,𝑖 = {
1.00 + 1.290 ∙ 𝐼𝑐𝑙,𝑖        if 𝐼𝑐𝑙,𝑖 ≤ 0.078

1.05 + 0.645 ∙ 𝐼𝑐𝑙,𝑖        if 𝐼𝑐𝑙,𝑖 > 0.078
. 

and the reader is referred to [101] for the definitions and values of all quantities.  

To write the final linear equation of the PMV, let us define the following: 

𝑎 = 3.96 ∙ 10−8 ∙ 𝑓𝑐𝑙,𝑖,  𝑏 = 𝑓𝑐𝑙,𝑖 ∙ ℎ𝑐,𝑖, 𝑐 = 35.7 − 0.028 ∙ (𝑀𝑖 −𝑊𝑖), 

𝑑 = 𝑇𝑐𝑙,𝑖,0 + 273.16, 𝑒 = 4 ∙ (𝑇𝑐𝑙,𝑖,0 + 273.16)
3, 𝑔 = 3.05 ∙ 10−3 

𝑟 = 5733 − 6.99 ∙ (𝑀𝑖 −𝑊𝑖), 𝑠 = 0.42 ∙ (𝑀𝑖 −𝑊𝑖 − 58.15), 𝑣 = 1.7 ∙ 10
−5 ∙ 𝑀𝑖 

𝑤 = 0.0014 ∙ 𝑀𝑖,  𝑧 = 4 ∙ (�̅�𝑟,𝑖,0 + 273.16)
3
. 

Then the 𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)) can be written as: 

𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)) = (0.303𝑒
−0.036𝑀 + 0.028) ∙ 

[𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) ((𝑔 + 𝑣) ∙ 𝑘𝑝𝑎,𝑖 + 𝑤 +
𝑎 ∙ 𝑧 + 𝑏

1 + 𝑎 ∙ 𝑒 ∙ 𝐼𝑐𝑙,𝑖 + 𝑏 ∙ 𝐼𝑐𝑙,𝑖
) + 

((𝑀𝑖 −𝑊𝑖) + (𝑔 + 𝑣) ∙ 𝑞𝑝𝑎,𝑖 − 𝑔 ∙ 𝑟 − 𝑠 − 5867 ∙ 𝑣 − 34 ∙ 𝑤 − 

𝑎 ∙ 𝑑 + 𝑎 ∙ 𝑒 ∙ 𝑐 − 𝑎 ∙ 𝑒 ∙ �̅�𝑟,𝑖,0 − 𝑎 ∙ (�̅�𝑟,𝑖,0 + 273.16 − 𝑧 ∙ �̅�𝑟,𝑖,0) + 𝑏 ∙ 𝑐

1 + 𝑎 ∙ 𝑒 ∙ 𝐼𝑐𝑙,𝑖 + 𝑏 ∙ 𝐼𝑐𝑙,𝑖
)] 

where it is assumed that �̅�𝑟,𝑖(𝑘) = 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘). 

Also let: 

𝑛1 = (0.303𝑒
−0.036𝑀 + 0.028), 

𝑛2 = ((𝑔 + 𝑣) ∙ 𝑘𝑝𝑎,𝑖 + 𝑤 +
𝑎 ∙ 𝑧 + 𝑏

1 + 𝑎 ∙ 𝑒 ∙ 𝐼𝑐𝑙,𝑖 + 𝑏 ∙ 𝐼𝑐𝑙,𝑖
), 
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𝑛3 = ((𝑀𝑖 −𝑊𝑖) + (𝑔 + 𝑣) ∙ 𝑞𝑝𝑎,𝑖 − 𝑔 ∙ 𝑟 − 𝑠 − 5867 ∙ 𝑣 − 34 ∙ 𝑤 − 

𝑎 ∙ 𝑑 + 𝑎 ∙ 𝑒 ∙ 𝑐 − 𝑎 ∙ 𝑒 ∙ �̅�𝑟,𝑖,0 − 𝑎 ∙ (�̅�𝑟,𝑖,0 + 273.16 − 𝑧 ∙ �̅�𝑟,𝑖,0) + 𝑏 ∙ 𝑐

1 + 𝑎 ∙ 𝑒 ∙ 𝐼𝑐𝑙,𝑖 + 𝑏 ∙ 𝐼𝑐𝑙,𝑖
) 

Then the linear approximated PMV equation can be written as: 

𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)) = 𝑛1[𝑛2 ∙ 𝑡𝑎 + 𝑛3] = 𝑛1𝑛2⏟
𝑚1

𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) + 𝑛1𝑛3⏟
𝑚2

 

or 

                                       𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)) = 𝑚1 ∙ 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) + 𝑚2                         (D.4) 

Now from the equations: D.2, D.3, and D.4, the following can be calculated: 

                                                     
𝜕𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖)

𝜕𝑇𝑟𝑜𝑜𝑚,𝑖
= 𝑚1                                                   (D.5)  

                                
𝜕𝐿𝑂𝑃(𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖))

𝜕𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖)
= 2 ∙ 𝑏1 ∙ 𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖) + 𝑏2                         (D.6) 

and  

                                         
𝜕𝑅𝑂𝑐𝑜𝑠𝑡($)

𝜕𝐿𝑂𝑃(𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖))
=

𝑝𝑦𝑒𝑎𝑟∙𝑡𝑠

52𝑤𝑘𝑠∙40ℎ𝑟𝑠
                                         (D.7) 

Therefore, through (D.5) – (D.7), equation (D.1) becomes: 

                    ℤ𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖, $) = 𝑚1 ∙ (2 ∙ 𝑏1 ∙ 𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖) + 𝑏2) ∙
𝑝𝑦𝑒𝑎𝑟∙𝑡𝑠

52𝑤𝑘𝑠∙40ℎ𝑟𝑠
           (D.8) 

where 

𝑏1 = 6.958, 𝑏2 = 0.9628 

To further simplify (D.8) and write down everything in term of  𝑇𝑟𝑜𝑜𝑚,𝑖, let: 

𝑛4 = [
𝑝𝑦𝑒𝑎𝑟∙𝑡𝑠

52wKs∙40hrs
]  

Then: 
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ℤ𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖, $) = 2 ∙ 𝑚1 ∙ 𝑏1 ∙ 𝑛4⏟        
𝑚3

∙ 𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖) + 𝑚1 ∙ 𝑏2 ∙ 𝑛4⏟      
𝑚4

= 𝑚3 ∙ 𝑃𝑀𝑉𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖) +𝑚4 

However, 

𝑃𝑀𝑉𝑖 (𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘)) = 𝑚1 ∙ 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) + 𝑚2 

Then: 

ℤ𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖, $) = 𝑚3 ∙ [𝑚1 ∙ 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) + 𝑚2] + 𝑚4

= 𝑚3 ∙ 𝑚1⏟    
𝜙𝑖

∙ 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) + 𝑚3 ∙ 𝑚2 +𝑚4⏟        
𝜑𝑖

 

Finally we have: 

                                            ℤ𝑖(𝑇𝑟𝑜𝑜𝑚,𝑖, $) = 𝜙𝑖 ∙ 𝑇𝑟𝑜𝑜𝑚,𝑖(𝑘) + 𝜑𝑖                               (D.9) 

Equation (D.9) is given as (5.5) in chapter 5. 

To validate the linear approximation of the PMV equation with the fully nonlinear 

expression, Figure D.1 was drawn for some temperatures using the typical office activity 

data used for simulations in chapter V. 
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AHU Optimizer Cost Functions: 

Recall that the cost functions used in the AHU optimizer are summarized as following 

(without the cost of downstream outputs) and for more details for the used values the 

reader is referred to [100]:   

                                 𝐽𝑓𝑎𝑛 = ∑ [𝑢𝑓𝑎𝑛
𝑇 (𝑘 + 𝑗) ∙ 𝛿𝑓𝑎𝑛(𝑘 + 𝑗)]

𝑁𝑝−1

𝑗=0
                                (D.10) 

and 

                              𝐽𝑇𝐴𝐻𝑈 = ∑ [𝑢𝑇𝐴𝐻𝑈
𝑇 (𝑘 + 𝑗) ∙ 𝛿𝑇𝐴𝐻𝑈(𝑘 + 𝑗)]

𝑁𝑝−1

𝑗=0
                            (D.11) 

where 

𝑢𝑓𝑎𝑛 = 𝑃𝐸𝐷𝑆 and 𝑢𝑇𝐴𝐻𝑈 = 𝑇𝐴𝐻𝑈, and   

𝛿𝑓𝑎𝑛 & 𝛿𝑇𝐴𝐻𝑈  are given as below: 
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Figure D.1: Linear and nonlinear PMV for temperatures 16.9 to 28.9 ℃  
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𝛿𝑓𝑎𝑛 =
0.1175∙𝑞𝑡𝑜𝑡𝑎𝑙∙𝐶𝑒𝑙𝑒𝑐∙𝑡𝑠

1000∙𝜇𝑚∙𝜇𝑏∙𝜇𝑓
  

𝑢𝑇𝐴𝐻𝑈
𝑇 𝛿𝑇𝐴𝐻𝑈 = (3.021 ∙ 𝑇𝐴𝐻𝑈

2 − 109.4 ∙ 𝑇𝐴𝐻𝑈 + 1002) ∙ 𝑞𝑚𝑎𝑥 ∙ 𝜌. 𝑐. ∆𝑇𝑤𝑎𝑡𝑒𝑟 . 𝑡𝑠 ∙ 

$241

3682𝑚𝑚𝐵𝑡𝑢
  

where 

𝑃𝐸𝐷𝑆: is the end static pressure (in. water), 

𝑇𝐴𝐻𝑈: AHU discharge air temperature (𝐶0), 

𝑞𝑡𝑜𝑡𝑎𝑙: is the total air flow rate flows through the AHU (cfm), 

𝐶𝑒𝑙𝑒𝑐 = 0.087 $ (𝑘W ∙ ℎ𝑟)⁄ : Cost of electricity, 

𝑡𝑠: Sampling time (in hour), 

𝜇𝑚 = 0.902, 𝜇𝑏 = 0.86, & 𝜇𝑓 = 0.70: are the efficiency of motor, belt, and fan blade, 

respectively,  

𝑞𝑚𝑎𝑥 = 0.0034[𝑚
3 𝑠𝑒𝑐⁄ ]: Maximum chilled water flow provided at 100% chilled water 

valve position, 

𝜌 = 1000[𝑘𝑔 𝑚3⁄ ]: ensity of water, 

𝑐 = 4.187 [𝑘𝐽 𝑘𝑔⁄ 𝐶0⁄ ]: Specific heat of water, 

∆𝑇𝑤𝑎𝑡𝑒𝑟[𝐶
0] = 𝑇𝐶𝑊𝑅 − 𝑇𝐶𝑊𝑆: Difference in chilled water temperature, 

𝑇𝐶𝑊𝑅[𝐶
0] = (47 − 32) 1.8⁄ : Return chilled water temperature, 

𝑇𝐶𝑊𝑆[𝐶
0] = (42 − 32) 1.8⁄ : Supply chilled water temperature. 

    Figure D.2 shows the approximation of the relationship between the AHU discharge 

air temperature and the position of the chilled water control valve at the UBO building 

where the approximated relation is given as: 
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CWVO(𝑇𝐴𝐻𝑈) =  (3.021 ∙ 𝑇𝐴𝐻𝑈
2 − 109.4 ∙ 𝑇𝐴𝐻𝑈 + 1002) 

where CWVO is the chilled water valve position. 

 

 

 

 

 

 

 

 

 

 

 

 

With the introduced definitions for the AHU discharge air temperature cost function, 

the cost functions in (5.9) and (5.10) for 𝑁𝑝 = 1 can be reformulated as quadratic cost 

function as followings:  

For (5.9), if the following equation is used to approximate the relation between the total 

flow rate and the 𝑃𝐸𝐷𝑆: 

𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒𝑡𝑜𝑡𝑎𝑙(𝑘) = 5149 ∙ 𝑃𝐸𝐷𝑆(𝑘) − 979.8 

 Then 𝛿𝑓𝑎𝑛 can be written as:  

𝑢𝑓𝑎𝑛
𝑇 (𝑘) ∙ 𝛿𝑓𝑎𝑛(𝑘) = 𝑎𝑓𝑎𝑛 ∙ 𝑃𝐸𝐷𝑆

2 (𝑘) + 𝑏𝑓𝑎𝑛 ∙ 𝑃𝐸𝐷𝑆(𝑘) 

Figure D.2: AHU discharge air temptation and control valve position in the UBO 

building - reprinted with permission from [100]    
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where 

𝑎𝑓𝑎𝑛 = 5149
0.1175∙𝐶𝑒𝑙𝑒𝑐∙𝑡𝑠

1000∙𝜇𝑚∙𝜇𝑏∙𝜇𝑓
  

𝑏𝑓𝑎𝑛 = −979.8
0.1175∙𝐶𝑒𝑙𝑒𝑐∙𝑡𝑠

1000∙𝜇𝑚∙𝜇𝑏∙𝜇𝑓
  

And by considering the zone cost sensitivities w.r.t 𝑃𝐸𝐷𝑆, then we can have the 

following: 

𝐽𝑓𝑎𝑛(𝑘) = 𝐻𝑓𝑎𝑛 ∙ 𝑃𝐸𝐷𝑆
2 (𝑘) + 𝑓𝑇𝐴𝐻𝑈(𝑘) ∙ 𝑃𝐸𝐷𝑆(𝑘) 

where 

𝐻𝑓𝑎𝑛 = 𝑎𝑓𝑎𝑛, and  𝑓𝑓𝑎𝑛(𝑘) = 𝑏𝑓𝑎𝑛 + 𝜓𝑓𝑎𝑛(𝑘) 

And for (5.10), let: 

𝑎𝑇𝐴𝐻𝑈 = 3.02 ∙ 𝑞𝑚𝑎𝑥 ∙ 𝜌. 𝑐. ∆𝑇𝑤𝑎𝑡𝑒𝑟 . 𝑡𝑠 ∙
4019

263𝑚𝑚𝐵𝑡𝑢
∙ 0.0034121416  

𝑏𝑇𝐴𝐻𝑈 = −109.4 ∙ 𝑞𝑚𝑎𝑥 ∙ 𝜌. 𝑐. ∆𝑇𝑤𝑎𝑡𝑒𝑟 . 𝑡𝑠 ∙
4019

263𝑚𝑚𝐵𝑡𝑢
∙ 0.0034121416  

𝑐𝑇𝐴𝐻𝑈 = 1002 ∙ 𝑇𝐴𝐻𝑈 ∙ 𝑞𝑚𝑎𝑥 ∙ 𝜌. 𝑐. ∆𝑇𝑤𝑎𝑡𝑒𝑟 . 𝑡𝑠 ∙
4019

263𝑚𝑚𝐵𝑡𝑢
∙ 0.0034121416  

Thus: 

𝑢𝑇𝐴𝐻𝑈
𝑇 𝛿𝑇𝐴𝐻𝑈 = 𝑎𝑇𝐴𝐻𝑈𝑇𝐴𝐻𝑈

2 + 𝑏𝑇𝐴𝐻𝑈𝑇𝐴𝐻𝑈 + 𝑐𝑇𝐴𝐻𝑈  

Therefore, if we consider the zone cost sensitivities w.r.t 𝑇𝐴𝐻𝑈, then one can write 

𝐽𝑇𝐴𝐻𝑈(𝑘) as: 

𝐽𝑇𝐴𝐻𝑈(𝑘) = 𝐻𝑇𝐴𝐻𝑈 ∙ 𝑇𝐴𝐻𝑈
2 (𝑘) + 𝑓𝑇𝐴𝐻𝑈(𝑘) ∙ 𝑇𝐴𝐻𝑈(𝑘)+𝑐𝑇𝐴𝐻𝑈 

where 

𝐻𝑇𝐴𝐻𝑈 = 𝑎𝑇𝐴𝐻𝑈 , and   𝑓𝑇𝐴𝐻𝑈(𝑘) = 𝑏𝑇𝐴𝐻𝑈 + 𝜓𝑇𝐴𝐻𝑈(𝑘) 




